Orangepath HPR H2 User Manual
Very First Tentative Draft

August 20, 2009

i H2TOOL

Temporal
Logic
Compiler

=

Stimulus
Generator

Imperative
// Code

MULTI-FORMAT H/wW Microcode

SIMULATOR / Synthesis \ Compiler

RTL
Gate
Compiler

Convert
toC

A

Waveform
VCD
TRACES

Figure 1: The flows implemented in the current tool.

0.1 Overview Summary

Orangepath is a refinement framework designed for syntleégisotocols and
interfaces in hardware and software forms.

Orangepath HPR represents designs an an hierarchy of @hsimahines. Each
machine is a database of declarations, executable codecatsl Jhe goals are
assertions about the system behaviour, input directly,eoegated from compi-
lation of temporal logic and data conservation rules inttoanata. Executable
code can pass through the system unchanged, but any unahigemal nodes are
provided with driver code that ensures the system meets#ksg

The H2 language possesses various subsets and the intisrttiah these may be
freely mixed, at a fine level, to describe a design. The mabsais are structural,
temporal logic (PSL), C-like imperative and sysML-like staierarchic charts.

0.2 Tool Flow

The current H2 tool reads in various inputs forms, some otWican be outputs
from previous compilations. Figure 1 shows the availablegloThis figure shows

that inputs are aggregated into a pair of rule sets: exeleutates and assertion
rules. Naming and scoping rules for the identifiers are pvesefrom the input

structures. Not shown in the figure are several bypass flowsyevthe outputs
can be fed into the internal simulator instead of having téeldanto a simulation

in a subsequent run of the tool.

Executable rules are held as an executable VM bytecode fbiPa virtual ma-

chine. This is readily compiled to IMP microcode form for tleference H2 mi-
croprocessor, SystemC or to Verilog in various forms, idoig netlists and cus-
tom VLIW processors. SMV output is also an option, for fegdio the nuSMV

model checker.

Executable rules may also be fed to the internal simulatilea diosim, where
they can be executed with stimulus generation form a PRBS ¢(psartiom bi-
nary sequence) generator or from stimulus read from 'plaas.

Assertions can be compiled to executable form in variousswayelse checked
during diosim simulation. Rather than being checked, theyocmstrain pseudo-
random input sequences used in simulation.

The Temporal Logic Compiler operates on PSL (property spatiin language)
assertions and SERES (sugar extended regular expressiges)drate executable
automata for synthesis or simulation.

The SSMG component is described in a separate document aromplete sub-
project with respect to H2 HPR. SSMG is the main refinement corapt that
converts assertions to executable logic using goal-dicesearch.

CIL .net input language is processed by a free-standing fadtcalled kiwic.
This has its own manual that shares some text with this H2 alai@IL code is
the assembly language used by the mono and .net project$iHRaool can read
in CIL assembly code when invoked using thigric command.

The H2 input format includes finite state machine definitioi®ysML statechart
format.

The Orangepath H2 compiler accepts inputs in a variety oh$oand generates
an executable design that is implemented as a mixture ofal@medand software.
The input may be non-specific in terms of the resources tofigeteed and may
be non-specific in terms of the number of states and statsitiars of the output

machine, whereas the output always amounts to a determiaigbmaton. Hence
the compiler is making decisions over hardware/softwaréteaing and details

of the algorithm.

The input is any mixture of RTL, assertions, declaration$iamperative software
and the output is a mixture of hardware and software compgen&he following,
named steps are used:

1. Input Step(s): Read in each input form and store to disc or hold internally
as an H2 Machine.

2. Flatten Step: Combine all H2 machines into a single hierarchic H2 ma-
chine, known as the source machine, generating instancesfneach
child H2 machine so that all variable names have a unique fpah the
design root.

3. Refinement Step:Convert the source machine into the target machine by
rewriting and augmenting the executable rules such thgtahe determin-
istic and consistent with the assertion rules.

4. Partition Step: Convert the target machine into a number of communicat-
ing sections, where each consists of RTL (register trariefexl) or IMP
(imperative) code. Save each section as a separate ougut fil

5. Compile step: Convert each IMP section into either hardware or software,
either generating an RTL or a micro-controller (MPU) settmd write to
disk as a. s microcode file or.vnl Verilog net list. C and SystemC output
formats can also be used for the.

6. Simulate step: Optionally, simulate the collection of RTL and MPU sec-
tions together with stimulus and plant files provided by teeruThe asser-
tion rules are monitored during the simulation and coveradegged.

The most important step in the compiler is the refinement gtapconverts the
source H2 machine to the target H2 machine. The H2 machireisnbst im-
portant data structure and we describe this first, beforeritb@sg the input and
output forms.

0.3 H2 Machine

All input forms are converted into a common internal stroetwhich consists
of a tree of H2 machines. An H2 machine is recursively defimethat any H2
machine can contain a number of child H2 machines.

An H2 machines is a pen-tuple that consists of a pair of disjats of variables,
a list of sub-machines, a list of assertion rules and a lisixetutable rule blocks.
All lists are unordered. The connections to sub-machidesassertions and the
basic executable rules over the variables in union of theuar@able lists. The
first list contains variables visible to a parent H2 machiiereas the contents of
the second are local to the current machine.

Variables have three basic types: parameter, value or.e&erglue or parameter
variable ranges over a finite range of integers and wherestfust the range 0..1
we call it a boolean variable. An event variable ranges offamie enumeration
but also possesses the property of not currently occumihg;h may be thought
of as an extra value. Another type is the mutex, which is aiapfaem of boolean

value type with special properties.

Not all of the variables may be needed in the generated targetine, but param-
eter variables explicitly must not occur in the target. Adrgmeter variables must
be eliminated during compilation through not being needelyobeing given a
constant value, either specified by the user or chosen byotngiter.

Expressions occurring in the assertion and executablebtatks range over the
variables, future values of variables and a special noergehistic symbol, called
non-det, denoted with a query in parenthesi®)’ ’

Future values of variables are denoted with the circle or ®rafr. The future
value of a parameter is itself. The future value of an extanpat to the system
must not be used, since this is not causal.

