
On PSL Properties Re-use in SoC Design Flow
Based on Transaction Level Modeling

Nicola Bombieri
STMicroelectronics
Agrate-Milano, Italy

nicola.bombieri@st.com

Andrea Fedeli
STMicroelectronics
Agrate-Milano, Italy
andrea.fedeli@st.com

Franco Fummi
University of Verona

Verona, Italy
franco.fummi@univr.it

Abstract

In this paper we present some key concepts concerning
the Properties Specification Language (PSL) utilization in
a system level verification flow for System on Chip (SoC)
designs. As Transaction Level Modeling (TLM) is the de-
facto reference model for SoC design flow, we evaluate PSL
adoption in TLM context. How to save time and effort
in the verification phase during system development steps
and how to overcome global system verification limitations
through a compositional approach are discussed. Two PSL-
based techniques, ”properties re-use” and ”properties re-
finement”, are described and compared in terms of refine-
ment effort and simulation speed delay.

1. Introduction

As RTL design is a logic implementation methodology,
it is simply not suitable for designing a multi-processor sys-
tem with complex protocols, and its relatively low level
of abstraction makes its use in IP integration and evalu-
ation methodologies tedious, time consuming, and error
prone [1]. Consequently, SoC design with an RTL inte-
gration platform will result in an increasing design failure
rate. For these reasons, functional specification and perfor-
mance analysis are becoming a challenge easily bringing to
expensive re-spins [2].

Electronic System Level (ESL) design is a SoC design
performed at a level of abstraction above RTL. ESL design
enables functional verification and performance analysis of
complex architectures and protocols very early during sys-
tem development. At this high level of abstraction, a de-
signer can run large numbers of test cases to identify and
fix corner case problems that are often discovered only at
system integration, too late to safely operate corrections in
short times. With an ESL design methodology, HW/SW
partitioning can be paired with up-front performance analy-
sis that identifies bottlenecks long before implementation.
The need for additional processing capacity and deployment
of dedicated hardware accelerators is identified while there
is still time available to explore different ways to meet re-
quirements.

SystemC language [3] well supports ESL design as it sat-
isfies all requirements of data timing, system concurrency
and communication characteristics necessary to model and
evaluate performance of real hardware. SystemC models
can be equipped with parametric data types that enable
analysis of system performance (data throughput, datapath
latencies, and power consumption) as well as utilization of
processing units, memory and system buses, for different
values of the parametrized quantities.

Using SystemC, the designer can model the entire sys-
tem, hardware and software, in terms of both functionality
and timing in the early stages of design flow. The SoC archi-
tecture is designed with SystemC IP blocks connected via
Application Program Interfaces (API’s) to implementation-
independent high-level bus models. These architectural
models are simulated using system type transactions as
function calls and packet transfers, and are thus called
Transaction Level Models (TLM) [4].

Using TLM, the architecture is designed and verified in
terms of functionality as characterized by high level block
input/output events and inter-block data transfers. System
IP components and buses may be modified or replaced in
an easier way than at RTL and simulated more than 1,000
times faster. Therefore, designers can quickly optimize the
design to achieve the best tradeoff. The transactional model
of the resulting optimized architecture constitutes an exe-
cutable specification that drives the entire subsequent RTL
implementation. Thus, a TLM-based design flow provides
the design flow with a series of steps that starting from an
abstract system description evolves toward more detailed
implementations till it gets to RTL. Every step of design
flow that involves a change in the system design needs a
verification check, in order to preserve the golden model
functionalities ascertained at the preceding step.

The verification activity, therefore, involves three main
phases: first, the design implemented at the higher abstrac-
tion level is validated considering the system functional-
ities; then, design changes following architecture explo-
ration and performance analysis are validated taking into
account the temporal behavior. Finally, whenever a step of
the design flow implies a change in the system design, a
further verification check is required in order to preserve

Proceedings of the Sixth International Workshop on Microprocessor Test and Verification (MTV'05)
0-7695-2627-6/05 $20.00 © 2005

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on February 14,2010 at 07:17:24 EST from IEEE Xplore. Restrictions apply.

