
Minerva: Enabling Low-Power, Highly-Accurate
Deep Neural Network Accelerators

Brandon Reagen Paul Whatmough Robert Adolf Saketh Rama
Hyunkwang Lee Sae Kyu Lee José Miguel Hernández-Lobato

Gu-Yeon Wei David Brooks
Harvard University

ABSTRACT
The continued success of Deep Neural Networks (DNNs) in
classification tasks has sparked a trend of accelerating their
execution with specialized hardware. While published de-
signs easily give an order of magnitude improvement over
general-purpose hardware, few look beyond an initial im-
plementation. This paper presents Minerva, a highly auto-
mated co-design approach across the algorithm, architec-
ture, and circuit levels to optimize DNN hardware accel-
erators. Compared to an established fixed-point accelera-
tor baseline, we show that fine-grained, heterogeneous data-
type optimization reduces power by 1.5×; aggressive, in-
line predication and pruning of small activity values further
reduces power by 2.0×; and active hardware fault detection
coupled with domain-aware error mitigation eliminates an
additional 2.7× through lowering SRAM voltages. Across
five datasets, these optimizations provide a collective aver-
age of 8.1× power reduction over an accelerator baseline
without compromising DNN model accuracy. Minerva en-
ables highly accurate, ultra-low power DNN accelerators (in
the range of tens of milliwatts), making it feasible to deploy
DNNs in power-constrained IoT and mobile devices.

1. INTRODUCTION
Deep Neural Networks (DNNs) are Machine Learning

(ML) methods that learn complex function approxima-
tions from input/output examples [1]. These methods have
gained popularity over the last ten years thanks to empiri-
cal achievements on a wide range of tasks including speech
recognition [2, 3], computer vision [4], and natural language
processing [5, 6]. Applications based on DNNs can be found
across a broad range of computing systems, from datacen-
ters down to battery-powered mobile and IoT devices. The
recent success of DNNs in these problem domains can be
attributed to three key factors: the availability of massive
datasets, access to highly parallel computational resources
such as GPUs, and improvements in the algorithms used to
tune DNNs to data [7].

The parameters (weights) of a DNN are fitted to data in
a process called training, which typically runs on a high-
performance CPU/GPU platform. The training process de-
pends on the characteristics of the available data and should
ideally incorporate the latest ML advances, best suited to
leverage the high flexibility of software. During the predic-
tion phase, trained DNN models are used to infer unknown

0.1 1.0 10.0
Prediction Error (%)

10-3

10-2

10-1

100

101

102

103

P
ow

er
 (

W
)

ML Focus: Error

H
W

 F
ocus: P

ow
er

This Paper

CPU
GPU
FPGA
ASIC

Figure 1: A literature survey of MNIST neural networks.
Survey reveals the disconnect between ML research and de-
signing DNN accelerators. References: CPUs [8, 9, 10, 11,
12], GPUs [13, 14, 15, 16, 8, 9, 11], FPGAs [17, 12], and
ASICs [18, 19, 20, 21, 13, 22, 12, 23].

outputs from new input data. While training is largely a
one-time cost, prediction computations run repeatedly once
the DNN is deployed in a production environment. There-
fore, speeding up prediction and minimizing its power con-
sumption is highly desirable, especially for applications that
run on battery-powered devices with limited computational
capabilities. One obvious solution is to implement highly-
customized hardware accelerators for DNN prediction. This
paper presents a holistic methodology to automate the design
of DNN accelerators that achieve minimum power consump-
tion while maintaining high prediction accuracy.

MNIST is a widely studied dataset used by the ML com-
munity to demonstrate state-of-the-art advances in DNN
techniques. Figure 1 shows the results of a literature sur-
vey on reported values of MNIST prediction error and cor-
responding power consumption for different neural network
implementations, as reported by the ML and hardware (HW)
communities. The ML community (blue) focuses on mini-
mizing prediction error and favors the computational power
of GPUs over CPUs, with steady progress towards the top
left of the plot. In contrast, solutions from the HW com-
munity (green) trend towards the bottom right of the figure,
emphasizing practical efforts to constrain silicon area and
reduce power consumption at the expense of non-negligible
reductions in prediction accuracy.

Architecture
(Aladdin)

Machine
Learning
(Keras)

Circuits
(EDA)

Dataset

Fixed-Point
Datapath & SRAM

Pruning
Statistics

Fault & Voltage
Models

Design Optimizations

Baseline
uArch

Data
Types

Accuracy
Analysis

Baseline Design

Fault
Tolerance

HW PPA
Models

Optimized
Design

Chip
LayoutHW PPA

Models
HW PPA
Models

Accuracy
Analysis

Accuracy
Analysis

Accelerator uArch
Exploration

Data Type
Quantization

Operation
Pruning

Validation

Section VISection IV Section V Section VII Section VIII Section IX

Fault
Mitigation

Training Space
Exploration

1

2 3 4 5

Figure 2: The five stages of Minerva. Analysis details for each stage and the tool-chain are presented in Section 3.

The divergent trends observed for published ML versus
HW results reveal a notable gap for implementations that
achieve competitive prediction accuracy with power bud-
gets within the grasp of mobile and IoT platforms. Current-
generation mobile devices already exploit DNN techniques
across a range of applications. However, they typically off-
load computation to backend servers. Solutions that can
bring DNN computation to edge devices promise to improve
latency, autonomy, power consumption, and security for the
growing number of applications that look to use DNNs. For
IoT devices in particular, it is often not possible to guaran-
tee the availability of high-bandwidth communications, ren-
dering off-loading impractical. To enable highly-accurate
DNN predictions in mobile and IoT devices, novel power-
reduction techniques are needed.

This paper presents Minerva: a highly automated co-
design flow that combines insights and techniques across
the algorithm, architecture, and circuit layers, enabling low-
power accelerators for executing highly-accurate DNNs.
The Minerva flow, outlined in Figure 2, first establishes a
fair baseline design by extensively exploring the DNN train-
ing and accelerator microarchitectural design spaces, iden-
tifying an ideal DNN topology, set of weights, and accel-
erator implementation. The resulting design is competitive
with the best DNN ASIC accelerators built today. Minerva
then applies three cross-layer optimization steps to this base-
line design including: (i) fine-grain, heterogeneous data-
type quantization, (ii) dynamic operation pruning, and (iii)
algorithm-aware fault mitigation for low-voltage SRAM op-
eration. These techniques, both extensions of known op-
timizations as well as entirely new ones, result in an op-
timized design that demonstrates more than 8× power re-
duction compared to the baseline design while preserving
its initial high prediction accuracy. Extensive simulations
show Minerva can yield the (?) in Figure 1 for MNIST. We
also apply the Minerva flow to five common ML datasets
and show that a continuum of designs is available: from a
general-purpose DNN accelerator to a dataset specific hard-
coded implementation with varying power/area trade-offs.

2. OVERVIEW
Minerva consists of five stages, as shown in Figure 2.

Stages 1–2 establish a fair baseline accelerator implemen-
tation. Stage 1 generates the baseline DNN: fixing a net-
work topology and a set of trained weights. Stage 2 selects
an optimal baseline accelerator implementation. Stages 3–
5 employ novel co-design optimizations to minimize power
consumption over the baseline in the following ways: Stage
3 analyzes the dynamic range of all DNN signals and re-
duces slack in data type precision. Stage 4 exploits observed
network sparsity to minimize data accesses and MAC opera-
tions. Stage 5 introduces a novel fault mitigation technique,
which allows for aggressive SRAM supply voltage reduc-
tion. For each of the three optimization stages, the ML level
measures the impact on prediction accuracy, the architec-
ture level evaluates hardware resource savings, and the cir-
cuit level characterizes the hardware models and validates
simulation results.

