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ABSTRACT
Data analysis and accurate forecasts of electricity demand
are crucial to help both suppliers and consumers understand
their detailed electricity footprints and improve their aware-
ness about their impacts to the ecosystem. Several studies of
the subject have been conducted in recent years, but they are
either comprehension-oriented without practical merits; or
they are forecast-oriented and do not consider per-consumer
cases. To address this gap, in this paper, we conduct data
analysis and evaluate the forecasting of household electric-
ity demand using three realistic datasets of geospatial and
lifestyle diversity. We investigate the correlations between
household electricity demand and different external factors,
and perform cluster analysis on the datasets using an ex-
haustive set of parameter settings. To evaluate the accu-
racy of electricity demand forecasts in different datasets,
we use the support vector regression method. The results
demonstrate that the medium mean absolute percentage er-
ror (MAPE) can be reduced to 15.6% for household electric-
ity demand forecasts when proper configurations are used.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous
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Electricity demand forecast; household electricity demand;
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1. INTRODUCTION
With recent advances in the Internet of Things (IoT) and

smart grid technologies, smart electricity meters have been
developed and are now widely deployed. Unlike conven-
tional electricity meters that require labor-intensive read-
ing, smart electricity meters exploit modern data communi-
cation techniques to transmit their readings to remote data
centers periodically. The resulting automated meter reading
(AMR) infrastructure provides more insightful information
about electricity demand at a finer granularity. The infor-
mation enables power suppliers to improve their electricity
services, such as electricity billing, pricing, provisioning, and
real-time demand responses. Moreover, it allows consumers
to monitor their electricity consumption continuously, and it
induces behavior changes that save energy and lead to more
environmentally friendly lifestyles [2, 19, 25].

Several attempts have been made to analyze AMR data
for value-added and advanced electricity services in recent
years [6, 8, 10, 11, 12, 14, 15, 22, 25, 27]. These works can be
categorized into two types based on their objectives, namely,
comprehension-oriented studies and forecast-oriented stud-
ies. While the former focus on gaining a thorough under-
standing of the intrinsic properties of AMR data, the latter
go one step further and forecast the demand for electric-
ity. The drawback of existing works is that they only con-
sider regional scenarios (e.g., commercial buildings, cities,
and country areas) without considering the scenarios on a
per-household basis. In fact, forecasting household electric-
ity demand is regarded as challenging because it must take
various human factors into account (e.g., income levels, ac-
tivities, and lifestyles). A large-scale in-depth study of fore-
casting electricity demand in a household-based setting is
therefore highly desirable.

In this study, we investigate the research problem of large-
scale AMR data analysis with the objective of improving the
accuracy of forecasting household electricity demand. Using
the realistic datasets compiled by the Pilot Smart Meter
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Deployment Project in Taiwan, as well as data on weather
conditions recorded by the weather stations near the de-
ployment areas, we analyze the AMR data and investigate
its correlations with various external factors, such as the
temperature, the number of the floor where the smart me-
ter is located, and different time scales. Then, we use the
support vector regression (SVR) method [26] to evaluate the
accuracy of electricity demand forecasts under different pa-
rameter settings. The contribution of this work is three-fold.

1. We conduct in-depth analysis using realistic smart elec-
tricity meter datasets and investigate the correlations
between electricity demand and several external fac-
tors, such as the time, temperature, and number of
the floor where the meter is located. The datasets are
large-scale (i.e., 1,296 meters), and cover a long period
(i.e., more than two years). They are also diverse in
terms of household types (i.e., apartments and houses)
and locations (i.e., entirely residential areas and mixed
residential/commercial areas).

2. We perform cluster analysis on the datasets under an
extensive set of parameter settings (e.g., under differ-
ent distance measurement methods, clustering algo-
rithms, and cluster validity indices). In addition, we
exploit a decision mechanism based on the Memetic
Algorithm [20] to determine the optimal number of
clusters for each configuration.

3. To evaluate the accuracy of forecasting household elec-
tricity demand, we apply the SVR method on different
datasets under different parameter settings, and ana-
lyze the results in detail.

Based on our research findings, we draw the following con-
clusions.

1. There is a turning temperature, which means the daily
household electricity demand and the daily average
temperature have a positive correlation when the tem-
perature is greater than the turning temperature; oth-
erwise, they have a negative correlation.

2. There is a significant drop in the daily household elec-
tricity demand on non-working weekdays (holidays),
but there are no significant variations in the demand
on weekdays or weekends.

3. The datasets exhibit a lifestyle diversity, and the best
forecast performance of each dataset occurs under dif-
ferent parameter settings. Overall, the mediumMAPE
of the best forecast achieved was 15.6% when proper
configurations were used in this study.

The remainder of this paper is organized as follows. Sec-
tion 2 contains a review of recent studies on smart meter
data analysis. In Section 3, we describe the three datasets
used in this study; and in Section 4, we analyze the datasets
and their correlations with different external factors. In Sec-
tion 5, we conduct cluster analysis on the datasets, and also
describe the Memetic Algorithm-based approach used to de-
termine the optimal number of clusters for each dataset un-
der different parameter settings. In Section 6, we evaluate
the accuracy of forecasting electricity demand forecast with
the three datasets, and present a detailed analysis on the
results. Section 7 contains some concluding remarks.

