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ABSTRACT

Conventional models for estimating wire lengths in com-
puter chips use Rent’s rule to estimate the number of termi-
nals between sets of gates. The number of interconnections
then follows by taking into account that most nets are point-
to-point connections. In this paper, we introduce a model
for multi-terminal nets and we show that such nets have
a fundamentally different influence on the wire length esti-
mations than point-to-point nets. The multi-terminal net
model is then used to estimate the wire length distribution
in two cases: (i) the distribution of source-sink pairs for
applications of delay estimation and (ii) the distribution of
Steiner tree lengths for applications related to routing re-
source estimation. The effects of including multi-terminal
nets in the estimations are highlighted. Experiments show
that the new estimated wire length distributions are close
to the measured ones.
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1. INTRODUCTION

Conventional length estimation models employ a model
for the circuit, a model for the architecture (standard cell,
gate array, etc.) and a layout model to predict wire lengths
in digital designs a priori, i.e., before the actual layout has
been performed. Such models are based on Rent’s rule [7,
4] which predicts that the number of terminals T needed for
communication between a module of a partitioned circuit
and the remaining of the circuit is related to the number of
gates B in the module as

T=tB" (1)

with ¢ the average number of terminals per gate (if B = 1,
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T =t)' and p the Rent exponent. This exponent provides
the necessary information on the complexity of the inter-
connection topology of the circuit as well as on the level of
placement optimization [4].

Wire length estimates based on Rent’s rule were intro-
duced by Donath [6] in 1979 and are getting more attention
recently. Several improvements have been presented [13, 5,
8, 14, 11]. An overview of wire length estimation methods
is presented in [4]. These methods all estimate the num-
ber of terminals needed for communication between two sets
of gates from Rent’s rule, predict the number of nets from
the number of terminals and estimate the average length of
each of those nets. The prediction of the number of nets
from the number of terminals is generally done by assum-
ing only point-to-point (i.e., two-terminal) nets. While it is
acknowledged that multi-terminal nets exist, it is assumed
that the number of point-to-point nets is significant enough
to dominate the wire length distribution.

Multi-terminal nets have been studied in [12, 18]. Both
papers suggest a model for multi-terminal nets and com-
pute from that the distribution of nets over their number
of terminals. We will call this the net degree distribution.
The predicted distributions are then validated by comparing
them to the measured net degree distribution. In this paper,
we investigate the influence of the multi-terminal nets on
the wire length distributions by considering two application
models for the wire length estimations. A first application
model uses the wire delay. For such delay-related applica-
tions, the length of connections between a source and a sink
is important. The length of other branches in the net (from
sinks to other sinks) is only of secondary importance. A sec-
ond application domain is situated in the field of estimating
routing resources. For such routing-related applications, the
entire Steiner tree length of nets is the only length that
counts. We will show that both application domains result
in a different solution to the wire length estimation problem.
Moreover, the solutions are fundamentally different from the
point-to-point solution found in all previous works.

Section 2 briefly reviews the multi-terminal net model
from [12] and [8], focusing on those aspects of the model
that are used for the multi-terminal net length estimations
of section 3. In that section, a wire length prediction model
is proposed for both delay-related and routing-related appli-
cations. The resulting wire length distributions and average
wire lengths are then compared to experimentally measured
lengths in section 4.

'This is only approximately true since ¢ is generally found
by fitting a logarithmic curve to a terminal-versus-gate plot.
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Figure 1: The difference between cutting internal
nets (dashed lines) and external nets (solid lines).