Value variables that are only updated when some event oacersalledsequen-
tial variables. Sequential variables that are updated only eyotturrence of
common event are part of dock domain related to that event. All other value
variables are calledombinational variables.

New values for value and event variables are defined by thauéiele rules con-
tained in the rule blocks. The aggregate of executable miest never try to
assign more than one value to a variable at once, ie. it bastens

Executable rules are assignments held in rule blocks. Ablglek consists of an
optional guard and an SP. A rule block with no guard is calledmbinational
rule block. A sequential rule block is guarded by an eventesgion. An SP is
recursively defined as either an assignment of a variabie &0 expression, or a
sequential list of SPs, or a parallel list of SPs. The orddrstihg members of
a sequential SP is important whereas it has no significance parallel SP. The
order is important for a sequential SP since updates toblagdrom executing
one member of the list are experienced by the next in the dist avaluates its
assignment expression(s). For the parallel SP, there iggillity of changes
made by one member at another member: changes are nomiaklpver until
the end of the parallel SP is reached, and then they are mdtgedst be statically
determinable that there are no inconsistencies in the merge

A rule block is calledcompilable if it can be converted to a normal form where
there are no powers of X present, except for a power of unityerneft hand side
of each sequential executable rule.

Various other normal forms for the executable rules exisd, procedures to con-
vert between them exist, but some procedures have expahewdi and are avoided
unless needed. A normal form where every variable is updat@abst one rule
block can readily be converted to a hardware model in RTLIdgm@nd/or VHDL.

A normal form where there are no parallel SPs in a block all@asly conversion
of that block to a basic block in a block-structured impemabutput format, such
as C.

One way to represent input language forms that use a thraailtcks at various
places is to convert each of the resume points to a sepamtatakle rule block.
This technique is used for the H2 bevblock construct.

Every assertion rule is either a safety, liveness or indgsertion.

The next value operator: circle *’. o el X(e) 2 X(e1).

0.4 Input Formats

The main input format is source files in the H2 language andCHebut Verilog
RTL input format and IMP machine code are also supported. paisge user
manual describes the Kiwi CIL input format.

The H2 input format includes finite state machine definitioisysML statechart
format and regular expressions.

The H2 language is in flux, so check the h2grammar.yy yacc fitk see the
examples for details.

0.4.1 CIL input format

The CIL .net assembly code is generated by a large numberrdfgarty compil-
ers from various input languages. Please see the sepasatakanual for details
of this input format.

Chapter 1

H2 Syntax

The H2 language possesses various subsets and the intisrttian these may be
freely mixed, at a fine level, to describe a design. The maiseis are structural,
temporal logic (PSL), C-like imperative and sysML-like staierarchic charts.

1.0.2 Concrete syntax tree

The H2 HPR concrete syntax tree is following yacc file:

1.0.3 Abstract syntax tree

The H2 HPR abstract syntax tree is defined using the follo\@ilkty. datatype:

1.1 H2 Types

All expressions either have integer type or else denotégbéypes that are elimi-
nated during an elaboration phase of compilation, such asreil names, param-
eters and module instance names.

The boolean type is represented by the integer subrange 0..1

Type expressions are a type name, an enumeration, an inteyge or a vector
range.

An integer range is two integers separated by two dots, ssiéh.a1’. The first
number is, by convention, lower than the second, but therasdgnored.

A Verilog RTL style vector range is two integers in brackedparated by a colon,
such as [7:0]". This example defines an integer range of 0..255 and nanees th
bits of a bus representation of the integer.

An array type is denoted with square brackets and if the keo§the array is
known, this is placed in the brackets. The subscript rangiesodrray is from zero
to the number in brackets minus one.

An enumeration type is a set of constant strings. It is defindmtaces, prefixed
with the keywordenum. For example

enum { Play, Forward, Stop, Reverse }

All enumeration constants must be disjoint within theirgeof use.
Note: stategraphs implicitly define enumerations withritk&te names.
Type names can be established with tiheedef statement. For example

typedef safe_range_t = -5b5..55;
typedef transport_t = enum { Play, Forward, Stop, Reverse };

1.2 H2 Expressions

1.2.1 H2 Constant Expressions

The following constants are builtink, (?), true, false. The symbol "X’
denotes don't care.

Any sequence of digits is a base-ten integer, and such irstegea start with a
minus sign.

1.2.2 H2 Variables, Events and Parameters

Variables are defined using thede statement, or one of its shorthand forms
(§1.6.2).

Variables have three basic types: parameter, value or.e&ergtlue or parameter
variable ranges over a finite range of integers and wherestfust the range 0..1
we call it a boolean variable. An event variable ranges offanie enumeration
but also possesses the property of not currently occumihg;h may be thought
of as an extra value. Another type is the mutex, which is aiapfem of boolean

value type with special properties.

All variables have a scope that is the facet they are defineshéhall facets di-
rectly instantiated below, unless textually masked by notweely enclosing dec-
larations.

Access between facets is enabled using path names cogstfacet instance
names separated by dots.

An facet definition may contain a list of structural formalameters in parenthe-
sis after its name. These are formal parameters to the fadesr® expanded at
instantiation using call by name. They are used only forcstmal (macro-style)
elaboration and are not user variables.

All parameter variables must be eliminated during comiifathrough not being
needed or by being given a constant value, either specifieddoyser or chosen
by the compiler.

1.2.3 Operator Expressions

The symbol "X’, when standing along, denotes don’t care. Wiead as a func-
tion it denotes the next state operator. The expressigesis short forX(e,1)
and means the next value of expressiensligher values of in X (e n) denote
further values into the future, using the expanside,n+ 1) = X(X(e,n)).

Bit extract is denoted with brackets: eg.[e] .

The diadic pling operatorce’, writes a value to a named channel. The expan-
sion of channel writes is explained §i.4.