2. RELATED WORK
There have been a number of competitions to determine

the best way to forecast demand. One of the most notable
was the Electricity Load Competition hosted by EUropean
Network Intelligent TEchnologies for Smart Adaptive Sys-
tems (EUNITE) in 2001 [1]. The contest utilized a dataset
provided by the East-Slovakia Power Distribution Company
with 578,082 take-off points in the Eastern Slovakian Re-
gion. The dataset contains the per-30-minute electricity
loads and the daily average temperature between January
1997 and December 1998. Based on the dataset, the com-
petitors were asked to predict the maximum daily electricity
load for January 1999.

In the contest, several competitors observed that there
was a strong correlation between the temperature and the
electricity load. However, it has been found that the tem-
perature feature is not useful in forecasting the electricity
load unless the temperature forecast is accurate [8, 12, 14,
15]. Moreover, the electricity load is higher on weekends
than on weekdays [10, 14]. The variation between weekdays
and weekends can be exploited to improve the accuracy of
electricity load forecasts [6, 8, 22]

Jain and Satish [11] conducted an electricity load fore-
cast study using a 2-year dataset that contained the per-
30-minute regional electricity load, the daily average tem-
perature, and the day of week (DOW). They divided the
dataset into several clusters based on arbitrary thresholds
and used the SVR approach to make forecasts. Specifically,
SVR predicted the electricity loads (i.e., 48 thirty-minute
loads) based on the previous 48 thirty-minute loads, the pre-
vious day’s average temperature, the DOW of the previous
day, and the temperature forecast for that day.

Shen et al. [25] proposed a Pattern Forecasting Ensemble
Model (PFEM) that combines the Pattern Sequence-based
Forecasting (PSF) algorithm [17] with five clustering mod-
els (namely, K-Means, K-Medoids, Self-Organizing Map,
Hierarchical Clustering, and Fuzzy C-Means) with differ-
ent weights to derive more accurate electricity load predic-
tions. The model was evaluated on three publicly available
electricity demand datasets compiled by the New York In-
dependent System Operator (NYISO), the Australian Na-
tional Electricity Market (ANEM), and Ontario’s Indepen-
dent Electricity System Operator (IESO), respectively. The
evaluation results showed that PFEM could provide more
accurate and reliable forecasts than PSF with a single clus-
tering method.

Finally, Solomom et al. [27] conducted a study to fore-
cast the electricity demand of a large commercial building
at 345 Park Avenue in Manhattan. Approximately 5,000
people work in the building and there are about 1,000 visi-
tors every day. The authors used a dataset of the electricity
demand in the building over fifteen months, The forecast,
which was SVR-based, predicted the electricity demand for
the next week based on previous electricity demands, daily
average temperatures, dew point temperatures, and wind
speed data.

3. DATASET
In this section, we present the datasets used in the current

study and discuss their basic properties. The datasets were
obtained from the Pilot Smart Meter Deployment Project in
Taiwan, which was launched in 2010 with the support of the
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Table 1: Summary of the dataset collected from the different deployment sites

Dataset (Site) Type Area
# of smart meters

Period (days)
w/o floor info. w/ floor info.

Taipei apartments residential/commercial 715 540 992 (2010/11/08 - 2013/07/26)
Hsinchu apartments residential 419 240 999 (2010/11/01 - 2013/07/26)
Tainan houses residential 162 162 262 (2012/11/07 - 2013/07/26)

Taiwan Power Company and the Bureau of Energy, Ministry
of Economic Affairs, Taiwan. The deployment started in the
cities of Taipei and Hsinchu in the north of Taiwan; and in
2012, another deployment was added in Tainan, a city in the
south of Taiwan.

The Taipei dataset comprises 715 smart electricity meters
deployed in the Minsheng Community, which is a mixed-use
area of residential and commercial properties in the east of
Taipei City. Each smart meter corresponds to one house-
hold, and it reports the householdÕs electricity demand ev-
ery fifteen minutes via different techniques (e.g., Wi-Fi and
power line communication). Of the 750 smart meters listed
in the dataset, 540 show the full postal address of the house-
hold (including the floor number) where they are installed.
They are categorized into LOW floors (1F-5F with 464 me-
ters); MIDDLE floors (6F-10F with 48 meters); and HIGH
floors (11F-16F with 26 meters).

The Hsinchu dataset comprises 419 smart electricity me-
ters deployed in the Siangshan Community in the south-
west of Hsinchu County; again, each smart meter is as-
sociated with one household. The Siangshan Community
is an entirely residential area, where most of the residents
are either students or they work in nearby companies. The
smart meters have similar configurations to those deployed
in Taipei city including the sample rate and communication
techniques. Of the 419 smart meters in the dataset, 240
show the complete postal addresses where they are located.
There are 150 meters on LOW floors (1F-5F), 50 meters on
MIDDLE floors (6F-10F), and 40 meters on HIGH floors
(11F-18F), respectively.

The Tainan dataset only contains 162 smart meters, each
of which is associated with one floor of a three-floor house-
hold (i.e., there are 54 households in the dataset). The com-
plete postal addresses of the participating households are
available. All the houses are located in the same community
and have the same design: the living room is on the first
floor (LOW floor), the kitchen and one bedroom are on the
second floor (MIDDLE floor), and another two bedrooms are
on the third floor (HIGH floor). Most of the residents are
workers and students in nearby areas. The smart meters are
configured to use the same sample rate and communication
techniques as those in the Taipei and Hsinchu sites.

