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ABSTRACT

Commercial building is one of the major energy consumers
worldwide. Among the building services, the heating, ven-
tilating and air-conditioning (HVAC) system dominates the
total energy consumption. Recent studies have proposed
various approaches to audit, automate and optimize ener-
gy usage of the HVAC system. Nevertheless, these schemes
seldom discuss human thermal comfort. To minimize com-
plaints, the current practice of the facility management is
to adopt very conservative temperatures, leading to massive
waste of energy.
In this paper, we actively take thermal comfort into con-

sideration. We propose a participatory approach allowing
the occupants provide feedback regarding their comfort lev-
els. A major challenge for a participatory design is to reduce
intrusiveness of the system. To this end, we develop a tem-
perature comfort correlation model that can build a profile
for each occupant. The decision of setpoint temperature can
be primarily model-driven, requiring minimal inputs of the
occupants. We validated our model with field experiments.
Besides, we developed a setpoint optimization algorithm to
handle the diverging thermal requirements of multiple oc-
cupants in same room, and examined the model with sim-
ulations. We implemented our design and conducted field
experiments in a University and a commercial office. Re-
sults showed that our algorithm can successfully maintain
high thermal comfort, while reducing 18% of energy con-
sumption.

Categories and Subject Descriptors

H.1.2 [Models and Principles]: User/Machine Systems
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1. INTRODUCTION
In recent years, people have been paying more attentions

to energy conservation around the world. The largest sectors
of energy consumption are commercial buildings, residen-
tial houses, transportation, and manufactory industry. In
Hong Kong, where the industry sectors are small, commer-
cial buildings account for more than 65% of energy consump-
tion of the city [1]. In a typical building, the HVAC (heat-
ing, ventilation, and air conditioning) system dominates the
energy expenses. It is reported in the Office Segment of
Hong Kong 2013 that 53% energy have been consumed in
room conditioning [1]. As a result, numbers of recent studies
have proposed the idea of energy conservation by intelligent-
ly managing the HVAC systems [2][3].

Energy conservation is on one end of the spectrum. Clear-
ly, we can simply turn-off all the air-conditioning, thus max-
imizing energy saving1. Nevertheless, the HVAC systems
are designed to provide a comfort indoor environment for
occupants in buildings. However, complaint minimization,
rather than energy conservation, is the top priority of build-
ings and building operators. Therefore, it is important to
take human thermal comfort into consideration.

The current practice of supporting human thermal com-
fort by building operators is to apply a fixed setpoint tem-
perature. These temperatures are derived from large-scaled
field surveys or laboratory experiments. Such recommenda-
tion provides building operators with a benchmark in tem-
perature settings and assists them to cope with complaints.
To minimize the number of complaints, these recommended
temperatures are usually very conservative (i.e., the setting
is on the low temperature side) and uniformly apply to the
entire building unless special requests are made. However,
this traditional practice has led to massive waste of ener-
gy. In addition, a lower temperature does not necessarily
reflect better human thermal comfort. What is more, it is
difficult for occupants to adjust the temperature on their
own in many high-end buildings with the installation of the
centralized HVAC system.

As opposed to such fixed setpoint strategy, there are pro-
posals on dynamical control of the HVAC systems. One
direction is to detect human presence. If a room is not oc-
cupied, the air-conditioning of the room will be turned-off.

1To ease our presentation, in this paper, we use air-
conditioning to represent the HVAC systems. In the context
of air-conditioning, setting a lower temperature means more
energy has to be consumed.
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Various detection objectives and solutions have been pro-
posed in previous studies [4][5].
In this paper, we explore another direction on dynamic

control of the HVAC systems. Rather than passively detect-
ing human presence or comfort levels, we take a participa-
tory approach in which occupants can provide inputs. More
specifically, occupants can actively provide feedback on the
comfort level with the use of their smartphones. The idea is
simple, yet for a participatory design to succeed, we face sev-
eral challenges: 1) the incentives of occupants are important.
The design should be as non-intrusive as possible. Request-
ing occupants to provide feedback via their phones every
time they stay in a room will possibly discourage participa-
tion of people. Besides, it is of great importance to protect
one’s privacy; 2) occupants are insensitive to the numerical
expression of temperature [6]. For instance, one may not be
able to differentiate the actual differences between 22.5◦C
and 24.5◦C. However, current building management system
(BMS) requires numerical values for calculation and com-
parison. Therefore, it is necessary to have a context-aware
translation; 3) it is possible to have multiple occupants in
a room, thus an optimized aggregation of different comfort
levels is needed; 4) it is necessary to develop a system con-
sisting of data collection, smartphone application, interac-
tion with building controls for air-conditioning adjustment,
etc. Many of these challenges are similar to those of typical
participatory sensing systems [7][8], but are specific in the
building environment.
To handle these challenges, we first made use of the com-

fort index in linking the human thermal comfort with numer-
ical values. We then developed a temperature-comfort corre-
lation model to create a profile for each individual occupan-
t. In that sense, the air-conditioning adjustment decisions
are primarily model-driven, substantially reducing human
feedback. Our model has referred to the thermal comfort
model from the inter-discipline of built environment, where
they require to collect different kinds of data with the use
of special equipment. We made careful simplification on the
models that the required parameters are available in a typi-
cal BMS of buildings. We developed a setpoint optimization
algorithm to cater the comfort requirements for multiple oc-
cupants, and conducted a series of real-world experiments
to validate our temperature-comfort correlation model. It is
showed that our model has a high accuracy in predicting the
occupants’ thermal preference. A comprehensive set of sim-
ulations have been utilized to study thermal comfort levels
and energy conservation. We implemented our design with a
smartphone application, a wireless sensing system to collect
necessary environmental data and a system that interacts
with the BMS. We have also conducted experiments in our
university and a commercial office and achieved a 18% of
energy saving. The result indicates the effectiveness of our
participatory approach.