2. MODEL FORMULTI-TERMINAL NETS
2.1 Thenumber of (multi-terminal) nets

Consider a recursive four-way? partitioning of a circuit,
minimizing the number of terminals. Rent’s rule (equa-
tion 1) can then be applied to the partitioning modules and
provides an estimate for their average number of terminals.
Suppose the circuit contains a total of G = 4% gates, recur-
sively divided into 4 modules of (equal) size B = 4* at each
partitioning level k (kK = 0 at the lowest level where each
module contains only a single gate and k¥ = K — 1 for the
partitioning of the entire circuit into 4 modules). The total
number of terminals for all modules of size B then is

Tiot(B) =t BP % =tG B! (2)

and the number of terminals T} that is generated by the
cutting of nets at hierarchical level k by

T = Trot(4") = Tior (4" =t G4 ®D (1 —477 1), (3)

Previous wire length estimation models simply relate the
number of terminals T}, at level k to the number of nets N,
cut at level k£ by assuming point-to-point nets only, hence
Ny = % Tk. In the best case, they account for multi-terminal
nets by introducing a factor a (1/2 < a < 1) instead of
1/2 [6]. However, the relation between N; and T} is more
complicated in the case of multi-terminal nets [12, 8, 11].

Consider the partitioning process at level k (figure 1). An
internal net at level k is entirely contained in one module
of the partitioning level k. An ezternal net at level k has a
terminal at level k. During partitioning, both internal and
external nets can be cut. Cutting an internal net generates
two new terminals (figure 1). An external net at level k+ 1,
on the other hand, already uses a terminal at level £k + 1 so
only one new terminal has to be generated (the other one
can be reused). With S; ; the total number of internal nets
cut at level k£ and Se i the total number of external nets cut
at level k, this implies®

2 Si,k + Se,k = Tk- (4)

>The reasoning is also valid for another partitioning but a
four-way partitioning is beneficial for the model in section 3.
3There exists an important difference between the often
used cut minimization partitioning criterion and the ter-
minal minimization criterion. Indeed, equation 4 indicates
that cutting internal nets is much more disadvantageous, in
terms of the number of new terminals generated, than cut-
ting external nets. A detailed analysis is presented in [9].

The new terminals created by the cutting of nets can be
input or output terminals. We define 7, as the ratio of the
number of new output terminals to the total number of new
terminals
=% 5)

k

Due to the self-similarity of circuits at different hierarchical
levels, it is acceptable to assume that v, is independent of
the hierarchical level k [8, 11], i.e., Yk : 4 = ~. Figure 1
shows that the total number of nets cut at level k equals
the number of new input terminals, i.e., (1 —v)Tk. The
parameter v can be found from the total number of internal
nets in the circuit (i.e., the total number of nets N minus
the number of external nets, or pins, P) as [11]

 N-P _Gt,-0 "
TTiG-—pP iG-pP

The last part of equation 6 is found by using a relation be-
tween N and the number of primary inputs (I) and outputs
(O) of the circuit and the average number of inputs (¢;) and
outputs (¢,) per gate. Since nets can only be driven by gate
outputs or primary input pins and since each net is driven
exactly once, N = Gt, + I. Equation 6 results in v < 1/2:

7§%©2N72P§tG7P@tGT+P22. (7
Indeed, the ratio of the total number of terminals over the
total number of nets, i.e., the average net degree (we count
external terminals in the net degree), is always larger than
(or equal to) 2.

From the above, we can calculate the total number of in-
ternal (IV; x) and external nets (Ne ) at a hierarchical level
k, as well as the number of internal (S; 1) and external nets
(Se.x) that is cut at level k (see [11] for the exact equations).

2.2 Net Degree Distributions

The previous section calculates the number of internal and
external nets at each recursion level. In this section, we seek
to identify the net degree of each of these nets, i.e., the net
degree distribution. We benefit from using its moment gen-
erating function, which we will call the generating polyno-
mial for net degrees [15]. It is a polynomial in the variable
x for which the coefficients of each term z" are given by the
number d, of nets with net degree v = n and it is denoted
as Vp, = Zn dn, ™. The normalized version is called W,,.