The deployment project was implemented in an incremen-
tal manner. In the early phase, the number of concurrently
alive meters varied significantly over time due to meter fail-
ures and unreliable wireless communications. To resolve the
problem, all the smart meters have been upgraded to use
power line communications to transmit data, and the smart
meters installed in the early phase of the project have been
replaced with new models. Moreover, we designed a simple
filter to remove obvious outliers from the datasets, such as
negative electricity demands and extremely large demands
(i.e., more than 100 kilowatt-hours) in a 15-minute time slot.
Table 1 summarizes the datasets used in this study, and Fig-

ure 1 shows the number of the concurrently alive meters over
time in the datasets.

To investigate the correlation between environmental fac-
tors and household electricity demand, we downloaded weather
condition data from the weather station at Mingchuan el-
ementary school, which is about one kilometer from the
deployment site. For the Hsinchu and Tainan sites, we
purchased weather condition data from the Taiwan Central
Weather Bureau. We also obtained data from two weather
observation stations that are about ten kilometers from the
Hsinchu site and the Tainan site respectively.

4. DATA ANALYSIS
Next, we analyze the intrinsic properties of the three datasets;

and then evaluate the correlations between electricity de-
mand and various external factors.

Figure 2 shows the cumulative distribution function (CDF)
of the data instances (i.e., per-15-minute electricity demand)
in the three datasets. The curve of the Taipei dataset is al-
ways on the right of the other curves, indicating that the
households in Taipei generally consume more energy than
those in Hsinchu and Tainan. There are two reasons for
this phenomenon: 1) some of the smart meters in the Taipei
dataset are installed in premises used for commercial activ-
ities, which consume more power than strictly residential
activities; and 2) the income level of households in Taipei
is higher than that in the other two cities, so the residents
tend to consume more energy [4]. In addition, we observe
that 58% of the data instances in the Hsinchu dataset have
extremely low values (i.e., less than 0.05kWh). This is be-
cause most of the households in the Hsinchu site are either
single-person or dual-income-no-kids (DINK) entities. The
residents tend to work long hours, even at weekends, in high-
tech companies in the nearby Hsinchu Science Park; hence,
the demand for electricity is extremely low.

Figure 3 compares the per-15-minute electricity demand
of LOW, MIDDLE, and HIGH floor households over a day
in the three datasets. We make the following observations.

1. Overall, electricity demand is highest at night and low-
est in the early morning. The reason is simple: the
demand is highly correlated to people’s household ac-
tivities at different times of the day.

2. In the Taipei dataset, LOW-floor households consume
more power than the other groups around noon (11am
- 1pm); while HIGH-floor households consume more
power than the other groups in the evening (8pm -
9am). The former can be explained by the fact that
some LOW-floor premises are used for business, and
they are busier during the lunch period than at other
times. The reason for the latter finding is that the tem-
peratures in Taipei households on HIGH floors usually
differ substantially from those on LOW floors due to
the basin effect in Taipei. Thus, people on HIGH floors
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Figure 1: The number of the concurrently alive me-
ters over time in the three datasets
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Figure 3: Comparison of the per-15-minute electricity demand on the LOW/MIDDLE/High floors in a day
at the three sites

tend to use air conditioners more often in summer, and
turn on heaters and dehumidifiers more often in win-
ter.

3. In the Hsinchu dataset, LOW-floor households con-
sume more energy than MIDDLE-floor premises over
a day; while HIGH-floor households consume the least
amount. The reason is that the deployment is located
in a new residential area and many premises are not
currently occupied. Interestingly, higher floors have
more vacancies than middle and lower floors.

4. In the Tainan dataset, first-floor households consume
the most electricity during the day, while third-floor
households have the highest demand at night. The
finding shows that people usually spend most of their
time in the living room (1F) during the day, while the
bedrooms (2F and 3F) are used mostly at night.

We also evaluate the correlations between the per-15-minute
electricity demand and different types of day, i.e., working
weekdays, weekends, and non-working weekdays (i.e., holi-
days). The results in Figure 4 show that electricity demand

on non-working weekdays is lower than on the other days.
This is because most people go out (or go away) on those
days. Moreover, the electricity demand on working week-
days is comparable to that on weekends in the three datasets.
The reason is that people may also go out on weekends (e.g.,
for leisure instead of work), so their household life patterns
are the same on working weekdays and weekends.

In addition, we investigate the impact of the daily aver-
age temperature on the daily electricity demand registered
by each smart meter. From the results shown in Figure 5,
we observe that the distribution forms a V shape in all three
datasets. More precisely, there is a turning temperature in
each dataset (i.e., the valley of the V shape); the greater the
difference between the daily average temperature and the
turning temperature, the higher the electricity consumption.
The reason is that people tend to turn on air conditioners in
summer and heaters in winter. Thus, the turning tempera-
ture is deemed to be the ideal temperature for most people
(i.e., they feel comfortable) so there is no need for air con-
ditioners/heaters. Specifically, the results in Figure 5 show
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Figure 4: Comparison of the per-15-minute electricity demand on working weekdays, weekends, and non-
working weekdays (i.e., holidays) in the three datasets
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Figure 5: Illustration of the distribution of the daily electricity demand under different daily average tem-
peratures in the three datasets

that the turning temperatures are 20oC, 25oC, and 25oC in
the Taipei, Hsingchu, and Tainan datasets respectively.

