
Cascading Failures in Power Grids –
Analysis and Algorithms

Saleh Soltan
Electrical Engineering
Columbia University

New York, NY
saleh@ee.columbia.edu

Dorian Mazauric
Laboratoire d’Informatique
Fondamentale de Marseille

Marseille, France
dorian.mazauric@lif.univ-

mrs.fr

Gil Zussman
Electrical Engineering
Columbia University

New York, NY
gil@ee.columbia.edu

ABSTRACT
This paper focuses on cascading line failures in the trans-
mission system of the power grid. Recent large-scale power
outages demonstrated the limitations of percolation- and
epidemic-based tools in modeling cascades. Hence, we study
cascades by using computational tools and a linearized power
flow model. We first obtain results regarding the Moore-
Penrose pseudo-inverse of the power grid admittance matrix.
Based on these results, we study the impact of a single line
failure on the flows on other lines. We also illustrate via sim-
ulation the impact of the distance and resistance distance on
the flow increase following a failure, and discuss the differ-
ence from the epidemic models. We use the pseudo-inverse of
admittance matrix to develop an efficient algorithm to iden-
tify the cascading failure evolution, which can be a building
block for cascade mitigation. Finally, we show that finding
the set of lines whose removal results in the minimum yield
(the fraction of demand satisfied after the cascade) is NP-
Hard and introduce a simple heuristic for finding such a set.
Overall, the results demonstrate that using the resistance
distance and the pseudo-inverse of admittance matrix pro-
vides important insights and can support the development
of efficient algorithms.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Reliability, availability,
and serviceability; G.2.2 [Discrete Mathematics]: Graph
Theory—Graph algorithms, Network problems
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Figure 1: The first 11 line outages leading to the India black-
out on July 2012 [2] (numbers show the order of outages).

1. INTRODUCTION
Recent failures of the power grid (such as the 2003 and

2012 blackouts in the Northeastern U.S. [1] and in India [2])
demonstrated that large-scale failures will have devastating
effects on almost every aspect in modern life. The grid is
vulnerable to natural disasters, such as earthquakes, hurri-
canes, and solar flares as well as to terrorist and Electro-
magnetic Pulse (EMP) attacks [43]. Moreover, large scale
cascades can be initiated by sporadic events [1, 2, 42].

Therefore, there is a need to study the vulnerability of the
power transmission network. Unlike graph-theoretical net-
work flows, power flows are governed by the laws of physics
and there are no strict capacity bounds on the lines [10].
Yet, there is a rating threshold associated with each line –
if the flow exceeds the threshold, the line will eventually ex-
perience thermal failure. Such an outage alters the network
topology, giving rise to a different flow pattern which, in
turn, could cause other line outages. The repetition of this
process constitutes a cascading failure [19].

Previous work (e.g., [17,18,45] and references therein) as-
sumed that a line/node failure leads, with some probabil-
ity, to a failure of nearby nodes/lines. Such epidemic based
modeling allows using percolation-based tools to analyze the
cascade’s effects. Yet, in real large scale cascades, a failure
of a specific line can affect a remote line and the cascade
does not necessarily develop in a contiguous manner. For
example, the evolution of the cascade in India on July 2012
appears in Fig. 1. Similar non-contiguous evolution was ob-
served in a cascade in Southern California in 2011 [11, 42]
and in simulation studies [11,12].

Motivated by this observation, we study the effects of edge
failures and introduce algorithms to identify the cascading
failure evolution and vulnerable lines. We employ the (lin-
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earized) direct-current (DC) power flow model,1 which is a
practical relaxation of the alternating-current (AC) model,
and the cascading failure model of [25] (see also [11–14]).
Specifically, we first review the model and the Cascading
Failure Evolution (CFE) Algorithm that has been used to
identify the evolution of the cascade [13,14,19] (its complex-
ity is O(t|V |3), where |V | is the number of nodes and t is
the number of cascade rounds).

Then, in order to investigate the impact of a single edge
failure on other edges, we use matrix analysis tools to study
the properties of the admittance matrix of the grid2 and
Moore-Penrose Pseudo-inverse [4] of the admittance matrix.
In particular, we provide a rank-1 update of the pseudo-
inverse of the admittance matrix after a single edge failure.

We use these results along with the resistance distance and
Kirchhoff’s index notions3 to study the impact of a single
edge failure on the flows on other edges. We obtain upper
bounds on the flow changes after a single failure and study
the robustness of specific graph classes. We also illustrate
via simulations the relation between the flow changes after
a failure and the distance (in hop count) and resistance dis-
tance from the failure in the U.S. Western interconnection
as well as Erdős-Rényi [26], Watts and Strogatz [44], and
Barábasi and Albert [9] graphs. These simulations show
that there are cases in which an edge flow far away from the
failure significantly increases. These observations are clearly
in contrast to the epidemic-based models.

Once lines fail, there is a need for low complexity al-
gorithms to control and mitigate the cascade. Hence, we
develop the low complexity Cascading Failure Evolution –
Pseudo-inverse Based (CFE-PB) Algorithm for identifying
the evolution of a cascade that may be initiated by a fail-
ure of several edges. The algorithm is based on the rank-1
update of the pseudo-inverse of the admittance matrix. We
show that its complexity is O(|V |3 + |F ∗t ||V |2) (|F ∗t | is the
number of edges that eventually fail). Namely, if t = |F ∗t |
(one edge fails at each round), the complexity of the CFE-
PB Algorithm is O(min{|V |, t}) times lower than that of the
CFE Algorithm. The main advantage of the CFE-PB Algo-
rithm is that it leverages the special structure of the pseudo-
inverse to identify properties of the underlying graph and to
recompute an instance of the pseudo-inverse from a previous
instance.

Finally, we prove that the problem of finding the set of
initial failures of size k that causes a cascade with the min-
imum possible yield (the fraction of demand satisfied af-
ter the cascade) is NP-hard. We introduce a very simple
heuristic termed the Most Vulnerable Edges Selection – Re-
sistance distance Based (MVES-RB) Algorithm. We numer-
ically show that solutions obtained by it lead to a much lower
yield than the solutions obtain by selecting the initial edge
failures randomly. Moreover, in some small graphs with a
single edge failure, it obtains the optimal solution.

The main contribution of this paper is the development of
new tools, based on matrix analysis, for assessing the impact
of a single edge failure. Using these tools, we (i) obtain upper
bounds on the flow changes after a single failure, (ii) develop

1The DC model is commonly used in large-scale contin-
gency analysis of power grids [13,14,38].

2An n× n admittance matrix represents the admittance
of the lines in a power grid with n nodes.

3These notions originate from Circuit Theory and are
widely used in Chemistry [29].

a fast algorithm for identifying the evolution of the cascade,
and (iii) develop a heuristic algorithm for the minimum yield
problem.