The organization of the five stages is intended to minimize
the possibility of compounding prediction error degradation.
Appendix A provides a review of DNNs and terminology.

Stage 1: Training Space Exploration. Minerva first es-
tablishes a fair DNN baseline that achieves prediction accu-
racy comparable to state-of-the-art ML results. This stage
leverages the Keras software library [24] to sweep the large
DNN hyperparameter space. Of the thousands of uniquely
trained DNNs, Minerva selects the network topology that
minimizes error with reasonable resource requirements.

Stage 2: Microarchitecture Design Space. The opti-
mal network from Stage 1 is then fed to a second stage that
thoroughly explores the accelerator design space. This pro-
cess exposes hardware resource trade-offs through microar-
chitectural parameters (e.g., clock frequency and memory
bandwidth). Minerva then uses an optimal design point as
the baseline implementation to which all subsequent opti-
mizations are applied and compared against.

Stage 3: Data Type Quantization. Minerva optimizes
DNN data types with linear quantization analysis, indepen-

dently tuning the range and precision of each DNN sig-
nal at each network layer. Quantization analysis minimizes
bitwidths without exceeding a strict prediction error bound.
Compared to a 16 bit fixed-point baseline, data type quanti-
zation reduces power consumption by 1.5×.

Stage 4: Selective Operation Pruning. The DNN ker-
nel mostly comprises repeated weight reads and MAC op-
erations. Analysis of neuron activity values reveals the vast
majority of operands are close to zero. Minerva identifies
these neuron activities and removes them from the prediction
computation such that model accuracy is not affected. Selec-
tive pruning further reduces power consumption by 2.0× on
top of bitwidth quantization.

Stage 5: SRAM Fault Mitigation. By combining in-
herent algorithmic redundancy with low overhead fault mit-
igation techniques, optimization Stage 5 saves an additional
2.7× power by aggressively scaling SRAM supply voltages.
Minerva employs state-of-the-art circuits to identify poten-
tial SRAM read faults and proposes new mitigation tech-
niques based on rounding faulty weights towards zero.

Minerva’s optimizations reduce power consumption by
more than 8× without degrading prediction accuracy.

3. EXPERIMENTAL METHODOLOGY
The Minerva design flow (Figure 2) integrates tools at

the software, architecture, and circuit levels. Software level
analysis lets Minerva quickly evaluate the accuracy impact
of optimization trade-offs. Architectural simulation enables
rapid design space exploration (DSE) and quantification of
hardware optimization benefits. Circuit tools provide accu-
rate power-performance-area (PPA) and reliability models,
as well as validation of the higher-level simulation results.

3.1 Software Level: Keras
To understand how each Minerva stage affects prediction

accuracy, Minerva uses a software model built on top of the
Keras [24] ML library. This GPU-accelerated code enables
us to explore the large hyperparameter space in Stage 1.

To evaluate the optimizations, we augment Keras with
a software model for each technique. Evaluating fixed-
point types in Stage 3 was done by building a fixed-point
arithmetic emulation library and wrapping native types with
quantization calls. To prune insignificant activities (Stage
4), a thresholding operation is added to the activation func-
tion of each DNN layer. This function checks each activity
value and zeros all activities below the threshold, removing
them from the prediction computation. To study faults in
DNN weights (Stage 5), we built a fault injection framework
around Keras. Before making predictions, the framework
uses a fault distribution, derived from SPICE simulations
for low-voltage SRAMs, to randomly mutate model weights.
For statistical significance, both the model and the fault in-
jection framework are sampled 500 times, and the resulting
output distribution is shown.

3.2 Architecture Level: Aladdin
Stage 2 of Minerva automates a large design space ex-

ploration of microarchitectural parameters used for acceler-
ator design (e.g., loop level parallelism, memory bandwidth,
clock frequency, etc.) in order to settle on a Pareto-optimal

starting point for further optimizations. The accelerator de-
sign space that we explore is vast, exceeding several thou-
sand points. In order to exhaustively explore this space we
rely on Aladdin, a cycle-accurate design analysis tool for ac-
celerators [25].

To model the optimizations in Stages 3-5, Aladdin was
extended in the following ways: first, fixed-point data types
are modeled by adding support for variable types wherein
each variable and array in the C-code is tagged to specify
its precision. Aladdin then interprets these annotations by
mapping them to characterized PPA libraries to apply ap-
propriate costs. Overheads such as additional comparators
associated with operation pruning and SRAM fault detec-
tion were modeled by inserting code representative of the
overhead into the input C-code. The benefits of operation
pruning are informed by the Keras software model which
tracks each elided neuronal MAC operation. This informa-
tion is relayed to Aladdin and used during an added activity
trace post-processing stage where each skipped operation is
removed to model dynamic power savings. To model power
with respect to reduced SRAM voltages, Aladdin’s nominal
SRAM libraries are replaced with the corresponding low-
voltage libraries.

3.3 Circuit Level: EDA
In order to achieve accurate results, Aladdin requires de-

tailed PPA hardware characterization to be fed into its mod-
els as represented by the arrows from the circuit to ar-
chitecture levels in Figure 2. Aladdin PPA characteriza-
tion libraries are built using PrimePower for all datapath
elements needed to simulate DNN accelerators with com-
mercial standard cell libraries in 40nm CMOS. For SRAM
modeling, we use SPICE simulations with foundry-supplied
memory compilers. Included in the PPA characterization
are the fixed-point types (for Stage 3) and reduced voltage
SRAMs (for Stage 5). Fault distributions corresponding to
each SRAM voltage reduction step are modeled using Monte
Carlo SPICE simulation with 10,000 samples, similar to the
methodology of [28].

We validate PPA estimates for Minerva’s optimized de-
sign (Stage 5 output) by comparing against a fully place-
and-routed implementation (using Cadence SoC Encounter)
of hand-written RTL informed by the parameters determined
by Aladdin. The power dissipation of the accelerator is
dominated by datapath and memory elements which Aladdin
models accurately using the detailed PPA libraries. Our val-
idation results in Table 2 show that Aladdin estimates are
within 12% of a fully place-and-routed design.

3.4 Datasets Evaluated
We validate the optimizations performed by our frame-

work with five classification datasets commonly used by the
ML community: 1) MNIST: images of hand-written dig-
its from 0 to 9 [29]; 2) Forest: cartographic observations
for classifying the forest cover type [26]; 3) Reuters-21578
(Distribution 1.0): news articles for text categorization [30,
27]; 4) WebKB: web pages from different universities [31];
5) 20NG: newsgroup posts for text classification and text
clustering [32].

MNIST is the dataset most commonly used and reported

Table 1: Application Datasets, Hyperparameters, and Prediction Error
Dataset Hyperparameters Error (%)

Name Domain Inputs Outputs Topology Params L1 L2 Literature Minerva σ

MNIST Handwritten Digits 784 10 256×256×256 334 K 10−5 10−5 0.21 [8] 1.4 0.14
Forest Cartography Data 54 8 128×512×128 139 K 0 10−2 29.42 [26] 28.87 2.7

Reuters News Articles 2837 52 128×64×512 430 K 10−5 10−3 13.00 [27] 5.30 1.0
WebKB Web Crawl 3418 4 128×32×128 446 K 10−6 10−2 14.18 [27] 9.89 0.71
20NG Newsgroup Posts 21979 20 64×64×256 1.43 M 10−4 1 17.16 [27] 17.8 1.4

0 200K 400K 600K 800K
Total number of DNN weights

1

2

3

4

5

6

P
re

di
ct

io
n

E
rr

or
 (

%
)

Figure 3: Each point is a uniquely trained MNIST DNN. The
black line indicates the Pareto frontier, minimizing DNN
weights and prediction error. The red dot indicates the cho-
sen network. Parameters swept: 3–5 hidden layers, 32–512
nodes per layer, L1/L2 weight parameters from 0–10−6.

by the ML community when evaluating the performance of
DNN methods. Hence, we use MNIST as the main reference
to evaluate each of the optimization operations performed by
Minerva. To demonstrate optimization generality, Section 9
presents results for the remaining four datasets.

