
CPR: Composable Performance Regression for Scalable Multiprocessor Models

Benjamin C. Lee †

Microsoft Research
blee@microsoft.com

Jamison Collins, Hong Wang
Intel Corporation

{hong.wang,jamison.d.collins}@intel.com

David Brooks
Harvard University

dbrooks@eecs.harvard.edu

Abstract

Uniprocessor simulators track resource utilization cycle by
cycle to estimate performance. Multiprocessor simulators,
however, must account for synchronization events that in-
crease the cost of every cycle simulated and shared resource
contention that increases the total number of cycles simulated.
These effects cause multiprocessor simulation times to scale
superlinearly with the number of cores.

Composable performance regression (CPR) fundamentally
addresses these intractable multiprocessor simulation times,
estimating multiprocessor performance with a combination
of uniprocessor, contention, and penalty models. The unipro-
cessor model predicts baseline performance of each core
while the contention models predict interfering accesses from
other cores. Uniprocessor and contention model outputs are
composed by a penalty model to produce the final multi-
processor performance estimate. Trained with a production
quality simulator, CPR is accurate with median errors of 6.63,
4.83 percent for dual-, quad-core multiprocessors. Further-
more, composable regression is scalable, requiring 0.33x the
simulations required by prior regression strategies.

1. Introduction

Modern simulator infrastructure is ill-suited to handle cur-
rent technology trends and the transition to multiprocessors.
Cycle-accurate multiprocessor simulation inherently lacks
scalability; simulation times increase superlinearly with the
number of simulated cores and simulators are not easily paral-
lelized [1]. Most challenges in microarchitectural simulation
arise from the need for a high degree of synchronization.
Detailed uniprocessor simulation proceeds cycle by cycle,
tracking resource utilization to produce a detailed estimate
of performance at the cost of long simulation times. Just
as multiprocessors are built from multiple instantiations of
uniprocessor cores, multiprocessor simulators often run mul-
tiple instantiations of a uniprocessor simulator. However, mul-
tiprocessor simulators must also account for inter-processor

† This work was done while B. Lee interned at Intel and studied at Harvard.

synchronization that increase the cost of every cycle simulated
(e.g., snoops for coherence) and shared resource contention
that increases the total number of cycles simulated (e.g.,
stalls due to eviction from shared cache lines). Collectively,
these effects cause multiprocessor simulation times to scale
superlinearly with the number of cores.

Recent advances in applying statistical inference to the
microarchitectural domain have enabled qualitatively new
capabilities in uniprocessor analysis [2], [3], [4], [5], [6].
Uniprocessor inferential models leverage best known prac-
tices in statistical inference for highly efficient simulation
and analysis. Trained by simulating points sparsely sampled
from the design space, these models are computationally
efficient surrogates for cycle-accurate simulation, which cap-
ture mappings between design parameters and design metrics.
However, these same techniques are unlikely to scale as we
consider multiprocessor performance models. While a few
hundred training simulations are tractable fixed costs for
uniprocessor modeling, they are prohibitively expensive for
multiprocessor modeling due to superlinear increases in sim-
ulation time. Thus, multiprocessor regression models derived
from multiprocessor simulations alone are impractical.

Exacerbating these greater multiprocessor simulation
times, multiprogrammed workloads produce combinatorial
growth in the number of possible workload combinations. The
number of such combinations will increase rapidly with the
number of cores. Taking the 18 benchmarks in this paper for
example, we are confronted with C18

2 = 153 dual-core and
C18

4 = 3060 quad-core workload combinations. Furthermore,
for industrial microprocessor design, 18 benchmarks are only
a small representative set from a much more comprehensive
study list with over 500 benchmarks. For 500 benchmarks,
we could potentially analyze C500

2 = 1.3E+05 dual-core and
C500

4 = 2.6E + 09 quad-core workload combinations. Thus,
in addition to ensuring scalability as the number of cores
increases, an effective multiprocessor modeling framework
must also ensure the marginal cost of model training for each
combination of workloads is computationally tractable.

To address these fundamental challenges in multiprocessor
simulation times, we propose composable performance re-

gression (CPR). CPR extends prior successes in uniprocessor
statistical inference to the multiprocessor domain while ensur-
ing training costs remain tractable. The framework controls
training costs by abstracting the uniprocessor, taking the core
as the primary determinant of multiprocessor performance
and considering shared resource contention as a secondary
penalizing effect. Within this framework, uniprocessor models
are the primary building blocks supported by secondary
contention and penalty models. Such a framework is highly
efficient, building on the information captured by relatively
inexpensive uniprocessor models while requiring a far fewer
number of multiprocessor simulations to train contention and
penalty models to predict multiprocessor performance.