Finally, using the turning temperature in Figure 5, we
evaluate the correlations between the daily average tem-
perature and the daily electricity demand for households
on different floors (i.e., HIGH/MIDDLE/LOW floors) un-
der different weather conditions (i.e., above/below the turn-
ing temperature). The results in Table 2 show that, when
the temperature is higher than the turning temperature, the
correlation is strongly positive in the Taipei and Tainan
datasets, and moderately positive in the Hsinchu dataset.
In contrast, when the temperature is lower than the turning
temperature, the correlation is weakly negative except for
those household on MIDDLE and HIGH floors in the Taipei
and Tainan datasets, which have moderately negative cor-
relations. The reason is that heaters are not always needed
during winter in the three cities because the climate in Tai-
wan ranges from subtropical in the north to tropical in the
south. Thus, the correlation is moderate to weak when the
daily average temperature is lower than the turning temper-
ature.

5. CLUSTER ANALYSIS
We use cluster analysis to identify households with similar

lifestyle patterns in the three datasets. In the analysis, we
use the daily electricity demand, instead of per-15-minute
consumption, because it is more representative of the sea-
sonal changes in people’s household lifestyle patterns. More-
over, we evaluate different parameter settings (e.g., distance
measures, clustering algorithms, and cluster metrics) and
implement a Memetic Algorithm-based approach to deter-

Table 2: Correlations between the daily average
temperature and the daily electricity demand for
smart meters on different floors and under different
weather conditions in the three datasets

LOW floors MIDDLE floors HIGH floors

Taipei
≥ 20oC 0.780 0.823 0.783
< 20oC -0.227 -0.654 -0.392

Hsinchu
≥ 25oC 0.572 0.331 0.590
< 25oC -0.288 -0.198 -0.094

Tainan
≥ 25oC 0.831 0.869 0.757
< 25oC 0.194 -0.583 -0.655

mine the optimal number of clusters under each parameter
setting. We present the detailed analysis in the following
subsections.

5.1 Data Preprocessing
Two issues must be resolved before performing cluster

analysis on the three datasets: 1) data dependency : the daily
electricity demand is the combined result of people’s lifestyle
patterns and external factors, such as the temperature (as
shown in Table 2); and 2) data scaling : different households
may have similar behavior patterns in terms of daily electric-
ity demand, but on different scales. The demand depends
on the number (and the models) of the appliances used in
different households. Thus, it is necessary to preprocess the
datasets in order to mitigate the effects of the two issues.
The data preprocessing phase involves two steps:

• Data Separation
Using the turning temperatures discussed in Section 4,
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we divide each dataset into two subsets: (1) the warm
subset, which contains data instances for the months in
which the average temperatures were higher than the
turning temperature; and (2) the cold subset, which
contains the rest of the data instances in the original
dataset. In this study, the warm seasons are defined
as April to November for the Taipei dataset, May to
October for the Hsinchu dataset, and April to October
for the Tainan dataset.

• Data Standardization
To resolve the data scaling issue, we exploit the clas-
sic data standardization approach to convert the daily
electricity demand from its raw form into a standard
score (z-Score) [3]. Specifically, we let Xi,j

k be the elec-
tricity demand recorded by the i-th smart meter in the
k-th time slot of the j-th day in the dataset. The stan-
dard score of Xi,j

k is

Zi,j
k =

Xi,j
k − µ(Xi,j

∗ )

σ(Xi,j
∗ )

, (1)

where µ(Xi,j
∗ ) is the mean electricity demand of the i-

th household on the j-th day, and σ(Xi,j
∗ ) is the stan-

dard deviation of the electricity demand recorded by
the i-th smart meter for all time slots on the j-th day.

5.2 Parameter Settings
In this subsection, we consider the different parameter

settings used in the cluster analysis, including distance mea-
sures, clustering algorithms, and cluster validity indices. We
discuss the possible settings of each parameter and the ra-
tionale for each one in the following subsections.

5.2.1 Distance Measure
Let Zi,j

k be the standardized electricity demand recorded
by the i-th smart meter in the k-th time slot of the j-th
day, and let n be the number of time slots in a day. We
consider two distance functions to measure the distance be-
tween Zi1,j1

∗ and Zi2,j2
∗ .

• Euclidean distance: The Euclidean distance represents
the ordinary distance between two points in geome-
try, and it is widely used to measure the distance be-
tween two samples in a multi-dimensional space. In
this study, we derive the Euclidean distance between
Zi1,j1

∗ and Zi2,j2
∗ by computing the square root of the

sum of the squares of the differences between two stan-
dardized electricity demands, i.e.,

DEuclid(Zi1,j1
∗ , Zi2,j2

∗ ) =

√√√√
n∑

k=1

(Zi1,j1
k − Zi2,j2

k )2.

(2)

• Dynamic Time Warping (DTW) Distance: The DTW
distance [13] is commonly used to measure the similar-
ity between two time sequence data events that may
vary in time and speed. To calculate the DTW dis-
tance between Zi1,j1

k and Zi2,j2
k , we first identify four

time slots (as shown in Figure 6):
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Figure 6: Illustration of the Dynamic Time Warping
(DTW) distance

1. ui1,j1,i2,j2
k : the nearest backward slot of Zi1,j1

∗

such that its value is equal to Zi2,j2
k . i.e.,

ui1,j1,i2,j2
k = max

(
0, argmax

1≤k′<k
(Zi1,j1

k′ = Zi2,j2
k )

)
.