RTL

Cycle
Accurate

Bus arbitration modelTLM_MicroarchitectureTransferTL1

Programmer’s
View

(Timed/Untimed)

PE assembly modelTLM_ArchitectureTransactionTL2

Communicating
Processes

(Timed/Untimed)

Specific ModelMessageTL3

Algorithmic

Adam Donlin
Xilinx Research

Labs.

Caj-Gajski
Univ. of California

Irvine

Frank Ghenassia
STMicroelectronics

Unicad

OCP,
CoWare,
Synopsys

Level

Figure 1. TLM Levels matching.

the golden model functionalities ascertained at the preced-
ing step.

Several papers regarding functional verification based on
simulation for TLM design flows have been presented [5, 6,
7]. Assertion-Based Verification (ABV) using the PSL lan-
guage [16] is currently gaining acceptance as an essential
method for functional verification of SoC [7]. However, to
the best of our knowledge, there are no works in the litera-
ture precisely related to exploiting PSL properties re-use for
functional equivalence checking in TLM based SoC design
flow. In the present paper we depict a verification method-
ology based on PSL in order to guarantee functional proper-
ties re-use and to overcome global system verification limi-
tations.

The experimental results show that the price to pay
adopting this approach, that is an additional overhead in
simulation time, is acceptable in comparison with saved ef-
fort for properties refinement and (and avoided refinement
mistakes risks that manual transformation comes along
with). We give emphasis to the additional overhead sim-
ulation and saved translation effort trade-off more than to
property coverage measurements or how many properties
are needed to provide a good coverage to guarantee a rea-
sonable certainty of system correctness.

The paper is organized as follow: Section 2 summarizes
the most important concepts of TLM. Section 3 presents
the verification methodology and the adopted compositional
approach. Section 4 presents a case study. Concluding re-
marks and future plans are summarized in Section 5.

2. Transaction Level Modeling

TLM is a high-level approach to digital systems mod-
eling where details of communication among modules are
separated from details of implementation of functional units
or details of communication architecture [8]. Transaction-
level is a design and verification abstraction above RTL, that

more emphasis on functionality of data transfer (what data
are transferred to, to which location, and from what loca-
tion) than on their actual implementations (e.g. on actual
protocol used for data transfer).

In spite of its name, transaction-level does not denote
a single level of description; rather, it refers to a group of
abstraction levels, each varying in the degree of functional
or temporal details used and expressed.

2.1. TLM Levels

So far, a common agreement on terminology for TLM
levels is still missing. Different interpretations (and termi-
nology for the same concepts) have been proposed by both
industry and academia [4, 9, 10, 15]. Main contributions are
matched in Figure 1. Factoring out common elements, key
concepts are:

1. To implement a system at higher level means to imple-
ment the system in a more abstract way, that is to leave
implementation details in order (mainly) to speed-up
simulation for functional verification purposes.

2. To implement a system at lower level means to add im-
plementation details to the system in order to simulate
it in a more accurate way (for performance analysis
purpose).

Main use and features of every TLM level are summa-
rized in Figure 2, according to common lines of different
proposals reported in Figure 1.

2.2. SystemC 2.1 for TLM

SystemC, as a broad-range level of abstraction model-
ing language, well addresses TLM. However, lack of estab-
lished standards and methodologies means that each orga-
nization adopting TLM has to invent its own usage method-
ologies and API’s. In addition to this redundant cost, these

Proceedings of the Sixth International Workshop on Microprocessor Test and Verification (MTV'05)
0-7695-2627-6/05 $20.00 © 2005

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on February 14,2010 at 07:17:24 EST from IEEE Xplore. Restrictions apply.

Clock-accurate protocols mapped to the chosen HW interfaces and
bus structure.
Interface pin are hidden.
Byte-accurate data Transactions have internal structure (protocols,
data, clock).
Transactions map directly to bus cycles.
Parametizable to model different bus protocol and signal interfaces.