We define scalability as the rate of increase in training costs
when the number of modeled cores increases. Composable
models are trained and evaluated separately but composed to
estimate a final response. CPR uses composable models to
deliver scalability for multiprocessor performance estimates.
The following summarizes the key contributions of this work:

1) Industrial Infrastructure: We demonstrate regression
models’ effectiveness for the Intel Core microarchitec-
tural family, using industry-strength simulators actively
employed in product development. We construct these
models for a broad array of workloads ranging from
multimedia to server applications. (Section 2)

2) Uniprocessor Model: We first derive uniprocessor
regression models, demonstrating the accuracy of these
basic building blocks before applying them in the
multiprocessor model. Furthermore, we demonstrate
the application of these models to evolutionary design
optimization, re-tuning design parameters after fun-
damentally new microarchitectural features are added
between consecutive product generations. (Section 2.3)

3) Multiprocessor Model: We propose composable per-
formance regression that includes uniprocessor, con-
tention, and penalty models. The uniprocessor model
predicts the baseline performance of each core while
the contention models predict interfering accesses to
shared resources from other cores. Uniprocessor and
contention model outputs are composed in a penalty
model that produces the final multiprocessor perfor-
mance prediction. (Section 3)

4) Case for Scalable Multiprocessor Models: In addi-
tion to being individually accurate, the uniprocessor,
contention and penalty models combine to predict dual-
core and quad-core performance with median errors
of 6.63 and 4.83 percent, respectively. Composable
regression is a scalable, efficient approach for con-
structing these multiprocessor models. Training costs
for proposed composable regression are 0.33x those for
naively constructed models as the number of multipro-
cessor cores increases. (Section 4)

Collectively, this work establishes a rigorous foundation for
efficiently extending advances in statistical machine learning
for uniprocessor design into the multiprocessor domain.

2. Methodology and Background

We develop a scalable and efficient simulation paradigm for
multiprocessor design that defines a comprehensive design
space, simulates sparse samples from the space, and con-
structs regression models for performance prediction. We
extend prior work for uniprocessor models to those for
multiprocessors [6].

2.1. Regression Modeling

Microarchitecture designers often use performance mod-
els to predict a performance response y as a function of
design parameter values ~x. Such models may be expressed
as y = F (~x) where F (~x) may be a detailed, cycle-accurate
simulator or an empirical model fit using simulated data [7].
While evaluating F (~x) using detailed simulation is the most
widely taken approach, the significant computational costs of
simulation often hinder the design process. These difficulties
have led to computationally efficient surrogates for detailed
simulators that predict the response as y = F̂ (~x) + e, where
F̂ (~x) is an approximation of the simulator response and e is
the approximation error.

We construct the surrogate F̂ (~x) by deriving spline-based
regression models from a sparse sampling of the design space
[8], [6]. These models express the predicted response as
y = F̂ (~x) = α+ ~βTS(~x)+e where α is the model intercept,
~β is a vector of regression coefficients and S(~x) is a spline
function that produces piecewise polynomials. This spline
transformation is applied to each xi in ~x by dividing the
domain of xi into intervals joined at intersections called knots.
Separate polynomials are fit to data within each interval to
produce a piecewise polynomial. For example, a cubic spline
on xi with three knots at a, b, and c is given by Equation (1)
where (u)+ = u if u > 0 and (u)+ = 0 otherwise.

S(xi) = β0 + β1xi + β2x
2
i + β3x

3
i + β4(xi − a)3+

+β5(xi − b)3+ + β6(xi − c)3+ (1)

Within this framework, interactions between predictors of
performance are captured by product terms using domain-
specific knowledge. For example, pipeline depth x1 interacts
with cache sizes x2 since depth determines pipeline sensitivity
to cache misses. This interaction would be captured by a
product term x3 = x1x2. These interactions are applied after
spline transformations. We prune the number of terms from an
interaction S(xi)S(xj) by removing doubly non-linear terms
(i.e., keep only product terms with at least one linear factor).