1.2.4 Function Application

Function applications are either of built-in functions émuser functions that act
as macros and are expanded at compile time.

The built-in function pause ()’ is used to denote a bus-settling delay or memory-
barrier. By calling this function, the current thread is bedkintil all writes made

to variables or nets are flushed out and made visible to otieeepses. It should
always be given the argument 1.

The built-in function hpr_testandset (mutex, bool)’ must take a variable of
type mutex (a boolean subtype of value) as its first arguniétite second argu-
ment is 'true’ then the function attempts to set the mutexratuains the previous
value. If the second argument is 'false’ then the mutex isreld and false is
returned.

The built-in function print ()’ causes console output under simulation or on
an embedded platform if supported. The arguments are dexves an ASCII
representation and output in turn.

The built-in function exit(rc, [msg ...])’ causes a simulation to exit. An
error is indicated using a non-zero return code in the firgtient. Supporting
message information may also be provided in subsequentnamfs. The be-
haviour on embedded platforms, if supported, is to halt etten of all threads
until a reset occurs.

The built-in function "X’ is explained i§1.2.3.
User-defined functions are declared with fhwadef keyword.

1.3 H2 Assertions

An assertion statement constrains the behaviour of thersyst

The assertion statements may be free standing, or may berugelC-like code
or in the action section of a statecharts.

Where free standing, they must universally hold.

Only the safety assertions and fairness marker can occiweiCtlike code and
statecharts. Their meaning is then respectively guardéladb@-like thread reach-
ing them or the state being active.

Assertions refering to events and patterns of events fall@syntax and seman-
tics follows PSL: [['Property Specification Language Refere Manual’ Version
1.1 June 9, 2004]

assertion ::=

always [<string> :] <pslexp>;
| never [<string> :] <pslexp>;
| initial [<string> :] <pslexp>;
| live [<string> :] <pslexp>;
| fair [<string> :] <pslexp>;

1.4 H2 Channels

The compiler implements message passing channels. Theqgarator is used to
put a value to a channel and the query operator is used fongadm a channel.

Both are blocking operators, because channels implemeableflow-control.

The channel operations may be used in the C-like code or incti@nasection of
a statecharts. A blocking channel operation in a stateetiirmake the whole
of/part of the state machine block (TODO explain).

The current implementation of channels is via straighteBmdvmacro expansion
in the front end of the compiler. Channels are implementedhayexl access to
entries in an array called C

Both operators make copies of the channel designator on é@mttgise the user’s
expression should change while blocked, and the write éperaakes a copy
of the value to be sent. Copies are not made for manifest qunstpressions.
Copies are kept in fresh variables denoted below with thesuffix. The allo-
cation of index values to the array is handled by the compdled the back-end
compilation phase replaces hardware constant indexesseatlars.

The expansion of the write operatiote is

c_c = c;
e_c = e;

waituntil !'C.ack[c_c];
C.datalc_c] = e_c;
C.reqlc_c] = 1;
waituntil C.ackl[c_c];
C.reqlc_c] = 0;

The expansion of the read operatian®

c_c = c;
waituntil C.reqlc_c];
r_c = C.datalc_c];
C.ack[c_c] = 1;
waituntil !C.reqlc_c];
C.ack[c_c] = 0;
return r_c;

1.5 H2 C-like Imperative Statements

The H2 language possesses various subsets. The main safesstisictural, tem-
poral logic (PSL), C-like imperative and sysML-like statefarchic charts. This
section defines the C-like imperative subset.

H2 includes a typical block-structured imperative progmang language with
semantics based on those of C, but extended with operatdtgling channel
write and the guard’ statement.

1.5.1 The H2if statement

if (<exp>) <statment>
if (<exp>) <statment> else <statment>

The H2if statement executes its argument if the condition evaluai@gon-zero
value.

1.5.2 The H2while statement

while (<exp>) <statment>

The H2while statement evaluates its body while its argument evaluatasion-
zero value.

1.5.3 The H2enit statement

emit <var>;

The H2emit statement sends a nullary event to a named variable thatawst
event variable. Parameterised events are not generategiths statment. Instead
they are generated by assigning values to the event variable

1.5.4 The H2waituntil statement

wait (<exp>);

The H2waituntil statement takes an expression and blocks a thread until the
expression would evaluate to a non-zero value.

1.5.5 The H2wait statement

wait (<exp>);

The H2wait statement takes a postive numeric argument and blocksadtfoe
that number of time units.

1.5.6 The H2guard statement
guard (<exp>) <statment>

The H2guard statement evaluates its body if the guard expression givema
zero value, but the thread exits immediately from the bodyafguard expression
becomes zero at any time during the execution of the bodytheh¢he thread is
blocked or not.

1.5.7 The H2resultis statement

resultis (<exp>);

The H2resultis statement returns a value to a surrounding context. It is in-
tended to be used with thelof operator. It is interchangeable with theturn
statement.
1.5.8 The H2return statement

return <exp>;
The H2return statement returns a value to a surrounding context. It enokd

to be used in function bodies. It is interchangeable withriben1tis statement.

1.5.9 The H2skip statement
skip;

The H2skip statement does nothing.

1.5.10 The H2continue statement

continue;
The H2continue statement transfers execution to the head of the innermapst s

roundingwhile or for loop.

1.5.11 The H2break statement

break;

The H2break statement transfers execution to the exit point of the imost
surroundingshile or for loop.

1.5.12 The H2 label statement
L:

The label statement defines a target fgoao statement.

1.5.13 The H2goto statement

goto L;

The H2 goto statement transfers execution to the named label which baist
present somewhere in the same behavioural sequence.

1.5.14 The H2 block statement

{S1S82 Snnn }

The H2 block statement consists of any number of statememiesed inside
braces and they are executed in sequence.

1.5.15 The H2 assignment statement

<variable> = <exp>;

The H2 assignment statement assigns a value to a variabke.a3signment is
actually an expression and any expression can be used icothiext. A function
call expression becomes a procedure call in this way.

