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ABSTRACT
This paper studies the control of systems that store renew-
able energy. The problem is to maximize the long-term util-
ity of the energy by controlling how it is used. The method-
ology for designing the control policy depends on the size
of the battery. If the battery is small, the control policy
is determined by solving a Markov decision problem. If the
battery is large, this problem is complex but one can replace
it by a simpler problem where the constraint is on the av-
erage power usage. When the battery is large, the average
power usage should not exceed the average power harvested
by the source. When the battery size is moderate, the con-
trol is based on the large deviations of the battery charge.
This paper illustrates these methods with a number of ex-
amples.
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1. INTRODUCTION
By increasing the use of renewable energy sources, the

energy usage control of the systems that operates with such
sources are the great of interest. Unlike conventional power
sources, the output power of renewable sources cannot be
controlled as there are daily and seasonal fluctuations and
inaccurate energy prediction. This makes the control of the
systems that operates with such sources challenging [1].

The paper is concerned with systems that utilize renew-
able energy and are equipped with a battery to adjust for the
variability in available power and energy usage. Examples
include wireless sensor nodes and buildings.

The problem under study is how to best use the stored
energy to maximize the long-term utility. For instance, in
the case of a wireless sensor node, the average power used
must be less than the average power of the source. How-
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ever, unless the battery is very large, the variability may
cause the battery to go empty even when that condition is
met. In such a situation, one suspects that the energy use
should take into account the instantaneous amount of en-
ergy stored in the battery. One approach is to formulate
this problem as a Markov decision in which the state of the
system is the amount of stored energy, together with the
state of the environment. Unless the battery is small, the
size of the state space of this Markov decision problem is very
large, which makes the problem difficult to solve. Moreover,
this formulation results in a complex control strategy that
depends on the stored energy. However, intuition suggests
that if the battery is moderate in size, then using energy
at an average rate slightly less than the average rate of the
source should guarantee that the battery rarely goes empty.
This paper explains how to make that intuition precise using
the theory of large deviations. The large deviation analysis
leads to the constraint for energy usage. The novelty of the
analysis is that the source and usage are both variable, in
contrast with the theory of effective bandwidth [6] and [7].
Indeed, the usage affects the large deviations of the battery
discharge, so that the large deviations appear as constraints
for the optimization problem. One contribution of the paper
is a formulation that enables the analysis of the large devia-
tions of the battery in a numerically tractable way that can
be included in the optimization problem. We compare this
approach to the large deviations analysis based on the oc-
cupation measure of a Markov chain. We also examine the
case when the variability of the energy source and that of
the load are independent.

It would be tempting to use a Gaussian approximation
[11] to study the large deviations. However, simple examples
show that this approximation is very poor.

The paper is structured as follows. We introduce the sys-
tem model and problem formulation in Section 2. This is
followed by Section 3 which is approximating the control
policy by replacing the constraint based on large deviation
techniques. In Section 4, the large deviation techniques are
applied in three ways: direct method which is based on the
Chernoff’s inequality, a method based on occupation mea-
sure and a Gaussian approximation method. Sections 5 and
6 explain the evaluation of the approach for random walk
and 2-state Markov chain, respectively. In Section 6, we
present the same problem for the case when the variability
of the energy source and that of the load are independent.
In order to clarify the proposed approach, Section 7 provides
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several examples. Section 8 concludes and summarizes the
paper.

1.1 Background and related work
Resource management techniques for energy harvesting

systems with uncertain resource availability pose a new set
of challenges. These techniques lead to utility maximiza-
tion considering the energy constraint. For energy harvest-
ing wireless sensor networks EH-WSNs where the resources
of interest are energy and data, the transmission rate and
data sampling rate maximization satisfying the energy con-
straint are two important problems. These problems have
been addressed in [12]- [17]. The authors in [12] proposed the
solution for rate maximization for multiple fading channels
of a transmitter. They develop the directional water filling
heuristic. The authors in [14] designed a solution for fair and
high throughput data extraction from all nodes guaranteeing
fairness while maximizing the sampling rate and throughput.
Mao et al. in [16] proposed a joint data queue and battery
buffer control algorithm, thus the long-term average sensing
rate maximization subject to stability of data queue and de-
sired data loss ratio could be achieved. They considered the
static channel model and offline knowledge about the en-
ergy input. A policy with decoupled admission control and
power allocation decisions is developed in [15] that achieves
asymptotic optimality for sufficiently large battery capacity
to maximum transmission power ratio (explicit bounds are
provided). The authors in [17] obtained the energy manage-
ment policies that are throughput optimal and minimize the
mean delay in the queue. They mainly assume that the ca-
pacity of the rechargeable battery is large enough; however,
they did not consider the consequence of large state space
on designing the methodology and algorithms. In this pa-
per, we show that by considering the storage capacity of the
system, one can design efficient and simple algorithms. The
main advantage of our approach is that the control policy
for the energy usage rate does not involve the instantaneous
amount of energy stored in the nodes, when the size of the
battery is moderate or large.