Digital Home
1 audio audio conversion [9]
2 video video compression [9]
3 photo photoshop album

Games
4 unreal Unreal Tournament
5 halflife Half-Life, modified Quake engine
6 homeworld Homeworld, three-dimensional movement

Multimedia
7 mentalray rendering, ray tracing
8 painter raster graphics package
9 tachyon ray tracing

Office
10 outlook personal information manager
11 access relational database management system
12 excel spreadsheet application

Productivity
13 md2 OpenSSL cryptographic hash function
14 encrypt file encryption [9]
15 flash multimedia player

Server
16 specweb web server [10]
17 tpcc on-line transaction processing [11]
18 specjapp J2EE 1.3 application servers [12]

Table 1. Benchmarks

2.2. Simulation Framework

We use an execution-driven, cycle-accurate, micro-operation
(uop) based IA-32 simulator that models a superscalar, out-of-
order microprocessor belonging to the Intel Core microarchi-
tectural family. The simulated multiprocessor implements a
ring-based interconnect. Each node of the ring is comprised of
a superscalar, out-of-order execution IA-32 core and private
L1, L2 caches. Each node also contributes capacity to an
L3 cache shared among all nodes using a snoopy coher-
ence protocol. The simulator implements a detailed memory
subsystem that fully models interconnect topologies and any
associated contention. Both uniprocessor and multiprocessor
models are validated against product hardware.

The simulated microprocessor executes inputs called Long
Instruction Traces (LIT’s). A LIT is not actually a trace, but a
checkpoint of processor and memory state used to initialize an
execution-based performance simulator. A LIT also includes
a list of injections, which are system interrupts needed to
simulate events like direct memory accesses (DMA). Since
the LIT includes a complete snapshot of system memory,
we are able to simulate both user and kernel instructions,
as well as wrong-path instructions. We report experimental
results based on LIT’s of the benchmarks in Table 1. These
benchmarks represent a broad range of application areas
ranging from the digital home to the server.

2.3. Design Space

Table 2 defines a microprocessor design space with fifteen
groups of parameters that characterize key microarchitectural
structures. Parameters within each group are varied together
to avoid fundamental design imbalances (e.g., the L/S buffer

Set Parameters Range |Si|
S1 Branch Pred. target buffer entries 256 :: 2x :: 1024 3
S2 target buffer assoc 2 :: 2x :: 16 4
S3 Stride Pred. table entries 128 :: 2x :: 512 3
S4 Loop Detector table entries 4 :: 2+ :: 12 5
S5 Mem Disamb. table entries 32 :: 2x :: 512 5
S6 Out-of-Order L/S buffer entries 24 :: 8+ :: 96 10

reorder buffer entries 72 :: 12+ :: 180
reserv. stations 28 :: 4+ :: 64

S7 Fill Buffer buffer entries 4 :: 2+ :: 12 5
S8 Data TLB table entries 128 :: 2x :: 512 3
S9 table assoc 1 :: 2x :: 8 4
S10 Inst Cache victim cache entries 4 :: 2+ :: 12 5
S11 Data Cache size (KB) 8 :: 2x :: 128 5
S12 assoc 2 :: 2x :: 16 4
S13 L2 Cache size (KB) 256 :: 256+ :: 1024 4
S14 assoc 2 :: 2x :: 16 4
S15 L3 Cache size (MB) 1.0 :: 0.5+ :: 3.0 5

Table 2. Design space parameters where i::j::k
denotes a set of values from i to k in steps of j.

and reorder buffer should vary together in set S6). The Carte-
sian product of these sets, S =

∏15
i=1 Si, defines the overall

design space of approximately 4.3 billion points. Using an
effective spatial sampling technique [6], which decouples
design space size from the number of simulations needed
to identify design trends, we find 300 samples obtained
uniformly at random from the design space are sufficient for
accurate regression.
Uniprocessor models are the basic building blocks for our
multiprocessor modeling framework. Regression models en-
able rapid design space exploration via fast, accurate predic-
tions. Once constructed, model usage depends very much on
the design process. While academic research might explore
a large design space and consider each design without bias,
industrial product development usually introduces innovative
features to the previous product generation to improve par-
ticular design metrics (e.g., performance, power, area, cost).