Detailed analysis and low level SW
development.
Modeling clock-accurate interfaces for
abstract simulation models of IP blocks
such as embedded processors.
Clock-accurate performance analysis.

TL1

Mapping ideal architecture into resource-constrained world.
Memory/Register map accurate.
Event driven simulation
Bit-width and transfer-size constrained data types to allow mapping
to bus bursts or fragments of bursts.

Architectural performance and detailed
behavior analysis.
HW/SW partitioning and co-development.

TL2

Implementation architecture-abstract.
Untimed functionality modeling.
Event-driven simulation semantics.
Point-to-point Initiator-Target connection.
Abstract data types.

Executable specifications and first level of
functional partitioning of data and control.
System proof of concepts.
Functional verification with fast simulation.

TL3

FeaturesUseLevel

Figure 2. TLM Levels use and features.

methodologies easily differ, making IP exchange and reuse
more difficult.

OSCI Working Group has recently released a TLM stan-
dard [11] to rigorously define implementation rules; besides
implementation improvements, we want to exploit this stan-
dard for PSL-based functional verification. We will take
that standard as a guideline to map different levels and be-
haviors of SoC components [11].

3. PSL-based Verification Methodology

A realistic TLM-based SoC design flow usually com-
bines both top-down and bottom-up approaches: whilst go-
ing top-down, starting from a set of specifications imple-
mented at algorithmic level (TLM level 3), implementation
details are added going through TLM levels downward to
RTL; whilst moving bottom-up, re-use of already designed
and verified components is exploited to reduce design ef-
fort. As a consequence, the verification phase throughout
SoC design flow performs both reference model validation
and equivalence verification between reference model and
refined(abstracted) model. That is, equivalence verification
checks that different representations of the same system
portion are kept consistent whilst moving down (refining)
or moving up (abstracting) to get to the final design whilst
performing architecture exploration, refinement, and blocks
assembly.

3.1. PSL-properties in TLM context

The verification methodology exploits PSL [16] for
properties specification in TLM context and it aims at three
different goals:

1. To validate design functionalities at higher implemen-
tation level (i.e., TLM level 3).

2. To validate lower level implementation designs whilst
carrying out architectural choices and performance
analysis (architecture exploration).

3. To check that different representations of the same sys-
tem functionalities are kept consistent whilst moving
down (refining) or moving up (abstracting) to get to
the final design.

The first goal can be reached expressing a number of PSL
properties to provide a good enough coverage to guarantee
design functionalities correctness. At this abstraction level,
design implementation is untimed (see Figure 2). Function-
alities are checked regardless time, delays and throughput.
For this reason, PSL properties are exploited only as asser-
tions, regardless PSL temporal layer. For example, a func-
tional property checks if an IP slave implementing an in-
teger square root produces correct results regardless how
many time it spends and which communication protocol is
shared with its master (Figure 3).

// TLM level 3 property:
// if root arg is p and its integer root is q, then
// p-2q-1<q*q<=p;

vunit root in tolerance {
...
assert always (p>0 -> p*p ≤ q && p*p > p-2*q-1)
}

Figure 3. Functional property example.

The second goal can be reached checking a set of
PSL properties to provide a good enough coverage to
guarantee design correctness, taking into account tempo-
ral constraints, communication protocols, time delays and
throughput. In this case, properties exploit all PSL power,
involving complex temporal relations between signals. Fig-
ure 4 shows an example: considering delay in producing

Proceedings of the Sixth International Workshop on Microprocessor Test and Verification (MTV'05)
0-7695-2627-6/05 $20.00 © 2005

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on February 14,2010 at 07:17:24 EST from IEEE Xplore. Restrictions apply.

integer square root at TLM level 1, the property checks if
root IP is able to produce a result for any received input.
Note that the property does not check square root numerical
correctness.