1.5.16 The H2 procedure call statement

<name>(<argl>, ...);

The H2 procedure call statement executes a proceduredingleertain builtin
procedures§l.2.4). The call is actually an expression and any expressio be
used in this context. A function call expression becomesoaqature call in this
way.

1.5.17 The H2 channel write statement

<channel> ! <exp>;

The H2 channel write statement evaluates an expression aied e value to a
named channel. The expression is evaluated immediatehéuhread can then
become blocked if the is not ready to read.

1.6 H2 Structural Statements

The H2 language possesses various subsets. The main safesstisictural, tem-
poral logic (PSL), C-like imperative and sysML-like statefarchic charts. This
section defines the structural subset.

The structural statements in H2 are unlike those in mostiaggs. The power of
H2 is in its structural statements.

1.6.1 Facet definitions

An H2 program consists of a number of facet definitions. A fatedinition in-
cludes instances of other facets and local code. Facett@imimay be builtin,
loaded from libraries or user defined. An instance of a facebmmonly called

a node and thaode statement, or a shorthand for it, is used to instantiate all
facets, except for the topmost facet. The topmost facetsie@d mentioned on
the command line and is called the root.

The facet declaration syntax is:

structural_item ::=
<directional_context> |
<node_declaration> |
<constant_defintion> |
<behavioural_section> |
<statechart> |
<connect_statement> |
<assertion>

facet_definition ::=
<facet_type> <facet_name> [(<structural_formal>, ...)]

{

[<structural_item> ...]

structural_formal ::= <id>

The facettype must (currently) be one of the builtin facet types: isegtunit,
protocol or interface.

The facethame must be a fresh identifier.

The structural formal parameters are optional, but musiegtirovided with values
whenever the facet is instantiated. They bind identifiecaioing in the facet and
there is almost no restriction over the connect of the idiensi (e.g. types, facet
names, constants etc.). Currently, the topmost facet cdravat formals since it
is instantiated from the command line.

The contents of the facet are structural items defined ing&eaf this section.

H2 defines a number of builtin leaf facetgide, protocol, action, section,
interface andsection. The node is the most general facet and also the most
basic: a node can be as simple as a boolean variable, butlitecany other vari-
able, channel or facet. The user defines his own facets thatiirfrom one of
these. Facets are heirarchic, in that each may instantiatieef, lower facets.
Each instantiation may be forwards or reversed and inventeat.

1.6.2 Node declaration statement

The H2 node statement declares

node_declaration ::=
node <node_type> [<modifier> ...] : <nid> [, <nid> ...

nid ::= <id> | !<id> | <id> (<exp> [, <exp> ... 1)
node_type ::= <id>

Thenode statement creates one or more named instances of an faeehantes

must be disjoint. Every node has a type. The type name cardodnstead of the
keyword ‘node’ where the type is one of these builtin faceet. channel, event,
mutex, parameter, section, protocol, action, unit or fats.

When nodes are instantiated, modifiers may be used. The [aeaiteodifiers are:
out, in, inout, event, unsigned, ,signed, channel, parameter, initiator,
target, forward , reverse and range declarations for arrays and scalars of
fixed ranges.

Nodes may be declared as inverted and/or reversed. An @aveeclaration is
made by placing the pling character before the identifiereviersed declaration
is made by inserting theeverse modifier in the modifier list. Nodes may be

1;

parameterised by supplying one or more arguments aftedémgifier. The num-
ber of expressions must match the number of formal paramgténe node type
definition.

The program is elaborated in the textual order it occursénfite. All identifiers

ultimately form a single, flat name space. At any point in thes fll identifiers

already defined through being a facet directly or indirertstantiated in the cur-
rent facet are in scope. Multiple identifiers of the same namag be in scope
at once: e.g. when there are two instances of a given sortteffaice. Where
multiple identifiers of the same name are in scope at oncs,ahierror to refer
to one of the multiply-defined identifiers in an ambiguous wayfficient facet
prefix path details must be supplied.

Range and Array modifiers

A modifier of theform[n .. m] defines a node that can take on an integer
range of values.

A modifierof theform[h : 1] defines a packed vector node with high and
low bit positions called h and I. This is another way of defthanrange. A value
of zero is normally used for .

A modifier of the form[n] defines an array with n locations, indexed from
zero.

A modifier of the form[] defines an array with an unbounded number of loca-
tions.

Only one of the first two forms is allowed for a given node.

Forwards, Reverse and Neutral modifiers

directional_context ::= forward: | neutral: | reverse:

When connecting a pair of components, the inputs of one coemi@re normally

connected to outputs of the other, and vice versa. This resgjtihat these terms
must be reversed when a specification written for one sideeofiterface is being
used at the other. This is known as havingpamded pair. To overcome this
issue, when any type of node is declared/instantiatedydny interface nodes
and complete sections, it is defined in a directional contéteverse context
causes inputs to be interpreted as output and outputs tdadrplieted as inputs.

The default directional context is forward, but neutral eencerse contexts also ex-
ist. The current directional context is altered to the abualue by th€orward:,
reverse: andneutral: labels. These labels alter the current context in the tex-
tually following declarations until another label is enotered. In addition, the
first two of these three words may also appear as a modifieeiadtual declara-
tion of the node. The overall context of a node is reverseeifahs an odd number

of reversings in the referring path. A path is reversed byheagerse instantia-
tion. A reverse instantiation either contains the reveesaiord as a modifier or is
inside a reverse directional context, but not both. If ithhdhey cancel out. Dec-
larations inside a neutral directional context are notratteind have their default
meaning regardless of how many reversings there are onfereing path.

1.7 Temporal Regular Expressions

The H2 language possesses various subsets. The main safgsstisictural, tem-
poral logic (PSL), C-like imperative and sysML-like statefarchic charts. This
section defines the temporal logic (PSL) definitions.

TODO. Contents of this section are missing, but are mainlydtagdard PSL.