2. BACKGROUND AND RELATED WORK
Recently, there are many studies from computer science

researchers on smart buildings. The studies start from en-
ergy auditing systems using wireless sensor networks [9][10],
provding fine-grained data regarding energy usage. In addi-
tion, there are studies on smart wireless systems for better
automation and control of building equipment [11]. Nu-
merous studies have also been proposed on human detec-
tion [12][5][13] of which lighting and air-conditioning can

be turned-off in a smarter way. There are also studies on
more intelligent arrangement of human activities such as
meetings and classes with the objective in minimizing ener-
gy or electricity bills [14][4]. However, these studies have not
considered human thermal comfort, which is the gap of the
existing studies we seek to fill in this paper. One possible
difficulty is that human thermal comfort is not immediately
quantitative to computer scientists.

As a matter of fact, there are tons of studies on human
thermal comfort in built environment. These studies can
be summarized into two approaches [15]: the heat-balanced
approach and the adaptive approach. The heat-balanced
approach, first studied by Fanger in 1970 [16], observes the
linkage between thermal comfort and physiological factors
such as skin temperature and sweat rate. It establishes a
thermal comfort model with factors such as air temperature,
clothing insulation, metabolic rate, etc. To average the com-
fort level of all people, a predicted mean vote (PMV) model
is proposed. The adaptive approach considers such factors as
adaptations, e.g., behavioural and psychological adaptation-
s [15], social and cultural background towards the thermal
expectations, and also physical stimuli in response to the
changing indoor and outdoor temperatures [17]. The objec-
tive of these studies is to derive a comfort temperature to the
occupant, either in his activity and physiological perspec-
tive, or from his behavior, cultural background and physical
environment perspective. With the objectives to improve
the predictability of the models, the state-of-the-art models
require many associated parameters that are complicated to
obtain [18]. Besides, these experiments have heavily relied
on advanced equipment for measurement. The heat-balance
approach conducts experiments in laboratory with climate
chamber to simulate different combination of environmen-
tal conditions, whereas adaptive approach conducts massive
field studies in different regions and countries. Noted that
these studies are not easy to be implemented in daily life
and hence discrete from the actual operation of BMS.

As a result, there is a clear separation where the advances
of smarter and more fine-grained building automation and
control system seldom take human thermal comfort into con-
sideration, and the studies of such modeling development are
isolated from the control-loop of the room air-conditioning.
In this paper, we jointly consider the two issues. From a high
level point of view, our design considers the thermal feedback
of occupants during the decision of setpoint temperature is
made to the room. There are a few similar work, e.g., Ther-
movote [6] and SPOT+ [19]. However, there are two com-
mon problems in their studies. Firstly, they usually rely on
an existing thermal comfort model from built environment
(e.g., PMV). As discussed, some parameters of these models
are not easy to be obtained in daily life. Therefore, they rely
on prior-obtained fixed settings of these parameters, leading
to error-prone results. Secondly, these studies usually re-
quire occupants to keep providing their feedback every time
he stays in each room (when the occupant is not comfort).
While it may improve the accuracy at that moment, it may
also adversely discouraged the incentives of the participants
in long run, which is a common problem encountered in par-
ticipatory sensing systems [20][6]. Of course, the objectives
of these studies differ from ours. In this paper, we propose
a participatory approach addressing these two problems.
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3. OCCUPANT-PARTICIPATORY THERMAL

COMFORT (OPTC): AN OVERVIEW
In this paper, we developed a smartphone application for

occupants to provide their feedback (or in other words, to
vote) regarding their thermal sensations to the indoor envi-
ronment of buildings. The smartphone application is able
to directly communicate with the BMS and thus the room
setpoint temperature is adjusted accordingly. Each vote of
the occupants will be recorded along with the current envi-
ronmental data, e.g. indoor room temperature and outdoor
temperature, to formulate that occupant’s thermal comfort
model. The temperature adjustment of the room can thus
be model-driven most of the time with minimizing the in-
trusiveness to the occupant, therefore, the occupant is not
expected to keep submitting their votes all the time.
In our system, we have a OPTC server to store the data

collected from each occupant, including his thermal comfort
profile. We first clarify the possible privacy concerns in this
regard. In our design, each occupant is required to register
an account with his email address and agrees a set of rules,
e.g., allow us to collect his thermal comfort information.
If one does not register, his thermal preference will not be
taken into the consideration of our temperature adjustment.
Based on our experiments, we found that all occupants have
registered. Our post-experiment survey revealed that peo-
ple in our experiments were not so much concerned about
their thermal preferences being recorded. Instead, they were
more concerned that they would be left out in our setpoint
adjustment in a room of multiple people.
We have developed an Occupant-Participatory Thermal

Comfort (OPTC) framework as shown in Fig. 1. There
are four main modules: (1) Temperature-comfort correla-
tion (TCC) model: the objective of TCC model is to estab-
lish a correlation (or profile) between the indoor and out-
door temperature with the comfort index of each individ-
ual occupant; (2) Setpoint optimization module: based on
the TCC model, setpoint optimization computes the optimal
setpoint temperature for occupant(s), especially for multi-
ple occupants; (3) Event monitor module: the event monitor
module collects data from the existing environment (e.g., in-
door, outdoor temperature) and occupants information for
two purposes: to trigger decision making in setpoint opti-
mization, and to gradually train the TCC model; (4) Build-
ing controller module: After setpoint optimization module
makes an adjustment decision, the building controller mod-
ule communicates with the BMS to change the setpoint of
the room.
Our TCC model is developed interdisciplinary with the

field of built environment. However, the thermal comfort
models in built environment are complicate and difficult to

be implemented in real environment. Besides, the tradition-
al thermal comfort models require tremendous field tests
or laboratory experiments, which special equipment like cli-
mate chamber to simulate different climatic conditions are
used. On the contrary, our model is designed to rely on daily
collectable data only, e.g., indoor and outdoor temperature,
and additionally occupants feedback regarding the thermal
preference, though with the expectation that more feedback
will be collected in the times of feeling discomfort. The feed-
back of each user is saved into his own profile for modeling,
hence the setpoint temperature adjustment can be model-
driven most of the time. Details are shown in Section 4.