4. TRAINING SPACE EXPLORATION
Stage 1 of Minerva explores the DNN training space,

identifying hyperparameters that provide optimal predictive
capabilities. There is currently no standard process for set-
ting/tuning DNN hyperparameters, which remains some-
where between a black art and cutting-edge research [33].
To explore this configuration space, Minerva considers the
number of hidden layers, number of nodes per layer, and
L1/L2 weight regularization penalties. Minerva then trains a
DNN for each point and selects the one with the lowest pre-
diction error. The weights for the trained network are then
fixed and used for all subsequent experiments.

4.1 Hyperparameter Space Exploration
Figure 3 plots the resulting prediction errors as a function

of the number of DNN weights for MNIST. Larger networks
often have smaller predictive error. However, beyond a cer-
tain point, the resources required to store the weights domi-
nates the marginal increase in prediction error. For example,
a DNN with three hidden layers and 256 nodes per layer re-
quires roughly 1.3MB of storage, while 512 nodes per layer

Intrinsic Error
Variation Mean

+1 σ

-1 σ

Min

Max

Figure 4: By training the same network using many random
initial conditions, we can measure the intrinsic error vari-
ation in its converged state. All our optimizations are de-
signed to have an accuracy degradation below this threshold,
so their effects are indistinguishable from noise.

requires 3.6MB (assuming 4B weights). This 2.8× storage
increase only improves absolute model accuracy 0.05%. The
red dot in Figure 3 corresponds to an optimal network that
balances memory requirements versus incremental accuracy
improvements. The resulting network has a prediction error
of 1.4%. Selected DNN hyperparameter settings for MNIST
and other datasets can be found in Table 1.

4.2 Bounding Prediction Error
Minerva modifies the calculations performed by the orig-

inal DNN in order to optimize power and chip area for the
resulting hardware accelerator. This comes with the possi-
bility of a small increase in prediction error. To maintain
DNN accuracy, we constrain the cumulative error increase
from all Minerva optimizations to be smaller than the in-
trinsic variation of the training process. This interval is not
deterministic, but sensitive to randomness from both the ini-
tialization of the pre-training weights and the stochastic gra-
dient descent (SGD) algorithm.

Figure 4 shows the average prediction error and a corre-
sponding confidence interval, denoted by ±1 standard de-
viations, obtained across 50 unique training runs. We use
these confidence intervals to determine the acceptable upper
bound on prediction error increase due to Minerva optimiza-
tions. For MNIST, the interval is ±0.14%. Table 1 enumer-
ates the intervals for the other datasets.

SR
AM

 B
an

ks

Sequencer FSM

Datapath Lane 0

Datapath Lane 1

Datapath Lane N

So
C

 B
us

 In
te

rfa
ce

IRQ

Config

SRAM
Bandwidth

Intra-Neuron
Parallelism

In
te

r-N
eu

ro
n

Pa
ra

lle
lis

m

(a) Accelerator architecture

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
 Execution Time (mS)

0.0

0.5

1.0

1.5

2.0

 P
o
w

e
r

(W
)

(b) DSE of accelerator implementations

Optimal Design

(c) Energy and Area of Pareto designs

Figure 5: Shown above is a high-level description of our accelerator architecture, results from a DSE over the accelerator
implementation space, and energy and area analysis of resulting Pareto frontier designs.

wj,0(k)

εj(k)

θ(k)

En

Compare Activation
with Threshold

Predicated
Weight Access

Pipeline
Bubble

En

F1
(Fetch Activation)

zj(k)

×
+

wj,i(k)

xj(k-1)

+

xj(k-1)
SRAM

<
w(k)

SRAM

F2
(Fetch Weight)

M
(MAC Op)

A
(Activation Op)

Fault
Masking

Fault Flags (late)

Quantized
Data Types

WB
(Activation Writeback)

xj(k)
SRAM

Bias

xj SRAM double buffered
between layers k-1 and k

QW
m.n

QX
m.n

QP
m.n

QX
m.n

ϕ(·)

Figure 6: The microarchitecture of a single datapath lane. Modifications needed for optimizations are shown in red.

5. ACCELERATOR DESIGN SPACE
Stage 2 of Minerva takes the DNN topology from Stage

1 and searches the microarchitectural design space for a su-
perior DNN accelerator. This exploration entails generating
and evaluating thousands of unique implementations using
Aladdin and ultimately yields a power-performance Pareto
frontier. We select a baseline design from this frontier that
balances area and energy. We then apply all remaining opti-
mizations to this optimal baseline design.

The high-level DNN accelerator architecture is shown in
Figure 5a, representing the machine specified by the descrip-
tion fed to Aladdin. The accelerator consists of memories
for input vectors, weights, and activities as well as multiple
datapath lanes that perform neuron computations. Figure 6
shows the layout of a single datapath lane, consisting of two
operand fetch stages (F1 and F2), a MAC stage (M), a lin-
ear rectifier activation function unit (A), and an activation
writeback (WB) stage. The parts in black are optimized by
Aladdin to consider different combinations of intra-neuron
parallelism (i.e., parallelism and pipelining of per-neuron
calculations), internal SRAM bandwidth for weights and ac-
tivities (F1 and F2), and the number of parallel MAC oper-
ations (M). These features, in addition to inter-neuron par-
allelism (i.e., how many neurons are computed in parallel),
collectively describe a single design point in the design space
shown in Figure 5b. The red wires and boxes in Figure 6 de-
note additional logic needed to accommodate the optimiza-
tions described in this paper.

Red dots in Figure 5b correspond to design points along

the power-performance Pareto frontier. The area and en-
ergy consumed by each of these Pareto design points is fur-
ther shown in Figure 5c. The DNN kernel is embarrass-
ingly parallel within a single layer, and the bottleneck to
performance- and energy-scaling quickly becomes memory
bandwidth. In order to supply bandwidth, the SRAMs must
be heavily partitioned into smaller memories, but once the
minimum SRAM design granularity is reached, additional
partitioning becomes wasteful as there is more total capac-
ity than data to store. This scaling effect levies a heavy area
penalty against excessively parallel designs and provides lit-
tle significant energy improvement, as seen in the most par-
allel designs in Figure 5c (left side). The baseline, indicated
as the Optimal Design in Figure 5c, is a balance between the
steep area increase from excessive SRAM partitioning ver-
sus the energy reduction of parallel hardware. Under these
constraints, the chosen design maximizes performance and
minimizes power.

6. DATA TYPE QUANTIZATION
Stage 3 of Minerva aggressively optimizes DNN

bitwidths. The use of optimized data types is a key advan-
tage that allows accelerators to achieve better computational
efficiency than general-purpose programmable machines. In
a DNN accelerator, weight reads and MAC operations ac-
count for the majority of power consumption. Fine-grained
per-type, per-layer optimizations significantly reduce power
and resource demands.