(3)

2. vi1,j1,i2,j2k : the nearest forward slot of Zi1,j1
∗ such

that its value is equal to Zi2,j2
k , i.e.,

vi1,j1,i2,j2k = min

(
0, argmin

k<k′≤n
(Zi1,j1

k′ = Zi2,j2
k )

)
.

(4)

3. ui2,j2,i1,j1
k : the nearest backward slot of Zi2,j2

∗

such that its value is equal to Zi1,j1
k , i.e.,

ui2,j2,i1,j1
k = max

(
0, argmax

1≤k′<k
(Zi2,j2

k′ = Zi1,j1
k )

)
.

(5)

4. vi2,j2,i1,j1k : the nearest forward slot of Zi2,j2
∗ such

that its value is equal to Zi1,j1
k , i.e.,

vi2,j2,i1,j1k = min

(
0, argmin

k<k′≤n
(Zi2,j2

k′ = Zi1,j1
k )

)
.

(6)

Then, the directional DTW distance between Zi1,j1
k

and Zi2,j2
k (i.e.,

−→
DDTW (Zi1,j1

k , Zi2,j2
k )) and the dis-

tance in the opposite direction (i.e.,
−→
DDTW (Zi2,j2

k , Zi1,j1
k ))

are obtained by

−→
DDTW (Zi1,j1

k , Zi2,j2
k )

= min
(
k − ui1,j1,i2,j2

k , vi1,j1,i2,j2k − k
)
, and

(7)

−→
DDTW (Zi2 ,j2

k , Zi1,j1
k )

= min
(
k − ui2,j2,i1,j1

k , vi2,j2,i1,j1k − k
)
.

(8)

Finally, the DTW distance between Zi1 ,j1
∗ and Zi2,j2

∗
is determined by considering either the mean direc-
tional distance of each corresponding pair (as shown
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in Eq. 9) or the minimum directional distance of each
corresponding pair (as shown in Eq. 10).

DDTW
mean (Z

i1,j1
k , Zi2,j2

k ) =
n∑

k=1

−→
DDTW (Z

i1,j1
k ,Z

i2,j2
k )+

−→
DDTW (Z

i2,j2
k ,Z

i1,j1
k )

2 .
(9)

DDTW
min (Zi1,j1

k , Zi2 ,j2
k ) =

n∑
k=1

min(
−→
DDTW (Zi1,j1

k , Zi2,j2
k ),

−→
DDTW (Zi2,j2

k , Zi1,j1
k )).

(10)

5.2.2 Clustering Algorithms
We exploit two clustering algorithms in the analysis: the

K-Means algorithm [16] and the K-Medoids algorithm [24].
The K-Means algorithm is one of the most popular methods
used in data mining. It partitions the data space into several
Voronoi cells such that the distance between a data point
and the geometric center of its own Voronoi cell is less than
the distance to the centers of any other cells.

Specifically, given K as a priori information, the K-Means
algorithm clusters the daily electricity demand dataset as
follows:

Step 1: It selects K data instances at random from the
dataset as the cluster centers.

Step 2: For the rest of the data instances in the dataset,
it uses Eq. 2 to calculate the Euclidean distance from
each data instance to each cluster center. Then, it
associates each data instance with the closest cluster
center.

Step 3: It calculates the geometric center of each cluster,
and updates the cluster centers accordingly.

Step 4: It repeats Step 2 and Step 3 until no further changes
can be made.

The K-Medoids algorithm is implemented in a similar way
to the K-Means algorithm, except that: 1) in Step 2, it
utilizes the DTW distance (Eq. 9 and Eq. 10) instead of
the Euclidean distance to measure the distance between two
data instances in the dataset; and 2) in Step 3, it chooses
one of the samples as the new cluster center, such that the
sum of the distances between the new cluster center and the
other data instances in the same cluster is the minimum.
Depending on the distance function used, the K-Medoids
algorithm has two variants: K-Medoids-mean (i.e., using
Eq. 9) and K-Medoids-min (i.e., using Eq. 10).

5.2.3 Cluster Validity Index
Instead of using an arbitrary number K as a priori num-

ber of clusters, we exploit two cluster validity indices, the
PBM index [21] and the Davies-Bouldin (DB) index [9], to
determine the optimal number of clusters for data cluster-
ing. Let K be the number of clusters; Ci be the i-th cluster;
ci be the center of the i-th cluster; and zi,j be the j-th data
instance in the i-th cluster. We calculate the two cluster
validity indices as follows.

• PBM Index: The intra-cluster distance between data
instances belonging to the same cluster and the inter-
cluster distance between two cluster centers are de-
rived by Eq. 11 and Eq. 12 respectively; where |Ci|

denotes the number of data instances belonging to the
i-th cluster, and D∗ is the distance function used.

EK =
K∑

i=1

|Ci|∑

j=1

D∗(zi,j , ci). (11)

FK = max
1≤i̸=j≤K

D∗(ci, cj). (12)

Then, given a cluster number K, the PBM index is
obtained by

PBM(K) = (
1
K

× E1

EK
× FK)

2

, (13)

where E1 is the sum of the distances of all data in-
stances to the center of the dataset. The larger the
value of PBM(K), the more stable will be the clus-
tering results. The optimal number of clusters K is
obtained when the value of PBM(K) is maximal.

