Using Kiwi for Big Genomic Data

Easy to Use Hardware Acceleration using FPGA

University of Cambridge
Computer Laboratory

Dr David Greaves
david.greaves@cl.cam.ac.uk

B H UNIVERSITY OF

|

Computer Laboratory
Vet School Collaborations

1. with Dr Mark Holmes:

Obtaining the spa type of Staphylococcus aureus:
Do not assemble the whole gene,
It is critical to get the repeats correct,
Not interested in the other genes present.

2. with Dr Andrew Grant, Olu Oshota:

H/W Accelerated Seed+Search mapping
Working with FASTQ (Salmonella examples)
Replicate the results from the Novoalign package.
Burrows-Wheeler or Hash-based.

%8 UNIVERSITY OF

Big Data Orchestrators.

* Flume Java, MC Fast Flow, MillWheel
* Cloud Dataflow (Google's replacement for Map

Reduce)
* Dryad/Ling or Hadoop *Originated at
Univ. Cambridge
* CILK, MPI, Wool, ... Computer Laboratory

* Ciel (Skywriting)*
* Mirage - Uni-kernels directly on Zen*

GPGPU is accepted as an accelerator — but hard to use?
Kiwi* aims to make FPGA or CGRA easy to use.

& H UNIVERSITY OF

4P CAMBRIDGE

[NSDI 2011]

Computer Laboratory

Answer? CIEL

CIEL: a universal execution engine for distributed data-flow computing

Derek G. Murray
Steven Smith

Malte Schwarzkopf
Anil Madhavapeddy

Christopher Smowton
Steven Hand

University of Cambridge Computer Laboratory

Abstract

This paper introduces CIEL, a universal execution en-
gine for distributed data-flow programs. Like previous
execution engines, CIEL masks the complexity of dis-
tributed programming. Unlike those systems, a CIEL job
can make data-dependent control-flow decisions, which
enables it to compute iterative and recursive algorithms.

We have also developed Skywriting, a Turing-
complete scripting language that runs directly on CIEL.
The execution engine provides transparent fault toler-

ance and distribition to Skwvwriting eerinte and hioh

task-parallel algorithms using imperative and functional
language syntax [31]. Skywriting scripts run on CIEL,
an execution engine that provides a wuniversal execu-
tion model for distributed data-flow. Like previous sys-
tems, CIEL coordinates the distributed execution of a set
of data-parallel tasks arranged according to a data-flow
DAG, and hence benefits from transparent scaling and
fault tolerance. However CIEL extends previous mod-
els by dynamically building the DAG as tasks execute.
As we will show, this conceptually simple extension—
allowing tasks to create further tasks—enables CIEL to

& UNIVERSITY OF
CAMBRIDGE

FPGA = Field Programmable Gate Array
CGRA = Coarse-grain Reconfigurable Array

x/
I ERN /
. 455555553,/
1| a o
s j%iguﬁﬁﬁﬁi
, COOD0 S
L] Eﬂﬂuﬂ uﬁaﬂﬂﬁ\ .
ToRbMET (138339580
SPBOBBOBO L R L
aPVOBOOBG e 1T e [}
QOOOOND .
0 0 M B0 6 F 510

(FfeeD
L

}
\Hw

4
BN

L
LOGIC BLOCKS

Programmable hardware _
Dispenses with fetch/execute cycle
Massively Parallel
Down to 1/1000th the energy
Up to 100x performance (depending on parallelism).

@B UNIVERSITYOF
@¥ CAMBRIDGE

Kiwi - Accelerating Data-Intensive Applications using Networked FPGA (in the Cloud?)

Software / Tooling Flow

Big Data i
Application C#
GeneSearch.cs Library

Local
FPGA blades
(Xilinx or Altera)

MIS C#t Mono Ci#
Compiler Compiler

DOTMNET
Binary Executable
Files
FPGA
programs

i
Compiler

L J
hicrosoft Mono
Visual Studio Common Runtime GeneSearchsy
CLR Hardware
Yerilog BTL File
=3 =3k
Windows Linux
PClworkstation PClworkstation

Amazon or MIS Azure Exectuion Platforms

Hardware / Execution Platforms

J— Gene .
SRTITIINI LU o Gigabit DA Data Files
I:l I:l Ethernet
D switches
0

il ;O

1

K

{CHO)! & =

o

Local Fileserver

A data-intensive application is
coded in C# and can be developed
and tested on the user’s workstation
using Visual Studio or Mono.