B
as

el
in

e

La
ye

r
0

La
ye

r
1

La
ye

r
2

La
ye

r
3

La
ye

r
0

La
ye

r
1

La
ye

r
2

La
ye

r
3

La
ye

r
0

La
ye

r
1

La
ye

r
2

La
ye

r
30

2
4
6
8

10
12
14
16

N
um

be
r

of
 B

its

Weights

QW
m.n

Activities

QX
m.n

Products

QP
m.n

Integer (m)

Fractional (n)

Figure 7: Minimum precision requirements for each datap-
ath signal while preserving model accuracy within our es-
tablished error bound.

6.1 Fixed-Point Datapath Design
Figure 6 identifies three distinct signals that we inde-

pendently quantize: x j(k − 1), neuron activity (SRAM);
w j,i(k), the network’s weights (SRAM); and the product
w j,i(k) · x j(k−1), an intermediate value that determines the
multiplier width. The notation Qm.n describes a fixed-point
type of m integer bits (including the sign bit) and n frac-
tional bits (i.e., bits to the right of the binary point). For
each independent signal, we consider a separate fixed-point
representation, named accordingly: QX

m.n, QW
m.n, and QP

m.n.

6.2 Optimized Fixed-Point Bitwidths
The conventional approach to using fixed-point types in

DNNs is to select a single, convenient bitwidth (typically 16
bits [34, 19, 21]) and verify the prediction error is within
some margin of the original floating-point implementation.
To improve upon this approach, Minerva considers all possi-
ble combinations and granularities of m and n for each signal
within each network layer, independently.

Figure 7 presents the resulting number of bits (m+n) from
fine-grained bitwidth tuning for each signal on a per-layer
basis for MNIST. The required number of bits is computed
by iteratively reducing the width, starting from a baseline
type of Q6.10 for all signals (shown in Figure 7 as Baseline),
and running the Keras SW models to measure prediction er-
ror. The minimum number of bits required is set to be the
point at which reducing the precision by 1 bit (in either the
integer or fraction) exceeds MNIST’s error confidence inter-
val of ±0.14%.

The datapath lanes process the DNN graph sequentially,
in a time multiplexed fashion. Hence, even though per-layer
optimization provides the potential for further width reduc-
tions, all datapath types are set to the largest per-type re-
quirement (e.g., all weights are 8 bits). While this may seem
wasteful, it is in fact the optimal design decision. With re-
spect to weight SRAM word sizes, the savings from remov-
ing one to two additional bits saves 11% power and 15% area
but requires a larger number of unique SRAMs. Instantiat-
ing two different word sized SRAMs tailored to each layer,
as opposed to having a single 8 bit word SRAM, results in
a 19% increase in area. In a similar vein, it is difficult to
modify the MAC stage logic to allow such fine-grained re-
configuration without incurring significant overheads.

Zeros

Small Non-zeros

Optimal
Bypass
Threshold

Figure 8: Analysis of neuron activities and sensitivity of pre-
diction error to pruning. The vertical line corresponds to the
point our error bound is exceeded.

Using per-type values of QW
2.6, QX

2.4, and QP
2.7 provides a

power saving of 1.6× for MNIST and an average of 1.5×
across all datasets compared to a traditional, global fixed-
point type of Q6.10 as used in [21, 34].

7. SELECTIVE OPERATION PRUNING
Stage 4 of Minerva reduces the number of edges that must

be processed in the dataflow graph. Using empirical analysis
of neuron activity, we show that by eliminating operations
involving small activity values, the number of weight fetch
and MAC operations can be drastically reduced without im-
pacting prediction accuracy.

7.1 Analysis of DNN Activity
Figure 8 shows a histogram of neuron activities over all

of the test vectors for the MNIST dataset. Immediately visi-
ble is the overwhelming number of zero- and near-zero val-
ues. Mathematically, zero-valued activities are insignificant:
guaranteed to have no impact on prediction error. Skipping
operations involving these values can save power both from
avoided multiplications and SRAM accesses. Intuitively, it
also stands to reason that many near-zero values have no
measurable impact on prediction error. Thus, if we loosen
the definition of “insignificant” to encompass this large pop-
ulation small values, we stand to gain additional power sav-
ings with no accuracy penalty.

Stage 4 quantifies the relationship between activity value
and overall error. Our software model elides operations in-
volving any neuron activity below a given threshold and
evaluates the network as if those activities were zero. The
resulting curves in Figure 8 show that even if we remove all
activities with magnitude less than 1.05, the overall predic-
tion error is unaffected. The green pruned-operation curve
tracks the cumulative number of activities smaller than a
given value. A threshold value of 1.05 is larger than ap-

proximately 75% of activities, meaning we can safely prune
three out of every four MAC and SRAM read operations.

While this may sound surprising, there is some intuition
behind this phenomenon. Rectifier activation functions elim-
inate negative products, so we should expect approximately
half of the internal activity values to be zero from this ef-
fect alone. This is largely responsible for the high number
of operations pruned even with a threshold close to zero (the
y-intercept of the pruned-operations curve in Figure 8). Ad-
ditionally, DNNs based on rectifier activation functions are
known to grow increasingly sparse with deeper topologies as
a result of successive decimation [35]. The combination of
these effects results in a remarkable number of insignificant
operations. In addition to quantization, selective pruning fur-
ther reduces power 1.9× for MNIST and an average of 2.0×
over all datasets.

7.2 Predicating on Insignificant Operations
The sparsity patterns in the activities is a dynamic func-

tion of the input data vector. As such, it is not possible to
determine a priori which operations can be pruned. There-
fore, it is necessary to inspect the neuron activities as they
are read from SRAM and dynamically predicate MAC op-
erations for small values. To achieve this, the datapath lane
(Figure 6) splits the fetch operations over two stages. F1
reads the current neuron activation (x j(k− 1)) from SRAM
and compares it with the per-layer threshold (θ(k)) to gen-
erate a flag bit, z j(k), which indicates if the operation can
be skipped. Subsequently, F2 uses the z j(k) flag to predicate
the SRAM weight read (Wi j(k)) and stall the following MAC
(M), using clock-gating to reduce the dynamic power of the
datapath lane. The hardware overhead for splitting the fetch
operations, an additional pipeline stage and a comparator,
are negligible.

8. SRAM FAULT MITIGATION
The final stage of Minerva optimizes SRAM power by

reducing the supply voltage. While the power savings are
significant, lowering SRAM voltages causes an exponential
increase in the bitcell fault rate. We only consider reduc-
ing SRAM voltages as they account for the vast majority of
the remaining accelerator power. To enable robust SRAM
scaling, we present novel co-designed fault mitigation tech-
niques.

8.1 SRAM Supply Voltage Scaling
Scaling SRAM voltages is challenging due to the low

noise margin circuits used in SRAMs, including ratioed
logic in the bitcell, domino logic in the bitline operation, and
various self-timed circuits. Figure 9 shows SPICE simula-
tion results for SRAM power consumption and correspond-
ing bitcell fault rates when scaling the supply voltage of a
16KB SRAM array in 40nm CMOS. The fault rate curve in-
dicates the probability of a single bit error in the SRAM ar-
ray. This data was generated using Monte Carlo simulation
with 10,000 samples at each voltage step to model process
variation effects, similar to the analysis in [28], but with a
modern technology.

SRAM power decreases quadratically as voltage scales
down while the probability of any bitcell failing increases

Target
operating
voltage

Figure 9: SRAM supply voltage scaling trends for fault rate
and power dissipation.

exponentially. If we target an operating voltage of 0.7V,
we could approximately halve the power consumption of the
SRAM and, according to Figure 9, operate with seemingly
negligible fault probability. However, many practical effects
make this fault rate far higher than the ideal case, including
process variation, voltage noise, temperature, and aging ef-
fects. As a result, it is important to be able to tolerate fault
rates beyond this point.