In this paper, the core idea is to convert the complex
Markov decision problem to a simple optimization prob-
lem where its constraint is based on large deviation theory.
Large deviations theory refers to the collection of techniques
to estimate the properties of rare events, such as their fre-
quency and most likely manner of occurrence. Some refer-
ences on large deviations include Bahadur (1971) [2], Varad-
han (1984) [3], Deuschel and Stroock (1989) [5], and Dembo
and Zeitouni (1998) [4]. Large deviations are often caused by
a large number of unlikely events occurring together, rather
than a single event of small probability. The theory of large
deviations has been applied to the analysis of Asynchronous
Transfer Mode (ATM) networks [6] and [7]. ATM is a packet
switching standard that aimed to limit the rate of cell losses
due to buffer overflow to negligible values, comparable to
losses caused by transmission errors.

In this paper, the state of the system is modeled as a
finite Markov chain. There are a few possible approaches to
study the large deviations of a Markov chain. One method
is based on the occupation measure of Markov chains [9].
The basic idea of this approach is that the most likely way
for a Markov chain to have an empirical distribution that
differs from the invariant distribution is for it to behave as
if it had different transition probabilities consistent with the

observed empirical distribution. This is the essence of the
contraction mapping theorem [3].

Another approach, that we call the direct method, is to
start with Chernoff’s inequality and calculate the relevant
moment generating functions using the first step equations
of a Markov chain.

Yet another approach is to consider a Gaussian approxi-
mation for the changes of the Markov chain over a number of
steps [10], [11]. However, we explain that this method yields
poor estimates of the likelihood that the battery becomes
empty for realistic system parameters, which should not be
surprising since large deviations typically depend strongly
on the higher moments of the distributions.

2. MODEL
A discrete time model of the system is as follows. At time

n ≥ 0, the battery, with capacity B, has accumulated an
amount Xn ∈ {0, 1, . . . , B} of energy, the environment state
such as weather condition is Yn, a Markov chain on some
finite state space Y with a transition probability matrix P ,
and one uses a control action Un ∈ U where U is a finite set.
The net amount of battery discharge at time n is a function
of Yn and Un denoted as g(Yn, Un). Hence, E[g(Yn, Un)]
can take positive as well as negative values. A negative
value means that the battery tends to recharge more than
drain. Also, r(Yn, Un) represents the reward of taking action
Un in state Yn. The action u is possible at time n only if
g(Yn, u) ≤ Xn. The objective is to choose the control actions
to maximize the long term average value of r(Yn, Un). That
is, the problem is as follows:

Maximize E(r(Yn, Un))

over Un

s.t. g(Yn, Un) ≤ Xn
and Xn+1 = [Xn − g(Yn, Un)]B0 .

Note that in the above problem formulation Un is the func-
tion of state of the system and energy level of the battery.
In the last expression, we use the notation

[x]B0 = max{0,min{x,B}}.

Since (Xn, Yn) is a Markov chain controlled by Un, this
is a Markov decision problem. It can be solved by Dynamic
Programming. The size of the state space of this problem
is (B + 1)× |Y| and it can be very large unless the battery
capacity B is not relatively small. More importantly, the
resulting control strategy is complex as it depends on the
instantaneous amount of stored energy.

For the purpose of simplifying the solution of the problem
and also for deriving some insight into the solution, we ex-
amine approximation methods that we explore in the next
section.

3. APPROXIMATIONS
If the battery is not too small, the fact that it goes empty

is a large deviation under a suitable operating regime. This
suggests that one can replace the constraint g(Yn, Un) ≤ Xn
by a constraint on the probability that the battery goes
empty. Moreover, this constraint can be guaranteed by using
a control strategy that depends only on Yn and is designed
so that the statistics of Un make it very unlikely to deplete
the battery faster than it charges for a duration long enough
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to empty it. This approach has the benefit of resulting in
a much simpler control scheme that does not have to de-
pend on the state of charge of the battery. Moreover, the
calculation of the control strategy is also much simpler.

Specifically, we consider the problem

Maximize E(r(Yn, Un))

over q

s.t. P [Un = u|Yn = y] = q(y, u)

and P (Xn = 0) ≤ β
and Xn+1 = [Xn − g(Yn, Un)]B0 .

In this formulation, β is a small probability. Also, q defines a
stationary control strategy that depends only on Yn, not on
Xn. Thus, we have relaxed the tight constraint g(Yn, Un) ≤
Xn by replacing it by the constraint P (Xn = 0) ≤ β. We
will enforce this constraint by considering the large devia-
tions of the process Xn. Specifically, if E(g(Ym, Um)) < 0,
which is a necessary requirement for the battery to have a
small probability of being empty, one can expect the proba-
bility, under the stationary distribution, to be on the order
of

K exp{−Bψ(q)}

whereK is a constant and ψ(q) depends on the control policy
q. That is, the constraint P (Xn = 0) ≤ β can be replaced
by

ψ(q) ≥ δ

B
(1)

where δ is chosen so that K exp{−δ} = β.
To determine ψ(q), one argues as follows. The battery

becomes empty after n = B/c steps if it discharges at an
average rate c for these n steps for some c > 0. Thus, one
is led to study the probability of such a discharge rate, i.e.,
the probability

P (Z1 + · · ·+ Zn ≥ nc)

where

Zm = g(Ym, Um).