This paper is organized as follows. Section 2 reviews re-
lated work. Section 3 describes the power flow, cascade
model, metrics, and the graphs used in the simulations. In
Section 4, we derive the properties of the admittance ma-
trix of the grid. Section 5 presents the effects of a single
edge failure. Section 6 introduces the CFE-PB Algorithm.
Section 7 discusses the hardness of the minimum yield prob-
lem and introduces the MVES-RB Algorithm. Section 8
provides concluding remarks and directions for future work.
The proofs appear in the Appendix.

2. RELATED WORK
Network vulnerability to attacks has been thoroughly stud-

ied (e.g., [3, 30, 37] and references therein). However, most
previous computational work did not consider power grids
and cascading failures. Recent work on cascades focused
on probabilistic failure propagation models (e.g., [17,18,45],
and references therein). However, real cascades [1,2,42] and
simulation studies [11, 12] indicate that the cascade propa-
gation is different than that predicted by such models.

In Sections 4 and 6, we use the admittance matrix of the
grid to compute flows. This is tightly connected to the prob-
lem of solving Laplacian systems. Solving these systems can
be done with several techniques, including Gaussian elim-
ination and LU factorization [27]. Recently, [20] designed
algorithms that use preconditioning, to provide highly pre-
cise approximate solutions to Laplacian systems in nearly
linear time. However, this approach only provides approx-
imate solutions and is not suitable for analytical studies of
the effects of edge failures.

In Section 5, we obtain upper bounds on the flow changes
after a single failure and study the robustness of graph classes
based on resistance distance and Kirchhoff’s index [16, 29].
Recently, these notions have gained attention outside the
Chemistry community. For instance, they were used in net-
work science for detecting communities within a network,
and more generally the strength of the connection between
nodes in a network [34,35]. Moreover, [22] recently used the
resistance distance to partition power systems into zones.

The problem of identifying the set of failures with the
largest impact was studied in [13, 14, 32, 38]. In particu-
lar, [14] studies the N − k problem which focuses on find-
ing a small cardinality set of links whose removal disables
the network from delivering a minimum amount of demand.
A broader network interdiction problem in which all the
components of the network are subject to failure was stud-
ied in [41]. A similar problem is studied in [38] using the
alternating-current (AC) model. However, none of the pre-
vious works consider the cascading failures. Moreover, while
the optimal power flow problem has been shown to be NP-
hard [31], the complexity of the cascade-related problems
was not studied yet.

Finally, for the simulations, we use graphs that can rep-
resent the topology of the power grid. The structure of the
power grids has been widely studied [5, 6, 9, 18, 23, 24, 44].
In particular, Watts and Strogatz [44] suggested the small-
world graph as a good representative of the power grid,
based on the shortest paths between nodes and the clus-
tering coefficient of the nodes. Barabási and Albert [9,
18] showed that scale-free graphs are better representatives
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based on the degree distribution. However, [23] indicated
that none of these models can represent U.S. Western in-
terconnection properly. Following these papers, we consider
the Erdős-Rényi graph [26] in addition to these graphs.

3. MODELS AND METRICS
3.1 DC Power Flow Model

We adopt the linearized (or DC) power flow model, which
is widely used as an approximation for the more accurate
non-linear AC power flow model [10]. In particular we fol-
low [11–14] and represent the power grid by an undirected
graph G = (V,E) where V and E are the set of nodes and
edges corresponding to the buses and transmission lines, re-
spectively. pv is the active power supply (pv > 0) or demand
(pv < 0) at node v ∈ V (for a neutral node pv = 0). We as-
sume pure reactive lines, implying that each edge {u, v} ∈ E
is characterized by its reactance xuv = xvu > 0.

Given the power supply/demand vector P ∈ R|V |×1 and
the reactance values, a power flow is a solution (f, θ) of:∑

v∈N(u)

fuv = pu, ∀ u ∈ V (1)

θu − θv − xuvfuv = 0, ∀ {u, v} ∈ E (2)

where N(u) is the set of neighbors of node u, fuv is the power
flow from node u to node v, and θu is the phase angle of node
u. Eq. (1) guarantees (classical) flow conservation and (2)
captures the dependency of the flow on the reactance values
and phase angles. Additionally, (2) implies that fuv = −fvu.
Note that the edge capacities are not taken into account in
determining the flows. When the total supply equals the
total demand in each connected component of G, (1)-(2) has
a unique solution [14, lemma 1.1].4 Eq.(1)-(2) are equivalent
to the following matrix equation:

AΘ = P (3)

where Θ ∈ R|V |×1 is the vector of phase angles and A ∈
R|V |×|V | is the admittance matrix of the graph G, defined
as follows:

auv =


0 if u 6= v and {u, v} /∈ E
−1/xuv if u 6= v and {u, v} ∈ E
−
∑
w∈N(u) auw if u = v.

If there are k multiple edges between nodes u and v, then
auv = −

∑k
i=1 1/xuvi . Notice that when xuv = 1 ∀{u, v} ∈

E, the admittance matrix A is the Laplacian matrix of the
graph [15]. Once Θ is computed, the power flows, fuv, can
be obtained from (2).

Throughout this paper ‖.‖ denotes the Euclidean norm of
the vector and the operator matrix norm. For matrix Q, qij
denotes its ijth entry, Qi its ith row, and Qt its transpose.

3.2 Cascading Failure Model
The Cascading Failure Evolution (CFE) Algorithm de-

scribed here is a slightly simplified version of the cascade
model used in [12, 14, 25]. We define fe = |fuv| = |fvu| and
assume that an edge e = {u, v} ∈ E has a predetermined
power capacity ce = cuv = cvu, which bounds its flow (that
is, fe ≤ ce). The cascade proceeds in rounds. Denote by

4The uniqueness is in the values of fuv-s rather than θu-s
(shifting all θu-s by equal amounts does not violate (2)).

Algorithm 1 - Cascading Failure Evolution (CFE)

Input: A connected graph G = (V,E) and an initial edge failures
event F0 ⊆ E.
1: F ∗0 ← F0 and i← 0.
2: while Fi 6= ∅ do
3: Adjust the total demand to equal the total supply within

each connected component of G = (V,E \ F ∗i ).
4: Compute the new flows fe(F ∗i ) ∀e ∈ E \ F ∗i .
5: Find the set of new edge failures Fi+1 = {e|fe(F ∗i ) >

ce, e ∈ E \ F ∗i }. F ∗i+1 ← F ∗i ∪ Fi+1 and i← i + 1.

6: return t = i− 1, (F0, . . . , Ft), and fe(F ∗t ) ∀e ∈ E\F ∗t .

Fi ⊆ E the set of edge failures in the ith round and by
F ∗i = F ∗i−1 ∪ Fi the set of edge failures until the end of
the ith round (i ≥ 1). We assume that before the initial
failure event F0 ⊆ E, the power flows satisfy (1)-(2), and
fe ≤ ce ∀e ∈ E. Upon a failure, some edges are removed
from the graph, implying that it may become disconnected.
Thus, within each component, the total demand is adjusted
to be equal to the total supply by decreasing the demand
(supply) by the same factor at all demand (supply) nodes
(Line 3). This corresponds to the load shedding/generation
curtailing process. For any set of failures F ⊆ E, we denote
by fe(F ) the flow along edges in G′ = (V,E \ F ) after the
shedding/curtailing.