The setpoint optimization module determines the setpoint
adjustment. For example, when some specified events hap-
pen (e.g., indoor/outdoor temperature change and occu-
pants’ comfort index are collected, etc.), the setpoint op-
timization module is then triggered. It translates the inputs
from event monitor module and the TCC model into a de-
cision for room setpoint adjustment. More importantly, we
have developed an algorithm to compute the optimized set-
point temperature when there are multiple occupants shar-
ing the same space/room. The details are demonstrated in
Section 5.

Event monitor module collects all the required data and
responses accordingly. To collect the thermal preference of
one, we have developed a smartphone application based on
the comfort index as shown in Table 1. We have translated
the fuzzy preference into computable numerical values. We
elaborate the details in Section 7.

In building controller module, decisions made by the set-
point optimization module are passed to the BMS, which is
discussed in Section 7.

The remaining part of the paper is organized as follows.
The TCC model is discussed in Section 4, and we validated
our TCC model by conducting a series of field experiments
with the occupants. We then present our setpoint optimiza-
tion algorithm in Section 5. In Section 6, we show a com-
prehensive set of simulations using our model. We have also
evaluated a large sets of occupants with different physical
characteristics, and evaluated the energy saving with var-
ious room configurations and sets of simulated occupants.
We then present the implementation of our system in Sec-
tion 7. In Section 8, we conducted two sets of experiments,
one in a university and the other one in a commercial office.
These experiments serve to validate our simulation results.

4. TEMPERATURE-COMFORT CORRELA-

TION (TCC) MODEL
In essence, we need a model indicating the levels of com-

fort of a person, given the indoor and outdoor temperature
at a specified time are known. We can then determine the
setpoint temperature accordingly. As discussed before, there
are many models from the discipline of built environment
[21][22][23][24][16], but the accuracy of these models largely
rely on real-time measurement of the occupants and the sur-
rounding environment, where special equipment are needed.

Our choice is that we build an initial model following the
rudimental laws of metabolism. Clearly, this model is still
based on the discipline of built environment. In this model,
we carefully categorize three different sets of parameters: 1)
parameters that we can collect in one time, e.g., the age,
gender, height, weight, etc of the occupant. This informa-
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Table 1: 7-point thermal comfort index

Point Sensation

+3 Hot
+2 Warm
+1 Slightly Warm
0 Neutral
-1 Slightly Cool
-2 Cool
-3 Cold

tion are one-off and we collect them at the time of regis-
tration, 2) parameters that change, but can be collected by
non-intrusive sensors, e.g., indoor or outdoor temperatures;
3) parameters that are hard to collect using daily sensors;
and we train these parameters collectively by the votes and
other parameters.
In the following parts, we first link the thermal comfort

with quantifiable (numerical) values. We then develop user’s
thermal preference with our model. Finally we validate our
model using real-world experiments.

4.1 Thermal Comfort Metric
To quantify thermal comfort, we adopt a seven-point ther-

mal comfort index from the American Society of Heating,
Refrigerating and Air-conditioning Engineers (ASHRAE).
This index scales from −3 to 3 and links the thermal com-
fort from cold to hot as shown in Table 1.
From the occupants perspective, this index is easily com-

prehensible to reflect his thermal sensation, i.e. he can vote
either hot or cold. From the built environment perspective,
a value of 0 indicates that an occupant reaches thermal neu-

trality, meaning the heat generation and heat loss of the
occupant is in the state of equilibrium. A negative index
means that the occupant losses more heat than his body
produces so that he feels cool or cold. The smaller the in-
dex, the more uncomfortable the occupant feels. When the
index of an occupant is between -1 (Slightly Cool) and 1
(Slightly Warm), the occupant is regarded as comfort. This
index range (−1, 1) is defined as the comfort zone [25].

4.2 Model Development
As explained, we first build an initial model. In this mod-

el, the thermal comfort is a function of indoor temperature
Ti of room i, outdoor temperature To and the elapsed time
t a person stays at the space/room. The thermal sensation
is determined by the balance of heat gain and loss of human
body. Let G(t) be the heat gain and L(Ti, To) be the heat
loss. Thus, the thermal comfort C(Ti, To, t) is:

C(Ti, To, t) = G(t) + L(Ti, To) (1)

In what follows, we will first present the high level ideas,
followed by the details of model G(t) and L(Ti, To).
In general, the amount of heat generated is primarily set-

tled by metabolic rate. It is also affected by the physical
activity (PA) of people [26], e.g., a person has a higher
metabolic rate during walking, whereas lower rate after s-
taying sedentary. When the PA of a person changes, e.g.,
sit down after running, his metabolic rate changes accord-
ingly. Thus, the occupant experiences a change of thermal
sensations in the same environment. Moreover, the speed
of metabolic rate change differs among individuals. In G(t),

Men Women

Sedentary 1.0 1.0

Active 1.25 1.27

Table 2: Physical activity factor

we consider metabolic rate changes as elapsed time t after
occupant enters a room.