• DB Index: We derive the intra-cluster distance for
the i-th cluster by Eq. 14. Then, we calculate the
goodness-of-fit of the i-th cluster by finding the best
partner cluster that can maximize the ratio of the
intra-cluster distance over the inter-cluster distance,
as shown in Eq. 15.

Si =
1

|Ci|

|Ci|∑

j=1

D∗(zi,j , ci). (14)

Ri = max
1≤j≤K;j ̸=i

Si + Sj

D∗(ci, cj)
. (15)

The DB index is obtained by calculating mean goodness-
of-fit value of the K clusters, as shown in Eq. 16. In
contrast to the PBM index, the optimal number of
clusters K is obtained when the value of DB(K) is
minimal.

DB(K) =
1
K

K∑

i=1

Ri. (16)

5.3 Clustering Results
It has been shown that the cluster initialization issue in-

fluences the clustering results of many clustering algorithms
[5, 28]. We address the issue as follows. Given a fixed num-
ber of clusters K, we utilize the Memetic-based algorithm
[20] to combine local search and genetic algorithms to find
the optimal clustering results. Figure 7 shows the flowchart
of the algorithm.

There are eight steps:

• Initial Population: The algorithm selects K data in-
stances at random as the initial cluster centers. Then,
it repeats the process N1 times to form N1 sets of ini-
tial cluster centers.

• Local Search: For each set of cluster centers, the algo-
rithm uses the selected clustering algorithm to analyze
the dataset and yields K clusters.
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Initial Population Local Search

Evaluation

Mating Selection

Reproduction

Final PopulationStop Criterion YesNo

Figure 7: The flowchart of the Memetic-based algo-
rithm used for cluster initialization

• Evaluation: The algorithm uses the selected cluster
validity index to calculate the index value of the clus-
tering results of each set of cluster centers.

• Mating Selection: The algorithm uses the Tournament
Selection method [18] to select N2 sets of cluster cen-
ters at random (N2 < N1), and reports the top two sets
of clustering results (i.e., those that yield the maximal
PBM index value or the minimal DB index value).

• Reproduction: Using the two sets of cluster centers de-
rived by the Mating Selection step, the algorithm cre-
ates two sets of offspring by one-point order crossover
[23] without mutation.

• Environmental Selection: The algorithm selects the
best N1 sets of cluster centers (from the initial N1

sets and the two sets of offspring) as the new initial
population for the next generation.

• Stop Criterion: The algorithm stops when it has iter-
ated T times.

• Final Population: The algorithm outputs the best clus-
tering results from the latest population.

Using the Memetic Algorithm with N1 = 10, N2 = 4, and
T = 20, we performed cluster analysis on the three datasets
under different parameter settings with different K values.
Then, we obtain the optimal K value that yields the optimal
cluster validity index value under each parameter setting for
all the clusters. Table 3 shows the optimal K values under
different clustering algorithms, distance measures, cluster
validity indices and weather conditions in the three datasets.

6. FORECAST PERFORMANCE
Next, based on our analysis, we evaluate the accuracy of

forecasts of the daily electricity demand for each smart me-
ter. We use the ε-support vector regression (ε-SVR) method
[26, 29] provided by the open source machine learning li-
brary, LIBSVM [7], as the forecasting tool. Specifically, in
ε-SVR, the width of the ε-insensitive tube is set at 0.14286
(the default value suggested by the LIBSVM library); and
the cost of errors is set at 4,096 for the Hsinchu dataset, 32
for the Taipei dataset, and 32 for the Tainan dataset.

Table 3: The optimal number of clusters suggested
for each dataset under different clustering algo-
rithms, distance measures, cluster validity indices
and seasons

PBM Index DB Index
warm cold warm cold
season season season season

Taipei
K-Means 3 3 3 3
K-Medoids-mean 2 2 4 3
K-Medoids-min 5 5 3 4

Hsinchu
K-Means 3 3 3 3
K-Medoids-mean 2 4 2 8
K-Medoids-min 4 3 3 8

Tainan
K-Means 2 3 2 4
K-Medoids-mean 3 2 5 3
K-Medoids-min 4 5 2 5

Table 4: The number of smart meters suitable
for forecast evaluations, when d = 7, in the three
datasets

Taipei Hsinchu Tainan

warm season

LOW floors 412 119 51
MIDDLE floors 48 41 33
HIGH floors 26 31 33

Total 486 191 117

cold season

LOW floors 423 133 52
MIDDLE floors 44 43 28
HIGH floors 19 34 29

Total 486 210 109

In addition, we perform three-fold cross validation for each
dataset under different clustering parameter settings; and
we use the mean absolute percentage error (MAPE) as the
evaluation metric to measure the forecast accuracy for each
smart meter. The MAPE value of the i-th smart meter is
derived by

MAPEi = 100× 1
p
×

p∑

j=1

∣∣∣Vi,j − V̂i,j

∣∣∣
Vi,j

; (17)

where Vi,j is the true result of the j-th forecast on the i-

th smart meter, V̂i,j is the j-th forecast value on the i-th
smart meter, and p is the number of forecasts made for the
i-th smart meter. The distribution of the MAPE values
is skewed due to extreme values in general. Therefore, in
the following discussion, we consider the 50% (i.e., median)
and 80% MAPE values of all smart meters under different
parameter settings.