Microprocessor development is driven by regular, alternat-
ing advances in silicon and microarchitecture [13]. To ensure
silicon advances translate into better user experiences, the
microprocessor industry must produce evolutionary improve-
ments across each product generation. These improvements
might be delivered via fundamentally new algorithmic or
policy features and/or a better allocation of microarchitectural
resources. However, new features usually introduce subtle,
unknown, or unintended interactions with existing microar-
chitectural resources, thereby complicating product design.
For example, a new performance-enhancing feature might
allow designers to meet a particular performance target with
fewer resources, thereby saving power and area. Furthermore,
designers might add several new features into a single product
generation, each with potentially conflicting influences on a
structure’s optimal size.

We evaluate these scenarios through a case study, demon-
strating our regression models can be effectively applied to
the industrial, evolutionary design process. In particular, we

Figure 1. Uniprocessor Model: Error distributions for models of design spaces built around two consecutive micropro-
cessor generations ProcX (L) and ProcY (R).

consider two consecutive generations within the same IA-32
Core Microarchitecture family, which we refer to as ProcX
and ProcY. ProcY is an evolutionary progression from ProcX
and includes several new microarchitectural features. Aside
from these new features, ProcX and ProcY share the same
design space of Table 2. We use per benchmark regression
models to re-optimize and re-balance the design after these
new features are added. Such a case study illustrates the
importance of holistic design analysis in evolutionary product
development.

2.4. Uniprocessor Regression Model Validation

We construct regression models for the uniprocessor design
space using 300 randomly collected training samples. Figure
1 illustrates error distributions when validated against simula-
tion for 50 randomly collected validation points. Sensitivity
studies indicate this validation set is sufficiently large and
error distributions do not change significantly with additional
samples. These boxplots display location (median) and dis-
persion (interquartile range), identify possible outliers, and
indicate the symmetry or skewness of the distribution.1 These
figures demonstrate median errors of 1.43 and 0.77 percent
for ProcX and ProcY performance prediction, respectively.
Maximum errors and statistical outliers rarely exceed 10
percent.

1. Boxplots are constructed by (1) horizontal lines at median and at upper,
lower quartiles, (2) vertical lines drawn up/down from upper/lower quartile
to most extreme data point within 1.5 IQR of upper/lower quartile where
IQR is the interquartile range between first and third quartile, and (3) circles
to denote outliers.

2.5. Case Study: Evolutionary Design Optimization

While prior academic work has demonstrated regression
models can be effective for designing microprocessors from
a blank slate [14], industry is more likely to implement
evolutionary enhancements by adding new microarchitectural
enhancing features to existing designs, thereby extending
a processor family. For example, Intel’s Yonah, Dothan,
Merom, and Penryn are four consecutive evolutionary gen-
erations of the Intel Core Microarchitecture family. In such
a design scenario, regression models enable a comprehensive
re-balancing of the microprocessor design. Re-balancing is
the process of taking optimal design values from one gener-
ation, accounting for new features in the next generation by
constructing new models, and determining how previously
optimal values change given these new features. For this
study, we evaluate three categories of microarchitectural
enhancements:
• Improved Front-End: An improved front-end will in-

crease fetch throughput and the number of in-flight
instructions. Improved branch prediction might be deliv-
ered by larger history tables, thereby increasing resource
requirements. Alternatively, better prediction schemes
might make better use of fewer resources, enabling
designers to reduce resource sizes and save power with
negligible performance penalties.

• Improved Memory Subsystem: Improved cache line
replacement or prefetch policies will impact cache hier-
archy design. For example, improved loop detection and
memory stride prediction may enable more effective use
of L1 instruction and data caches, respectively.

• Improved Out-of-Order Execute: Improved execution
units will impact queue and buffer occupancy throughout

Figure 2. BTB (L) and L1 data cache (R) design values that meet various delay targets from ProcX (without new
features) and ProcY (with new features). Note log-scaled x-axis.

Figure 3. L3 cache (L) and ROB (R) design values that meet various delay targets from ProcX (without new features)
and ProcY (with new features). Note log-scaled x-axis for L3 cache.

the pipeline. For example, improved memory disam-
biguation will reduce the average time a load must wait
before issuing. Such a feature enhancement may reduce
average occupancy of the memory order buffer while
improving instruction throughput.