1.8 Stategraph Definition

The H2 language possesses various subsets. The main safesstisictural, tem-
poral logic (PSL), C-like imperative and sysML-like statefarchic charts. This
section defines the statechart subset.

The stategraph (or statechart) defines a finite state machive¥e each state has
a state name. A top-level stategraph is always active, mganis in exactly one
state. On the other hand, a stategraph that is instancecdhild atategraph within
a state in another stategraph is inactive (not in any stalels its parent is in that
instantiating state. A state may instantiate any numbehod stategraphs but
recursion is not allowed.

The stategraph general form is:

stategraph graph_name()
{

state statenameO (subgraph_name, subgraph_entry_state),

entry: statement,
exit: statement;
body: statement;

statement;
e // implied ’body:’ statements
statement;

cl -> statenamel: statement;
c2 -> statename2: statement;

c3 > exit(good);

exit(good) -> statename3: statement;
exit(bad) —> statename4: statement;

endstate

state statename?2:

endstate

state abort: // A special state that can be
// forced remotely (also called disable).

A state may contain tagged statements, each of which may asialtlock if re-
quired. They are distinguished using three tag words. Thigyestatement is run
on entry to the state and the ‘exit’ statement is run on exie body’ statement is
run while in the state. A ‘body’ statement must contain idetept code, so that
there is no concept of the number of times it is run while ingtege. Statements
with no tag are treated as body tagged statements. Multq@ercences of state-
ments with the same tag are allowed and these are evaluateduggh executed
in the textual order they occur or else in parallel (curremplementation is serial
but this will be change to parallel, so watch out!).

A state contains transition definitions that define the ssmmestates. Each tran-
sition consists of a boolean guard expression, the name ebthe states in
the current stategraph and an optional statement to be texkatnen taking the
transition. In situations where multiple guard expressioarrently hold, the first
holding transition is taken.

The guard expressions range over the inputs to the stategrdych are the vari-
ables and events in the current textual scope, and the d&sltslaf child state-
graphs.

When a child stategraph becomes active, it will start in thetisig state name is
given as an argument to the instantiation, or the first sthtetarting name is

given.

A child stategraph becomes inactive when its parent triansit even if the tran-
sition is to the current state, in which case the child stajgyg becomes inactive
and active again and so transitions to the appropriate etdtg.

A child stategraph can cause its parent to transition whercliid transitions to
an exit state. There may be any number, including zero, efséxies in a child
stategraph but never any in a top-level stategraph. Thenparest define one or
more transitions to be taken for all possible exit tranagiof its children. An exit
state is either called ’exit’ or ’exit(id)’ where ’id’ is anxé tag identifier. Exit
tags used in the children must all be matched by transitiotise parent, or else
the parent must transition itself under the remaining eotiiditions of the child or
else the parent must provide an untagged exit that is usedfauitl

A stategraph may be wholly enclosed inside any conditiciaément, such as an
‘if’ or ‘case’ statement, in which case it is as though all of its interrcivaty

is guarded by that condition: the condition is simply foldleside every construct
to the point where a conditional is allowed. The stategrapdschot reset to its
starting state when this guard does not hold.

A stategraph with a state calledbort may be disabled from elsewhere in the
same bundle using thebort’ statement. Please s€&.8.1.

The stategraph general form is sufficient to encompass thiglSgtate machines.

1.8.1 Abort Statement

The ‘abort’ statement is used for a remote abort of a stategraph.
Syntax:

if (g) abort stategraph_namel, stategraph_name2, ...;

The abort statement must be conditional, otherwise thegtph would never

leave its abort state, and the abort guayanay either be an event or level ex-
pression. When the abort guard is a level expression it taleeeg@dence over any
transitions in the stategraph that lead from the abort.state

if (g) abort stategraph_namel, stategraph_name2, ...;

Chapter 2

Joining Automata Synthesis

The contents of this chapter describe a particular resgaghct and should be
ignored by general users (at the moment).

2.0.2 Meaningful Play and Mitre Automata

The valid operation of a protocol is defined in terms of therapens it performs
on its interface. When a protocol performs an operation, watsaakes gplay.
Only a small number of plays may be valid at any one time, asidd by an
automata that transitions on each operation or in othert@nts (eg. a wire that
is already low cannot go low). play is an operation performed on the interface
by the protocol in a given state of the constraining automata

The meaningful play set, or just play set, is a subset of the plays that convey
information. Other plays are artifacts of the protocol thah be modified or
ignored without changing the the meaning of the informationveyed.

A pair of interfaces must be connected to each other for métion to flow. The
wiring, logic or code used to connect the interfaces is dalfee connection. A
valid connection between a pair of interfaces can be defigeghtautomata, the
mitre automata. This automata has a pair of inputs that range over the play se
from each interface. Every state of the mitre automata iceeg@ing state, but the
connection must be designed so that mitre automata nevestyek. In general, a
single mitre automata can interconnect more than just tiesfaces. Also, more
than one mitre automata can be specified, where all operai@ailel and every
play is always accepted at all automata at once.

The H2play statement is a prefix to any other behavioural statemenenotks
that the operation(s) performed by the statement, in theotstate of the execut-
ing thread or stategraph, is/are a member of the meaninigiyket. An identifier,
theplay name, may be assigned to the play statement, postfixed by a coléor- A
mal parameter list may also be specified.

A play statement is an annotation and has no semantic effeds@rgument,

which is always executed as normal when it is run.
play_statement ::= play [<play_id> [<formals>] :] <behavioural_statement>

Here is a typical example, where a play called 'mysend’ ismdefi The be-

havioural statement is a block containing three succegsipgerative statements.
The formal parameter list is simply a further annotatiort thenotes which vari-

ables occurring in the behavioural statement convey me-tilata. These are
handled symbolically during mitring whereas the remaina@r given concrete
values.

play mysend(dout) : { if_dout = dout; pause(); strobe = 1; }

Meaningful plays always occur in pairs, where one half ofpih# is executed by
each side of the interface. This is calledeadezvous.