We will show that, when E(Zn) < 0, this probability is
approximately equal to

exp{−nφ(c, q)}.

Accordingly, with n = B/c, we see that this probability is
of the order of

exp−Bφ(c, q)

c
.

Since every c > 0 is a possible discharge rate that would
empty the battery in B/c steps, the probability that the
battery empties is the sum over all c > 0 of these probabili-
ties. If B is not too small, this sum is well approximated by
the term that corresponds to the smallest exponential rate
of decay as a function of B. That is, the probability is well
approximated by

exp{−Bψ(q)}

where

ψ(q) := inf
c>0

φ(c, q)

c
.

To analyze the probabilities, we note that for a given q the
random variables (Yn, Un) form a Markov chain. Thus, Zn is
a function of a Markov chain. Now, the main concern is how
to calculate the value of φ(., .) and ψ(.). This is explained
in next section.

Before proceeding, we review some results about Markov
chains.

4. LARGE DEVIATIONS
To develop our estimates, we need to study the large de-

viations of the process Z1 + · · ·+ Zn driven by the Markov
chain Yn. To do this, we consider three methods: a direct
method, an analysis of the occupation measure of a Markov
chain, and a Gaussian approximation. We explain that the
direct method is numerically simple and yields good esti-
mates. We use the occupation measure to derive properties
of the large deviations. We show that the Gaussian approx-
imation is not satisfactory for our problems.

Direct Method
The direct method is based on Chernoff’s inequality and on
the first step analysis of a Markov chain.

For y ∈ Y, θ > 0 and n ≥ 1, let

sn(y) := E[exp{θ(Z1 + · · ·+ Zn)}|Y1 = y], ∀y ∈ Y.

Note that (see Appendix A)

sn+1(y) = E[exp{θZ1}|Y1 = y]
∑
y′

P (y, y′)sn(y′),∀y ∈ Y.

Let sn be the column vector with components {sn(y), y ∈
Y}. Then

sn+1 = Gθsn, n ≥ 1

where

Gθ(y, y
′) = hθ(y)P (y, y′)

with

hθ(y) = E[exp{θZ1}|Y1 = y] =
∑
u

q(y, u) exp{θg(y, u)}.

Consequently,

sn = Gnθ s0

where s0 = [1, 1, . . . , 1]′. Also, from conditional expectation
we have,

E[exp{θ(Z1 + · · ·+ Zn)}] = πsn = πGnθ s0 (2)

where π is the distribution of Y1.
Let λ(θ) be the largest eigenvalue of Gθ. We can approx-

imate the mean value above by

E[exp{θ(Z1 + · · ·+ Zn)}] ≈ Kλ(θ)n, n� 1

where K is a constant. To see this approximation, note that
if the eigenvalues of Gθ are distinct, then one can use the
eigendecomposition of matrix Gθ

Gθ = V DV −1

where D is the diagonal matrix of eigenvalues. Then,

Gnθ = V DnV −1

and the approximation follows. If the eigenvalues are not
distinct, one replaces D by the block Jordan matrix and the
same approximation results.
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We use that approximation to study the large deviations
of Zn. One has Chernoff’s inequality for θ > 0:

P (Z1 + · · ·+ Zn ≥ nc) ≤ E(exp{θ(Z1 + · · ·+ Zn − nc)})
≈ Kλ(θ)n exp{−nθc} = K exp{−n(θc− log(λ(θ)))}.

Since this inequality holds for all θ > 0, one can minimize
the right-hand side over θ > 0 and find

P (Z1 + · · ·+ Zn ≥ nc) ≤ K exp{−nφ(c, q)}

where

φ(c, q) = sup
θ>0
{θc− log(λ(θ))}.

As we explained earlier, ψ(q) = infc>0 φ(c, q)/c, so that

ψ(q) = inf
c>0

φ(c, q)

c
= inf
c>0

1

c
sup
θ>0
{θc− log(λ(θ))}. (3)

The value of c that minimizes φ(c,q)
c

is the average draining
rate which results in the battery to go empty rarely. More-
over, ψ(q) is a strictly decreasing function in terms of our
control policy q. Hence, the value of q such that ψ(q) is equal
to δ

B
from constraint (1) is the optimum control policy.

Occupation Measure
For the purpose of deriving properties of the large devia-
tions, we consider an estimate based on the occupation mea-
sure of the Markov chain Vn = (Yn, Un). We use the occu-
pation measure to obtain an expression for the probability
that a Markov chain with a given transition matrix behaves
as if it had another transition rate matrix over a long period
of time.

Consider a Markov chain Vn with transition matrix P0.
For another transition matrix P1 and a sequence v = (v0, . . . , vn),
let

L(v) =
π0(v0)P0(v0, v1) . . . P0(vn−1, vn)

π1(v0)P1(v0, v1) . . . P1(vn−1, vn)

where π1 is invariant under P1 and π0 is invariant under P0.
Note that

log(L(v)) = log

(
π0(v0)

π1(v0)

)
+
∑
v,v′

Nn(v, v′) log

(
P0(v, v′)

P1(v, v′)

)
(4)

where Nn(v, v′) is the number of transitions from v to v′

in v. Thus, L(v) is the ratio of the likelihood of v under P0

divided by its likelihood under P1. Note that under P1, one
has

Nn(v, v′) ≈ nπ1(v)P1(v, v′).