When high performance is required, the
self-same binary file is further compiled using
Kiwi for programmable hardware FPGAs.

FPGAs can use as little as 1/1000th of the
energy and run 100 times faster than
standard workstations. The FPGAs can
stream big data from and to fileservers.

In the future, FPGA platforms may become
a standard offering in Cloud Computing.

FPGA GP GPU x86 - _— .
blades blades blades Kiwi H/W Compilation Project

David Greaves

Satnam Singh
University of Cambridge
Computer Laboratory

Future FPGA Cloud Resources

First Result...

Design | RTL Length State CUPs/Clock
Hand 396 lines 59877 bits | 8/19 = 042
Kiwi 27421 lines | 68666 bits | 8/20 = 0.40

Table 2. Comparison with hand-coded design.

Design FPGA PART Device Utilization Levels Clock CUP/s
Hand coded | Altera Stratix III EP3SL340 5536 ALMs 28 138 MHz | 58 x10°
Hand coded | Xilinx Virtex V. | XC5VLX155T 5215 LUTs 25 101 MHz | 42 x10°

Kiwi Altera Stratix III EP3SL340 20925 ALMs 37 83 MHz 33 x10°
Kiwi Xilinx Virtex V. | XCS5VLXIS55T | 55306 LUTs 86 46 MHz 18 x106

Table 3. FPGA Performance Results (figures from Synplicity Premier).

"Synthesis of a Parallel Smith-Waterman Sequence Alignment Kernel into FPGA Hardware',

S Singh, DJ Greaves, and S Sanyal.
At Many-Core and Reconfigurable Supercomputing Conference 2009 (MRSCO09), Berlin

L UNIVERSITY OF

&% CAMBRIDGE

Static Verus Dynamic Typed
Languages for Hardware Acceleration.

Acceleration pitfalls for Dynamic Typed Languages
* Runtime add or delete members in classes...
* Be aware which loops are to be unwound ...
* Using eval ...
* Changing vector lengths inside loops ...

Are R and Python suitable for hardware acceleration ?

Or must we convert to strongly-typed 'clean' languages like C#,
Java and Ocaml ?

58 UNIVERSITY OF
@¥ CAMBRIDGE

END OF PRESENTATION

B UNIVERSITY OF

€¥ CAMBRIDGE

Smith-Waterman Genome
Matcher coded Iin C# ...

public class SwElement

{ int width, unit;
public int max;
public int [] prev, here;
public byte [,] slices; // Local part of the PAM array
public Kiwi.Channel < short > left_score, right_score;
public Kiwi.Channel < byte > left_data, right_data;
public Thread thread;
short diag_left_left = 0;

public SwElement(int u, int h) // Constructor
{ width = h; unit = u;

here = new int[width];

prev = new int[width];

slices = new byte[width, 20];
}

public short run()

max = 0;

byte dbval = left_data.Read();
short topScore = left_score.Read();
right_data.Write(dbval);

for (int gpos = 0; gpos < width; qpos++) prev[qpos] = here[qpos];

for (int gpos = 0; gpos < width; gpos++)
{
if ((gpos % unwind_factor)== 0) Kiwi.Pause();
int above = prev[qpos];
int left = qpos==0 ? topScore: here[qpos-1];
int diag = (qpos == 0) ? diag_left_left: prev[qpos - 1];
int score = slices[gpos, dbval];
int nv = Math.Max(0, Math.Max(left - 10, Math.Max(above - 10, diag + score))’
if (nv > max) max = nv;
here[gpos] = nv;
if (qpos == width-1) right_score.Write((short)nv);
}
diag_left_left = topScore;
return max;

& H UNIVERSITY OF

4P CAMBRIDGE

Dr. David Greaves. MIET.

* University Lecturer
* Chair of the CST Tripos

* Research Interests:
- Hardware Compilers,
- Simulation and Modelling,

- Automated Reliable
Component Composition.

=5 UNIVERSITY OF
4P CAMBRIDGE

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