The mitre automaton can be defined using any H2 form of eximresprefixed
with the keywordmitre. For instance, it can be defined as a statectidrBj

or using a behavioural sectiof2(0.3). Play names can be used inside a mitre
definition as though they were imperative statements. Theyatso be prefixed
with the left andright keywords or a facet instance name (identifier). Side-
effecting statements, such as assignments to variablelsnoube used inside a
mitre definition, except to local variables used only in th&endefinition, such as
for encoding state.

play_occurrence_statements ::=

<play_id>;
| left : <play_id>;
| right : <play_id>;
| <facet_id> : <play_id>;

Theleft andright qualifiers are optional play name prefixes that cause refer-
ence to either the first or second argument to the conneenstait, respectively.
When a prefix is left out and the same play nhame occurs on botis,ssdich as
when connecting a pair of instances of the same interfaea,ttie play applies to
both sides at once.

Where more than one mitre automata is defined, their produrcipked: that is,
they are all logically running at once and none must ever tyeks

Mitre examples using behavioural sections

Where both sides of an interface only have one meaningful gatait is called
foo it is sufficient to write

mitre while (1) { foo; }

Where we wish to make a ping on one side do a pong on the othesufficient
to write

mitre while (1) { left ping; right pong; }
mitre while (1) { right ping; left pong; }

2.0.3 Behavioural section

A behavioural section contains any number of H2 behavicstetEments§(l.5).
They are executed as though enclosedwh#le (1) { ... } infinite loop.

behavioural_section ::=

{

<behavioural_statement> ...

}

2.0.4 Assertion

An assertion statement constrains the behaviour of thersyst

Assertions refering to events and patterns of events fall@syntax and seman-
tics follows PSL: [['Property Specification Language Refere Manual’ Version
1.1 June 9, 2004]

assertion ::=

always [<string> :] <pslexp>;
| never [<string> :] <pslexp>;
| initial [<string> :] <pslexp>;
| live [<string> :] <pslexp>;
| fair [<string> :] <pslexp>;

2.0.5 Connect Declarations

Connections are declared with the connect statement. TheohtZect statement
joins two or more facets, either directly or by generatingeglogic and/or glue
code. The facets are denoted with heirarchic path expresggeparated with
dots). A connection has an optional name and if more that agett are to be
joined by one connection, each must have a local facet iostaentifier.

connect_statement ::= connect [<connection_id> :] <exp>, <exp>

[mitre [<flaglist> :] <structural_item>] ;

connect_statement ::= connect [<connection_id> :] <facet_id> :

[mitre [<flaglist> :] <structural_item>] ;
flaglist ::= [<flag_id>=<flag_exp>, ...]

<exp>,

When the connection identifier is supplied, it is used as a rfantbe connection
and as the root name for any instantiated or generated codendection iden-
tifier can be specified as the rendering radf®?) for compilation, which allows
the synthesised code to be captured to output files (VNL,onante, C++, and so
on).

Themitre keyword introduces a mitre automata to be used in the colmect
implementation{2.0.2).

When only two facets are to be joined, they need not be giveet filastance
identifiers because the built-in namiestt andright are used by default. Facet
instance identifiers used in a connect statement are lockhames, private to
that connection and may only be used inside the mitre clatere the facet in
guestion is also instantiated as part of the generatedrdasigill have a primary
instance name from that instantiation.

Where a mitre automata is not present, a simple connect im®ited, where
outputs from one facet are matched with similarly-namedigpf other sides and
wired together.

Where a mitre automata is defined, it is multiplied with theeifdace automata
listed in the connect statements. The state space is thiapsetl over the various
rendezvous designated with play annotations so that n@patame-named play
on different automata happens in separation from the otferat name. Finally,
a maximal live manifold is selected that contains the iditest from all automata
and all also all of the rendezvous. A live manifold is an awtarthat consists of
states and edges from the collapsed product machine wHestatals are reach-
able from all others. A maximal live manifold is a manifold &rfe as many paths
as possible are included (however, there can be local mipinolalems). An H2
machine is then generated that connects up the partiojptoets in a way that
implements the manifold. Where desired live paths are ndudeaa in the mani-
fold, the user can constrain the selection either by addssgréions into the facet
definitions or using a facet as the mitre automata and pudtesgrtions in that.

Where the structural item after the mitre keyword defines ntloa@ one finite
state machine, their product machine is first formed and therconnection is
built as before. The resulting interface obeys all mitresrate.

The behaviour of the generated interface logic can be mddifjespecifying flag
expressions. A number of flag identifiers exist that can béosebnstant values
in the flag list. However, whether the interface logic cotssef hardware gates,
software code or some mix is not altered by these flags: thasgtisad selected by
the normal H2 synthesis option flag&?).

The reset flag may be used to specify a reset input or condition to therint
face logic. The reset flag expression may range over netsraogun any facet
of the interface or otherwise undefined variables whichrésthereby defined as
auxiliary inputs to the interface.

Theclock flag may be used to specify a clock signal for the interfaceldgmay
refer to any binary signal occurring in any facet of the iféee or to an otherwise
undefined variable which is thereby defined as an auxiligoytino the interface.
The clock flag is ignored if the output mode is to generateegtsoftware. When
no clock flag is specified, asynchronous logic is generated.

Chapter 3

SSMG Refinement Algorithm

H2 is a vehicle for exploring various refinement algorithms.

In [?], it is proposed that all interfaces are constructed usimgrabination of

elemental interface paradigms and that any descriptiomptementation of an
interface can be processed to be represented in this wayrdhessing is a form
of parsing that generated a so-called interface transfa@nce an interface is
represented this way, it can be render in a variety of detailéput styles.

The default refinement algorithm uses a depth-first seardhhas exponential
cost in the worst case. A SAT-based algorithm was also eagglor the paper],
but is disabled in the tool by default.

The refinement algorithm must first find a subset of the rules\amiables that
are possibly needed in the target machine. The followingssaehieve this.