Consequently, for the random sequence V n = {V1 . . . , Vn},
if we get an exponential from both sides of (4), under P1 we
have,

L(V n) ≈ exp{−nH(P1)} (5)

where

H(P1) = −
∑
v,v′

π1(v)P1(v, v′) log

(
P0(v, v′)

P1(v, v′)

)
.

Consider a set A of sequences v that are typical under
P1. These sequences satisfy the law of large numbers for the
Markov chain so that (5) holds and, moreover,

P1(A) ≈ 1. (6)

We claim that

P0(A) = E1(1A(V n)L(V n)) ≈ exp{−nH(P1)}. (7)

To see the first equality, note that for any function f(V n)
one has

E0(f(V n)) =
∑
v

P0(v)f(v) =
∑
v

P1(v)
P0(v)

P1(v)
f(v)

=
∑
v

P1(v)L(v)f(v) = E1(f(V n)L(V n)).

To get the approximation in (7), we use (5) and (6).
This calculation shows that the likelihood that the Markov

chain Vn with transition matrix P0 behaves as if its transi-
tion matrix were P1 for n steps is exponentially small in n
and given by the expression (7).

The next step is to estimate the likelihood κ(π1, n) that
the empirical distribution of {V1, . . . , Vn} is π1. One can use
the contraction principle (see e.g., [4] and [3]) to argue that
this likelihood is the maximum over P1 of the probability
that the Markov chain behaves as if its transition matrix
were P1, where the maximum is over all P1 with empirical
distribution π1. Hence, one finds that

κ(π1, n) = max
P1:π1P1=π1

exp{−nH(P1)} ≈ exp{−nR(π1)}

where

R(π1) := inf
P1:π1P1=π1

H(P1)

with H(P1) as given above.
Now, consider the likelihood that the empirical average

value of {Z1, . . . , Zn} is c > 0, where

Zm = g(Vm),m = 0, 1, . . . , n.

One argues that this likelihood is the maximum of the prob-
abilities that Vn has an empirical distribution π1, where the
maximum is over all π1 such that∑

v

π1(v)g(v) = c.

Thus, this probability is estimated as exp{−nφ(c, q)} where

φ(c, q) = min
π1:

∑
v π1(v)g(v)=c

R(π1). (8)

Finally, one argues that the likelihood that the battery dis-
charges is of the order of

exp{−Bψ(q)}

where

ψ(q) = min
c>0

ψ(c, q)

c
. (9)

Gaussian Approximation
The Gaussian approximation considers that

Z1 + · · ·+ Zn ≈ N (nα, nσ2),

where α = E(Zn) is as before and nσ2 ≈ var(Z1 + · · ·+Zn).
As we will see below, this approximation is not satisfac-

tory.
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5. EVALUATION
We have explained three methods for estimating the like-

lihood that the battery gets discharged: a direct method,
a method based on the occupation measure of the Markov
chain, and a Gaussian approximation. In the following sub-
sections, we evaluate these methods for a random walk and
two-state Markov chain.

5.1 Evaluation for Random Walk
Let Zn be i.i.d. with P (Zn = 1) = a and P (Zn = −1) =

1 − a =: b. We assume that E(Zn) = a − b = 2a − 1 < 0,
so that the battery tends to charge more than it discharges.
We consider the Markov chain Wn defined by

Wn+1 = (Wn + Zn)+, n ≥ 0.

This is a random walk reflected at 0 that models the dis-
charge process of the battery. The state Xn of charge of the
battery can be seen to be essentially B −Wn, so that if Wn

reaches the value B, the battery gets discharged.

Direct Method
The reflected random walk Wn is a simple Markov chain on
{0, 1, . . .} with

P (k, k + 1) = a and P (k + 1, k) = b,∀k ≥ 0.

Also, P (0, 0) = b. We can analyze explicitly this Markov
chain without having to resort to Chernoff’s bound. If a < b,
the invariant distribution of Xn is π where

π(k) = (1− ρ)ρk, k ≥ 0 with ρ :=
a

b
.

In particular,

P (Wn ≥ B) =

∞∑
k=B

π(k) = ρB =: pQ(B). (10)

Occupation Measure
Using (7), we find that the likelihood that the increments
Zn behave as if P (Zn = 1) = a′ instead of a over n steps is
approximately

φ(a′) := exp{−nH(a′)}

where

H(a′) = −a′ log(
a

a′
)− (1− a′) log(

1− a
1− a′ ).

Thus, according to (8),

φ(c) := min{H(a′)|Ea′(Zn) = a′−(1−a′) ≥ c} = H(
1 + c

2
).

Hence, by (9),

ψO := inf
c>0

φ(c)

c
= log(

1− a
a

).