Following an initial failure event F0, the new flows fe(F0),
∀e ∈ E\F0 are computed (by (1)-(2)) (Line 4). Then, the
set of new edge failures F1 is identified (Line 5). Follow-
ing [12, 14, 25], we use a deterministic outage rule and as-
sume, for simplicity, that an edge e fails once the flow ex-
ceeds its capacity: fe(F

∗
0 ) > ce.

5 Therefore, F1 = {e :
fe(F

∗
0 ) > ce, e ∈ E\F ∗0 }.

If the set F1 of new edge failures is empty, then the cas-
cade is terminated. Otherwise, the process is repeated while
replacing the initial event F ∗0 = F0 by the failure event F ∗1 ,
and more generally replacing F ∗i by F ∗i+1 at the ith round
(Line 5). The process continues until the system stabilizes,
namely until no edges are removed. Finally, we obtain the
sequence (F0, F1, . . . , Ft) of the sets of failures associated
with the initial event F0, and the power flows fe(F

∗
t ) at

stabilization, where t is the number of rounds until the net-
work stabilizes. Since solving a system of linear equations
with n variables, requires O(n3) time [27], the output can
be obtained in O(t|V |3) time.

An example of a cascade can be seen in Fig. 2. Initially,
the flows are fe = 0.5 for all edges. The initial set of failures
(F0) disconnects a demand node from the graph. Hence,
intuitively, one may not expect a cascade. However, this
initial failure not only causes further failures but also causes
failures in all edges except for two. This example can be
generalized to a graph with 2n nodes where with the same
set of initial failures, all the edges fail except for two.

For simplicity, when the initial failure event contains a
single edge, F0 = {e′}, we denote the flows after the failure
by f ′e ≡ fe({e′}) and the flow changes by ∆fe = f ′e−fe ∀e ∈
E\{e′}.

3.3 Metrics
To study the effects of a single edge (e′) failure after one

round, we define the ratio between the change of flow on an
edge, e, and its original value or the flow value on the failed
edge, e′:

5Note that [12, 14, 25] maintain moving averages of the
fe values to determine which edges fail.
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Figure 2: An example of a cascading failure initiated by outages of the edges connecting a demand node to the network. The
edge capacities and reactance values are ce = 0.6, xe = 1. Numbers in nodes indicate power supply or demand (pv), numbers
on edges indicate flows (fe), and arrows indicate flow direction.

Edge flow change ratio: Se,e′ = |∆fe/fe|.
Mutual edge flow change ratio: Me,e′ = |∆fe/fe′ |.

Below, we define a metric related to the evaluation of the
cascade severity for a given instance G, an initial failure
event F0 ⊆ E, and an integer k ≥ 1. An instance is com-
posed of a connected graph G, supply/demand vector P ,
capacities and reactance values ce, xe ∀e ∈ E. For brevity,
an instance is represented by G.
Yield (the ratio between the demand supplied at stabi-
lization and the original demand): Y (G,F0), Y (G, k) =
minF0⊆E,|F0|≤k Y (G,F0).

3.4 Graphs Used in Simulations
The simulation results are presented for the graphs de-

scribed below. All graphs have 1,374 nodes to correspond
the subgraph of the Western interconnection. The parame-
ters are as indicted below, unless otherwise mentioned.
Western interconnection: 1708-edge connected subgraph
of the U.S. Western interconnection. The data is from the
Platts Geographic Information System (GIS) [39].
Erdős-Rényi graph [26]: A random graph where each edge
appears with probability p = 0.01.
Watts and Strogatz graph [44]: A small-world random
graph where each node connects to k = 4 other nodes and
the probability of rewiring is p = 0.1.
Barábasi and Albert graph [9]: A scale-free random
graph where each new node connects to k = 3 other nodes at
each step following the preferential attachment mechanism.

4. ADMITTANCE MATRIX PROPERTIES
In this section, we use the Moore-Penrose Pseudo-inverse

of the admittance matrix [4] in order to obtain results that
are used throughout the rest of the paper. Specifically they
are used in Section 5 to study the impact of a single edge
failure on the flows on other edges and in Section 6 to intro-
duce an efficient algorithm to identify the evolution of the
cascade. We prove several properties of the Pseudo-inverse
of the admittance matrix A, denoted by A+.6 A+ always ex-
ists regardless of the structure of the graph G. Some proofs
and results that are used in the proofs appear in the Ap-
pendix.

Observation 1 shows that the power flow equations can be
solved by using A+.

6A+ = limδ→0 A
t(AAt+δ2I)−1 [4]. For more information

regarding the definition, see Appendix.

Observation 1. If (3) has a feasible solution, Θ̂ = A+P
is a solution for (3).7

Proof. According to Theorem A.1, Θ̂ = A+P minimizes
‖P − AΘ‖. On the other hand, since (3) has a solution,

‖P − AΘ̂‖ = minΘ ‖P − AΘ‖ = 0. Thus, Θ̂ = A+P is a
solution for (3).

Jointly verifying whether an edge is a cut-edge and finding
the connected components of the graph takes O(|E|) (us-
ing Depth First Search [21]). The following two Lemmas
show that by using the precomputed pseudo-inverse of the
admittance matrix, these operations can be done in O(1)
and O(|V |), respectively. The algorithm in Section ?? uses
the results to check if the pseudo-inverse should be recom-
puted. Moreover, Lemma 1 is crucial for the proof of the
Theorem 1, below.

Lemma 1 (Bapat [8]). Given G = (V,E) and A+, all
the cut-edges of the graph G can be found in O(|E|) time.
Specifically, an edge {i, j} ∈ E is a cut-edge if, and only if,
a−1
ij − 2a+

ij + a+
ii + a+

jj = 0.

Lemma 2. Given G = (V,E), A+, and the cut-edge {i, j},
the connected components of G\{i, j} can be identified in
O(|V |).

In the following, we denote by A′ the admittance matrix of
the graph G′ = (V,E\{i, j}) and by P ′ the power vector af-
ter removing an arbitrary edge e′ = {i, j} from the graph G
and conducting the corresponding load shedding/generation
curtailing.

Lemma 3 shows that after the removal of a cut-edge, A+

can be used to solve (3) and A′+ is not required.
Lemma 3. Given graph G = (V,E), A+, and a cut-edge

{i, j}, then Θ̂ = A+P ′ is a solution of (3) in G′.
The following theorem gives an analytical rank-1 update of
the pseudo-inverse of the admittance matrix. Using Theo-
rem 1 and Corollary 1, in Section 5 we provide upper bounds
on the mutual edge flow change ratios (Me,e′). We note that
a similar result to Theorem 1 was independently proved in
a very recent technical report [40].