In [12, 8, 11], a recursive equation is found for the net de-
gree generating polynomials by using the reverse of the par-
titioning process, i.e., a net generating process. Not count-
ing the external terminal (for this, we change the notation
of Wne to W, . = Wy /), we find [12, 8, 11]

Yk

Wielk+1)=ge (Wi e (B) + (1—go) Wi o(k)  (8)
Viilk+1)=g: 4@ (WL (k) + Vailk)  (9)

with k£ > 0 and
ge =(1—27) (47 —1) Vn,i(0) =0
gi=7tG (1 —4"7") W, .(0) = .

Note that, if ¥ = 1/2, then g = 0 and the normalized net
degree distribution for external nets remains the same for all
levels, i.e., all external nets are two-terminal nets (counting
the external terminal). By consequence, all internal nets are
also two-terminal nets (equation 9).

(10)
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Figure 2: The measured and theoretically predicted
net degree distributions for the ISCAS89 benchmark
‘s953’ in a log-log plot (inset: part of linear plot).

2.3 Average Net Degree

Although we are not able to compute closed-form expres-
sions from equations 8 and 9, we can easily calculate the
average net degree at each hierarchical level. The details of
the calculation are presented in [8, 11]. The resulting aver-
age external (7. k), internal (#; 1), and total (7)) net degrees
at level k are found to be

1+ 27+ (1 -279)4"7)
24P~ 41— 24)F —1
= 8 ) (12)
’ v (4k (-1 — 1)
Nik Ui+ Nep Ve gk (0=1) 4 q
Nik + Ne Ty (1 =) 4k

k

(11)

ﬂe,k

U = (13)
Again, v = 1/2 leads to two-terminal nets only.

Using equation 6 for 7, we obtain the correct average net
degree for the entire circuit (k = K and G = 4%)

_ tG+tG”

Both the average net degree of internal nets (equation 12)
as the one for all nets (equation 13) approach 1/ for very
large circuits

g 21y 7221/ (15)

Based on equations 15, we can conclude that two large

circuits that are different but that have the same fraction

v, produce approximately the same average net degree, in-

dependent of their respective Rent exponents! This means

that the fraction ~ is a separate circuit property and an
extra parameter, next to the Rent exponent.

2.4 Net Degree Distribution Evaluation

To validate the recursive equation for the net degree dis-
tribution, we compare it to measurements on the ISCAS89
benchmark ‘s953’ [2] and the benchmark ‘industry3’ [1] (see
figures 2 and 3). The Rent exponent has been estimated
by fitting a straight line to the data generated by the par-
titioning program ‘ratiocut’ [16]. The output fraction ~y
is found from equation 6 and from the measurements of N
and P from the benchmark data. Figures 2 and 3 show
that the measured net degree distribution for internal nets
and the theoretically predicted distribution follow the same
trend as a function of the net degree n (compare with the
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Figure 3: The measured and theoretically predicted
net degree distributions for the benchmark ‘indus-
try3’ in a log-log plot (inset: part of linear plot).

curve of average values). The correlation between both dis-
tributions is very good for the small net degrees (largest
number of nets). The net degree distribution found by Pay-
man Zarkesh-Ha [18] is also shown in the figures as a dashed
line, with the same parameters as in our model (measured
from a circuit partitioning). While our model only underes-
timates the number of nets with very high net degree,? the
model found by Zarkesh-Ha largely underestimates the total
number of nets (by a factor ~ 2). Even if we scale the model
to the total number of nets, it underestimates the nets with
few terminals and largely overestimates the number of nets
with a lot of terminals. Our model predicts the net degree
distribution more accurately. There are several reasons for
this. In [18], the authors only consider multi-terminal inter-
nal nets (no external nets) when calculating the number of
nets from the number of terminals (and thus they implicitly
assume -y = 1/2). In their recursive calculation model, they
also assume that, for the addition of one gate to a module of
B gates, all additional nets are (B+1)-terminal nets whereas
it is clear some (or even most) of the new internal nets will
have a lower number of terminals (i.e., they do not have to
be connected to all gates of the modules). Also, unlike the
Zarkesh-Ha model, our model finds the exact average net
degree (equation 14).