// TLM level 1 property:
// an output value is eventually calculated (result
// is ready) for any received input (number is ready)

vunit root causality more ins than outs {
...
assert G{{number is ready(0);number is ready(0)[->]}

&& {!result is ready(0)[*]}}(false);
}

Figure 4. Temporal property example.

The third goal can be achieved checking functionalities
expressed for the first goal on the refined implementation.
Two description will be then considered functionally equiv-
alent if they satisfy at least the same properties set. Mean-
ingfulness of this equivalence criterion relies in meaningful-
ness of property set, which we intend to measure by means
of a property coverage metrics, as defined in [13].

Property sharing between two descriptions to be com-
pared can be performed in two different ways: by direct
reuse if the interface is kept unchanged during the refine-
ment step, and by property refinement if interface has been
reshaped. The first solution is obviously the best as let us
save properties translation time avoiding translation mis-
takes.

Note that by using a common property specification lan-
guage (PSL) from the highest TLM level throughout RTL,
we can use a common coverage metric (the property cover-
age metric) to validate and to verify model as well as prop-
erties re-use.

PSL-based verification methodology relies on the substi-
tution principle, a compositional approach that is explained
in the next section. Main motivation for that are:

• Functional properties re-use. As explained before, we
aim to save functional property refinement time and effort.

• Easier verification. Checking equivalence of two whole
system descriptions is by far out of capacity of any tech-
nique applicable today. System level simulations are usu-
ally aimed at checking very specific working scenarios, as
simulation of whole system is typically too expensive even
taking into account a very rough representation of physical
aspects.

• Design and verification modularity necessity. The modu-
larity feature plays a fundamental role in SoC design flow
as it allows design and verification teams independence. In
many organizations, there are more distinct groups of engi-
neers. One group understands the application domain very
well but it is not particularly expert in C++ nor interested
in details of TLM transport level or signal level communi-
cation protocol. Another group does not necessarily under-
stand application domain but it does know the underlying
protocol and it is expert in C++ techniques needed to model
them. Because of this division in skills and focuses, it is

TLM level i
block

I1 I2 ….. In

O1 … Om

Transactor

O’1 … O’m

I1

status write (Address a, Data d)
{ . . .

/* Reference block

implemented at

TLM level i */

return a_status; }

I2 I’1

status write (Address a, Data d)
{ …

request.a = a;

request.d = d;

request.type = WRITE;

response = transport (request);

return response.status; }

I’2

I’1 I’2 ….. I’n

Resp transport (Request r)
{ …

/* Block
implemented at
TLM level i - 1 */

return a_response; }

O1

In

O’1

…

Om

…

O’m
…

I’n

…

Reference
block

Refined
block

TLM level
i-1 block

Figure 5. Transactor example

useful to define a protocol specific boundary between these
groups.

3.2. The substitution principle

In order to allow PSL properties re-use, easier verifica-
tion, and modularity necessity, we present an essentially
compositional approach: by keeping the interface between
one component and the rest of the unaltered system , de-
sign and verification are eased by large when moving from
a level of abstraction downward to the immediately less ab-
stract level of description.

TLM API’s are unchanged while moving through design
refinement, exploiting the transactor concept. A transactor
works as a translator from a function call to a sequence of
statements implemented at a lower abstraction level (Fig-
ure 5). For example, between a TLM level 1 block and a
RTL block a transactor gets an abstract request from the
channel (TLM side) and waits for an opportunity to send
this out over RT level bus by means of a RTL signals se-
quence. It then waits until it receives a response from RTL
bus, at which point it puts the abstract response back into
the channel.

Then, we check equivalence between two bordering lev-
els of a SoC design implementation in more easier steps.

A SoC design implemented at TLM level i is composed
by a set of communicating and concurrent blocks. An exam-
ple is showed in Figure 6, where block A is Master for Slave
block B and B is Master for Slave block C as well. System
blocks communicate by TLM level i communication inter-
faces (TLM API’s) in row 1 of Figure 6. As a consequence
of refinement, block (C) and the corresponding component
implemented at lower level undergoes equivalence verifica-
tion. As explained before, we can check blocks functional
equivalence with two different techniques. Next Subsection
presents and compares these techniques in a more detailed
way.