The amount of heat lost is determined by indoor tem-
perature and clothes insulation. In operation, information
of clothes insulation is difficult to access. However, from
results of field studies [27], it is showed that the effect of
clothes insulation can be reflected by outdoor temperature.
Intuitively, when the outdoor temperature is higher, occu-
pants are likely wearing less clothes, and hence prone to a
higher rate of heat loss. In this regard, they prefer a warmer
indoor temperature. Thus, we use indoor temperature and
outdoor temperature as determining variables in L(Ti, To).

4.2.1 Heat Generation Modeling

According to [28, 29], heat production is proportional to
physical activity, whereas metabolic rate adjusts according
to physical activity. To estimate metabolic rate of an occu-
pant, we adopt the Estimated Energy Requirement (EER)
model [30], which is first proposed by the Institute of Medicine
(IOM) that used to estimate a person’s daily average of di-
etary energy intake to maintain his energy balance. It con-
siders the factors of gender, age, height, weight as well as
the physical activity of users. EER is shown as follows:

EER = k1 − k2 ×Age+ [PA× (k3 ×W + k4 ×H)] (2)

Here, k1 is a constant related to gender and age. k2 is a
constant related to age. k3 and k4 are constants related to
weight (W) and height (H) respectively. The PA coefficient
is related to the physical activity and varies with genders. As
we are interested in the change of metabolic rate of a person
from outdoor to indoor, we consider the coefficients of two
physical activities: active and sedentary. The coefficients of
active and sedentary for male and female are shown in Table
2. The details of other coefficients can be found in [30].

According to [26][25], metabolic rate changes smoothly
after physical activity changes. To obtain the corresponding
EER at time t, we formulate the EER into:

EER(t) =

{

(EERs−EERe)
tc

(tc − t) + EERe t < tc
EERe t ≥ tc

(3)

Here, EERs and EERe are EER of a person at active
state and sedentary state respectively. tc is the time required
by a person to recover from active to sedentary. Beyond tc,
EER is assumed to remain as the metabolic rate becomes
steady. Fig. 2 shows the EER of a male and a female with
different ages, heights and weights.

Noted that tc is a parameter that is difficult to obtain
from daily sensors. It differs from person to person as well.
Intuitively, even if two people have the same weight, they
still differ from muscle-fat ratio. In built environment, this
is a factor of research and there are ways to estimate tc using
laboratory equipment. As mentioned, we train tc using the
votes from occupants.
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Table 3: Category of BMI

Category BMI Range

Underweight <18.5
Normal 18.5-25

Overweight >25

As described, heat production is proportional to EER.
Thus we have:

G(t) = a1 × EER(t) + b1 (4)

Here, a1 is the activity sensitivity and is associated to tc, and
b1 is stable comfort preference. To make our presentation
concise, we put the derivation of these two parameters into
the Appendix.

4.2.2 Heat Loss Modeling

For heat loss, there are comprehensive recent findings from
field studies [17][23] showing a noticeable relationship be-
tween the outdoor temperature and human thermal com-
fort. The correlation is formulated as Tc(To) = a2 + b2 ×To,
where Tc is the comfort temperature function of outdoor
mean temperature, a2 is a constant related to comfort tem-
perature and b2 is the correlation between outdoor temper-
ature change and comfort temperature change. Intuitively,
this model says that if the outdoor temperature increases,
the occupants prefer higher indoor temperature. In this pa-
per, we applied the model in [31], where a2 is set to 17.8 and
b2 is set to 0.31.
As specified in the standard [25], temperature range for

comfort zone is 7◦C. This means that when indoor temper-
ature increases from Tc(To)− 3.5◦C to Tc(To) + 3.5◦C, the
comfort index thus changes from −1 to 1. Since L(Ti, To)
is a linear function of Ti, k can be computed as k = 7/2.
Thus, R can be calculated as R = 3× k = 10.5◦C, which is
the boundaries for the comfort zone of a person. The heat
loss model is thus:

L(Ti, To) =







3 Ti − Tc(To) ≥ R
k(Ti − Tc(To)) −R < Ti − Tc(To) < R
−3 Ti − Tc(To) ≤ −R

(5)

4.3 Model Validation
We conducted a series of field experiments to validate our

model. One experiment was conducted in a commercial of-
fice for five consecutive days, and 13 occupants were invited
to participate in this experiment. We built the profile of
each occupant using the TCC model and trained for three
consecutive days. For the remaining two days, we compare

tc1

tc2

Figure 2: The EER example of two people

the comfort index from our TCC model with the actual feed-
back of occupants.

Referring to the World Health Organization (WHO) [32],
we classify the occupants into three categories according to
their body mass index (BMI): i) underweight (UW), ii) nor-
mal (NL), and iii) overweight (OW). The formula of BMI
is as follows, and the BMI index of each group is shown in
Table 3.

BMI =
Weight(kg)

(Height(m))2
(6)

In our experiment, 3 of the occupants were UW, 8 were
NL and 2 were OW. Each round of training was carried out
in the time when occupants arrived the office from outside
environment. In each round of training, we assigned a fixed
setpoint temperature, and occupants were asked to submit
their feedback at a 5-minute interval. We adjusted the set-
point (indoor) temperature from 20 ◦C to 25◦C, with 0.5 ◦C
increment in each training.

The key parameters of our model for training are a1, b1
and tc of each occupant. We use linear regression that ob-
tained from the training period and we estimate the comfort
index of each occupant from our TCC model. The compar-
isons between the TCC model and the actual feedback of
occupants are shown in Fig. 4. The accuracy for OW is
78%, NL is 75% and UW is 67%. The maximum error of
the comfort index is only 1. The result indicates that our
TCC model is capable to estimate the comfort index of the
three occupants.