Suppose designers are given a range of delay targets,
defined as CPI numbers relative to ProcX baseline per-
formance.2 To re-balance the design after introducing new
microarchitectural features, we explore the two design spaces
of ProcX and ProcY, identifying designs that satisfy particular
targets before and after the addition of new features. Limited
sensitivity studies are insufficient since they do not identify

2. Designers often identify targets for performance improvements from
one generation to the next.

specific combinations of design values that meet a particular
target. For example, one-dimensional sensitivity studies of
L1, L2 and L3 cache sizes cannot identify all combinations
of cache sizes that meet a delay target and, furthermore, they
cannot identify cases where one parameter value increases
and another decreases with zero net performance impact.

Instead of one-dimensional sensitivity, we use regression
models for more comprehensive optimization, first identifying
all parameter value combinations that meet each CPI delay
target and then assessing salient trends within these combina-
tions. Since regression models may identify multiple designs
that satisfy a given CPI delay target, we use boxplots to show
the range of parameter values represented in these designs.
Figures 2–3 illustrate the impact of new microarchitectural

features on design optimization. Parameter values are shown
on the x-axis and CPI delay targets are shown on the y-axis.

Figure 2L illustrates reductions in branch target buffer
(BTB) associativity after new microarchitectural features are
added to the front-end (e.g., better branch predictor). Of the
designs meeting a delay target of 0.90 (shaded in green),
median associativities for ProcX and ProcY designs are 16
and 4, respectively. For every delay target, ProcY designs
meet the same target as ProcX designs but with fewer BTB
ways. Fewer BTB ways translate into fewer buffer entries,
reduced comparator logic, and potential power savings for a
given delay target. These savings are realized only by re-
optimizing the design after adding a front-end enhancing
feature, such as a better branch predictor.

Similarly, Figure 2R illustrates potential reductions in the
L1 data cache size due to an improved back-end (e.g., better
prefetch). For various delay targets, the median cache size for
ProcY designs is consistently half the median size for ProcX
designs (e.g., 32 KB versus 64 KB for 0.90 target; shaded
in green). These results suggest memory-enhancing features,
such as more intelligent prefetching, might allow designers
to attain the same performance despite a smaller cache.
Furthermore, more effective L1 cache usage will likely impact
the whole cache hierarchy as shown by similar trends for the
L3 cache in Figure 3L. Thus, designers might meet a given
delay target using fewer resources, thereby saving power, by
re-optimizing the cache hierarchy when more efficient cache
policies are added.

Figure 3R considers a scenario for the reorder buffer (ROB)
where several new microarchitectural features might exert
competing influences. A more effective front-end (e.g., branch
predictor) might increase the number of in-flight instructions,
potentially increasing the optimum ROB size. However, a
more effective memory subsystem (e.g., prefetcher) might
reduce the number of long latency memory stalls as loads
hit in the L1 data cache more often. Fewer memory stalls in-
crease instruction commit throughput, potentially decreasing
the optimum ROB size. Figure 3R shows ProcY designs meet
delay targets with much lower ROB occupancy than ProcX
designs, suggesting improvements to the memory subsystem
dominate and recommending a net reduction in ROB size.
Relying solely on intuition, the net impact on ROB size is
not obvious. Regression models, however, allow us to explore
the design space and account for interactions between new
microarchitectural features and various resources.

3. Composable Performance Regression

Unique challenges in multiprocessor simulation for multi-
programmed workloads prevent us from naively applying
statistical modeling methodologies previously found effective
in the uniprocessor domain [2], [3], [5], [6]. Simulating

Figure 4. CPR overview of components, interactions.

sampled training designs becomes significantly more expen-
sive when these samples are drawn from the multiprocessor
design space. Furthermore, deriving separate models for each
combination of workloads each with its own set of training
data is intractable due to rapid combinatorial growth in the
number of possible multiprogrammed workloads. To address
these fundamental challenges, we take the canonical approach
of using the uniprocessor core as the primary determinant
of multiprocessor performance and consider shared resource
contention as a secondary penalizing effect.

3.1. Overview

Composable regression addresses the unique challenges of
multiprocessor performance modeling as summarized in Fig-
ure 4. Let ~x specify the vector of parameter values charac-
terizing a design and ~xs ⊂ ~x specify the sub-vector of these
design parameters that characterize resources shared between
processors. Consider a set of benchmarks B = {B1, . . . , Bn}
executing on an n-core multiprocessor. The framework itera-
tively predicts the performance of each benchmark in B. Con-
sider iteration i where we take Bi as the benchmark executing
on the core of interest while simultaneously contending with
the other benchmarks B6=i = {B1, . . . , Bi−1, Bi+1, . . . , Bn}.
As shown in Figure 4, this framework predicts the baseline
uniprocessor performance of Bi executing on design ~x. In
parallel, the framework predicts contention indicators for Bi
when it contends with B 6=i for shared resources ~xs. A penalty
model computes a linear combination of baseline performance
and contention indicators to estimate the performance of
Bi when contending with B 6=i benchmarks in a symmetric
multiprocessor with n cores of design ~x.