After a positive response, the original block can be sub-
stituted by the “equivalent” block whilst the remaining sys-
tem does not change (second row of Figure 6). Note that

Proceedings of the Sixth International Workshop on Microprocessor Test and Verification (MTV'05)
0-7695-2627-6/05 $20.00 © 2005

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on February 14,2010 at 07:17:24 EST from IEEE Xplore. Restrictions apply.

if
TLM_i

Block
C

TLM_i

Block
B

TLM_i
if

TLM_i

Block
C

TLM_i - 1
if

TLM_i -1

Block
A

TLM_i
if

TLM_i

Block
C

TLM_i - 1

Block
B

TLM_i - 1

Block
A

TLM_i - 1

= TLM level i
communication

interface

= transactor
Master TLM_i
Slave TLM_i-1

Block
A

TLM_i
if

TLM_i
if

TLM_i

Block
B

TLM_i
if

TLM_i

Block
A

TLM_i
if

TLM_i

if
TLM_i -1

if
TLM_i -1

T

TT’T

Block
A

TLM_i
if

TLM_i

Block
C

TLM_i - 1

Block
B

TLM_i - 1
if

TLM_i -1
if

TLM_i -1T

Block
C

TLM_i - 1

Block
B

TLM_i - 1
if

TLM_i -1
if

TLM_i -1T
if

TLM_i -1 TT’

Block
A

TLM_i - 1

Block
C

TLM_i - 1

Block
B

TLM_i - 1
if

TLM_i -1
if

TLM_i -1
if

TLM_i -1

T T’

1

2

3

4

5

6

= transactor
Master TLM_i-1

Slave TLM_i

Figure 6. Substitution principle example.

this is possible using transactor T that bridges gap between
different abstraction levels of B and C.

This substitution principle allows on one side to use at
any simulation step block description mostly suited to that
simulation needs, with more or less details. On the other
side it reduces verification task complexity by a “divide et
impera” approach, giving a chance to verify even very com-
plex systems that would not be treatable if taken as a whole.

Third row of Figure 6 illustrates verification and substi-
tution step concerns block B. Note that transactor T’ is in-
serted for B-C blocks communication. This allows applica-
tion of modularity substitution and properties re-use verifi-
cation techniques as explained in next section. By using the
properties translation technique, instead, T’ insertion can
be avoided, jumping to row four.

As step by step all system blocks undergo the same pro-
cedure (fifth and sixth rows of Figure 6), system level verifi-
cation is achieved in a compositional way, by verifying and
debugging each component refinement, and equivalence of
interconnects separately.

In SoC design flow, some system parts (i.e., SW side
components) do not need to be refined. Their initial high
level implementation does not change during the whole de-
sign flow. SoC design becomes therefore a hybrid represen-
tation where transactors bridge gaps between components
implemented at different levels of abstraction interacts.

// TLM level i write property:
always ((a ≥ LOW && a ≤ HIGH && d == DATA)

→ eventually (a status == SUCCESS))

// TLM level i-1 (refined) write property:
always ((r.a ≥ LOW && r.a ≤ HIGH && r.d == DATA

&& r.type == WRITE)
→ eventually (response.status == SUCCESS))

Figure 7. Property refinement example.

3.3. Properties re-use

Matching API’s of reference block with API’s of its re-
fined version is the starting point of properties re-use tech-
nique. Figure 5 shows an example of this mechanism.

Exactly the same property is expected to be checkable
both in reference block and in the refined block thanks to
transactors usage, since interfaces are kept after the refine-
ment step (i.e., see rows 1-2 of Figure 6 for block C refine-
ment). However, the twofold transactor employment is also
the main drawback cause of this approach, since it increase
simulation time.

Properties re-use technique is always applicable follow-
ing substitution principle methodology. In fact, a complete
system simulation is performed before taking out transac-
tors (fourth row of Figure 6).