6.1 Feature Selection
We use the immediate last d contiguous days of data in-

stances (including the electricity demand and the other ex-
ternal factors) as the selected features for SVR forecasting.
Intuitively, there exists a tradeoff in deciding the d value.
The higher the value of d, the greater will be similarity be-
tween the lifestyles of the instances matched and the one to
be forecast. However, using a large d value may reduce the
number of matched instances, resulting in a failed or biased
forecast.

In Figure 8, we compare the accuracy of forecasts of the
daily electricity demand for households in the Taipei dataset
with different d values, clustering algorithms, and cluster
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Figure 8: Comparison of the 50% and 80% MAPE results of forecasting daily household-based electricity
demand using the Taipei dataset with different d values, clustering algorithms, and cluster validity indices

validity indices. We observe that when d = 7, the medium
(50%) MAPE value is either the first or the second minimal
value among the d values in all test cases. The 80% MAPE
value is also approximately minimal when d = 7. The ob-
servations also apply to the Hsinchu and Tainan datasets,
but we do not provide the MAPE values here due to the
page limitation. Therefore, we set d = 7 in the following
evaluation. Using the d value, Table 4 shows the number
of smart meters in each dataset that have eight contiguous
days of electricity demand and are eligible for the following
evaluation.

6.2 Forecast Results
In addition to the daily electricity demand, we consider

the following three external factors in the evaluation of the
forecast performance: the temperature, the floor number,
and the type of day. When the temperature feature is con-
sidered, we append the daily average temperature record to
each daily electricity demand instance in the dataset. We
also include this feature in the SVR training set and test
set. When the floor number feature is considered, we di-
vide the dataset into three subsets based on the floor type
(i.e., HIGH, MIDDLE, or LOW) of each smart meter in
the dataset. Moreover, when the type of day feature is
considered, we divide the dataset into two subsets based
on whether the measurement was obtained on regular days
(working weekdays and weekends) or holidays (non-working
weekdays).

Table 5 shows the 50% and 80% MAPE results of fore-
casting daily electricity demand using the three datasets
with different cluster parameter settings and different fea-
ture combinations. Each feature is labeled either T (true)
or F (false) based on whether it is considered, and the labels
of the three features are concatenated in the following or-
der: temperature, floor number, and day type. For instance,
‘TFF ’ refers to a case where we only consider the tempera-

ture, and ‘FTF ’ refers to a case where we only consider the
floor number feature.

The results in Table 5 show that, for the Taipei and Hsinchu
scenarios, the accuracy of the forecasts derived by the PBM
and DB indices is comparable; the best forecast performance
is achieved when the K-Means clustering algorithm and the
Euclidean distance are used together. However, for the
Taipei scenario, the best forecast performance only occurs
when the type of day feature is considered (i.e., FFT ). This
result seems to contradict our earlier findings (discussed in
Section 4) that the demand for electricity is highly corre-
lated to the temperature. There are three reasons for this
phenomenon:

1. Although the earlier analysis showed a strong correla-
tion between electricity demand and the temperature
feature, the distribution per temperature value spans
a wide range of electricity demands (c.f., Figure 5), so
forecasting demand is a difficult task.

2. The earlier analysis was performed by dividing the
dataset into the warm season subset and the cold sea-
son subset. This procedure cannot be used to forecast
electricity demand because the daily average temper-
atures in a contiguous d-day period may not belong to
the same season subset.

3. Some of the smart meters in the Taipei dataset are lo-
cated in premises used for commercial activities, which
are more responsive to holidays. By contrast, the other
two datasets only contain residential properties.

As a consequence, the temperature feature does not improve
the accuracy of forecasts of the daily electricity demand in
the Taipei scenario.

The results in Table 5 also show that the best forecast
performance for the Hsinchu scenario is only achieved when
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Table 5: The 50% and 80% MAPE results of forecasting daily electricity demand using the three datasets
with different cluster parameter settings and different feature combinations

FFF FFT FTF FTT TFF TFT TTF TTT

T
ai
p
ei

PBM Index
K-Means 16.4/25.4 16.4/25.2 16.6/26.3 16.9/26.1 16.6/26.2 17.1/26.4 17.2/27.3 17.7/27.9

K-Medoids-mean 16.5/25.8 16.5/26.0 16.8/26.5 16.8/26.8 16.9/26.3 17.2/26.4 17.1/27.2 17.7/27.4
K-Medoids-min 16.5/25.5 16.6/25.8 16.7/26.4 17.0/27.1 16.8/26.7 17.4/27.1 17.5/27.3 18.2/28.8

DB Index
K-Means 16.4/25.3 16.4/25.2 16.5/25.9 16.8/25.9 16.6/25.9 17.0/25.9 17.1/26.9 17.7/27.7

K-Medoids-mean 16.7/26.1 16.6/26.2 16.9/26.5 16.9/26.9 16.7/26.6 17.2/27.3 17.2/27.4 17.7/28.3
K-Medoids-min 16.4/25.8 16.4/25.8 16.8/26.2 16.8/26.6 16.5/26.0 17.0/26.5 17.1/26.9 17.5/27.8

H
si
n
ch
u PBM Index

K-Means 21.9/39.3 22.4/38.3 21.9/37.7 23.0/40.0 33.3/64.0 29.3/54.3 30.4/60.1 34.1/75.1
K-Medoids-mean 22.0/38.9 22.4/39.3 22.3/39.1 22.8/38.0 32.0/63.7 28.1/46.5 33.6/68.1 33.8/59.3
K-Medoids-min 22.2/39.0 22.7/38.6 22.4/38.0 23.2/38.8 32.2/62.4 30.6/60.1 32.6/60.0 34.6/75.4