3.2. Training

Figure 5 illustrates uniprocessor model construction. This
model requires Nuni samples from the full design space.
A uniprocessor simulator takes these inputs to provide ob-
served CPI delay values Di(~x) for a particular benchmark
Bi. These delay values are fit to the design values ~x with

Figure 5. Uniprocessor training with spline-based re-
gression on full parameter space.

Figure 6. Contention training with spline-based regres-
sion on shared resource space.

restricted cubic splines (i.e., piecewise cubic polynomials
denoted by transformation S), producing a surrogate model
for the uniprocessor simulator. This surrogate is the same
model discussed and applied in Section 2.3. The model uses
three knots for each design parameter of Table 2. Interactions
are specified between caches sizes in adjacent levels of
the memory hierarchy. The resulting model estimates the
uniprocessor CPI delay of benchmark Bi as a function of
transformed design values: D̂i(~x) = fi(~x).

Figure 6 illustrates contention model construction. This
model requires Ncon samples from the space of shared
resources ~xs, a subset of the full design space. Ncon < Nuni
since the contention model considers only a subset of the full
parameter space and thus produces a smaller model requiring
fewer training simulations. Although cores share only the L3
cache, we consider L1 data, L2, and L3 caches in ~xs since
the design of higher cache levels determine L3 cache traffic.
An n-core multiprocessor simulator takes these shared design
values to provide observed contention indicators Ci(~xs | B)
for a particular combination of benchmarks B. Although we
use cycle-accurate simulation to produce these contention
indicators, trace simulation may be sufficient (e.g., cache
simulation), further reducing contention model training costs

Figure 7. Penalty training with linear regression on full
parameter space.

relative to uniprocessor training costs.
We define Ci(~xs | B) as a vector of three contention

indicators: d-L1 misses, L2 hits, and L3 hits. We find accurate
contention models are more easily constructed for the three
we choose. Intuitively, these metrics are suitable contention
indicators since they correlate with average memory access
latencies and the memory intensity of the workloads. These
contention indicators are fit to design values of shared re-
sources ~xs with restricted cubic splines, producing a surrogate
for multiprocessor simulations. The regression model uses
four knots for the d-L1, L2 caches and five knots for
the L3 cache. Additional spline flexibility is assigned to
the L3 cache due to its significance as the primary point
of contention in our simulated multiprocessor. Interactions
are specified between cache sizes in adjacent levels of the
memory hierarchy. Such interactions capture locality effects
and are necessary for inclusive caches. The resulting model
estimates multiprocessor contention seen by benchmark Bi
executing with B6=i as a function of shared design values:
Ĉi(~xs | B) = gi(~xs | B).

Figure 7 illustrates penalty model construction. This model
requires Npen samples from the full design space ~x. A
multiprocessor simulator takes these inputs to provide ob-
served multiprocessor delay values Di(~x | B) for a particular
benchmark Bi executing with B 6=i. Unlike the uniprocessor
and contention models, which are constructed using sim-
ulation and design parameter values, the penalty model is
constructed using simulation and outputs from the other two
models. Specifically, the multiprocessor delay values are fit
to predictions from the uniprocessor and contention models
(i.e., D̂i(~x) and Ĉi(~xs | B), respectively). The resulting
regression model predicts the delay of benchmark Bi when
executing with other benchmarks in B as a function of design
parameters. This prediction is made via a uniprocessor delay
model fi(~x) and multiprocessor contention model gi(~xs). The
overall result is a composed regression model: D̂i(~x | B) =
hi

(
fi(~x), gi(~xs | B) | B

)
.