8.2 SRAM Fault Detection
A number of techniques have been described to de-

tect faults arising from voltage scaling, including parity
bits [36], Razor double-sampling [37, 38], Razor transition-
detection [39], and various canary circuits [40]. A single
parity bit enables fault detection simply through inspecting
the read SRAM data. In contrast, Razor and canary circuits
provide fault detection by monitoring delays in the circuits.
None of these solutions correct suspected-faulty SRAM data
but instead indicate when a fault may have occurred. The
overheads of these fault detection methods vary relative to
the protection provided. Parity can only detect an odd num-
ber of errors and provides no information as to which bit(s)
in the word the fault(s) may have affected. In the case of
DNN accelerators, the word sizes are relatively small (Sec-
tion 6); the overhead of a single parity bit is approximately
11% area and 9% power. Thus, anything more than a single
bit is prohibitive.

In this work, we instead employ the Razor double-
sampling method for fault detection. Unlike parity, Razor
monitors each column of the array individually, which pro-
vides two key advantages: (1) there is no limit on the number
of faults that can be detected, and (2) information is avail-
able on which bit(s) are affected. The relative overheads for
Razor SRAM fault detection are modeled in our single-port
weight arrays as 12.8% and 0.3% for power and area respec-
tively [38]. This overhead is modeled in the SRAM charac-
terization used by Aladdin.

8.3 Mitigating Faults in DNNs
Razor SRAMs provide fault detection, not correction.

Correction mechanisms require additional consideration,
and are built on top of detection techniques. In fault-tolerant
CPU applications a typical correction mechanism is to re-
compute using checkpoint and replay [39, 41, 42], a ca-
pability specific to the sophisticated control-plane logic of

Acceptable
Fault Rate

(a) No Protection

Acceptable
Fault Rate

(b) Word Masking

Acceptable
Fault Rate

(c) Bit Masking

Figure 10: The sensitivity of weight matrices to proposed fault mitigation techniques. The figures show the impact faults have
on accuracy when mitigating faults with no protection (a), word masking (b), and bit masking (c). The vertical dashed lines
correspond to the maximum tolerable fault rate that satisfies our 0.14% absolute increase to prediction error bound.

a CPU employing pipeline speculation. In an accelerator,
implementing replay mechanisms incur significant, and in
this case unnecessary, overheads. To avoid this, we use a
lightweight approach which does not reproduce the original
data but instead attempts to mitigate the impact of intermit-
tent bit-flips to the DNN’s model accuracy. This is reminis-
cent of an approach studied for fault-tolerant DSP accelera-
tors [43, 44].

We extend the Keras DNN model to study the impact of
SRAM faults incurred from low-voltage operation on predic-
tion accuracy. Faults are modeled as random bit-flips in the
weight matrix (w). Figure 10 shows how these faults result
in degraded prediction accuracy as an exponential function
of fault probability. Figure 10a shows weight fault tolerance
without any protection mechanism; here, even at relatively
small fault probabilities (< 10−4), the prediction error ex-
ceeds our established error confidence interval. Once the
fault rate goes above 10−3, the model is completely random
with 90% prediction error. This result intuitively follows
from the observations regarding the sparsity of the network
activity in the previous section—if the majority of neuron
outputs are zero, a fault which flips a high-order bit can have
a catastrophic affect on the classification.

To prevent prediction accuracy degradation, we combine
Razor fault detection with mechanisms to mask data towards
zero when faults are detected at the circuit level. Masking
can be performed at two different granularities: word mask-
ing: when a fault is detected, all the bits of the word are set
to zero; and bit masking: any bits that experience faults are
replaced with the sign bit. This achieves a similar effect to
rounding the bit position towards zero. Figure 11 gives a
simple illustration of word masking and bit masking fault
mitigation.

Figure 10b illustrates the benefits of word masking.
Masking the whole word to zero on a fault is equivalent to re-
moving an edge from the DNN graph (Figure 14), preventing
fault propagation. However, there is an associated second-
order effect of neuron activity being inhibited by word mask-
ing when a fault coincides with a large activity in the preced-
ing layer. Compared to no protection, word masking is able
to tolerate an order of magnitude more bitcell faults.

By masking only the affected bit(s), rather than the whole
word, bit masking (Figure 10c) is the strongest solution.

Original Data

Fault Pattern

Corrupt Data

00 X 0 0

Sign bit LSB

0 0 0 1 1 0

0 10 1 0

0 00 1 1 0

1

0 00 0 0 0
Bit MaskingWord Masking

0

Figure 11: Illustration of word masking (faulty weights set
to zero) and bit masking (faulty bits set to sign bit) fault mit-
igation techniques.

Bit masking limits error propagation through the fully-
connected network of a DNN, and its bias towards zero com-
plements the natural sparsity of ReLU-activated networks.
The combination of Razor fault detection and bit masking
fault mitigation allows the weight SRAMs to tolerate 44×
more faults than word masking. With bit masking, 4.4%
of SRAM bitcells can fault without loss of prediction error.
This level of fault tolerance allows us to confidently drop our
SRAM supply voltage by more than 200mV, reducing over-
all power consumption of the accelerator by an additional
2.7× on average and 2.5× for MNIST.

8.4 HW Modifications for Mitigation
Bit masking requires modifications to the weight fetch

stage (F2) of the datapath lane, as illustrated in Figure 6.
The Razor SRAM provides flags to indicate a potential fault
for each column of the array, which are used to mask bits in
the data, replacing them with the sign bit using a row of two-
input multiplexers. The flag bits are prone to metastability,
because (by definition) timing will not be met in the case of
a fault. However, metastability is not a big concern as the
error flags only fan-out into datapath logic, as opposed to
control logic, which can be problematic. The flags are also
somewhat late to arrive, which is accommodated by placing
the multiplexers at the end of the F2 stage (Figure 6).

MNIST Forest Reuters WebKB 20NG Avg
0

50

100

150

200
P
o
w

e
r

(m
W

)
Baseline

Quantization

Pruning

Fault Tolerance

ROM

Programmable

Figure 12: Results from applying the Minerva design flow to five application datasets to investigate generality. Each successive
optimization insures compounding error does not exceed the established threshold. The bars labeled ROM show the benefit of
full customization, wherein weights are stored in ROMs rather than SRAMs. Those labeled programmable show the overhead
each dataset incurs when an accelerator is designed to handle all 5 datasets.

1.7mm

41
0u

m

LANE 0 LANE 1 LANE 2 LANE 3

LANE 4 LANE 5 LANE 6 LANE 7

LANE 8 LANE 9 LANE 10 LANE 11

LANE 12 LANE 13 LANE 14 LANE 15

INTER-LANE ROUTING LOGIC

AC
T

0

W0
SRAM

375um
AC

T
1

AC
T

2

AC
T

3

W1
SRAM

1.
85

m
m

O
N-

CH
IP

 B
US

 IN
TE

RF
AC

E

Single Datapath Lane

Figure 13: Layout of the optimized Minerva accelerator.

9. DISCUSSION

9.1 Sensitivity Analysis of Optimizations
To this point, we focused only on MNIST for clarity in the

presentation of the Minerva design flow and optimizations.
In this section we demonstrate the generality of Minerva
by considering four additional datasets; each is run through
the Minerva design flow described in Sections 4–8. Fig-
ure 12 presents the resulting accelerator designs, indicating
the power reduction of each with respect to each optimiza-
tion stage. On average, Minerva generated DNN accelera-
tors dissipate 8.1× less power, operating at the 10s rather
than 100s of mWs.