Simulation time can be reduced by verifying system de-
sign without transactors and translating properties set, as
explained in the next Subsection.

3.4. Properties refinement

The initial set of properties is translated for the refined
block at a lower abstract level. Figure 7 shows an example
of property translation. The first property holds if a sim-
ple write() statement belonging to TLM level i description
successfully executes (see Figure 5). Note that function pa-
rameters and returned value constitute the I/O block ele-
ments. Corresponding refined property expresses the same
meaning even if it acts on a different block pattern.

In the simple example above one property matches an-
other property. However, a more complex property could be
translated in a set of more refined properties. In that case,
the first holds if and only if all the refined properties hold.

Translation process transforms the initial property set
into a refined property set and it follows rules depen-
dent on architectural choices (communication protocol,
etc.) made on a refinement step. That process could be
(semi)automatically made following the TLM standard [11]
that imposes specific translation rules.

Therefore, equivalence between two blocks is restricted
to a set of formal properties and its quality strictly depends
on properties completeness as well as properties checking
methodologies [12, 13].

4. Case Study

The key concepts expressed in this paper have emerged
by analyzing the face recognition system, a case study de-

Proceedings of the Sixth International Workshop on Microprocessor Test and Verification (MTV'05)
0-7695-2627-6/05 $20.00 © 2005

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on February 14,2010 at 07:17:24 EST from IEEE Xplore. Restrictions apply.

signed by STMicroelectronics (Central R&D of Agrate-
Milano, Italy), for the SYMBAD project [14]. SYMBAD
has led to an integrated design and verification methodol-
ogy for re-configurable systems.

Main problems found in face recognition design flow are
the following:

• No implementation and verification modularity. API’s
have been re-implemented at every design flow step.

• No verification modularity. Almost all system refine-
ment steps could be checked by simulation and simula-
tion could start only after the whole system refinement.

• PSL properties formulation effort spent only for last
step of verification.

The standard TLM proposed by OSCI Work Group has
been applied in real case study above.

Table 1 summarizes statistics of Face Recognition
System code concerning total number of SystemC
SC MODULE, processes, SC PORT and code rows at every
abstraction level. Note that at every refinement step both
SC MODULE and SC PORT numbers grow, as well as
code rows, due to implementation hierarchy and HW/SW
partitioning.

Level SC MODULE# Proc.# SC PORT# C. Rows#

1 15 14 14 5125
2 17 16 18 5977
3 18 16 19 6134
4 21 23 19 8619

Table 1. Face Recognition System features.

All implementation problems concerning modularity
have been overcome by using OSCI convenience and TLM
interfaces. A standard extension has been mandatory as its
first release does not completely cover higher TLM level.

As SystemC language flavor is currently under discus-
sion inside IEEE PSL standardization committee (IEEE-
1850), to address SystemC description verification we fol-
low essentially the approach described in [7] to perform
PSL→SystemC checker translation.

Properties re-use and refinement techniques have been
applied to check div, distance and root blocks. A set of 19
properties has been created for golden model (TLM level
3). First, all properties have been re-used in RTL system
description, measuring system simulation time delay. Then,
properties have been manually translated and checked in the
system without transactors. Table 2 summarizes simula-
tion times (in seconds) comparing the presented techniques
(third and fourth columns) in respect to the original system
with no properties (second column). Third and fourth rows
point out real cost in terms of time delay spent adopting
properties re-use approach to avoid their translation effort.

Properties check increases very marginally simulation
time: 4.8% at TLM level 3, 5.6% at RTL and 3.8% at RTL
with transactors. On the contrary, simulation time remark-
ably grows (29.7%) adding transactors to RTL implemen-

Level Face Face + PSL Face + PSL
(s) re-use (s) translation (s)

TLM level 3 0.205 0.215 -
RTL 18.272 - 19.296

RTL + transactors 23.692 24.593 -

Table 2. Face Rec. System simulation times.

tation. However, in our opinion, transactors utilization ap-
proach is acceptable as it saves properties translation effort
and avoids potential translation mistakes.