In contrast to uniprocessor and contention models, the
penalty model is less complex and, therefore, less expensive
to construct. Quantifying model complexity by the number
of terms in the model (i.e., number of regression coefficients
that must be fitted), the penalty model has complexity ad-
vantages from taking fewer predictors and not performing
spline transformations. The penalty model takes only four
predictors: baseline uniprocessor performance Di(~x) and
three contention metrics Ĉi(~xs | B): d-L1 misses, L2 hits
and L3 hits. In contrast, the uniprocessor model takes fifteen
predictors, one for each design parameter in Table 2. Fur-
thermore, spline transformations are applied to each of these
fifteen predictors, which significantly increases the number
of terms in the uniprocessor model as shown in Equation
(1). Thus, composable regression models package uniproces-
sor performance and multiprocessor contention information
for a fifteen-element design vector ~x into a more compact
four-element vector {Di(~x), Ĉi(~xs | B)} for more efficient,
complexity-effective linear regression. The efficiency and
complexity advantages translate into fewer multiprocessor
simulations required for model construction. A smaller model
that fits fewer coefficients will require less data for training.

3.3. Prediction

Consider an n-core symmetric multiprocessor executing
benchmarks B = {B1, . . . , Bn}. Given the three components
of the composable regression model, we iteratively evaluate
the performance of each core i for design ~x.

1) Uniprocessor Prediction: Evaluate uniprocessor per-
formance of Bi executing for design ~x. Compute
D̂i(~x) = fi(~x).

2) Contention Prediction: Evaluate multiprocessor con-
tention of Bi executing with B6=i on a symmetric
multiprocessor for a particular configuration of shared
resources ~xs. Compute Ĉi(~xs | B) = gi(~xs | B).

3) Multiprocessor Prediction: Evaluate multiprocessor
performance of Bi executing with B 6=i on a sym-
metric multiprocessor for core designs ~x. Compute
D̂i(~x | B) = hi

(
fi(~x), gi(~xs | B) | B

)
.

This process is repeated for every benchmark executing on
the multiprocessor to get per core CPI delays.

4. Multiprocessor Model Evaluation

We illustrate the effectiveness of composable regression mod-
els, showing these models accurately estimate multiproces-
sor performance. Furthermore, model construction costs are
scalable in contrast to intractable exhaustive simulation and
inefficient naive regression.

Dual-Core Benchmarks
Set (1) (2)
1 painter homeworld
2 access mentalray
3 specjapp specweb
4 homeworld tachyon
5 dense flash

Quad-Core Benchmarks
Set (1) (2) (3) (4)
1 dense excel flash md2
2 video specjapp specweb tachyon
3 excel homeworld audio unreal
4 outlook encrypt halflife homeworld
5 painter mentalray outlook encrypt

Table 3. Multicore Benchmarks

4.1. Accuracy Analysis

We validate each component in the composable regression
framework against detailed simulation before evaluating its
overall accuracy. We construct each model by sparsely sim-
ulating points sampled uniformly at random from the de-
sign space. We train these three model components with
Nuni = 300 and Ncon = Npen = 50. We separately
simulate another 50 randomly sampled points for validation.
This is a sufficiently large validation set; further increasing
the validation set size does not significantly change the error
distribution. We evaluate these validation points for five sets
of benchmark combinations sampled uniformly at random
from the space of possible combinations as shown in Table
3. We validate against detailed multicore simulators used by
product teams. The product development infrastructure used
in this study scales up to four cores.

Figure 1R in Section 2.3 illustrates uniprocessor model
accuracy. We build the composable framework to model
microprocessor cores from the ProcY design space. As de-
scribed in Section 2.3, these models achieve median errors of
0.77 percent relative to detailed simulation. In the context of
our composable framework, these errors refer to the relative
difference between simulation and the uniprocessor regression
model fi(~x).

Figures 8–9 illustrate the error distributions for contention
indicators predicted by the model gi(~xs | B). Figure 8 and
Figure 9L present errors for the dual-core case. Contention
indicators are predicted across all benchmarks with median
errors of 3.17, 2.46, and 1.30 percent for d-L1 misses,
L2 hits and L3 hits, respectively. Median errors for each
benchmark are usually below 5 percent and always below
10 percent. Figure 9R presents L3 hit prediction errors for
the quad-core case and is representative of error distributions
for other quad-core contention indicators. The median error
across all benchmarks is 3.06 with most benchmarks reporting
median errors less than 10 percent. Although the variance
(i.e., spread) of the error distributions for quad-core L3
cache predictions, these errors do not propagate into our final
multiprocessor performance errors. Overall, these models are

Figure 8. Error distributions for contention models predicting dual-core d-L1 cache misses (L), L2 cache hits (R).