Theorem 1. Given graph G = (V,E), the admittance
matrix A, and A+, if {i, j} is not a cut-edge, then,

A′+ = (A+ aijXX
t)+ = A+ − 1

a−1
ij +XtA+X

A+XXtA+

in which X is an n× 1 vector with 1 in ith entry, −1 in jth

entry, and 0 elsewhere.
7Recall from Section 3 that (1)-(2) have a unique solu-

tion with respect to power flows but not in respect to phase
angles. Therefore, the solution to (3) may not be unique.
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Figure 3: Scatter plot showing the distance versus the resistance distance between nodes in the graphs defined in Subsection 3.4.

For the following, recall from Section 3 that A+ = [a+
rs].

Corollary 1.

f ′rs = frs −
ars
aij

(a+
ri − a

+
rj)− (a+

si − a
+
sj)

a−1
ij − 2(a+)ij + (a+)ii + (a+)jj

fij .

Finally, Lemma 4, gives the complexity of the rank-1 update
provided in Theorem 1. This is used in the computation of
the running time of the algorithm in Section 6.

Lemma 4. Given graph G = (V,E), A+, and an edge
{i, j}, which is not a cut-edge of the graph, A′+ can be com-
puted from A+ in O(|V |2).

We now define the notion resistance distance [29]. In re-
sistive circuits, the resistance distance between two nodes is
the equivalent resistance between them. It is known that
the resistance distance, is actually a measure of distance be-
tween nodes of the graph [8]. For any network, this notion
can be defined by using the pseudo-inverse of the Lapla-
cian matrix of the network. Specifically, it can be defined
in power grid networks by using the pseudo-inverse of the
admittance matrix, A+.

Definition 1. Given G = (V,E), A, and A+, the resis-
tance distance between two nodes i, j ∈ V is r(i, j) := a+

ii +
a+
jj − 2a+

ij. Accordingly, the resistance distance between two

edges e = {i, j}, e′ = {p, q} is r(e, e′) = min{r(i, p), r(i, q),
r(j, p), r(j, q)}.
When all the edges have the same reactance, xij = 1 ∀{i, j} ∈
E, the resistance distance between two nodes is a measure
of their connectivity. Smaller resistance distance between
nodes i and j indicates that they are better connected. Fig. 3
shows the relation between the distance and the resistance
distance between nodes in the graphs defined in Subsec-
tion 3.4 (notice that xij = 1 ∀{i, j} ∈ E).8 As can be
seen, there is no direct relation between these two measures
in Erdős-Rényi and Barábasi-Albert graphs. However, in
the Western interconnection and Watts-Strogatz graph the
resistance distance increases with the distance.

In Chemistry, the sum over the resistance distances be-
tween all pairs of nodes in the graph G is referred to as the
Kirchhoff index [16] of G and denoted by Kf(G). We use
this notion in Subsection 5.2.2 to study the robustness of
different graph classes to single edge failures.

Definition 2. Given G = (V,E) and A, the Kirchhoff
index of G is Kf(G) = 1

2

∑
i,j∈V r(i, j).

8While in the Western interconnection the reactance val-
ues depend on the line characteristics (see values in [12]),
for comparison and consistency, we used xij = 1 ∀{i, j} ∈ E
in all the graphs.

5. EFFECTS OF A SINGLE EDGE FAILURE
In this section we provide upper bounds on the flow changes

after a single edge failure and study the robustness of differ-
ent graph classes. For simplicity, in this section, we assume
that xe = 1 ∀e ∈ E, unless otherwise indicated. As men-
tioned in Section 3, in this case the admittance matrix of
the graph, A, is equivalent to the Laplacian matrix of the
graph. However, all the results can be easily generalized.

5.1 Flow Changes

5.1.1 Edge Flow Change Ratio
In order to provide insight into the effects of a single edge

failure, we first present simulation results. The simulations
have been done in Python using NetworkX library. Fig. 4
shows the edge flow change ratios (Se,e′) as the function
of distance (d(e, e′)) from the failure for over 40 different
random choices of an initial edge failure, e′. The power
supply/demand in the Western interconnection is based on
the actual data. In other graphs, the power supply/demand
at nodes are i.i.d. Normal random variables with a slack
node to equalize the supply and demand. Notice that if the
initial flow in an edge is close to zero, the edge flow change
ratio on that edge can be very large. Thus, to focus on
the impact of an edge failure on the edges with reasonable
initial flows, we do not illustrate the edge flow change ratios
for the edges with flow below 1% of the average flow. Yet,
we observe that such edges that experience a flow increase
after a single edge failure, are within any arbitrary distance
from the initial edge failure.

Fig. 4 shows that after a single edge failure, there might
be a very large increase in flows (edge flow change ratios up
to 80, 14, 50, and 24 in Fig. 4-(a), (b), (c), and (d), respec-
tively) and sometimes far from the initial edge failure (edge
flow change ratio around 10 for edges 11- and 4-hops away
from the initial failure in Fig. 4-(a) and (c), respectively).
Moreover, as we observed in all of the four graphs, there
are edges with positive flow increase from zero, far from the
initial edge failure.

Finally, we show that by choosing the parameters in a
specific way, the edge flow change ratio can be arbitrarily
large.

Observation 2. For any xe1 , xe2 ∈ R+\{0}, there exists
a graph G = (V,E) and two edges e1, e2 ∈ E such that
Se2,e1 = xe2/xe1 .

5.1.2 Mutual Edge Flow Change Ratio
We use the notion of resistance distance to find upper

bounds on the mutual edge flow change ratios (Me,e′). The
following Lemma provides a formula for computing the flow
changes after a single edge failure based on the resistance
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Figure 4: The average, standard deviation, and maximum edge flow change ratios (Se,e′) as the function of distance (d(e, e′))
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Figure 5: The mutual edge flow change ratios (Me,e′) after
an edge failure (represented by black wide line) in different
graph classes. All the graphs have 14 nodes, except for (a)
which has 28 nodes. In (b) p = 0.1.

distances. It is independent of the power supply/demand
distribution.

Lemma 5. Given G = (V,E), A, and A+, the flow change
and the mutual edge flow change ratio for an edge e =
{i, j} ∈ E after a failure in a non-cut-edge e′ = {p, q} ∈ E
are,

∆fij =
1

2

−r(i, p) + r(i, q) + r(j, p)− r(j, q)
1− r(p, q) fpq,

Me,e′ =
1

2

−r(i, p) + r(i, q) + r(j, p)− r(j, q)
1− r(p, q) .

Proof. It is an immediate result of Corollary 1.
Fig. 5 illustrates the mutual edge flow change ratios after
an edge failure. Recall that Me,e′ describes the distribu-
tion of the flow that passed through e′ on the other edges.
These values are differently distributed for different graph
classes. In the next subsection, we study in detail the re-
lation between the mutual edge flow change ratios and the
graph structure.

The following Corollary gives an upper bound on the flow
changes after a failure in a non-cut-edge {p, q} ∈ E by using
the triangle inequality for resistance distance and Lemma 5.