Here we explain our model in details. Noted that the heat
loss is primarily determined by the clothes of an occupant,
and in our model, this is determined by the outdoor temper-
ature (which is translated into approximately the clothing of
an occupant). The heat generation, however, depends on the
metabolic rate of an individual and this differs across differ-
ent occupants (one may recall our three training parameters
a1, b1 and tc are all for heat generation). We look into EER
in more details. Fig. 3a shows one of the trainings, where
one occupant is selected from each BMI group: occupant A
from OW, occupant B from NL and occupant C from UW.
Their change of EER are shown in Fig. 3b. Fig. 3a and
3b indicate that there is a strong correlation between the
change of EER with the comfort index of occupants. More
specifically, occupants A, B and C have diverging comfort
indices at the beginning: A and B are warm and slightly
warm respectively, and C is neutral. Their differences can
be explained by the EERs values, which are 3100, 2350
and 2100. Noted that the thermal sensations of occupants
change with time, e.g., occupant A becomes neutral after
30 minutes, whereas B and C are both slightly cool after 40
and 25 minutes respectively. It is worth noticing that the
thermal sensations of B and C are close to each other as
their EERe are close to each other. The result verifies the
connection between EER and comfort index of a person.

5. THE SETPOINT OPTIMIZATION ALGO-

RITHM
The objective of the setpoint optimization algorithm (SOA)

is to find out the optimal setpoint temperature to a group
of occupants in a specific room, thus maximizing the overall
thermal comfort of all occupants, where a certain percent-
age of occupants are staying within the comfort zone. Our
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Figure 3: Connection between EER and Comfort index
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(a) OW group
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(b) NL group
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Figure 4: TCC model validation under different BMI groups

algorithm is shown in Algorithm 1. There are three input
parameters: O, r, To. O is the set of occupants in a room; r
is the threshold percentage of occupants within the comfort
zone (e.g., 80%); and To is the outdoor temperature. For
every occupant j ∈ O, there is a corresponding TCC model
Cj and a elapsed time tj after occupant j enters the room.
Our algorithm first identifies the comfort temperature of

each occupant. Then we compute the optimized setpoint
temperature iteratively for all occupants. In each iteration,
we determine a candidate of setpoint temperature and check
whether this temperature satisfies the thermal comfort re-
quirement of all occupants. If it fails, we adjust the set
of occupants and proceed next iteration. In other words,
we first calculate a candidate of setpoint temperature T ∗

by minimizing the sum of comfort index of all occupants.
Then we count the numbers of occupants who feel comfort-
able, denoted as N . If the target requirement (more than
r|O| occupants are satisfied) is met, the optimized setpoint
T ∗ is found. Otherwise, we eliminate an occupant whose
preferred temperature is the farthest from the candidate set-
point temperature since we try to satisfy as many occupants
as possible.

6. SIMULATION

6.1 Simulation Setup
We evaluated our system in two different scales. Firstly,

we simulated a classroom with different occupants’ profiles.
Secondly, we adopted the academic calendar from The Hong
Kong Polytechnic University (denoted PolyU thereafter) to
evaluate our system in a large scale. We compare our system
with fixed setpoint strategy.
In our simulation, we created the occupant profiles based

on the results from our experiment in model validation. We
picked one occupant from each BMI category. The profile
of an occupant is denoted as [a1, b1, tc]. Thus, profiles from
occupant in OW category, NL category and UW category

Algorithm 1 The Setpoint Optimization Algorithm

Input: O, r, To

Output: T ∗

1: T ∗ ← ∅;
2: for ∀j ∈ O do

3: T ∗
j = argminT |Cj(To, T, tj)|;

4: end for

5: while 1 do

6: T ∗ = argminT
∑

j∈O

|Cj(To, T, tj)|;

7: N = 0;
8: for ∀j ∈ O do

9: if |Cj(To, T ∗, tj)| ≤ 1 then

10: N = N + 1;
11: end if

12: end for

13: if N ≥ r|O| then
14: break;
15: else

16: O← O \ {argmaxj∈O |T
∗ − T ∗

j |};

17: end if

18: end while

are [0.0027, -4.99, 30], [0.0041, -7.08, 40] and [0.002, -2.5325,
25] respectively.

For the simulation in a classroom, we created two groups
of occupants, named as group A and group B. Each group
had 100 occupants. The ratio of OW:NL:UW in group A was
1:7:2, whereas group B was 1:1:3. The outdoor temperature
was set to 30oC. The class in each group lasted for an hour.
The temperature under the fixed setpoint was 22◦C.

For the PolyU data, there were over 950 classes in every
weekday. We evaluated our system with one whole year,and
the classes were repeated every week. We adopted the out-
door temperature data of Hong Kong in 2013 from The Hong
Kong Observatory [33] as the system input. From our field
measurement, PolyU applied a fixed setpoint temperature
of 22◦C in summer period (May to October) and 24◦C in
winter period.
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(b) Energy consumption

Figure 5: Group A simulation results
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(b) Energy consumption

Figure 6: Group B simulation results

To compare the energy consumption, we adopted the energy-
temperature correlation model P = | λ

M
(Ti−To)| in [14]. We

define P as the energy consumed by HVAC system in one-
second, λ as the conductivity of that particular classroom.
Intuitively, the larger the λ, the less the heat preservation
being trapped into the room. M is energy transformation
ratio of HVAC system, which is used to indicate the ener-
gy efficiency to the HVAC system. Again, Ti is the actual
room temperature, and To is the average outdoor tempera-
ture. The model assumes that in a given room, λ

M
is fixed,

and thus more energy is consumed when the room setpoint
temperature is far away from the outdoor temperature. The
values of λ and M for classrooms at PolyU are same as [14],
where M is 0.14 for all classrooms. There are 155 classrooms
in PolyU main campus, and the details are summarized in
Table 4. For the simulation in a classroom, we took the
parameters of the classroom with a capacity of 100 seats.