3. WIRELENGTH ESTIMATION FOR
MULTI-TERMINAL NETS

Ever since Donath introduced his wire length estimation
method at the end of the 70’s [6], it has been used by nearly
every researcher engaged in a priori wire length estimation.
In Donath’s method, the circuit is basically characterized
by the complexity of its interconnection topology, described
by Rent’s rule and the Rent exponent. The Manhattan grid
serves as a model for the physical architecture the circuit will
be placed in and the placement process itself is modelled by a
theoretical placement minimizing the total wire length (i.e.,
the sum of all distances between connected gates). Since it is
assumed wires are always routed along the shortest path, the
wire length follows from the placement information alone.

*Note that the actual number of nets with high net degree
no longer follows the average behaviour and that these nets
are probably special nets. Also, the number of such nets is
negligible compared to the total number of nets.
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Figure 4: Donath’s hierarchical partitioning of the
circuit and the physical architecture.

3.1 Donath’sHierarchical Placement Model

Donath’s placement model is summarized in figure 4. The
circuit is partitioned into four subcircuits of equal size (de-
noted by 1, 2, 3, and 4), in such a way that the partition
satisfies Rent’s rule [7]. The square Manhattan grid is also
partitioned into four subsquares of equal size, in a symmetri-
cal way (denoted by I, II, III, and IV) and each subcircuit
is mapped to a subsquare. This process is then repeated re-
cursively for each of the subcircuit subsquare pairs, until all
gates are assigned to exactly one grid cell. Compared to the
random placements one used before, Donath’s hierarchical
placement models placement optimization better. It is also
easily combined with our multi-terminal net model.

All interconnections are assigned to a particular level of
hierarchy in the placement process and the average number
of interconnections Ny at level k is calculated (from Rent’s
rule), as well as the average wire length per level £. The
average wire length £, computed over all hierarchical levels,
is then given by

Sy Nl

{ =
K1
k—o Vk

(16)
With this, we can focus the discussion on the average wire
length ¢;, per level and the number of wires N} at each level.

3.2 AverageWireLength per Level

For the average wire length ¢ of a connection assigned to
level k, we use an extension of Donath’s technique that takes
placement optimization better into account. We therefore
write the wire length distribution Dy j at a hierarchical level
k as the product of a structural distribution Si(£) and an
occupation probability q(£) [4, 5, 14]

Dk = Sk(€) q(£). (17)

The structural distribution is the enumeration of all possible

Figure 5: Hierarchical four-way partitioning of the
circuit. Net 4 is split into more than two parts.

paths in the architecture at the hierarchical level.” It repre-
sents the entire collection of placement sites for nets at the
hierarchical level. The occupation probability then assigns
to each of the placement sites a probability that the site is
occupied by a wire at hierarchical level k [14, 8]. The oc-
cupation probability ¢(£) can be approximated by £27~* for
a two-dimensional Manhattan grid [4, 5, 14]. The expected
value of the average length of wires at hierarchical level k
then equals

bmax (k) Lmaa (k)
> Sk(0)q(0) > Sier?
7 _ =0 __4=0
be = tmaz (k) " lmaa (k) ' (18)

D SeBat) Y SkoerTt
{=0 £=0

In [8, 14] it is shown that the wire length (over all hierar-
chical levels) scales with ¢27~3,

3.3 Average Number of Interconnections

In section 2 we found that the number of nets at level k
is related to the number of terminals as N, = (1 — ~)T%.
In practice, older methods are equivalent to splitting each
multi-terminal net into a number of net segments that can
be calculated separately in the length computation as two-
terminal nets. Note, however, that the computed length
then is not the total net length but the net segment length.
We will extend previous methods to realistic net lengths by
recombining these net segments.