Corollary 2. Given G = (V,E), A, and A+, the flow
changes in any edge e = {i, j} ∈ E after a failure in a non-
cut-edge e′ = {p, q} ∈ E can be bounded by,

|∆fij | ≤
r(p, q)

1− r(p, q) |fpq|, Me,e′ ≤
r(p, q)

1− r(p, q) .

With the very same idea, the following corollary gives an
upper bound on the flow changes in a specific edge {i, j} ∈ E
after a failure in the non-cut-edge {p, q} ∈ E.

Corollary 3. Given G = (V,E), A, and A+, the flow
changes in an edge e = {i, j} ∈ E after a failure in a non-
cut-edge e′ = {p, q} ∈ E and the mutual edge flow change
ratio M(e, e′) can be bounded by,

|∆fij | ≤
r(e, e′)

1− r(p, q) |fpq|, Me,e′ ≤
r(e, e′)

1− r(p, q) .

Corollary 3 directly connects the resistance distance between
two edges (r(e, e′)) to their mutual edge flow change ratio
(Me,e′). It shows that the resistance distance, in contrast to
the distance, can be used for assessing the influence of an
edge failure on other edges.

We present simulations to show the relations between the
mutual flow change ratios and the two distance measures.
Figs. 6 and 7 show the mutual edge flow change ratio (Me,e′)
as the function of distance (d(e, e′)) and resistance distance
(r(e, e′)) from the failure, respectively. The figures show
that increasing number of edges (increasing p in Erdős-Rényi
graph and increasing k in Watts and Strogatz, and Barábasi
and Albert graphs) affects the Me,e′ -r(e, e

′) relation more
than the Me,e′ -d(e, e′) relation. This suggests that the re-
sistance distance better captures the information hidden in
the structure of a graph. Both figures show a monotone re-
lation between the mutual edge flow change ratios and the
distances/resistance distances. However, this monotonicity
is smoother in the case of the distance.

Moreover, Fig. 6, unlike Fig. 4, shows that after a single
edge failure, the mutual edge flow change ratios decrease
as the distance from the initial failure increases. Thus, it
suggests that probabilistic tools may be used to model the
mutual edge flow change ratios (Me,e′) better than the edge
flow change ratios (Se,e′).

5.2 Graph Robustness
We now use the upper bounds provided in Corollaries 2

and 3 to study the robustness of some well-known graph
classes to single edge failures. We use the average mutual
edge flow change ratio, Me,e′ , as the measure of the ro-
bustness. The small value of Me,e′ indicates that the flow
changes in edges after a single edge failure is small compared
to the original flow on the failed edge. In other words, the
network is able to distribute additional load after a single
edge failure uniformly between other edges.

We show that (i) graphs with more edges are more ro-
bust to single edge failures and (ii) the Kirchhoff index can
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be used as a measure for the robustness of different graph
classes.

5.2.1 Robustness Based on Number of Edges
Using Corollary 2, it can be seen that a failure in an edge

with small resistance distance between its two end nodes
leads to a small upper bound on the mutual edge flow change
ratios, Me,e′ , on the other edges. Thus, the average r(i, j)
for {i, j} ∈ E is relatively a good measure of the average
mutual edge flow change ratio. The following Observation
shows that graphs with more edges have smaller average
r(i, j) for {i, j} ∈ E, and therefore, smaller average mutual
edge flow change ratio.

Observation 3. Given G = (V,E), the average r(i, j)

for {i, j} ∈ E is |V |−1
|E| .

Observation 3 implies that for a fixed number of nodes, the
average resistance distance gets smaller as the number of
edges increases. Therefore, graphs with more edges are more
robust against a single edge failure.

5.2.2 Robustness Based on the Graph Class
Another way of computing the average mutual edge flow

change ratio is to use Corollary 3 which implies that graphs
with low average resistance distance over all pairs of nodes
have the small average mutual edge flow change ratios. On
the other hand, recall from Definition 2 that the average
resistance distance over all pair of nodes is equal to Kirchhoff
index of the graph divided by the number of edges. Hence,
table 1 summarizes the Kirchhoff indices and corresponding
average mutual edge flow change ratios for some well-known
graph classes. To complete the table, in the following lemma
we compute the Kirchhoff index of the Erdős-Rényi graph
as a function of p.

Table 1: The Kirchhoff indices and the average mutual edge
flow change ratios (Me,e′) for some well-known graphs. The
values that were previously known [33] are highlighted by
grey cells.

Graph Class Kirchhoff index
Average mutual
edge flow change

ratio (Me,e′)

Complete graph n − 1 O( 1
n )

Complete
bipartite graph

4n − 3 O( 1
n )

Complete
tripartite graph

1
2 (9n − 5) O( 1

n2 )

Cycle graph 1
12 (n − 1)n(n + 1) O(n2)

Cocktail party
graph

2n2−2n+1
n−1

O( 1
n )

Erdős-Rényi
graph

Θ( n
p ) O( 1

np2
)

Lemma 6. For an Erdős-Rényi random graph, G(n, p),
Kf(G) is of Θ(n

p
), and therefore the average resistance dis-

tance between all pairs of nodes is of Θ( 1
np2

).

This Lemma shows that the average resistance distance be-
tween all pairs of nodes of an Erdős-Rényi graph is related
to 1/p2. Since as p grows, the average number of edges in a
Erdős-Rényi graph increases, this Lemma also suggests that
graphs with more edges are more robust to a single edge
failure. Thus, the results in this subsection are aligned with
the result in Subsection 5.2.1 indicating that graphs with
more edges are more robust to a single edge failure.

6. EFFICIENT CASCADING FAILURE EVO-
LUTION COMPUTATION

Based on the results obtained in Section 4, we present the
Cascading Failure Evolution – Pseudo-inverse Based (CFE-
PB) Algorithm which identifies the evolution of the cascade.
The CFE-PB Algorithm uses the Moore-Penrose Pseudo-
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Algorithm 2 - Cascading Failure Evolution – Pseudo-
inverse Based (CFE-PB)

Input: A connected graph G = (V,E) and an initial edge failures
event F0 ⊆ E.
1: Compute A+, F ∗0 ← F0 and i← 0.
2: while Fi 6= ∅ do
3: for each {r, s} ∈ Fi do
4: if {r, s} is a cut-edge (see Lemma 1) then
5: Find the connected components after removing {r, s}.

(see Lemma 2)
6: Adjust the total demand to equal the total supply

within each connected component.
7: else update A+ after removing {r, s}. (see Lemma 4)

8: Compute the phase angles Θ̂ = A+P and compute new
flows fe(F ∗i ) from the phase angles.

9: Find the set of new edge failures Fi+1 = {e|fe > ce, e ∈
E \ F ∗i }. F ∗i+1 ← F ∗i ∪ Fi+1 and i← i + 1.

10: return t = i− 1, (F0, . . . , Ft), and fe(F ∗t ) ∀e ∈ E\F ∗t .

inverse of the admittance matrix for solving (3). Comput-
ing the pseudo-inverse of the admittance matrix requires
O(|V |3) time. However, the algorithm obtains the pseudo-
inverse of the admittance matrix in round i from the one
obtained in round (i− 1), in O(|Fi||V |2) time. Moreover, in
some cases, the algorithm can reuse the pseudo-inverse from
the previous round. Since once lines fail, there is a need for
low complexity algorithms to control and mitigate the cas-
cade, the CFE-PB Algorithm may provide insight into the
design of efficient cascade control algorithms.