DB Index
K-Means 21.9/39.3 22.4/38.3 21.9/37.7 23.0/40.0 33.3/64.0 29.3/54.3 30.4/60.1 34.1/75.1

K-Medoids-mean 22.0/38.9 22.4/39.3 22.3/39.1 22.8/38.0 32.0/63.7 28.1/46.5 33.6/68.1 33.8/59.3
K-Medoids-min 21.9/37.8 22.2/38.4 22.1/38.4 23.2/37.0 33.5/59.0 30.0/51.7 35.0/66.1 36.2/68.3

T
ai
n
an

PBM Index
K-Means 20.1/32.3 21.4/36.9 21.0/33.3 22.6/35.9 21.8/32.7 23.9/36.8 21.9/34.8 24.3/37.2

K-Medoids-mean 20.5/33.3 21.2/35.8 21.3/34.1 22.8/35.8 22.2/34.0 23.3/35.5 23.0/33.1 23.7/35.5
K-Medoids-min 20.8/36.0 21.0/36.7 22.3/35.6 23.3/37.9 21.2/35.7 23.5/36.0 23.4/35.8 25.2/37.9

DB Index
K-Means 21.3/33.6 21.3/36.7 21.0/34.1 22.4/36.5 22.0/33.4 22.9/36.5 22.3/34.8 24.6/38.3

K-Medoids-mean 21.3/33.8 22.3/36.7 22.6/33.6 24.3/35.1 22.5/32.9 23.3/36.1 24.1/34.0 24.9/36.2
K-Medoids-min 21.1/34.2 21.4/35.7 21.9/34.4 22.1/36.2 21.3/33.3 23.6/36.2 23.1/33.9 25.4/39.1

Table 6: The 50% and 80% MAPE results of forecasting daily electricity demand using the Tainan dataset
with different features and cluster parameter settings

FXF FXT TXF TXT

PBM Index
K-Means 15.9/21.1 16.9/21.2 17.8/21.9 18.1/24.9

K-Medoids-mean 15.6/20.9 16.0/21.2 16.9/21.3 18.4/24.3
K-Medoids-min 15.7/22.2 16.9/22.7 17.7/21.5 18.7/24.2

DB Index
K-Means 18.2/24.9 19.8/30.1 19.3/27.6 19.5/29.9

K-Medoids-mean 18.6/23.6 21.0/31.8 19.3/26.5 20.1/31.7
K-Medoids-min 18.2/25.2 21.4/31.6 18.0/25.0 20.9/29.7

the floor number feature is considered (i.e., FTF ). This is
because there are many vacancies on the HIGH floors of
properties in the Hsinchu dataset, so the floor number fea-
ture has a strong influence on the forecasts of electricity
demand. Moreover, we observe that the 80% MAPE values
are greater than 46.5% when the temperature feature is con-
sidered (i.e., TFF, TFT, TTF, and TTT ). One of the rea-
sons is that the correlation of the electricity demand and the
temperature is between weak and moderate in the Hsinchu
dataset, and the misuse of the temperature feature degrades
the prediction accuracy significantly.

With regard to the Tainan dataset, the best forecast per-
formance is achieved when the K-Means algorithm and the
PBM index are used, but none of the three features are con-
sidered. The reasons are as follows.

1. Tainan has a tropical climate, which means the tem-
peratures are relatively high throughout the year. Thus,
the temperature feature has less impact on forecasts of
electricity demand.

2. Unlike the other two datasets, the Tainan dataset shows
the electricity demand for each floor of a three-floor
house. Therefore, the per-floor electricity demand de-
pends more on the lifestyles of the household’s resi-
dents than the floor number (i.e., LOW, MIDDLE, or
HIGH).

3. The Tainan site is located in a purely residential area,
so holidays have less effect on daily electricity demands.

We also evaluated the forecast accuracy by considering the
total household electricity demand in the Tainan dataset

(i.e., the electricity demand of the three floors in a build-
ing). The evaluation results are shown in Table 6, where
‘X ’ means “don’t-care” of the corresponding feature. The
best forecast performance occurs when the parameter set-
tings are the same as those in the per-floor case; however,
the 50%/80% MAPE values improve significantly in the per-
household results (15.6/20.9 compared to 20.1/32.3 in the
per-floor case). The results confirm that there exists a lifestyle
factor in the per-floor-based dataset. Nevertheless, by ag-
gregating the electricity demand of floors in the same build-
ing, it is possible to derive accurate forecasts of electricity
demand in the Tainan scenario.

7. CONCLUDING REMARKS
We have conducted in-depth data analysis and forecast of

household electricity demand using three realistic datasets
of different household lifestyles. The analysis shows that
household electricity demand is highly correlated to the tem-
perature, the floor number, and the type of day in all the
datasets at different scales. Moreover, using various param-
eter settings for data clustering and the SVR method, we
evaluate the accuracy of forecasts of daily electricity demand
in the three datasets. The results demonstrate that there
exists a life style diversity between the three datasets, and
the best forecast performance of each dataset is derived un-
der different parameter settings. Specifically, the medium
MAPE of the best forecast achieved is 15.6%. Research on
finer-grained forecasts of household electricity demand is on-
going. We hope to report the results in the near future.
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