Table 4: Classroom at PolyU

Seats No. Size (L×W ×H, m) λ (J/s ·K)

20 8 4× 5× 3 70.5
40 42 8× 5× 3 118.5
60 67 6× 10× 3 162
80 10 8× 10× 3 201
100 4 10× 10× 3.3 249
150 17 10× 15× 4 375
200 5 15× 14× 5 533
300 2 15× 20× 6 765

6.2 Simulation Results

6.2.1 Classroom simulation result

Figure 5 shows the result of group A. With the starting
setpoint calculated by OPTC at 21◦C, it progressively in-
creases with time and higher than the fixed setpoint, which
is 22 ◦C after 15 minutes. We can see that OPTC achieves
group thermal comfort requirement(≥ 80%) all the time,
while fixed setpoint fails to meet the requirement in the first
few minutes.
The energy consumption is shown in Fig. 6b. Since fixed

setpoint does not changes its setpoint, its energy consump-
tion is steady. For OPTC, when the setpoint is changed,
the energy consumption drops dramatically. For the last 40
minutes, OPTC consumes only 35% of the energy of fixed
setpoint. As a whole, there is a reduction of 16.5% energy
consumption under OPTC.
The result of group B is shown in Fig. 6. Compared

to that of group A, the group thermal comfort under fixed
setpoint is far from satisfaction when the class begins. Only
20% of the students are within the comfort zone. In contrast,
OPTC brings all the students stay within the comfort zone

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

10
20
30
40
50
60
70
80
90

100

Month

T
o
ta

l 
E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

(M
W

h
)

 

 

5

10

15

20

25

30

35

O
u
td

o
o
r 

T
e
m

p
e
ra

tu
re

 (°
C

)TCC
Fixed Setpoint
Average Temperature

Figure 7: Energy consumption in one year

for more than 60% of the time, and it maintains 90% of group
comfort for the students in class. From the results, beside
the large differences of energy consumption between OPTC
and fixed setpoint, it is obvious that group B saves even more
energy. It can be explained by the ratio of UW is more than
the OW in group B, which the setpoint temperatures from
OPTC are generally higher than group A.

6.2.2 Simulation of annual energy consumption

The results of monthly energy consumption are shown in
Fig. 7. The maximum and minimum averaged monthly
temperature are 14◦C and 31.1◦C respectively. OPTC out-
performs the fixed setpoint in 10 months with an exception
in May and October. During summer period, the difference
between OPTC and fixed setpoint are approximately 5%.
However, such differences enlarged rapidly when the out-
door temperature drops, especially at its bottom in January
and December, the fixed setpoint consumes more than twice
of the energy than OPTC. When compared with the fixed
setpoint, OPTC saves 23.1% annual energy consumption.

7. IMPLEMENTATION DETAILS
We implemented a prototype of OPTC in buildings. The

system workflow is shown in Fig. 8. The system is deployed
in an OPTC server. The event monitor module in OPTC
server collects data from the environment and occupants.
After the optimal setpoint temperature is calculated, the
building control module requests BMS to adjust the room
temperature. To collect data from occupants, we developed
a mobile application. The occupants provide their thermal
feedback and base rooms to the OPTC server via the mobile
application. Besides collecting data from the occupants, the
OPTC server communicates with the BMS for two objec-
tives: 1) to collect the indoor temperature and the outdoor
temperature; 2) to control the indoor temperature of a room.
We discuss each part in details as follows.

7.1 A Mobile Application for Occupants
The mobile application collects the following information:
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Figure 8: The system workflow of OPTC

(a) Location selection (b) Voting screen

Figure 9: The mobile application for occupants

1) Occupant identity information; as explained before, our
system requests occupant registration. This registration is
one-off and collects data such as weight, age, gender, etc of
the occupants. Recalled from Section 4, this information are
needed for our TCC model.
2) The occupants are required to register their base room-

s as shown in Fig. 9a; This registration is also one-off. If
the occupant has only one base room, all the computation
and adjustment will be based on this room. Noted that in
this situation, the setpoint temperature still requires adjust-
ments from time to time, and primarily non-intrusive. If the
room hosts multiple occupants, the setpoint optimization
algorithm needs to be applied. If an occupant has multiple
base rooms, we need to obtain his location from time to time.
To minimize the inputs from the occupant, the location can
be obtained either from his meeting schedule, or a location
detection algorithm can be applied. In a commercial office
setting, an occupant usually has few numbers of base rooms.
This makes the challenge for the location detection algorith-
m reasonable. The detailed location detection algorithm is
out of the scope of our paper. In Section 8, our experiment
is solely confined to the single room case.
3) Occupants thermal sensation (i.e., their votes); when

our model-driven adjustment is not able to satisfy occupan-
t’s comfort, the occupant can provide feedback using the
mobile application as shown in Fig. 9b, which follows the 7-
point thermal comfort index design as explained in Section
4.3.

7.2 Data Collection and Temperature Control
in Building

In a typical HVAC system, there are thousands of sen-
sors to monitor the equipment status and condition feed-
back from the serving areas [11]. The temperature sensors
are normally mounted on walls or at the ceiling of room.
There are also sensors installed outside the buildings to col-

lect outdoor sensors data. Both of these data are sent to
BMS through a network. Our OPTC requires the indoor
and outdoor temperature. Since these data are available in
the existing BMS, we retrieve such data directly from the
BMS [18].