We now describe the CFE-PB Algorithm. It initially
computes the pseudo-inverse of the admittance matrix (in
O(|V |3) time) and this is the only time in which it computes
A+ without using a previous version of A+. Next, starting
from F0, at each round of the cascade, for each e ∈ Fi, it
checks whether e is a cut-edge (Line 4). This is done in O(1)
(Lemma 1). If yes, based on Lemma 3, in Lines 5 and 6, the
total demand is adjusted to equal the total supply within
each connected component (in O(V ) time). Else, in Line 7,
A+ after the removal of e is computed in O(|V |2) time (see
Lemma 4). After repeating this process for each e ∈ Fi, the
phase angles and the flows are computed in O(|V |2) time
(Line 8). The rest of the process is similar to the CFE Al-
gorithm.

The following theorem provides the complexity of the al-
gorithm (the proof is based on the Lemmas 1–4). We show
that the algorithm runs in O(|V |3 + |F ∗t ||V |2) time (com-
pared to the CFE Algorithm which runs inO(t|V |3)). Namely,
if t = |F ∗t | (one edge fails at each round), the CFE-PB Algo-
rithm outperforms the CFE Algorithms by O(min{|V |, t}).

Theorem 2. CFE-PB Algorithm runs in O(|V |3+|F ∗t ||V |2)
time.
We notice that a similar approach (the step by step rank-1
update) can also be applied to other methods for solving lin-
ear equations (e.g., LU factorization [27]). However, as we
showed in Section 5, using the pseudo-inverse allows devel-
oping tools for analyzing the effect of a single edge failure.
Moreover, it supports the development of an algorithm for
finding the most vulnerable edges.

7. HARDNESS AND HEURISTIC
In this section, we prove that the decision problem asso-

ciated with the minimum yield is NP-complete. Using the
results from Section 5, we introduce a heuristic algorithm
for the problem of finding the set of initial failures of size

Algorithm 3 - Most Vulnerable Edges Selection – Resis-
tance distance Based (MVES-RB)

Input: A connected graph G = (V,E) and an integer k ≥ 1.
1: Compute A+.

2: Compute the phase angles Θ̂ = A+P and compute flows fe
from the phase angles.

3: Compute the resistance distance r(i, j) = r(e) ∀e = {i, j} ∈
E.

4: Sort edges e1, e2, . . . , e|E| such that p ≤ q iff fepr(ep) ≥
feq r(eq).

5: return e1, e2, . . . , ek.

k that causes a cascade resulting with the minimum possi-
ble yield (minimum yield problem). We numerically show
that solutions obtained by the heuristic algorithm lead to
a much lower yield than the solutions obtain by selecting
the initial edge failures randomly. Moreover, in some small
graphs with a single edge failure, this algorithm obtains the
optimal solution.

First, we show that deciding if there exists a failure event
(of size at most a given value) such that the yield after sta-
bilization is less than a given threshold, is NP-complete.

Lemma 7. Given a graph G, a real number y, 0 ≤ y ≤ 1,
and an integer k ≥ 1, the problem of deciding if Y (G, k) ≤ y
is NP-complete.

We now present a heuristic algorithm for solving this prob-
lem. We refer to it as the Most Vulnerable Edge Selection
– Resistance distance Based (MVES-RB) Algorithm. From
Corollary 2, it seems that edges with large r(i, j) × |fij |
have greater impact on the flow changes on the other edges.
Based on this result, the MVES-RB Algorithm selects the k
edges with highest r(i, j) × |fij | values as the initial set of
failures.

The MVES-RB Algorithm is in the same category as the
algorithms that identify the set of failures with the largest
impact (i.e., algorithms that solve the N−k problem [14,32,
38]). However, none of the previous works focusing on the
N−k problem, considers cascading failures. The MVES-RB
Algorithm is simpler than most of the algorithms proposed
in the past. However, it is not possible to compare its per-
formance to that of algorithms in [14, 32, 38, 41] since they
use different formulations of the power flow problem.

We first compare via simulation the MVES-RB Algorithm
to the optimal solution in small graphs and for a single initial
edge failure. Fig. 8 shows the yield after stabilization when
selecting a single edge failure based on the MVES-RB Al-
gorithm, randomly, and optimally. All the graphs have 136
nodes. For all the edges the reactance, xe = 1,9 and the ca-
pacity ce = 1.1fe,

10 where fe is the initial flow on the edge.
At each point, equal number of power supply and demand
nodes are randomly selected and assigned values of 1 and -1.
As can be seen, the MVES-RB Algorithm obtains the op-
timal solution in Erdős-Rényi and Barábasi-Albert graphs.
However, it does not achieve the optimal solution in the
Western interconnection and Watts-Strogatz graph.

Finding the optimal solution for the minimum yield prob-
lem in the general case is impossible in practice. Therefore,

9While in the Western interconnection the reactance val-
ues depend on the line characteristics (see values in [12]),
for comparison and consistency, we used xij = 1 ∀{i, j} ∈ E
in all the graphs.

10Following [12], we assume that the capacities are K
times the initial flows on the edges. K is often referred
to as the Factor of Safety (FoS) of the grid. Here, K = 1.1
as in [12].
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Figure 8: The yield after stabilization when selecting a single edge failure based on the MVES-RB Algorithm, randomly, and
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to get better insight into the performance of the MVES-RB
Algorithm, we compare it with the case that k edges are se-
lected randomly. As can be seen in Fig. 8, the MVES-RB Al-
gorithm outperforms the random selection most of the time.
Fig 9 depicts this comparison for larger initial failures in
the Western interconnection and the Watts-Strogatz graph.
The power supplies and demands, the reactances, and the
capacities are as above. It can be seen that the MVES-RB
Algorithm can perform significantly better than the random
selection (Fig. 9-(a) and (b)), and in some cases obtains simi-
lar performance to the random selection (Fig. 9-(c) and (d)).
Notice that in these cases, both methods perform relatively
good (lead to yield less than 0.02).

To conclude, despite the simplicity and low complexity of
the MVES-RB Algorithm, simulations indicate that it out-
performs the random selection and in simple cases obtains
the optimal solution.

8. CONCLUSIONS
We studied properties of the admittance matrix of the grid

and provided analytical tools for studying the impact of a
single edge failure on the flows on the other edges. Based on
these tools, we derived upper bounds on the flow changes
after a single edge failure and discussed the robustness of
different graph classes against single edge failures. We il-
lustrated via simulations the impact of a single edge failure.
Then, we introduced a pseudo-inverse based efficient algo-
rithm to identify the evolution of the cascade. Finally, we
proved that the minimum yield problem is NP-hard and in-
troduced a simple heuristic algorithm to detect the most
vulnerable edges.

