In-memory processing of big data via succinct data structures

Rajeev Raman

University of Leicester

SDP Workshop, University of Cambridge
Overview

Introduction

Succinct Data Structuring

Succinct Tries

Applications & Libraries

End
Big Data vs. big data

- **Big Data**: 10s of TB+.
 - Must be processed in streaming / parallel manner.
- Data mining is often done on big data: 10s-100s of GBs.
 - Graphs with 100s of millions of nodes, protein databases 100s of millions of compounds, 100s of genomes etc.
- Often, we use Big Data techniques to mine big data.
 - Parallelization is *hard* to do well [Canny, Zhao, *KDD’13*].
 - Streaming is inherently limiting.
- Instead of changing the way we *process* the data, why not change the way we *represent* the data?
Processing big data

- Essential that data fits in main memory.
 - Complex memory access patterns: out-of-core \Rightarrow thrashing.
- Data accessed in a complex way is usually represented in a data structure that supports these access patterns.
 - Often data structure is MUCH LARGER than data!
 - Cannot process big data if this is the case.
- Examples:
 - Suffix Tree (text pattern search).
 - Range Tree (geometric search).
 - FP-Tree (frequent pattern matching).
 - Multi-bit Tree (similarity search).
 - DOM Tree (XML processing).
Succinct/Compressed Data Structures

Store data *in memory* in *succinct* or *compressed* format and operate directly on it.

- (Usually) no need to decompress before operating.
- Better use of memory levels close to processor, processor-memory bandwidth.
 - Usually compensates for some overhead in CPU operations.

- **Programs = Algorithms + Data Structures**
 - If compressed data structure implements same/similar ADT to uncompressed data structure, can reuse existing code.
Compresssion vs. Data Structuring

Answering queries requires an index in addition to the data.

Space usage = “space for data” + “space for index”.

Index may be larger than the data:

- **Suffix tree**: data structure for indexing a text of n bytes.
 - Supports many indexing and search operations.
 - Careful implementation: $20n$ bytes of index data in worst case [Kurtz, *SPrEx '99*]

- **Range Trees**: data structures for answering 2-D orthogonal range queries on n points.
 - Good worst-case performance but $\Theta(n \log n)$ space.
“Space for Data”

Information-Theoretic Lower Bound
If the object x that you want to represent is drawn from a set S, x must take at least $\log_2 |S|$ bits to represent.

- Example: object x is a binary tree with n nodes.
 - x is from the set S of all binary trees on n nodes.
 - There are $\sim 4^n$ different binary trees on n nodes.
 - Need $\sim \log_2 4^n = 2n$ bits, or 2 bits per node.
 - A normal representation: 2 pointers, or $2 \log_2 n$ bits, per node.

Succinct Data Structuring

Space usage for $x = \underbrace{\text{“space for data”}}_{\text{ITLB for } x} + \underbrace{\text{“space for index”}}_{\text{lower-order term}}$, and support fast operations on x.

- Not really compression: ITLB applies even to random x.
- Probably over 1000 papers on SDS in algorithms venues.
The “trie” ADT

- Object is a rooted tree with n nodes.
- Each node from a parent to a child is labelled with a distinct letter c from an alphabet Σ, where $\Sigma = \{0, \ldots, \sigma - 1\}$.
- All possible children may not be present.
- Represents a collection of strings over Σ.

Operations

- $parent(x)$;
- $child(x, c)$;
- $desc(x)$, $nextsib(x)$, $prevsib(x)$, . . .