Besides the data collection at BMS, we also need to con-
trol the setpoint temperature of rooms. This function is
realized through the Building Automation and Control Net-
works (BACnet) protocol [34] in our OPTC framework [35].
Given that BACnet is the most dominant communication
protocol in BMS today, we believe our system can be widely
adopted into different buildings.

8. EXPERIMENT

8.1 Experiment Setup
We conducted experiments in our university and a A-class

commercial office. In our university, the air-conditioning of
lecture theaters were controlled by the BMS, and the lecture
theatre in our experiment had a capacity of 130 people at
the building of Y-core.

For the commercial office in our experiment, the provision
of air-conditioning was 24/7, the floor plan and the size of
rooms are shown in Fig. 13. There were 5 individual rooms
(room A to E) and 3 meeting rooms (room 1 to 3).

We set up our OPTC server on campus and connected
both the BMSes of campus and office using virtual private
network (VPN) since the campus network was located at
Intranet. To collect the votes of students, we designed the
mobile application as discussed in Sec. 7.1.

We evaluate our scheme through three performance met-
rics: 1) the improvement of thermal comfort of occupants;
2) the missing rate in satisfying group thermal comfort. We
adopt a threshold of 80% following the ASHRAE standard;
and 3) energy conservation.

8.2 Experiment results in our university
We conducted our experiment during a three-hour lecture

in our university. 87 students were participated in the exper-
iment, and the outdoor temperature was 31.4◦C. From our
pre-measurement, the university has a fixed setpoint temper-
ature of 21.5◦C. We divided the lecture into two one-hour
sessions, where we experimented the fixed setpoint approach
in the first session, and TCC approach in the second session.

Before the class, students were guided to install our smart-
phone application. They were instructed to provide feedback
regarding their thermal sensations (as shown in Table 1) at
an interval of 10 minutes. To develop the TCC model of each
student, we also collected student’s age, height and weight
respectively.

Results of different group comfort under the fixed setpoint
and our TCC modeled setpoint are shown in Fig. 10. The
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Figure 10: Setpoint temperature and group comfort
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Figure 11: Students from different BMI groups
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(b) Room E

Figure 12: Temperature of two office rooms

x-axis is the elapsed time starting from the students arriving
at the lecture theater. The y-axis of the upper part of the
figure is the corresponding setpoint given by the fixed set-
point approach and our TCC approach; and the y-axis of the
lower part of the figure is the overall feedback of students.
We compare the two setpoint approaches. In the experi-

ment on fixed setpoint approach, more than 85% of the stu-
dents were not at a comfort condition when they were just
arrived the lecture theatre. In other words, their comfort in-
dices were outside the comfort zone. 25 students even voted
3, and only 5 students voted thermal neutrality. At the time
of 40 minutes, fixed setpoint has achieved its highest group
comfort, which is still only about 40% of the students.
We then applied our model by first creating their profile

using the TCC model with the given data. We categorized
the students into three groups according to their BMIs. We
selected one student from each group and showed their com-
fort indices and EER in Fig. 11a and 11b respectively. It
was not surprised that students in OW group had a higher
EERs, followed by the student in NL group, who had a rel-
atively mild change of EER with time. The student in the
UW group had both the highest and least EERs and EERe

respectively among the other groups.
To compare the improvement brought by our TCC model,

we started to adjust the setpoint temperature of the lecture
theater via our OPTC server after the 10-minute break at
our second-hour experiment session. Students were again
told to vote at every 10 minutes. Again, in Fig. 10, when
the elapsed time was between 0 and 10 minutes, the TCC
setpoint (22◦C) was slightly higher than the fixed setpoint,
and the difference enlarged between 10 to 30 minutes. The
result showed that there was a great improvement to their
conditions of thermal comfort as compared with the default
fixed setpoint at 21.5◦C. Only 9 students (10.3%) were not
at the comfort zone in the first 20 minutes, and later reduced
to 5 students (5.7%) after 30 minutes. Our TCC approach
was able to achieve 80% group comfort throughout the whole
period. As compared with the group comfort before the TC-
C model was applied, there was an average of 63% thermal
comfort improvement to the students in our experiment.

8.3 Experiment results in a commercial office
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Figure 13: Floor plan of office

In this part, we discuss the experiment conducted in a
commercial office. To study the existing indoor temperature
and occupants comfort, we initially deployed three temper-
ature sensors at different rooms for three weeks aiming to
study the trend of temperature change under different out-
door temperatures. We then carried out two five-day ses-
sions, one for the fixed setpoint approach and one for our
TCC approach.

Before going into the analysis, we first present several
interesting observations. Firstly, rooms with more people
(e.g., room B with 13 people), experienced more significan-
t temperature changes than rooms with less people (e.g.,
room E with 2 people). Fig.12a and 12b illustrate this phe-
nomenon in room B and E respectively from one sample day
during working hours.

Secondly, we observed that the temperature differences
in a room can be as much as 2.5◦C; such differences may
contribute to occupant discomfort. We traced the reasons
and found that areas with printer and computers were the
main culprits for a warmer temperature; and during noon
time, the areas near windows were affected by the sunlight
and thus created a small warm zone.

These findings show that the placement of temperature
sensors have a direct effect to the control accuracy of BM-
S and thus the room temperature. The number of sensors
and location should be carefully considered; otherwise, oc-
cupants will be modeled with bias.

Surprisingly, we also observed that it took approximately
4.5 minutes in average for a room to reach a setpoint temper-
ature. From our discussion with building services engineers,
it takes time for the setpoint adjustment since the chilled wa-
ter and the air flow from the air-conditioning terminal units
(e.g., fan coil unit and variable air volume box) need time to
work together to attain the desired setpoint. This time-lag
varies with building designs and air-conditioning systems.
As such, in our experiment, the setpoint temperature was
determined by the TCC model at every 5-minute.