While the overall power reduction for each dataset is sim-
ilar, the relative benefits from each optimization differ. For
example, MNIST benefits more from quantization (1.6×)
than WebKB (1.5×) while WebKB is far more amenable
to operation pruning—2.3× versus MNIST’s 1.9×. This is
caused by differences in the application domain and input
vectors.

9.2 Balancing Specialization and Flexibility
With Minerva, we are able to consider the trade-offs of

building a fully-optimized accelerator capable of perform-
ing only one function against building a programmable ac-
celerator able to run any of the datasets using our assumed
network topologies. In Figure 12, the bars labeled ROM in-
dicate the power saved when the weights are stored using
ROM instead of SRAM. This additional optimization further

Table 2: Validation of Minerva compared to a chip layout.

Metrics Minerva Layout
Clock Freq (MHz) 250 250
Performance (Pred/s) 11,820 11,820
Energy (µJ/Pred) 1.3 1.5
Power (mW) 16.3 18.5
Weights (mm2) 1.3 1.3
Activities (mm2) 0.53 0.54
Datapath (mm2) 0.02 0.03

reduces power on average by 1.9×.
We also consider building a configurable accelerator. To

accommodate all datasets, the configurable accelerator’s pa-
rameters are set to the maximum of each individually opti-
mized design (i.e., it supports 20NG’s 21979 input size and
up to 256× 512× 512 nodes per layer). This design con-
sumes an average of 24mW across all datasets and uses 1.4×
and 2.6×more power than dataset specific SRAM and ROM
implementations respectively. The largest overhead intro-
duced by the configurable design relative to building individ-
ual accelerators for each dataset is due to memory leakage.
With selective pruning, the dynamic power remains mini-
mal. The inefficiencies of generality, compared to an accel-
erator tuned to each individual dataset, are reflected in the
bars labeled Programmable in Figure 12.

9.3 Post-Optimization Implementation
The Aladdin analysis used throughout Minerva pro-

vides simulated estimates for fully-implemented accelera-
tors. Therefore, to validate the PPA results and gain practical
insight, we implemented the Minerva-optimized DNN accel-
erator in RTL and place-and-routed it using a 40nm CMOS
technology. The resulting layout is shown in Figure 13.

Table 2 summarizes the implementation results. Com-
pared to Aladdin’s estimates, we find that our simulation re-
sults are within 12% power. The performance difference is
negligible. Considering all pieces modeled by Aladdin, the
simulation results are well within the previously published
7% PPA error. As for the entire design, the true area is larger,
due to a number of things that are not modeled by Aladdin,
namely the bus interface logic. Despite the area mismatch,

average power is not proportionally increased due to rela-
tively low bus activity (i.e., all of the weights are stored lo-
cally rather than continuously streamed over the bus) and
dissipates negligible leakage power. This design is the (?)
in Figure 1. We intend to fabricate a DNN accelerator using
the Minerva design flow as part of a practical demonstration
of the potential for low-power DNN accelerators.

10. RELATED WORK
Early investigations into data type precision focused

purely on the relationship between reduced precision and
prediction error [45, 46]. More recently, with the revival of
DNNs, fixed-point bitwidth reduction has been revisited as
a method to reduce power and area for resource-constrained
computing [47, 48, 13, 49, 21, 17]. Others have proposed
reducing computation and data movement costs with in-situ
processing using memristors [50].

Other works have begun to exploit network sparsity to
save power. Weight sparsity was considered in [51], where
the authors co-design training and prediction to favor weight
sparsity then statically prune the network to remove unim-
portant edges. In [52], the authors focus on compressing
DNN weights, but also propose skipping activities of zero
value, eliding up to 70% of the neuron computations. The
reconfigurable CNN accelerator in [53] clock gates process-
ing elements when activities are zero. In addition to pruning
neurons with zero activities, Minerva also prunes small ac-
tivities. This enables us to eliminate up to 95% of all neuron
computations in the best case with no accuracy loss.

In [54], authors present and evaluate techniques for re-
moving network weights without compromising model ac-
curacy. DNN fault tolerance has also been discussed in [34,
55]; these papers exploit the fact that it is possible to re-train
a DNN to work around a permanent hardware fault. In [34],
the authors found that small sigmoid neural networks were
able to tolerate 12-20 hardware defects without significantly
increasing prediction error after re-training with the static
fault present. This approach was demonstrated to work well
(at least on small networks), but requires the exact fault to be
known, and requires each ASIC to be individually re-trained,
which is not scalable. Our approach mitigates arbitrary fault
patterns, does not require re-training, and is able to tolerate
several orders of magnitude more faults.

While DNNs are arguably the most generally applica-
ble deep learning model, there are others that outperform
them in specific domains. Convolutional Neural Networks
(CNNs) [56], for example, demonstrate state-of-the-art pre-
diction error in many image recognition tasks. CNNs have
some similarities to DNNs, but reuse a smaller number of
weights across the image. Although this tends to stress com-
putation rather than weight storage, we believe the Min-
erva design flow and optimizations should readily extend
to CNNs. Many of the features of DNNs we exploit, such
as neuron output sparsity, hold true for CNNs, and so we
anticipate similar gains to those described here for DNNs.
Spiking Neural Networks (SNNs) [57, 58, 59, 60] are pop-
ular in ASIC designs, largely due to their compact mapping
onto fully-parallel hardware. However, the prediction error
of SNNs is not competitive for the datasets considered here.

Input
Layer

Hidden
Layers

Output
Layer

Neuron
(Node)

Weight
(Edge)

In
pu

t D
at

a

O
ut

pu
t C

la
ss

es

w(1)
x(1)

w(2) x(2)
w(k)

x(k)

Figure 14: The operation of a DNN during the prediction
phase, represented as a directed acyclic graph.

11. CONCLUSION
In this paper we have considered the problem of designing

and building optimized hardware accelerators for deep neu-
ral networks that achieve minimal power consumption while
maintaining high prediction accuracy. Minerva is a holis-
tic, highly automated co-design flow that combines insights
and techniques across the algorithm, architecture, and cir-
cuit levels, enabling low-power accelerators for highly ac-
curate DNN prediction. We present three accelerator op-
timizations that substantially improve the power efficiency
of DNN hardware accelerators. By aggressively optimiz-
ing data types, selectively pruning operations, and reduc-
ing SRAM voltages safely with novel fault mitigation tech-
niques, Minerva is able to reduce the overall power con-
sumption across five diverse ML datasets by an average of
8.1× without impacting prediction error. Minerva makes it
possible to deploy DNNs as a solution in power-constrained
mobile environments.

APPENDIX
A. DEEP NEURAL NETWORKS

Neural networks are a biologically inspired machine
learning method for learning complex functions which ap-
ply multiple nonlinear transformations to an input vector to
obtain a corresponding output vector. Deep neural networks
(DNNs) are defined as networks with one or more hidden
layers [61, 62]. The nonlinear transformations are performed
by consecutive layers of fully connected artificial neurons.
The first layer is called the input layer, and it has a neuron
for each component in the input vector (e.g., each pixel in an
image). The last layer is called the output layer and contains
one neuron for each component in the output vector (e.g.,
the class probabilities for the object contained in the image).
Between input and output layers, there are additional layers
of hidden neurons. The strength of the connection between
neurons is determined by a collection of weights whose val-
ues are tuned to minimize the prediction error of the network
on some training data. Figure 14 depicts a DNN, represented
as a weighted directed acyclic graph. Following the biolog-
ical metaphor, edges and nodes represent synapses and neu-
rons respectively.