A first problem we have to note is the different hierarchi-
cal partitioning structures between a bi-partitioning and a
four-way partitioning. Consider the four-way partitioning of
figure 5. The multi-terminal nets 1, 2 and 3 are split into two
parts as in the bi-partitioning scheme. These nets will still
generate one or two new terminals depending on whether
they are external or internal. However, net 4 is split into
three parts and hence generates three new terminals (as an
internal net). This complicates the analysis of the multi-
terminal net model since only the total number of internal
and external nets can be computed but not the fraction of
that number that is kept in two modules and the fraction
that uses more modules. This fraction is likely to depend
on the net degree distribution. On the other hand, a good
partitioning and placement strategy will try to keep con-
nected gates close to each other and therefore it will reduce

®See [15] for an efficient way to enumerate the distributions
using generating polynomials.
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Figure 6: The decomposition of a multi-terminal net
(Steiner tree) into net components over several hier-
archical levels: difference between delay-related and
routing-related applications.

the possibility of splitting a net into more than two modules
(also note that the increase in number of terminals would
be punished in the partitioning cost function). For these
reasons, we assume that nets are only split into two parts in
a four-way partitioning process. With this assumption, we
can directly reuse all results from section 2.

As explained in the introduction, there are two ways in
which we should account for multi-terminal nets in length
calculations. For delay-related applications, we split each n-
terminal net into n — 1 point-to-point source-sink pairs. For
routing-related applications the total length of the multi-
terminal net will be computed as the sum of lengths of its
net segments. In both cases, we simplify the length esti-
mation by splitting up multi-terminal nets into 2-terminal
components. However, both cases differ fundamentally in
the number of nets that are assigned to each hierarchical
level and in the length of these nets. We do not change the
length calculation from section 3.2 but we change the num-
ber of net (segments) considered at each level as well as the
way in which their lengths are combined.

3.3.1 Delay-related Applications

A source-sink pair is counted at hierarchical level k if the
path between source and sink is cut at that level. Consider
the multi-terminal net in figure 6 and assume, without loss
of generality, that gate A is its source. According to our con-
vention, the path A B will be at hierarchical level k, the paths
A-C and A-D at level k + 1. So, the number of source-sink
paths at level k£ 4+ 1 equals the number of net segments cut
at that level times the average number of sinks in the mod-
ule not containing the source of the nets. Both quantities
are known from the multi-terminal net model of section 2.
The net in figure 6 counts for two source-sink pairs (A—C
and A D) at level £+ 1 although only one net segment is cut
(E-F). The same rule assigns one source-sink pair (A-B) to
level k. Note that also the net segment (C-D) is cut at level
k but that it is not counted as a source-sink pair because
the source is in none of the two modules at that level. The
details of the calculations can be found in [11, 10].

A numerical evaluation of the number of source-sink pairs
for a circuit with Rent exponent 0.6, placed in a Manhat-
tan grid of 1024 by 1024 cells, with an average number of
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Figure 7: Comparison of the new source-sink length
distribution with Stroobandt’s distribution [14, 8]
and the scaling behaviour ¢’ ® (normalized on
[1..1024]) (G = 4'°, p = 0.6; inset: part of linear plot).

input terminals per gate of 3 (1 output) and 20% of the
pins that are primary outputs, results in the wire length
distribution plotted in figure 7. The length distribution for
source-sink pairs is not too far away from the old length dis-
tribution. This is due to the fact that the older distributions
estimated lengths for net segments, which is not too distinct
from estimating source-sink pairs as in our new method. Es-
pecially for short wire lengths, the new distribution is quite
close to Stroobandt’s and to the expected scaling behaviour
for point-to-point nets. However, the length distribution of
source-sink pairs has a slightly different scaling behaviour
than the older model and the “ideal” behaviour for point-
to-point nets. This is because the number of source-sink
pairs has the same scaling behaviour as previously only if
v =1/2, i.e., for two-terminal nets only. For multi-terminal
nets, some net segments are counted for several source-sink
pairs and therefore the source-sink pair distribution is situ-
ated above the older one, especially for higher lengths. This
illustrates the importance of including multi-terminal nets
in the estimations.