1. ldentify, from the compiler command line, the top-le\atyet variables that
are to be driven by the target machine, thereby creatingtadnget variable
set, thenceforth known as the current target variable setat€ran empty
set of rules called the current rule set.

2. ldentify any executable rules that drive variables intdrget variable set,
or their past or future values, or assertion rules that reféhem or their
past or future values. Add these safety and executable twlée current
rule set.

3. If any variables occur in the current rule set that are rtareal inputs and
are not members of the current target variable set, add thethettarget
variable set and go back to previous step.

The refinement algorithm then proceeds to generate furiesugable rules from
the assertion rules and to fill in concrete values for thematars and values of
(?) encountered, thereby generating a deterministicttangehine.

The refinement algorithm uses a CNF/clause representatitireafesign and is
based around a built-in SAT solver.

1. The safety assertions are all first converted into a catipgrnormal form
and held on a safety clause list.

2. For any executable rule that assigns a value to the negtaftany variable,
v, all occurrences oK(v,n) wheren >= 2 are substituted for using that
executable rule.

3. For all values of all external inputs, subject to plantstomnts, the ex-
ecutable rules are examined for consistency and any pagawvedtes or
non-det transitions that would make the executable rulesnsistent are
noted. Where only one possible value for a parameter existgpdrame-
ter is substituted out with that value, otherwise the camsts are added as
additional clauses to the safety clause list.

4. If the safety clause list is non-empty, a clause with a mainumber of
un-driven variables in its support is removed and convedeoh executable
rule where one of the variables is driven by a LUT function bfirgouts
and driven variables where the LUT contains fresh parameto back to
previous step.

5. When the safety clause list is empty, select a setting gbaathmeters in
the executable rules that creates a finite state machinasdkaties all the
liveness assertion rules. If none can be found, then badktogthe previous
step and select a different free variable of a safety clan&e tdriven by a
LUT.

6. Partition the resulting machine into hardware and saffweamponents and
output.

This algorithm does not reflect the sequencing constrairitseqlant...
cf. Take all at once and SAT solve!

Chapter 4

Transactor Synthesis

The command line flagxtor invokes the transactor synthesis refinement algo-
rithm. There are some example on the web site.

TODO: describe it more.

Chapter 5

Orangepath Synthesis Engines

The Orangepath project supports various internal syrgresggines. The aim is
to include SSMG but some more simple engines are also pravidée other
engines include the FSM generator, the PSL compiler ancesteucturer.

Because all input is converted to the HPR machine and all ouspiuiom that
internal form it is sensible to use the HPR library for tratisin purposes without
doing any actual synthesis.

A synthesis engine rewrites one HPR machine as another.
5.1 A* Live Path Interface Synthesiser

The H2 front end tool allows access to the live path intertacghesiser.

The A* version is described on this web page. http://wwwanh.ac.uk/ djg11/wwwhpr/gpibpage.html
The follow-on to this work is being undertaken by MJ Nam.

5.2 Transactor Synthesiser

The transactor synthesiser is described on this link
http://www.cl.cam.ac.uk/research/srg/han/hprls/gegrath/transactors

5.3 Asynchronous Logic Synthesiser

The H1 tool implements an asynchronous logic synthesisarited on this link.
http://www.cl.cam.ac.uk/ djg11/wwwhpr/dsasynch.htmi

HPR .
Machine(s) Unwind -ubudget n .
budget Entry point
J for each thread

Pending activation queue
(pc, address, [elv2, e2/v2, ...])|list

‘rogra i Input Activation : S

«

y Completed activation list

L_,Symbolic | | | | - |
: simulator - c

4

ey -

- no . Already processe

Blocking " |_checker ? _ =pDiscard
yes

—> 4 ‘
0,1,0r2 Activation o
HPR
Machine

éoutput activations| budget |[XES—p
Figure 5.1: The Synchronous FSM generator in the Orang¢pakh

E] consume.

Output queue with
rollback checkpoints

5.4 SAT-based Logic Synthesiser

The H1 tool implements a SAT-based logic synthesiser desdron this link.
http://www.cl.cam.ac.uk/ djg11/wwwhpr/dslogic.html
(This synthesiser is currently not part of the main HPR iewigontrol branch.)

5.5 Synchronous FSM Synthesiser

The HPR tool contains a synthesiser/generator for synclu®irSMs that con-
verts a program in the HPR imperative language in to a findeshachine. The
language contains assignments, conditional gotos, rkgnd leaf calls to HPR
library functions.

The input and output to the FSM generation process are HPRiinexx The
output machine uses the so-called XRTL style that is readilwerted to Verilog
RTL by a subsequent stage.

An additional input, from the command line, is an unwind beidg number of
basic blocks to consider in any loop unwind operation. Wheop$ are nested or
fork in flow of control, the budget is divided amongs the vagavays.

5.5.1 Synthcontrol

Minor changes in the operation of FSM synthesiser are cthetiwith the-synthcontrol
command line option. The sequencer for a thread can be uagacirmal or one-
hot. Unpacked is selected wilequencer : unpacked.

Minor changes in the operation of FSM synthesiser are cthetiwith the-synthcontrol
command line option. The sequencer for a thread can be uagacirmal or one-
hot.

The stringpreserve-sequencer should be supplied to keep the per-thread ves-
tigal sequencer in RTL output structures. This makes thputwiode more read-
able but can make it less compact for synthesis, dependinyeocapabilites of
the FPGA tools to do their own minimisation.

The stringresets: synchronous should be passed in to introduce synchronous
resets to the generated sequencer logic. This is the default

The stringresets:asynchronous should be passed in to introduce assynchronous
resets to the generated sequencer logic.

The stringresets:none should be passed in to supress reset logic for FPGA
targets. FPGA's tend to have built-in, dedicated resengiri

-synthcontrol ’preserve-sequencer;resets:none;sequencer:packed’

The central data structure is the pending activation quehete an activation con-
sists of a program counter name, program counter value afm@dement mapping
variables that have so far been changed to their new (syo)haliues.