Each neuron’s output is obtained by computing a linear
combination of the outputs of the neurons in the previous
layer and then applying a nonlinear function, where the first
layer is fed by the input vector. Mathematically, the output
x j(k) of the jth neuron in the kth layer is

ε j(k) = ∑
i

w j,i(k) · xi(k−1) , (1)

x j(k) = ϕ (ε j(k)) . (2)

Each weight w j,i(k) ∈ R represents the connection strength
between the ith neuron in layer k−1 and the jth neuron in
layer k. The nonlinear function ϕ allows DNNs to become
universal approximators. While many different nonlinear
functions have been proposed, recent research favors the rec-
tifier because of its simplicity and superior empirical perfor-
mance [63].

A neural network is trained by iteratively adjusting
weights to minimize a loss function over labeled data. Train-
ing is often performed using stochastic gradient descent
(SGD), and the loss function is usually a combination of the
prediction error and regularization terms [64]. This process
requires hyperparameter values related to the network topol-
ogy (e.g., number of layers and neurons per layer) and the
configuration of the SGD procedure (e.g., regularization pa-
rameters). These hyperparameter values are often tuned by
selecting, amongst a grid of candidates, values that mini-
mize the prediction error of the corresponding trained DNN.
This can then be used to make predictions on new inputs for
which the corresponding outputs are not available.

Acknowledgments
This work was partially supported by C-FAR, one of six
centers of STARnet, a Semiconductor Research Corporation
program sponsored by MARCO and DARPA, and DARPA
under Contract #: HR0011-13-C-0022. J.M.H.L. acknowl-
edges support from the Rafael del Pino Foundation. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of our sponsors.

References
[1] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward

networks are universal approximators,” Neural Networks, vol. 2,
no. 5, pp. 359–366, 1989.

[2] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, et al., “Deep
neural networks for acoustic modeling in speech recognition: The
shared views of four research groups,” Signal Processing Magazine,
IEEE, vol. 29, no. 6, pp. 82–97, 2012.

[3] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen,
R. Prenger, S. Satheesh, S. Sengupta, A. Coates, and A. Y. Ng, “Deep
speech: Scaling up end-to-end speech recognition,” arXiv:1412.5567
[cs.CL], 2014.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in Advances
in Neural Information Processing Systems 25, pp. 1106–1114, 2012.

[5] R. Collobert and J. Weston, “A unified architecture for natural
language processing: Deep neural networks with multitask learning,”
in Proceedings of the 25th International Conference on Machine
Learning, pp. 160–167, ACM, 2008.

[6] I. Sutskever, O. Vinyals, and Q. V. V. Le, “Sequence to sequence
learning with neural networks,” in Advances in Neural Information
Processing Systems 27, pp. 3104–3112, 2014.

[7] M. Ranzato, G. E. Hinton, and Y. LeCun, “Guest editorial: Deep
learning,” International Journal of Computer Vision, vol. 113, no. 1,
pp. 1–2, 2015.

[8] L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus,
“Regularization of neural networks using dropconnect,” in
International Conference on Machine learning, 2013.

[9] D. Strigl, K. Kofler, and S. Podlipnig, “Performance and scalability
of gpu-based convolutional neural networks,” in Euromicro
Conference on Parallel, Distributed and Network-Based Processing,
pp. 317–324, Feb 2010.

[10] C. Poultney, S. Chopra, and Y. Lecun, “Efficient learning of sparse
representations with an energy-based model,” in Advances in Neural
Information Processing Systems (NIPS 2006), MIT Press, 2006.

[11] J. Hauswald, Y. Kang, M. A. Laurenzano, Q. Chen, C. Li, T. Mudge,
R. G. Dreslinski, J. Mars, and L. Tang, “Djinn and tonic: Dnn as a
service and its implications for future warehouse scale computers,” in
Proceedings of the 42Nd Annual International Symposium on
Computer Architecture, ISCA ’15, pp. 27–40, ACM, 2015.

[12] C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun, and
E. Culurciello, “Hardware accelerated convolutional neural networks
for synthetic vision systems.,” in ISCAS, pp. 257–260, IEEE, 2010.

[13] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun, and O. Temam, “Dadiannao: A machine-learning
supercomputer,” in IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 609–622, Dec 2014.

[14] D. Ciresan, U. Meier, L. Gambardella, and J. Schmidhuber,
“Convolutional neural network committees for handwritten character
classification,” in Document Analysis and Recognition (ICDAR),
2011 International Conference on, pp. 1135–1139, Sept 2011.

[15] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural
networks from overfitting,” Journal of Machachine Learning
Research, vol. 15, pp. 1929–1958, Jan. 2014.

[16] D. C. Cireşan, U. Meier, L. M. Gambardella, and J. Schmidhuber,
“Deep, big, simple neural nets for handwritten digit recognition,”
Neural Computation, vol. 22, pp. 3207–3220, Dec. 2010.

[17] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” in Proceedings of The
32nd International Conference on Machine Learning,
pp. 1737–1746, 2015.

[18] J. K. Kim, P. Knag, T. Chen, and Z. Zhang, “A 640m pixel/s 3.65mw
sparse event-driven neuromorphic object recognition processor with
on-chip learning,” in Symposium on VLSI Circuits, pp. C50–C51,
June 2015.

[19] J. Kung, D. Kim, and S. Mukhopadhyay, “A power-aware digital
feedforward neural network platform with backpropagation driven
approximate synapses,” in ISPLED, 2015.

[20] J. Arthur, P. Merolla, F. Akopyan, R. Alvarez, A. Cassidy,
S. Chandra, S. Esser, N. Imam, W. Risk, D. Rubin, R. Manohar, and
D. Modha, “Building block of a programmable neuromorphic
substrate: A digital neurosynaptic core,” in The International Joint
Conference on Neural Networks (IJCNN), pp. 1–8, June 2012.

[21] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“Diannao: A small-footprint high-throughput accelerator for
ubiquitous machine-learning,” in ASPLOS, pp. 269–284, ACM, 2014.

[22] S. K. Esser, A. Andreopoulos, R. Appuswamy, P. Datta, D. Barch,
A. Amir, J. Arthur, A. Cassidy, M. Flickner, P. Merolla, S. Chandra,
N. B. S. Carpin, T. Zimmerman, F. Zee, R. Alvarez-Icaza, J. A.
Kusnitz, T. M. Wong, W. P. Risk, E. McQuinn, T. K. Nayak,
R. Singh, and D. S. Modha, “Cognitive computing systems:
Algorithms and applications for networks of neurosynaptic cores,” in
The International Joint Conference on Neural Networks (IJCNN),
2013.

[23] E. Stromatias, D. Neil, F. Galluppi, M. Pfeiffer, S.-C. Liu, and
S. Furber, “Scalable energy-efficient, low-latency implementations of
trained spiking deep belief networks on spinnaker,” in International
Joint Conference on Neural Networks, pp. 1–8, IEEE, 2015.

[24] “Keras: Theano-based deep learning library.” http://keras.io, 2015.

[25] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks, “Aladdin: A pre-rtl,
power-performance accelerator simulator enabling large design space
exploration of customized architectures,” in Proceeding of the 41st

Annual International Symposium on Computer Architecuture, ISCA
’14, (Piscataway, NJ, USA), pp. 97–108, IEEE Press, 2014.

[26] J. A. Blackard, Comparison of Neural Networks and Discriminant
Analysis in Predicting Forest Cover Types. PhD thesis, Colorado
State University, Fort Collins, CO, USA, 1998. AAI9921979.

[27] A. Cardoso-Cachopo, Improving Methods for Single-label Text
Categorization. PhD thesis, Instituto Superior Tecnico, Universidade
Tecnica de Lisboa, 2007.