Room B was chosen in our experiment as it has the high-
est and most steady occupancy. Two smart sensors TelosB
were additionally deployed in room to provide a finer tem-
perature measurement. The default setpoint temperature
was fixed at 22◦C (summer period) by the facility manage-
ment of the building. We carried out two 5-day (Monday
to Friday) measurements. We studied the fixed setpoint ap-
proach in the first measurement. Occupants were invited to
provide feedback using our smartphone application anytime
when they felt there was an obvious change to the thermal
sensation.

We finally collected a total of 403 votes, which were fairly
distributed from the 13 occupants. The results are shown in
Fig. 14a. The central red line is the median, and the height
of the box is the inter-quartile range of the votes, where the
top and bottom of the boxes are the 75th and 25th percentile
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Figure 14: Feedback from office experiment
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Figure 15: Setpoint and group comfort in office

of the votes. Extreme data that are considered outliers is
shown using the “whiskers”, i.e., with a “plus” sign.
There were dissatisfactions from the occupants to their ex-

isting fixed setpoint temperature. Around 45% of the votes
were outside the comfort zone, and 7 votes (7.4%) were even
at the extreme comfort index (-3 or 3).
We then deployed our OPTC for comparison. With the

previous feedback and information of occupants (i.e., age,
weight and height), we built the TCC model for each occu-
pant. We conducted another 5-day experiment, and collect-
ed 334 votes.
The results are shown in Fig.14b. There was a major

improvement of the occupant thermal comfort. 89% of the
votes were within the comfort zone and no votes was in the
extreme range (-3 or 3). There were 115 votes with thermal
neutrality and they were fairly distributed from the 13 oc-
cupants. 12 occupants had a median of comfort neutrality,
compared with 1 in our first week experiment. The overall
improvement was 33.8%.
We further display one of the experiment days in the time-

line format as shown in Fig. 15. There are two parts in the
figure. The upper part shows the setpoint adjustment under
fixed setpoint approach and our TCC approach. The low-
er part shows the group thermal comfort from the votes of
occupants. The average outdoor temperature was 30.52◦C
during the day of experiment, with a diurnal difference of
3.17◦C. Obviously, our TCC model has maintained a higher
level of thermal comfort to the occupants than the fixed set-
point as shown in the group comfort percentage. Noted that
the fixed setpoint failed to meet the target of group comfort
during that experiment (i.e., 80%), whereas our TCC model
was able to achieve 70% of the time meeting the require-
ment.
Beside the improvement of thermal comfort, there is also

better energy performance. With the baseline of setpoint
temperature at 22◦C, there was an average of 1.75◦C set-
point increment during the experiment period. Studies in-
dicate that one-degree setpoint difference yields around 10%
difference on energy use [36]. More specifically, we consid-
er the energy input for the air-conditioning terminal units
(kWh),

n
∑

i=1

{(

ṁic∆Ti

ηi · COP
+ Pfi

)

hri

}

, (7)

where ṁ is the air mass flow rate (kg/s), c is the specific
heat capacity of air (kJ/kgK), ∆T is the difference between
supply and return air temperature (K), η is the heat transfer
efficiency of the air-conditioning unit using chilled water, Pf

is the operating fan motor power, COP is the coefficient of

performance of the central chiller plant and hr is the cooling
duration (hours).

We calculate the energy input by using the operating logs
of BMS every 5-minute interval (i.e., hr = 1/12). By assum-
ing that the operating conditions were the same during the
experiment, we can derive that our OPTC scheme was able
to save 18% of energy consumption of the air-conditioning
terminal units.

9. CONCLUSION
In this paper, we present an occupant-participatory ther-

mal comfort framework. This framework incorporates oc-
cupants feedback into the loop of air-conditioning adjust-
ment decisions. In the core of this framework, we developed
a temperature-comfort correlation (TCC) model, capturing
users favorite temperatures non-intrusively from their daily
environment. Our model adopts the spirits of traditional P-
MV index and the adaptive approach developed from built
environment. Nevertheless, to make sure that the model
can fit in daily usage, we make certain modifications where
the model input data can be easily collected so that the
occupant has incentives to participate. We also developed
an algorithm which resolves diverging comfort requirements
of multiple people. We have a full set of field validations,
comprehensive simulations and real world experiments. The
results showed that we can maintain thermal comfort while
reducing energy consumption for 18%.
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Appendix
We discuss the approach to compute a1 and b1 in Section 4.2.1.
We use linear regression to process data in period t ∈ [0, tc].
Combined with Eq. 4, Eq. 1 can be written as:

C(Ti, To, t) = a1 × EER(t) + b1 + L(Ti, To)

With Eq. 3, we have:

C(Ti, To, t) = â× t+ b̂+ L(Ti, To) t ∈ [0, tc] (8)

where â = −a1(EERs − EERe)/tc and b̂ = a1 × EERs + b1.
From Eq. 5, L(Ti, To) is computed given the values of Ti

and To. Thus C(Ti, To, t) − L(Ti, To) is linear to t because the

unknown parameters (â, b̂) in Eq. 8 are constants. When an
occupant votes, we record Ti, To, t and the voted thermal com-
fort index v. Ideally, the predicted index from our model equals
to the voted index from occupant, which means that we expect
C(Ti, To, t) = v. We can then use the linear regression technique

with collected data 〈Ti, To, t, v〉 to obtain â and b̂. Finally, a1 and

b1 can be computed from â and b̂ since EERs, EERe and tc are
known.

143