Finally, we get the estimate for the probability that the bat-
tery gets empty as

exp{−BψO} = (
a

1− a )B ,

which agrees with (10).

Gaussian Approximation
A Gaussian approximation for this process would work as
follows. We argue that for n� 1,

Z1 + · · ·+ Zn − nα√
n

≈ N (0, σ2)

where

σ2 = var(Zn) = E(Z2
n)− (E(Zn))2 = 1− α2.

Recall that if W is N (0, 1), then

P (W > x) ≤ 1

x
√

2π
exp{−x

2

2
},∀x > 0.

Moreover, this upper bound on the error function is asymp-
totically tight. Thus, if V = Z1 + · · · + Zn − nα, one uses
the (poor) approximation V =D

√
nσ2W , so that

P (V > na) = P (W >
na√
nσ2

) = P (W >
√
n
a

σ
)

≤ σ

a
√
n

exp{−n a2

2σ2
}.

Note that this approximation is a bad application of the
Central Limit Theorem. Using this approximation, we get

P (Z1 + · · ·+ Zn > n(α+ a)) ≈ σ

a
√
n

exp{−n a2

2σ2
}.

This leads to the probability of the battery going empty
being of the order of

exp{−Bψ}

where

ψ = inf
a:a+α>0

1

a+ α

a2

2σ2
= −2α

σ2
,

which gives the following estimate for the probability that
the battery goes empty:

exp{B 2α

σ2
} = exp{B 2α

1− α2
} =: pG(B). (11)

Thus, the correct expression is given by (10) and the Gaus-
sian approximation is given (11). Note that

1

B
log(pQ(B)) = log(

a

1− a )

and

1

B
log(pG(B)) =

2α

σ2
=

2a− 1

2a(1− a)
.

Figure 1 compares these expressions as functions of a. We
note that the Gaussian approximation is not very good. This
is to be expected since one knows that the Central Limit
Theorem provides good estimates of the probability

P (Z1 + · · ·+ Zn > αn+ δ
√
n),

but not of

P (Z1 + · · ·+ Zn > αn+ (c− α)n).

5.2 Evaluation for 2-state Markov Chain
Next, we compare and validate the estimates obtained by

the direct method and from the occupation measure in the
case of a {−1, 1}-Markov chain Zn with P (−1, 1) = a and
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1

B
log(pQ(B))

1

B
log(pG(B))

a

Figure 1: Comparison of (10) and (11). The Gaussian ap-
proximation underestimates the probability of large devia-
tions.

P (1,−1) = b. The goal is to estimate the probability that
the process

Z1 + · · ·+ Zn

reaches some large value B. This probability, say p(B) is of
the order of exp{−Bψ}. We will derive three estimates for
ψ: ψD, ψO and ψG using the three methods.

Direct Method for two-state Markov Chain
We find

Gθ =

[
e−θ(1− a) e−θa

eθb eθ(1− b)

]
.

We can then evaluate the largest eigenvalue λ(θ) of Gθ and
calculate ψD using (3).

Occupation Measure
We use (7), (8) and (9) for the two-state Markov chain and
we find that the probability of the battery going empty is

exp{−BψO}

where

ψO = inf
c>0

( min
{P1:E1(Zn)=c}

H(a′, b′))

with

H(a′, b′) = − a′

a′ + b′
[(1− a′) log(

1− a
1− a′ ) + a′ log(

a

a′
)]

− b′

a′ + b′
[(1− b′) log(

1− b
1− b′ ) + b′ log(

b

b′
)].

Occupation Measure vs. Simulations
We compare p(B) measured from simulations to the esti-
mates given by the occupation measure approach.

Figure 2 shows representative results measured by simu-
lating Xn for 106 steps for every value of a. The loss rate cal-
culates as the number of times that the battery goes empty
over the number of steps (for example here is 106). The
estimate is based on the large deviation of the occupation
measure as explained above.

a

Loss Rate

Estimate

Figure 2: Comparison of actual loss rate and estimate. Here,
b = 0.5 and B = 30.

a

Loss Rate

Estimate

Figure 3: Comparison of actual loss rate and estimate for
smaller values of a. Here, b = 0.5 and B = 30.

Figure 3 shows more results for smaller values of a. Here,
the loss rate is measured by simulating Xn for 108 for every
value of a.

Gaussian Approximation
For this Markov chain, one finds that (see Appendix)

σ2 := cd
2− a− b
a+ b

with c =
a

a+ b
, d = 1− c.

This gives the estimate

exp{B 2α

σ2
} = exp{−B 2(b− a)(a+ b)2

ab(2− a− b) }.

Comparison
Figure 4 compares the values of ψ for the probability

exp{−Bψ}

that the battery becomes empty derived using the three
methods. The values are shown for b = 0.5 and as a function
of a < b. As in the case of the random walk, we find that the
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a

Figure 4: Comparison of estimates with occupation measure,
direct method and Gaussian approximation. As before, b =
0.5 and B = 30.

Gaussian approximation yields poor estimates, which should
not be surprising.

6. INDEPENDENT SOURCE AND LOAD
In this section we consider the case where Yn = (Y 1

n , Y
2
n )

and

g(Yn, Un) = −a(Y 1
n ) + b(Y 2

n , Un).