[28] A. Agarwal, B. Paul, S. Mukhopadhyay, and K. Roy, “Process
variation in embedded memories: failure analysis and variation
aware architecture,” IEEE Journal of Solid-State Circuits, vol. 40,
pp. 1804–1814, Sept 2005.

[29] Y. Lecun and C. Cortes, “The MNIST database of handwritten
digits.” http://yann.lecun.com/exdb/mnist/.

[30] D. D. Lewis, “Reuters-21578 text categorization collection data set.”
https://archive.ics.uci.edu/ml/datasets/Reuters-
21578+Text+Categorization+Collection.

[31] M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell,
K. Nigam, and S. Slattery, “Learning to extract symbolic knowledge
from the world wide web,” in Proceedings of the Fifteenth
National/Tenth Conference on Artificial Intelligence/Innovative
Applications of Artificial Intelligence, AAAI ’98/IAAI ’98,
pp. 509–516, 1998.

[32] T. Joachims, “A probabilistic analysis of the rocchio algorithm with
tfidf for text categorization,” in ICML, pp. 143–151, 1997.

[33] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian
optimization of machine learning algorithms,” in Neural Information
Processing Systems, 2012.

[34] O. Temam, “A defect-tolerant accelerator for emerging
high-performance applications,” in ISCA, pp. 356–367, June 2012.

[35] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in International Conference on Artificial Intelligence and
Statistics, pp. 315–323, 2011.

[36] S. Jahinuzzaman, J. Shah, D. Rennie, and M. Sachdev, “Design and
analysis of a 5.3-pj 64-kb gated ground sram with multiword ecc,”
IEEE Journal of Solid-State Circuits, vol. 44, pp. 2543–2553, Sept
2009.

[37] S. Das, D. Roberts, S. Lee, S. Pant, D. Blaauw, T. Austin,
K. Flautner, and T. Mudge, “A self-tuning dvs processor using
delay-error detection and correction,” IEEE Journal of Solid-State
Circuits, vol. 41, pp. 792–804, April 2006.

[38] J. Kulkarni, C. Tokunaga, P. Aseron, T. Nguyen, C. Augustine,
J. Tschanz, and V. De, “4.7 a 409gops/w adaptive and resilient
domino register file in 22nm tri-gate cmos featuring in-situ timing
margin and error detection for tolerance to within-die variation,
voltage droop, temperature and aging,” in ISSCC, pp. 1–3, Feb 2015.

[39] D. Bull, S. Das, K. Shivashankar, G. S. Dasika, K. Flautner, and
D. Blaauw, “A power-efficient 32 bit arm processor using
timing-error detection and correction for transient-error tolerance and
adaptation to pvt variation,” IEEE Journal of Solid-State Circuits,
vol. 46, no. 1, pp. 18–31, 2011.

[40] A. Raychowdhury, B. Geuskens, K. Bowman, J. Tschanz, S. Lu,
T. Karnik, M. Khellah, and V. De, “Tunable replica bits for dynamic
variation tolerance in 8t sram arrays,” IEEE Journal of Solid-State
Circuits, vol. 46, pp. 797–805, April 2011.

[41] K. Bowman, J. Tschanz, S. Lu, P. Aseron, M. Khellah,
A. Raychowdhury, B. Geuskens, C. Tokunaga, C. Wilkerson,
T. Karnik, and V. De, “A 45 nm resilient microprocessor core for
dynamic variation tolerance,” IEEE Journal of Solid-State Circuits,
vol. 46, pp. 194–208, Jan 2011.

[42] S. Das, C. Tokunaga, S. Pant, W.-H. Ma, S. Kalaiselvan, K. Lai,
D. Bull, and D. Blaauw, “Razorii: In situ error detection and
correction for pvt and ser tolerance,” IEEE Journal of Solid-State
Circuits, vol. 44, pp. 32–48, Jan 2009.

[43] P. Whatmough, S. Das, D. Bull, and I. Darwazeh, “Circuit-level
timing error tolerance for low-power dsp filters and transforms,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 21, pp. 989–999, June 2013.

[44] P. Whatmough, S. Das, and D. Bull, “A low-power 1-ghz razor fir
accelerator with time-borrow tracking pipeline and approximate error
correction in 65-nm cmos,” IEEE Journal of Solid-State Circuits,

vol. 49, pp. 84–94, Jan 2014.

[45] J. Holt and T. Baker, “Back propagation simulations using limited
precision calculations,” in The International Joint Conference on
Neural Networks (IJCNN), vol. ii, pp. 121–126 vol.2, Jul 1991.

[46] S. Sakaue, T. Kohda, H. Yamamoto, S. Maruno, and Y. Shimeki,
“Reduction of required precision bits for back-propagation applied to
pattern recognition,” IEEE Transactions on Neural Networks, vol. 4,
pp. 270–275, Mar 1993.

[47] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed of
neural networks on cpus,” in Deep Learning and Unsupervised
Feature Learning Workshop, NIPS, 2011.

[48] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “Enerj: Approximate data types for safe and general
low-power computation,” in Proceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’11, (New York, NY, USA), pp. 164–174, ACM, 2011.

[49] Q. Zhang, T. Wang, Y. Tian, F. Yuan, and Q. Xu, “Approxann: An
approximate computing framework for artificial neural network,” in
Proceedings of the Design, Automation & Test in Europe Conference
& Exhibition, DATE, (San Jose, CA, USA), pp. 701–706, 2015.

[50] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian,
J. Strachan, M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A
convolutional neural network accelerator with in-situ analog
arithmetic in crossbars,” in ISCA, 2016.

[51] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in Advances in Neural
Information Processing Systems, pp. 1135–1143, 2015.

[52] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. Horowitz, and
W. Dally, “Eie: Efficient inference engine on compressed deep neural
network,” in ISCA, 2016.

[53] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze, “Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolutional
neural networks,” in IEEE International Solid-State Circuits
Conference, pp. 262–263, 2016.

[54] Y. L. Cun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in
Advances in Neural Information Processing Systems, pp. 598–605,
Morgan Kaufmann, 1990.

[55] J. Deng, Y. Fang, Z. Du, Y. Wang, H. Li, O. Temam, P. Ienne,
D. Novo, X. Li, Y. Chen, and C. Wu, “Retraining-based timing error
mitigation for hardware neural networks,” in IEEE Design,
Automation and Test in Europe (DATE), March 2015.

[56] Y. LeCun and Y. Bengio, “Convolutional networks for images,
speech, and time series,” The handbook of brain theory and neural
networks, vol. 3361, no. 10, 1995.

[57] J. M. Brader, W. Senn, and S. Fusi, “Learning real-world stimuli in a
neural network with spike-driven synaptic dynamics,” Neural
computation, vol. 19, no. 11, pp. 2881–2912, 2007.

[58] S. Ghosh-Dastidar and H. Adeli, “Spiking neural networks,”
International journal of neural systems, pp. 295–308, 2009.

[59] W. Maass, “Networks of spiking neurons: the third generation of
neural network models,” Neural networks, vol. 10, no. 9,
pp. 1659–1671, 1997.

[60] M. Tsodyks, K. Pawelzik, and H. Markram, “Neural networks with
dynamic synapses,” Neural computation, vol. 10, no. 4, pp. 821–835,
1998.

[61] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436–444, 2015.

[62] Y. Bengio, “Learning deep architectures for ai,” Foundations and
Trends in Machine Learning, vol. 2, pp. 1–127, Jan. 2009.

[63] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in ICML, vol. 30, 2013.

[64] C. M. Bishop, Neural Networks for Pattern Recognition. New York,
NY, USA: Oxford University Press, Inc., 1995.