3.3.2 Routing-related Applications

For routing-related applications we split the Steiner net
into several net segments between two gates, between a gate
and a Steiner point, or between two Steiner points. The seg-
ments are defined by the (four-way) partitioning scheme and
assigned the level on which they are cut. Figure 6 shows the
principle behind this: the segments A-B and C-D of the four-
terminal net are cut on level k and these two net segments
are connected at level k£ + 1 by a net segment between the
Steiner points E and F. Each of the net segments is consid-
ered as a two-terminal net but to find the total Steiner tree
length we have to add lengths of net segments (of different
levels) belonging together. The calculation of the overall
Steiner length distribution uses the same generating poly-
nomials as in equations 8 and 9 and is detailed in [11, 10].

The combination of the lengths of net segments will nat-
urally result in a wire length distribution with longer wires
than in the case of source-sink pairs. A numerical evalua-
tion in figure 8 confirms this. Naturally, the estimate of the
longest wires, as well as the average value, will significantly
differ from the same value for the source-sink pair length.
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4. DISCUSSION AND RESULTS
4.1 AverageWireLength

For two-terminal net segments the sum over all hierarchi-
cal levels (equation 16) yields [8]

—~ H(K,p,1)
= R(p) 22 1
(= RO) g 3005 (19)
with R(p) a function only depending on p and
2K(2p7m) -1
H(K,p,z) = BT Era——

For the average source-sink pairs length £, it gives [11, 10]

27(1—7)47 ' G(2)+(1-27)(v(1) —7)G(24"?)

tss = R(p) 27(1—7)47'G(1)+(1—27) (v(1) =) G(4'-»)
(20)
with
G(z) = (z(1-2y+27y471))" —1 (21)

z(l—2y+2~4r-1) -1
The second terms in numerator and denominator of equa-
tion 20 are very small (thus reducing equation 20 to .5 =
R(p)G(2)/G(1)), especially for large circuits, since
Gto—0 _t,
= — =~ — =7(1 22
ai—p 27 =) (22)
For v = 1/2 (two-terminal nets), equation 20 reduces to
equation 19. In general however, the scaling behaviour can
deviate significantly from equation 19, as shown in figure 9.
To calculate the average Steiner tree length £, we do not
need to consider the complex addition of segment lengths
to Steiner lengths. The average length is simply found by
dividing the total length (sum of all the individual segment
lengths) by the total number of nets. This results in [11, 10]

7 1_7H(K7p71)

bt = B0) —= Fx p o) Y

For v = 1/2 (two-terminal nets), the average length is of
course equal to the average net segment length (equation 19),
but it is significantly higher (by a factor of (1 —~)/y > 1)
for general multi-terminal nets. Interestingly, the scaling
behaviour (last factor of equation 23) is exactly the same as
for segment lengths!
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Figure 9: The scaling behaviour of the average
source-sink length for different values of ~, as a func-
tion of circuit size. It is assumed that (1) = 4.

1000 T
Theoretical Steiner length distribution
Experimentally measured length distribution <
i Previous distribution of Stroobandt -----
100 F— " :
(%] ‘
o N )
s T
G
c 10 ¢ S E
2 e o
g . o Q
=z 00 <
00000 ON_ ©
1l o o S ]
0.1 : -
1 10 100

Interconnection length

Figure 10: Comparison between the new theoretical
Steiner length distribution and the real one for a
placement of the ISCAS89 benchmark ‘s953°’. Also
shown is the previous theoretical distribution.

4.2 Experimental Verification

We compare the wire length distributions and average
wire lengths from our new multi-terminal net model with
experimental measurements for both source-sink pairs and
Steiner tree lengths. The experimental results are obtained
through placements by an in-house program based on Sim-
ulated Annealing [8]. The placement is optimized for min-
imal total wire length. Steiner lengths are measured using
Geosteiner [17]. Because we do not have the information
on which terminals are sources and which ones are sinks for
our benchmark circuits, we measured source-sink lengths by
taking every terminal of a net as the source ones and then
averaging over the number of terminals.