Here, the Markov chains Y 1
n and Y 2

n are independent.
For instance, Y 1

n models the weather that affects the charg-
ing rate a(Y 1

n ) of the battery and Y 2
n models the quality of a

transmission channel, which affects the reward of transmit-
ting with a given power. We assume that the control policy
is defined by q0 where

P [Un = u|Y 1
n = y1, Y

2
n = y2] = q0(y2, u).

The empirical average value of g(Yn, Un) differs from its ex-
pected value if Y 1

n , Y
2
n and Un given Y 2

n make large devia-
tions. The likelihood of a large deviation where Y 1

n behaves
as if its transition matrix were P 1 instead of P 1

0 , Y 2
n as if its

transition matrix were P 2 instead of P 2
0 and Un given Y 2

n

behaves as it its condition distribution were q instead of q0
is exponentially small with exponent

H(P 1) +H(P 2) +K[q|π2]

where

H(P 1) = −
∑
y1,y

′
1

π1(y1)P 1(y1, y
′
1) log

(
P 1
0 (y1, y

′
1)

P 1(y1, y′1)

)

H(P 2) = −
∑
y2,y

′
2

π2(y2)P 2(y2, y
′
2) log

(
P 2
0 (y2, y

′
2)

P 2(y2, y′2)

)

K[q|π2] = −
∑
y2,u

π2(y2)q(y2, u) log

(
q0(y2, u)

q(y2, u)

)
.

In these expressions, π1 is invariant for P 1 and π2 is invariant
for P 2. Thus, the empirical rate of a(Y 1

n ) is some value a
and the empirical rate of g(Y 2

n , Un) is some value b with an
exponentially small probability with an exponent

φ1(a) + φ2(b).

The empirical drain rate of the battery is then b− a.

Claim 1. The likelihood that a battery of size B drains is
exponentially small in B with an exponent

inf
b>a

φ1(a) + φ2(b)

b− a .

Proof. Assume that there is some value of c such that,
for all a > c and b < c,

φ1(a)

a− c ≥ γ and
φ2(b)

c− b ≥ γ.

Then

φ1(a) ≥ γ(a− c) and φ2(b) ≥ γ(c− b),

so that

φ1(a) + φ2(b)

a− b ≥ γ.

The interpretation of this result is as follows. Assume that
there is some constant rate c such that if the battery drains
at rate c, its likelihood of getting empty has an exponent
γ and also that if the battery recharges at rate c, then the
likelihood that the load makes it go empty also has an expo-
nent γ. Then, the combined system with variable charging
and discharging rate has rate at least γ.

A converse of that result is as follows.

Claim 2. Assume that the combined system has an expo-
nent γ. Then there is some rate c such that each of the two
decoupled systems has an exponent γ.

Proof. To see this, let a∗ and b∗ be the minimizers of

φ1(a) + φ2(b)

b− a

and let γ be the minimum value. The first order conditions
are

φ′1(a∗) = −φ′2(b∗) = γ.

Now, choose c so that

φ1(a∗)

c− a∗ = γ.

Then we see that

φ′1(a∗)(c− a∗) = φ1(a∗),

so that a∗ minimizes

φ1(a)

a− c
and the minimum is γ. Similarly, b∗ minimizes

ψ2(b)

c− b

and the minimum is also γ, which proves the claim.

7. EXAMPLES
To clarify the analysis, we consider a few simple examples.
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No Control
In our first example, Yn ∈ {0, 1} with P (0, 1) = a0, P (1, 0) =
b0, g(0) = −1, g(1) = 1. We also assume that Un = Yn,
so that there is no randomization of the control. Finally,
assume that a0 < b0, so that

E(g(Un)) = E(g(Yn)) =
a0 − b0
a0 + b0

< 0.

Using the occupation method approach, we note that a tran-
sition matrix P (0, 1) = a and P ′(1, 0) = b is such that
E(Yn) = c if

b = a
1− c
1 + c

.

Substituting this value of b in H(P ) and minimizing over a,
we find

φ(c) = min
a
H(P ).

We then minimize φ(c)/c over c. The results is ψ and the
likelihood that the battery goes empty is

exp{−ψB}.

Numerical examples give the values of ψ, in terms of a and
b, shown in Table 1.

a0 b0 ψO ψD
0.1 0.15 0.057 0.067
0.2 0.3 0.134 0.155
0.3 0.45 0.241 0.282
0.4 0.6 0.406 0.472
0.2 0.4 0.288 0.288
0.3 0.6 0.560 0.561
0.4 0.8 1.099 1.101

Table 1: Values of ψ when Un = Yn obtained using the
occupation measure (ψO) and the direct method (ψD)

This table shows that the battery is less likely to get empty
(ψ is larger) when b0 increases or a0 decreases. Moreover,
that is also the case if a0 and b0 increase, for a given value
of a0/b0. Thus, for a given value of E(g(Yn)), the battery
is less likely to get empty if Yn changes faster instead of
staying equal to 1 for longer periods of time. This results
confirm our intuition.