This is one of the first steps in using computational tools
for understanding the grid resilience to cascading failures.

Hence, there are still many open problems. In particular,
we plan to study the effect of failures on the interdependent
grid and communication networks. Moreover, while due to
its relative simplicity, most previous work in the area of grid
vulnerability is based on the DC model, this model does
not capture effects such as voltage collapse that may occur
during a cascade. Hence, we plan to develop methods to
analyze the cascades using the more realistic AC model.
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APPENDIX
A. PRELIMINARIES AND PROOFS

In this appendix we restate results related to the Moore-
Penrose pseudo-inverse of matrix and the proofs for the re-
sults in Sections 4, 5, 6, and 7.

In the following, matrices I and J denote the identity and
the all-1 matrices, respectively.

Theorem A.1 (Moore-Penrose [4]). For any n×m
matrix H, Moore-Penrose pseudo-inverse of H,

H+ = lim
δ→0

(HtH + δ2I)−1Ht = lim
δ→0

Ht(HHt + δ2I)−1

always exists. And for any n-vector z, x̂ = H+z is the vector
of minimum norm among those which minimize ‖z −Hx‖.

Theorem A.2 (Albert [4]). For any matrices U, V ,

(UU t + V V t)+ = (CCt)+ + [I − (V C+)t]

×[(UU t)+ − (UU t)+V (I − C+C)KV t(UU t)+]

×[1− V C+]

where C and K are defined as follows

C = [I − (UU t)(UU t)+]V

K = {I + [(I − C+C)V t(UU t)+V (I − C+C)]}−1.

Proof of Lemma 2. Suppose that {i, j} is a cut-edge
of the connected graph G, and G\{i, j} = G1 ∪G2. Assume
that i ∈ G1 and j ∈ G2. We show below that for any
{r, s} ∈ G\{i, j}, a+

ir − a
+
jr = a+

is − a
+
js. Moreover, for any

r ∈ G1 and s ∈ G2, a+
ir − a

+
jr 6= a+

is − a
+
js. Suppose that

{r, s} ∈ G\{i, j} is an arbitrary edge. Then, the solution

to (1)-(2) for the power vector P̂ with p̂r = −p̂s = 1 and zero
elsewhere is frs = −fsr = 1 and zero elsewhere. Therefore,
fij = 0. On the other hand, from Observation 1, Θ̂ = A+P̂
is a solution to the equivalent matrix equation (3). Since
the solution with respect to power flows is unique, 0 = fij =

−aij(θ̂i− θ̂j) = −aij(A+
i P̂ −A

+
j P̂ )⇒ 0 = (a+

ir−a
+
is−a

+
jr +

a+
js)⇒ a+

ir−a
+
jr = a+

is−a
+
js. From this and since a+

ii−a
+
ji 6=
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a+
ij − a+

jj (Lemma 1), for any r ∈ G1 and s ∈ G2, a+
ir −

a+
jr 6= a+

is − a
+
js. Thus, by using the precomputed pseudo-

inverse of the admittance matrix, computing A+
i −A

+
j , and

dividing the entries into two groups with equal values, the
connected components of G\{i, j} can be identified. This
process requires O(|V |) time.

Proof of Lemma 3. First, from Observation 1, Θ̂ =
A+P ′ is a solution to (3) for the power vector P ′ in the
graph G. Since the solution to (1)-(2) with respect to power

flows is unique, if fij = 0, then Θ̂ = A+P ′ is also a solution
to (3) for the power vector P ′ in the graph G′. Therefore, we

only need to prove that θ̂i = θ̂j from Θ̂ = A+P ′. To prove

this, we prove that θ̂i − θ̂j = (A+
i − A

+
j )P ′ = 0. However,

from the proof of Lemma 2, since {i, j} is a cut-edge, the
entries of A+

i − A
+
j have equal values at the entries in the

same connected component. On the other hand, since P ′ is
the power vector after load shedding/generation curtailing,
then the sum of the supplies and demands at each connected
component is zero. Thus, (A+

i −A
+
j )P ′ = 0.

Proof of Theorem 111. First we show that if G is con-
nected, then AA+ = I− 1

n
J . A is a real and symmetric ma-

trix, therefore there exist an orthogonal and unitary matrix
U such that A = U tDU , in which D = diag(λ1, λ2, . . . , λn)
is the diagonal matrix of eigenvalues of A and Ui is the
normalized eigenvector related to eigenvalue λi. It is well-
known that when G is connected and unweighted, then the
multiplicity of eigenvalue 0 of the Laplacian matrix is 1 [15].
Exactly the same result with the same approach can be ob-
tained for weighted graph, therefore we can assume that
λ1 = 0 and all other eigenvalues are nonzero. In this case
U1 = [ 1√

n
, 1√

n
, . . . , 1√

n
]. On the other hand, A+ = U tD+U ,

therefore

AA+ = U tDUU tD+U = U tDD+U

= U tdiag(λ1λ
+
1 , λ2λ

+
2 , . . . , λnλ

+
n )U

= U t(I − diag(1, 0, . . . , 0))U

= I − U t[U t1|0| . . . |0]t = I − 1

n
J

in which [U t1|0| . . . |0]t is an n×n matrix with U1 in the first
row and 0 elsewhere.

Similarly we show that if G has k connected components
with m1,m2, . . . ,mk nodes, then AA+ = I − Jk in which

Jk = diag(
1

m1
Jm1×m1 ,

1

m2
Jm2×m2 , . . . ,

1

mk
Jmk×mk )

is a block matrix with matrices on the diagonal entries (with
proper node indexing). Suppose G has k ≤ n connected
components. Again it is well-known that when G is un-
weighted, multiplicity of eigenvalue 0 of the Laplacian ma-
trix is equal to the number of connected components of
graph G [15]. With exactly the same reasoning it can be
shown that it is also the case for weighted graph. There-
fore, in this case λ1 = λ2 = · · · = λk = 0. Suppose
mi is the size of the ith connected component. With a
proper indexing of nodes, it is easy to verify that Ui =
[0, . . . , 0, 1√

mi
, . . . , 1√

mi
, 0, . . . , 0], in which uij = 1√

mi
for

11The proof provided could be simplified, if the form of
the A′+ was known in advance. However, the proof shows
the derivation of A′+.

∑i−1
k=1 mk < j ≤

∑i
k=1 mk, and zero elsewhere. Now similar

to previous part,

AA+ = I − U t[U t1|U t2| . . . |U tk|0| . . . |0]t = I − Jk.

Now we can prove the theorem. A is a real and symmetric
matrix, therefore there exist an n × n matrix B such that
BBt = A. Now using Theorem A.2,

(A+ aijXX
t)+ = (CCt)+ + [I − (

√
aijXC

+)t]

×[A+ − aijA+X(I − C+C)KXtA+]

×[1−√aijXC+].12

Therefore, all we need to compute is matrices C and K.
Using previous part,

C = [I −AA+]X = [I − I + Jk]X = JkX.