$\Sigma = \{0, 1, 2, 3\}, n = 50$
Normal Trie Representations

- **Ternary search tree** ([Bentley/Sedgewick, SODA'97]). Siblings arranged in a binary tree.
 - Space: 4 pointers (256 bits) per node.
 - \(\text{child} = O(\lg \sigma) \) time.

\[
\Delta = \begin{cases}
1 & \text{One character per node.} \\
\log_2 \left(\frac{1}{\sigma} + \frac{\sigma + 1}{n} \right) & \text{other case.}
\end{cases}
\]

\(\Delta \sim n \log_2 \sigma + O(n) \) bits.
Normal Trie Representations

- Each node points to parent, first-child and next-sibling.
 - Space: 3 pointers (192 bits) per node.
 - child: $O(\sigma)$ time.
Normal Trie Representations

- Each node has array of σ pointers, one to each possible child.
 - Space: $\sigma + 1$ pointers per internal node.
 - $child$: $O(1)$ time.
Normal Trie Representations

- **Ternary search tree** [Bentley/Sedgewick, *SODA’97*]. Siblings arranged in a binary tree.
 - Space: 4 pointers (256 bits) per node.
 - `child`: $O(\lg \sigma)$ time.
Normal Trie Representations

- **Ternary search tree** [Bentley/Sedgewick, *SODA’97*]. Siblings arranged in a binary tree.
 - Space: 4 pointers (256 bits) per node.
 - child: $O(\log \sigma)$ time.

- **ITLB** = \[\log_2 \left(\frac{1}{\sigma n+1} \left(\frac{\sigma n+1}{n} \right) \right) \] \approx n \log_2 \sigma + O(n) \text{ bits.}

 One character per node.
• Output a 1. Then visit each node in level-order and output \(\sigma \) bits that indicate which labels are present. [Jacobson, FOCS’89]

• Bit-string is of length \(\sigma n + 1 \) bits. It has \(n \) 1s.

• Its ITLB is \(\left\lfloor \log_2 \left(\frac{\sigma^{n+1}}{n}\right) \right\rfloor \sim n \log_2 \sigma + O(n) \) bits.

• Representation is static, but a lot of operations in \(O(1) \) time.
Dynamic Tries

• ADT:
 • `parent(x);`
 • `child(x, c);`
 • `add(x, c);`

• Bonsai tree [Darragh et al., *Soft. Pract. Exp’93*,[PR, SPIRE’15].

• Data structure: open hash table of \((1 + \epsilon)n\) entries.
 • Nodes of trie reside in hash table.
 • ID of a node: location where it resides.
 • ID of child labelled \(c\) of \(x\):
 • Create key \(\langle x, c \rangle\) and insert.

• Hash table entries only store “quotients”, require only \(\log_2 \sigma + O(1)\) bits.

• Space usage \((1 + \epsilon)n \log_2 \sigma + O(n)\) bits, \(O(1)\) time.
• Fast in practice (2-3 times slower than TST).
Applications

SDS have been applied in a number of domains:

- Information retrieval.
- NGS: Bowtie read aligner.
- Representing XML data:
 - “SiXML” project, XML DOM with order of magnitude less space.
 - Data store for Zorba XQuery processor.
- Many data mining tasks (papers in KDD’14, KDD’16).
Library sdsl-lite

- Comprehensive (but low-level) library. [Gog et al., *SEA ’14*]
- Structured to facilitate flexible prototyping of new high-level structures (building upon bases such as bit vectors).
- Robust in terms of scale, handling input sequences of arbitrary length over arbitrary alphabets.
- Serialization to disk and loading, memory usage visualization.
Conclusions

- Use of succinct data structures can allow scalable processing of big data *using existing algorithms*.
 - With machines with 100s of GB RAM, maybe even Big Data can be processed using compressed data structures.
- Many of the basic theoretical foundations have been laid, and succinct data structures have never been easier to use.
- Succinct data structures need to be chosen and used appropriately. Optimized to ADT.
 - Even “simple” operations can’t necessarily be added later.
 - E.g. in Bonsai tree, all of a node’s descendants’ IDs are derived from its ID; can’t delete internal nodes cheaply.
 - Single-threaded dynamic SDS much less developed, let alone concurrent SDS.
- Many individual applications, but no complex systems built around SDS.