Using the direct method, we consider the matrix

Gθ(y, y
′) = eθyP (y, y′)

and define λ(θ) to be its largest eigenvalue. Then

ψD = min
c>0

1

c
sup
θ>0

[θc− log(λ(θ))].

Control
We now consider the same situation as in the previous ex-
ample, except that

P [Un = 1|Yn = 1] = γ0 and P [Un = 1|Yn = 0] = 0.

As a concrete example, say that a0 = 0.2 and b0 = 0.3.
We saw that ψ = 0.134 if Un = Yn. This corresponds to a
probability of a battery of size 20 going empty that is of the
order of

exp{−20× 0.134} = exp{−2.5} = 0.07,

which is not acceptable. Thus, it makes sense to choose the
value Un = 1 only a fraction γ0 of the time that Yn = 1.

A large deviation of g(Un) occurs when its empirical mean
value c is different from its expected value

E(g(Un)) = γ0P (Yn = 1)− (1− γ0)P (Yn = 1)− P (Yn = 0)

=
2a0γ0
a0 + b0

− 1.

This can occur as a combination of two events: Yn can be
equal to 1 a fraction of time π(1) that differs from a0/(a0 +
b0) and the fraction of time that Un = 1 when Yn = 1 can
be γ instead of γ0.

Using the occupation method approach, the resulting em-
pirical mean value of g(Un) is then

2aγ

a+ b
− 1

with a probability that is of the order of

exp{−nH(P )− nK[γ|P ]}

where H(P ) is as before and

K[γ|P ] = −π(1)γ log

(
γ0
γ

)
− π(1)(1− γ) log

(
1− γ0
1− γ

)
Using the direct method, one calculates ψD from (3). Ta-
ble 2 shows some numerical results that again confirm the
intuition.

a0 b0 γ0 ψO ψD
0.1 0.15 0.9 0.096 0.101
0.1 0.15 0.8 0.152 0.155
0.1 0.15 0.6 0.360 0.361
0.2 0.3 0.9 0.215 0.225
0.2 0.3 0.6 0.608 0.607

Table 2: Values of ψ when P [Un = 1|Yn = 1] = γ0

Optimization
The setup is the same as in the previous example. However,
in this example we want to choose γ0 to maximize

E(r(Yn, Un))

subject to

P (Wn = 0) ≈ β.

Assume that r(0, u) = r(y, 0) = 0 and r(1, 1) = 1. Thus,
we want to maximize γ0 such that ψ ≥ β/B. The goal is to
have a probability of the battery going empty of the order
of exp{−β}.

Say that β = 4.6, so that exp{−β} = 1%. Then, we find
the results shown in Table 3 for a = 0.1 and b = 0.15. (We
used the direct method.)

Not surprisingly, if the battery is smaller, one has to be
more cautious in using it.

Wireless Sensor Node
Figure 5 illustrates the power flow in a wireless sensor node.
The node is equipped with a solar cell that generates a vari-
able amount of power, depending on the state of the weather.
Here, for the purpose of illustration, we think of the time
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B γ0
50 0.92
40 0.87
30 0.80
20 0.70
10 0.54

Table 3: Values of γ0 for optimization problem
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Figure 5: A wireless sensor node equipped with a solar cell.

unit being one day. The system is designed to transmit an
amount of energy equal to γ per day. The problem is to de-
termine the maximum value of γ such that the probability
that the battery goes empty is about 1%.

We use the direct method, with the model that

P [Un = 1|Yn = y] = γ and P [Un = 0|Yn = y] = 1− γ.

Let Yn ∈ {0, 1, 2, 3} be the Markov chain that represents the
weather. In the figure, d := 1− a− b. The increment in the
battery discharge is then

Zn = Vn − Yn,

where the Vn are i.i.d. Bernoulli with mean γ and are inde-
pendent of the weather.

Using the direct method, we let

sn(y) = E[exp{θ(Z1 + · · ·+ Zn)}|Y1 = y]

and we find that

sn+1 = Gθsn

where

Gθ(y, y
′) = h(y)P (y, y′)

with

h(y) = E(exp{θ(V1 − y)}) = [γeθ + (1− γ)]e−yθ.

We calculate the largest eigenvalue of Gθ then proceed as
before, by using (3). Figure 6 shows the exponential rate of
decay ψ(γ) as a function of γ for relatively sunny and cloudy
weathers.

From these curves, one can determine the maximum value
of the usage of the sensor node described by γ as a function
of the target error probability and of the battery size.

Building with Solar Panels and Variable Load
Figure 7 sketches the power flow of a building with a solar
cell, a battery, and a variable load. The control parameter

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

γ

ψ
 (

γ
)

 

 

Sunny(a=0.3 , b=0.2)

Cloudy(a=0.1 , b=0.2) 

Figure 6: Exponential rate of decay as a function of γ in
cloudy and sunny environments.
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Figure 7: A self-sufficient building with a control parameter
γ.

γ is the probability of using a higher rate instead of a lower
one, given the level of activity in the building and γ̄ = 1−γ.
The problem is to determine the largest possible value of
γ so that the probability that the battery gets depleted is
acceptably small. As before, we compute ψ(γ). The one-day
depletion of the battery is

Z(n) = U(n)− Y1(n).