Since {i, j} ∈ E, nodes i and j should be in the same con-
nected component of G. Therefore, from the structure of
Jk, JkX = 0 and so C = 0. Using this,

K = {I + aij [(I − C+C)XtA+X(I − C+C)]}−1

= {I + aij [IX
tA+XI]}−1 = {1 + aijX

tA+X}−1.

Notice that X is an n × 1 vector, therefore XtA+X is an
scaler and I in the second equation is 1× 1. This is why it
is written 1 instead of I in the last equation. Since {i, j} is
not a cut edge, from Lemma 1 we have, 1 + aijX

tA+X =
aij [a

−1
ij −2(a+)ij + (a+)ii+ (a+)jj ] 6= 0, therefore K is well-

defined. Replacing K and C,

(A+ aijXX
t)+

= A+ − aijA+X{1 + aijX
tA+X}−1XtA+

= A+ − 1

a−1
ij +XtA+X

A+XXtA+

which is what we wanted to prove.

Proof of Corollary 1. It is easy to see from Theorem 1,

A′+r = A+
r −

(a+
ri − a

+
rj)

a−1
ij − 2(a+)ij + (a+)ii + (a+)jj

(A+
i −A

+
j ).

Using this in f ′rs = −ars(A′+r −A′+s )P completes the proof.

Proof of Lemma 4. Based on Corollary 1, after the re-
moval of a non-cut edge {i, j}, each entry of the pseudo in-
verse of the admittance matrix can be updated in O(1) time.
Thus, computing A′+ from A+ takes O(|V |2) time.

Proof of Observation 2. We construct the graph G =
(V,E) as follows, V = {s, t}, Ps = −Pt = 1, and there
are two parallel edges e1 and e2 between s and t. Set the
capacities ce1 = ce2 = 1. Assume the reactances xe1 , xe2 are
such that 0 < xe1 < xe2 .

By Eq. (1)-(2), we get fe1 =
xe2

xe2+xe1
and fe2 =

xe1
xe1+xe2

.

If F0 = {e1}, then fe2(F0) = 1 and Se2,e1 =
xe2
xe1

.

Proof of Corollary 2. Using triangle inequality for re-
sistance distance, we can write,

−r(i, p) + r(i, q) ≤ r(p, q)
r(j, p)− r(j, q) ≤ r(p, q).

Apply these to Lemma 5 completes the proof.

12√aij might be an imaginary number.
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Proof of Corollary 3. Notice that r({i, j}, {p, q}) =
min{r(i, q), r(i, p), r(j, q), r(j, p)}. The proof is exactly the
same as the proof of Corollary 2.

Proof of Observation 3. From [8, Lemma 9.9], we have∑
{i,j}∈E r(i, j) = |V | − 1 [8].

Proof of Lemma 6. It is known that the Kirchhoff in-
dex of the graph G can be written in terms of the eigen-
values of the Laplacian matrix of the graph as Kf(G) =
n
∑n−1
i=1

1
λi

[28]. On the other hand,

n2 ≤ (

n−1∑
i=1

1

λi
)(

n−1∑
i=1

λi) = (

n−1∑
i=1

1

λi
)tr(A).

However, when n is relatively big, then each node has the
degree equal to Θ(np), therefore tr(A) = Θ(n2p). Combin-
ing this with the equations above, we can easily see that
Kf(G) = Ω(n/p). Thus, the average resistance distance is
of Kf(G)/|E| = Ω( 1

np2
).

As for the upper bound, it is shown in [36] that for a

d-regular graph H with n nodes, Kf(H) ≤ 3n2

d
. Using

this bound for Erdős-Rényi graph, we can write Kf(G) =
O(n/p). Thus, the average resistance distance is ofO( 1

np2
).

Proof of Theorem 2. Finding the pseudo inverse of
the matrix requires O(|V |3) time. Therefore, Line 1 takes
O(|V |3) time. Lines 5 and 6 in the algorithm take O(|V |)
time and Line 7 takes O(|V |2), therefore the whole for loop
takes at most O(|Fi||V |2) time at each step. Using A+ com-
puted in the for loop, Lines 8 and 9 takeO(|V |2) time. Thus,
the total running time of the algorithm is at most O(|V |3)+
O((|F0|+ |F1|+ · · ·+ |Ft|)|V |2) = O(|V |3)+O(|F ∗t ||V |2).

Proof of Lemma 7. Consider following problem:

Problem 1. Suppose G = (V,E) is an instance of the
classical flow problem, with a single source node {s} and set
of sink nodes T . Assume demands are equal to 1 and lines
have unbounded capacity (O(|V |)). Does a subset of edges
A ⊆ E with |A| ≤ k exist such that |Tfail| ≥ m? (Tfail
is set of sink nodes which get disconnected from the source
node s after removing set of edges A.)

It is proved in [7, Theorem 7], that problem 1 is NP-complete.
We want to use this result to proof Lemma 7. For this rea-
son we provide a polynomial time reduction from problem
above to minimum yield problem.

Problem 2. Suppose G = (V,E) is an instance of the
power flow problem, with set of supply node S = {s} and set
of demand nodes T . Assume Pt = −1 for all t ∈ T , and
Ps = |T |. Assume all the lines have capacities equal to |T |
and reactances equal to 1. Is Y (G, k) ≤ 1− m

|T |?

Claim 1. Suppose the graphs in problems 1 and 2 are the
same, then the answer to problem 1 is yes if, and only if,
the answer to problem 2 is yes.

Proof. (⇒) Assume the answer to problem 1 is yes. It means
that there exists a set of edges A ⊆ E with |A| ≤ k such
that their removal disconnects at least m of the sink nodes
from the source node. Now in problem 2, choose F0 = A.
Since two graphs are the same, at least m of the demand
nodes are disconnected from the supply node s. As a result,
final yield is at most |T | − m. Since initial yield was |T |,
Y (G,F0) ≤ 1− m

|T | . Hence, Y (G, k) ≤ 1− m
|T | .

(⇐) Now the other way, assume the answer to problem 2 is
yes. It means that there is an initial set of edge failures F0 ⊆

E with |F0| ≤ k such that Y (G,F0) ≤ 1 − m
|T | . First, since

all the edges have capacity equal to |T | which is an upper
bound for a flow in an edge, after initial set of failures, there
is no cascade. Therefore, there is no further edge failures.
Second, with the same reason, as long as a demand node is
connected to the supply node, its demand can be satisfied.
Now since Y (G,F0) ≤ 1− m

|T | , with initial set of failure F0, at

least m of the demand nodes are disconnected from supply
node s. In problem 1 choose A = F0, since the graphs in
two problems are the same, by removing set of edges A from
G, at least m of the sink nodes are disconnected from source
node s. Since |A| = |F0| ≤ k, the answer to problem 1 is
also yes.

It can be concluded from this claim that problems 1 and
2 are equivalent. Therefore, problem 2 is also NP-complete.
Now since problem 2 is an special case of the minimum yield
problem, the minimum yield problem is NP-hard, and hence
its decision version is NP-complete.
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