The new source-sink length distributions are not too dis-
tinct from the results of the older models but for the Steiner
tree lengths there is a clear difference between the new and
the old models, as can be seen from figure 10. The measured
Steiner lengths for the benchmark are generally longer than
predicted by the older model (hence there are less short
wires and more long ones) because actual Steiner lengths



Table 1: Average wire length for a placement of the
ISCAS benchmark circuits. Comparison between
our new estimates / and the experimental values
{. for source-sink pairs (subscript ss) and Steiner
lengths (subscript st). The estimation error e, rela-

tive to the experimental values, is presented in %.

Rent
Name G p Y | less los ess|lest Lt es
c432 160 0.62 0.338|3.10 2.08 -33|3.67 3.13 -15
c499 202 0.62 0.316|3.35 1.84 -45|3.95 3.79 -4
c880 383 0.62 0.348(2.36 2.17 -8|2.54 3.49 37

c1355 546 0.73 0.334|2.47 258 4|2.87 524 83
c1908 880 0.72 0.369|2.56 2.87 12|3.09 4.65 51
c2670 1193 0.73 0.370 | 2.58 3.32 28|3.17 4.66 47
c432nr 157 0.62 0.341|3.01 2.08 -31(3.56 3.09 -13
c499nr | 202 0.65 0.284|3.25 1.89 -42(3.85 3.92 2
c1355nr | 546 0.74 0.322|2.46 2.61 6(2.85 5.33 87
c1908nr | 878 0.71 0.369|2.56 2.82 10(3.09 4.49 45
c2670nr | 961 0.79 0377|231 3.73 62(2.79 486 74

s27 13 0.26 0414(1.29 1.34 4(1.50 1.58

s208.1 112 0.35 0.383|1.76 1.46 -17(2.08 2.04 -2
s298 133 0.37 0.332|2.56 1.34 -48(3.26 2.72 -17
s386 165 0.51 0.314|3.68 1.58 -57(4.03 3.44 -14
s344 175 0.40 0.373|1.99 143 -28|2.14 227 6
s349 176 0.40 0.371|1.98 1.44 -28|2.11 231 9
s382 179 0.35 0.348|2.46 1.38 -44(2.97 2.50 -16
s444 202 0.29 0.346|2.44 1.35 -45|2.95 2.40 -19
s526 214 0.47 0.310(2.91 1.55 -47|3.95 3.54 -10
s526n 215 0.43 0.311(2.90 1.51 -48|3.94 3.31 -16
s510 217 0.65 0.338(3.93 2.12 -46|4.89 3.45 -30
s420.1 234 0.37 0.380(1.88 1.55 -17(2.23 219 -1
s832 292 0.51 0.265|6.11 1.77 -71|6.11 4.51 -26
s820 294 0.54 0.270(5.95 1.81 -70|6.06 4.64 -23
s641 398 0.69 0.417|2.00 2.28 14(2.10 2.96 41
s713 412 0.71 0.404|2.02 2.40 19(2.18 3.27 50
s953 424 0.68 0.346 | 3.84 2.15 -44(4.70 459 -2

s838.1 478 0.41 0.378|1.95 1.68 -14|2.34 235 1
s1238 526 0.66 0.329|4.40 2.29 -48|4.57 4.68 2
s1196 547 0.64 0.345|4.11 2.24 -46|4.13 4.13 -0
s1494 653 0.58 0.313|7.80 2.12 -73|6.89 4.52 -34
$1488 659 0.59 0.316|7.79 2.14 -72|6.81 4.57 -33
s1423 731 0.50 0.373(2.76 1.93 -30|2.95 2.71 -8

are combinations of net segments. This is reflected in the
new Steiner length distribution more accurately.

The results for the average wire lengths are shown in ta-
ble 1 for the ISCASS85 [3] and ISCAS89 [2] benchmark cir-
cuits. These results are also shown in figures 11 and 12 for
source-sink pairs and Steiner trees, as a function of the Rent
exponent. In these figures, we connected the corresponding
points for clarity. The rough path of the curves is due to
the strong dependency of the average length on both the
number of gates and the Rent exponent. Only one of these
dependencies is shown in the figures.