5. Concluding Remarks

PSL utilization in a TLM-based verification flow for SoC
designs has been analyzed in this paper. The substitution
principle, a compositional approach that saves time and ef-
fort in the design implementation and verification allowing
the properties re-use technique has been proposed. This ap-
proach and the properties refinement alternative have been
applied on a real case study and the obtained experimental
results have been compared. Even if the former increases
system simulation time, it is better since it avoids tedious
and expensive properties translation work and its mistakes
risk.

References
[1] J. Krasner. “Embedded Software Development Issues and Challenges”. Em-

bedded Market Forecaster, July 2003.
[2] A. Ziv. “Functional Verification and the SoC Challenge”. International Sem-

inar on Application-Specific Multi-Processor SoC, MPSOC 2003.
[3] http://www.systemc.org
[4] L. Cai, D.Gajski. “Transactional Level Modeling: An Overview”. Proc. of

IEEE Int. Conf. On Hardware/Software Codesign & System Synthesis, 2003,
pp. 19-24.

[5] C.Norris Ip,S.Swan. “A Tutorial Introduction on the New SystemC Verifica-
tion Standard”. Proc.of IEEE DATE, 2003.

[6] D.S. Brahme, S. Cox, J. Gallo, M. Glasser, W. Grundmann, C. Norris Ip, W.
Paulsen, J.L. Pierce, J. Rose, D. Shea, and K. Whiting. “The Transaction-
Based Verification Methodology”. Technical report #CDNL-TR-2000-0825.
Cadence Berkeley Labs, August 2000.

[7] A.Dahan, D. Geist, L. Gluhovsky, D. Pidan, G. Shapir, Y. Wolfsthal, L. Be-
nalycherif, R. Kamdem, and Y. Lahbib. “Combining System Level Modeling
with Assertion Based Verification”. Proc. of IEEE ISQED, pp. 310-315, 2005.

[8] T.Grotker, S. Liao, G. Martin, S. Swan. “System Design with SystemC”.
Kluwer Academic Publishers, 2002.

[9] F. Ghenassia, et al. “Using Transactional Level Models in a SoC Design
Flows”. Kluwer Academic Publishers, 2003.

[10] A. Donlin “Transactional Level Modeling: Flows and Use Models”. Proc.
of IEEE CODES+ISSS, 2004.

[11] A. Rose, S. Swan, J. Pierce, and J.M. Fernandez. “Transaction Level Model-
ing in SystemC”. TLM library white paper, www.systemc.org.

[12] S. Katz, O. Grumberg, D. Geist. “Have I Written Enough Properties? A
Method of Comparison Between Specification and Implementation”. Proc. of
the 10th IFIP WG 10.5 Advanced Research Working Conference on Correct
Hardware Design and Verification Methods, pp. 280-297, 1999.

[13] F.Fummi, G.Pravadelli, A.Fedeli, U.Rossi, F.Toto. “On the Use of a High-
level Fault Model to Check Properties Incompleteness”. Proc. of ACM/IEEE
International Conference on Formal Methods and Models for Co-Design
(MEMOCODE), Le Mont Saint Michel, France, 24-26 June, 2003

[14] M. Borgatti, A. Capello, U. Rossi, G.L. Lambert, I. Moussa, F. Fummi and G.
Pravadelli. “An Integrated Design and Verification Methodology for Recon-
figurable Multimedia System”. Proc. of DATE, vol. 3, pp. 266-271, 2005.

[15] A. Haverinen, m. Leclercq, N. Weyrich, and D. Wingard “SystemC based
Communication Modeling for the OCP Protocol”. White Paper, v.1.0, Octo-
ber 14, 2002.

[16] Accellera, Property Specification Language Reference Manual, v1.1, June 9,

2004.

Proceedings of the Sixth International Workshop on Microprocessor Test and Verification (MTV'05)
0-7695-2627-6/05 $20.00 © 2005

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on February 14,2010 at 07:17:24 EST from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