As before, we find

sn+1 = Gθsn

where

Gθ(y, y
′) = h(y)P (y, y′),

where

h(y) = E[exp{θ(U(1)− y1)}|Y2(1) = y2]

= eθ(y2−y1)[γeθ + 1− γ].

Figure 8 shows the numerical results.

8. CONCLUSIONS
This paper explored a methodology for addressing the

variability of renewable energy and the electric load in the
control of systems with energy storage. The main idea is to
replace a Markov decision problem formulation by an opti-

23



Figure 8: The numerical result for the building model.

mization problem with constraints based on the theory of
large deviations.

We compared three methods for evaluating the small prob-
ability that the battery goes empty for a given control policy.
These methods use the fact that the battery discharge incre-
ments are functions of a Markov chain. The three methods
are: 1) a direct method based on Chernoff’s inequality and
the first step equations of a Markov chain; 2) a method
based on the analysis of the occupation measure and the
contraction principle; 3) a Gaussian approximation method.

Our examples indicate that the direct method and the oc-
cupation measure yields essentially the same estimates, but
that the first approach is numerically simpler. The exam-
ples confirm that the Gaussian approximation usually yields
poor estimates that are not satisfactory to address the opti-
mization problems.

Using the occupation measure approach, we could derive
properties of the large deviations. We showed a decompo-
sition result when the source and the load are functions of
independent Markov chains.

We demonstrated the use of the approach for two simple
problems: a wireless sensor node equipped with a solar panel
and a self-sufficient building. The methodology applies to
much more complex situations. The benefit is that the re-
sulting control law is simple, as it does not depend on the
instantaneous charge of the battery.
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10. APPENDIX A: STATEMENT IN DIRECT
METHOD

This is to show:

sn+1(y) = E[exp{θZ1}|Y1 = y]
∑
y′

P (y, y′)sny
′, ∀y ∈ Y.

m n

n

1

1

m

m + k

T

D

Figure 9: The sum over (m,n) ∈ {1, . . . , n}2 is decomposed
into twice the sum over T minus the sum over D because
the terms are symmetric in (m,n).

Starting from LHS, we have,

sn+1(y) = E[exp{θ(Z1 + · · ·+ Zn+1)}|Y1 = y],

= E[exp{θZ1}. exp{θ(Z2 + · · ·+ Zn+1)}|Y1 = y],

E[exp{θ(Z2 + · · ·+ Zn+1)}|Y1 = y]

=
∑
y′∈Y

E[exp{θ(Z2 + · · ·+ Zn+1)}1{Y2 = y′}|Y1 = y],

=
∑
y′∈Y

E[exp{θ(Z2 + · · ·+ Zn+1)}|Y2 = y′]

× P [Y2 = y′|Y1 = y],∀y ∈ Y.

11. APPENDIX B: GAUSSIAN APPROXIMA-
TION FOR MARKOV CHAIN

Let {Xn} be a {0, 1}-Markov chain with P (0, 1) = a and
P (1, 0) = b. We want to show that

var(X1 + · · ·+Xn) ≈ nσ2

where

σ2 := cd(
2

a+ b
− 1)

where c := a/(a+ b) and d := 1− c.
We have (see Figure 9)

E((

n∑
m=1

Xm)2) = 2T −D

where

T :=

n∑
m=1

n−m∑
k=0

E(XmXm+k)

and

D :=

n∑
m=1

E(X2
m) =

n∑
m=1

E(Xm) = nc.

One can verify that

P k(1, 1) = c+ dλk, with λ = 1− a− b.
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Now,

T =

n∑
m=1

n−m∑
k=0

P (Xm = 1)P [Xm+k = 1|Xm = 1]

=

n∑
m=1

n−m∑
k=0

cP k(1, 1)

=

n∑
m=1

n−m∑
k=0

c(c+ dλk)

=

n∑
m=1

n−m∑
k=0

c2 + cd

n∑
m=1

n−m∑
k=0

λk

= c2
n2 + n

2
+ cd

n∑
m=1

(1 + λ+ ·+ λn−m).

Also,

n∑
m=1

(1 + λ+ · · ·+ λn−m) =

n∑
m=1

1− λn−m+1

1− λ

=
n

1− λ −
1

1− λ

n∑
m=1

λn−m+1

=
n

1− λ −
λ(1− λn)

(1− λ)2
.

Hence,

T = c2
n2 + n

2
+

ncd

1− λ −
cdλ(1− λn)

(1− λ)2

≈ c2 n
2 + n

2
+

ncd

1− λ .

Finally, we get

E((

n∑
m=1

Xm)2) ≈ c2(n2 + n) +
2cdn

1− λ − nc.

Thus,

var(X1 + · · ·+Xn) ≈ c2(n2 + n) +
2cdn

1− λ − nc− n
2c2

= n[c2 +
2cd

1− λ − c] = ncd
1 + λ

1− λ

= ncd
2− a− b
a+ b

,

as we wanted to show.
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