In table 1, we can observe that (i) source-sink lengths are
generally underestimated and (ii) our estimates for Steiner
tree lengths are relatively close to the measured results.

The fact that actual source-sink lengths are generally a lot
higher than the predicted lengths is mainly due to the opti-
mization criterion in our experimental placement. The Sim-
ulated Annealing placement optimizes for total net length,
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Figure 11: Comparison of our new estimates for
source-sink pairs to Stroobandt’s old estimates and
to the experiments for the ISCAS benchmarks.
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Figure 12: Comparison of our new estimates for
Steiner tree lengths to Stroobandt’s old estimates
and to the experiments for the ISCAS benchmarks.

not for total source-sink pair length. If the program would
have optimized the source-sink pair lengths it would suc-
ceed in placing the source closer to all of its sinks whereas
it would pay less attention to the relative distances between
sinks. Figure 11 also shows this and adds the older net seg-
ment estimates. The difference between the new estimates
and the old estimate of Stroobandt is small because of the
large similarities between estimating net segment lengths
and source-sink pair lengths. However, figure 11 shows that
there is some improvement in the estimates for circuits with
a low Rent exponent (p < 0.5). For such circuits, the place-
ment optimization is a lot easier, wires are generally very
short and the effect of the optimization of the total net
length instead of the source-sink lengths is smaller.

The Steiner tree estimates are much better and are within
25% of the measured values on average. However, in quite a
few cases, we also underestimate this length. This is partly
due to the fact that the occupation probability underesti-
mates the number of long wires at the higher levels. For
circuits that are large enough, this has no real influence on



the average wire length because the number of long intercon-
nections is relatively small. For smaller circuits (and most
of the ISCAS benchmarks are rather small), this influence
is not negligible anymore. Figure 12 shows that our new
model can capture the fluctuations in Steiner tree length as
observed in the experimental measurements.

5. CONCLUSION

Conventional wire length estimation models do not prop-
erly take multi-terminal nets into account. In this paper,
we found that there is a fundamental difference between in-
ternal and external multi-terminal nets: in a partition, the
first type of nets results in two new terminals, the second one
in only one new terminal. This difference is not present in
analyses that only consider point-to-point connections and
it leads to an exact (on average) relation between the num-
ber of new terminals generated in a hierarchical partitioning
scheme and the number of nets that are cut by it. This rela-
tion also gives physical meaning to the factor a that Donath
(and other researchers) introduced to “account” for multi-
terminal nets.

Based on a “net generation process” described in [8, 12],
we found a recursive equation for the net degree distribu-
tion which we used in this paper to estimate wire lengths for
multi-terminal nets. We distinguish between “delay-related
applications” and “routing-related applications.” The first
type is meant for estimating delays and requires the length
of source-sink pairs, the second type is related to routing re-
sources and considers Steiner tree lengths. We presented a
wire length estimation technique for both source-sink pairs
and Steiner tree lengths that uses the best-known previous
models for estimating net segment lengths (the flat model of
Davis [5] and the hierarchical one of Stroobandt [14] of which
the last one is easily combinable with our multi-terminal net
model). Although the new estimates for source-sink pairs
are quite close to the old wire length estimates, we observed
that the scaling behaviour (as a function of circuit size) fun-
damentally differs when the influence of the multi-terminal
nets increases (y < 1/2). For the first time, we are also
able to model Steiner tree lengths as a combination of the
right net segment lengths. Naturally, the longest wires in
the Steiner tree estimations fundamentally differ from those
for the previous net segment estimates.

Overall, our new Steiner length estimate seems to be quite
accurate (in comparison to experimental Steiner length mea-
surements) which validates (i) the net segment length esti-
mation based on Stroobandt’s results [14, 8], (ii) the multi-
terminal net model, and (iii) the model for combining net
segments to Steiner trees.

«
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