The output is a list of finite-state-machine edges that a@lyirplaced inside a
single HPR parallel construct. The edges have to forms @), (g, fname, [args])
where the first form assigns e to v when g holds and the secdtwdfgaction
fname when g holds.

Both the pending activation queue and the output list havekgnt annotations
so that edges generated during a failed attempt at a loopdreain be discarded.

The pending activation list is initialised with the entryipis for each thread.
Operation removes one activation and symbolically steppgaiigh a basic block
of the program code, at which time zero, one or two activatiare returned.
These are either added to the output list or to the pendingasion list. An exit
statement terminates the activation and a basic block tetmg in a conditional
branch returns two activations. A basic block is terminatét a single activation
at a blocking native call, such as hpause. When returned from the symbolic
simulator, the activation may be flagged as blocking, in Wwhiase it is fed to
the output queue. Otherwise, if the unwind budget is not ugethe resulting
activations are added to the pending queue.

A third queue records successfully processed activatighdivations are dis-
carded and not added to the pending queue if they have albesahysuccessfully

processed. Checking this requires comparison of symbolicemments. These
are kept in a "close to normal form” form so that syntactic ieglence can be
used. This list is also subject to rollback.

Operation continues until the pending activation queueigtg. A powerful proof
engine for comparing activations would enable this coadito be checked more
fully and avoid untermination with a greater number of dasig

5.6 PSL Synthesiser

The PSL synthesiser converts PSL temporal assertions Bid-lbased runtime
monitors.

5.7 Statechart Synthesiser

The Sys-ML statechart synthesiser is built in to the frord ehthe H2 tool. It
must be built in to other front ends that generate HPR VMs,

5.8 SSMG Synthesiser

SSMG is the main refinement component that converts asseriioexecutable
logic using goal-directed search. The SSMG synthesisergsribed in a separate
document and is a complete sub-project with respect to HPR.

5.9 Restructure Synthesiser

The RTL-style machines can be restructured, so that diffesperations occur
in different cycles, with automatic insertion of holdingrgters to maintain data
values that would not be available when needed.

Restructuring is need to avoid structural hazards arisingnwdn ALU or multi-
plier is not fully-pipeline or when a memory has insufficigirts for the level of
concurrent access required.

Chapter 6

Output Formats

The HPR library contains a number of output code generagdlef these write
out a representation of an internal HPR machine. Not all SooffHPR machine
can be written out in all output forms, but, where this is noggible, a synthesis
engine should be available that can be applied to the irtéfR& machine to
convert it.

Certaint output formats can encode both an RTL/hardwale-atd a software/threaded
style. For instance, a C-like input file can be rendered ouinaigathreaded C
style, or as a list of non-blocking assignments using thee®y€ library.

The following output formats may be created:

1. RTL Form: The RTL output is written as a Verilog RTL. One module is
created that either contains just the RTL portion of theglesor the RTL
and instances of each MPU that is executing software pattealesign.

2. Netlist Form: The RTL output is compiled to a structural netlist in Verilog
that contains nothing but gate and flip-flop instances.

3. H2 IMP Form: The HPR form is output to an IMP file. This has the same
syntax as the imperative subset of H2.

4. SMV form: The HPR VM is output as an SMV code and the assertions
that have not been compiled or refined are output as assefooSMV to
check.

5. C Form: The HPR VM is output as C code suitable for third-party compil
ers. RTL forms may also be output as synthesisable SystemC.

6. UIA MPU Form: The IMP imperative language is compiled to IMP as-
sembly language and output assfile.

7. IP XACT form: The structural components are written out as IP XACT
definitions and instances.

8. S-expression form:The HPR VM is dumped a lisp S-expression to a file.

9. UIA Machine Code: The IMP assembly is compiled to machine code for
the UIA microcontroller. This is output as Intel Hex and a&®oa list of
Verilog assignments for initialising a memory with this eod

The net-based output architecture is suitable for direptémentation as a custom
SoC (system on chip). H2 defines its own microcontroller aeduse the term
MPU to denote an H2 microcontroller with an associated firnei®OM. The net-
based architecture consists of RTL logic and some numberRIf81 However,
by requesting that all output is as C code for a single MPUnitebased output
degenerates to a single file of portable C code.

Additional output files include log files and synthesisabid &igh-level models
of the UISA microprocessor that executes IMP machine mactade.

Index

	Overview Summary
	Tool Flow
	H2 Machine
	Input Formats
	CIL input format

	H2 Syntax
	Concrete syntax tree
	Abstract syntax tree

	H2 Types
	H2 Expressions
	H2 Constant Expressions
	H2 Variables, Events and Parameters
	Operator Expressions
	Function Application

	H2 Assertions
	H2 Channels
	H2 C-like Imperative Statements
	The H2 if statement
	The H2 while statement
	The H2 emit statement
	The H2 waituntil statement
	The H2 wait statement
	The H2 guard statement
	The H2 resultis statement
	The H2 return statement
	The H2 skip statement
	The H2 continue statement
	The H2 break statement
	The H2 label statement
	The H2 goto statement
	The H2 block statement
	The H2 assignment statement
	The H2 procedure call statement
	The H2 channel write statement

	H2 Structural Statements
	Facet definitions
	Node declaration statement

	Temporal Regular Expressions
	Stategraph Definition
	Abort Statement

	Joining Automata Synthesis
	Meaningful Play and Mitre Automata
	Behavioural section
	Assertion
	Connect Declarations

	SSMG Refinement Algorithm
	Transactor Synthesis
	Orangepath Synthesis Engines
	A* Live Path Interface Synthesiser
	Transactor Synthesiser
	Asynchronous Logic Synthesiser
	SAT-based Logic Synthesiser
	Synchronous FSM Synthesiser
	Synthcontrol

	PSL Synthesiser
	Statechart Synthesiser
	SSMG Synthesiser
	Restructure Synthesiser

	Output Formats