Figure 9. Error distributions for contention models predicting dual-core L3 cache hits (L), quad-core L3 cache hits (R).

Figure 10. Error distributions for dual-core (L) and quad-core (R). Models predict per core CPI.

sufficiently accurate for early stage design optimization.
The third benchmark set (excel-homeworld-audio-unreal)

exhibits particularly high error rates for quad-core L3 hits
with median errors of 15.29 percent across the four bench-
marks. However, we did not find any systematic errors to
account for the difference. We might hypothesize the third
benchmark set more significantly exercises the shared L3
such that the model becomes less accurate as contention
increases. However, we did not find any evidence to support
this hypothesis. The second set has more accurate models de-
spite accessing the shared L3 more frequently and exhibiting
greater contention. Similarly, the first and fourth sets exhibit
L2 miss rates comparable to the third set. However, both the
first and fourth sets have more accurate contention models
despite greater L2 miss rates that lead to shared L3 accesses.
Overall, the third set is more an exception than the general
case and we do not find any evidence to suggest its greater
model error is due to greater L3 contention.

Figure 10 illustrates the error distributions for multiproces-
sor delays hi

(
fi(~x), gi(~xs | B) | B

)
for dual- and quad-core

benchmark sets. The dual-core model accurately predicts the
performance of each core with median errors of 6.63 percent
across all benchmarks. Median errors for specific benchmark
sets range from 1.6 percent (fourth set: homeworld-tachyon)
to 11.1 percent (third set: specjapp-specweb). Similarly, the
quad-core model predicts the performance of each core with
median errors of 4.83 percent across all benchmarks. Median
errors for specific benchmark sets range from 1.31 percent
(fifth set: painter-mentalray-outlook-encrypt) to 18.62 percent
(first set: dense-excel-flash-md2).

Note that larger quad-core contention errors for the third
benchmark set in Figure 9R do not necessarily translate
into larger quad-core CPI errors in Figure 10R. The penalty
model that produces the final CPI prediction is likely ro-
bust to errors from uniprocessor or contention models since
the linear regression fits multiprocessor performance to the
provided predictions regardless of errors. If fit well, the
penalty model might mask the intermediate uniprocessor or
contention errors. However, a fit becomes less likely as such
errors increase.

Figure 10R reveals larger errors for the first quad-core
benchmark set (dense-excel-flash-md2). This set is notable
for its extremely low cache activity; other benchmark sets
access all levels of hierarchy more frequently. Specifically, on
average, the other four benchmark have 2.1x, 1.5x, and 1.7x
more d-L1 misses, L2 hits, and L3 hits, respectively. Due to
such low activity, the penalty model is fit poorly for the first
benchmark set. Significance testing on the three contention
indicators suggest d-L1 misses, L2 hits, and L3 hits do not
contribute much to model accuracy for the first quad-core
benchmark set, probably because these indicator values are
small in absolute terms due to low cache activity.

4.2. Scalability Analysis

CPR accurately estimates the performance of each core
in a symmetric multiprocessor by leveraging inexpensively
constructed uniprocessor models. We make the case for the
efficiency of composable multiprocessor efficiency from an
analytical study of regression training costs expressed in
terms of simulation time, showing CPR incurs low marginal
training costs as core count increases.

As in Section 3, let Nuni, Ncon, and Npen be the number of
design samples required to train the uniprocessor, contention,
and penalty models, respectively. Let Tn be the time required
for a single detailed n-core simulation. Similarly, let Mn be
the time required to train a n-core model. Equations (2)–
(3) express model construction time in terms of simulation
costs. The best case scenario is captured by a lower bound
M

(lo)
n , in which we assume all uniprocessor models have

already been created and the marginal cost of multiprocessor
modeling is the time to construct the contention and penalty
model. The worst case scenario is captured by an upper
bound M

(up)
n , in which we must also construct each of

the n uniprocessor models. The best case scenario is more
likely since architects are unlikely to study multiprocessors
without first understanding uniprocessors with uniprocessor
regression models for benchmarks of interest.

M (lo)
n = (Ncon +Npen) · Tn (2)

M (up)
n = Nuni · n · T1 + (Ncon +Npen) · Tn (3)

M (nv)
n = Nnaive · Tn (4)

For comparison, we consider naive regression modeling
that implements, without modification, prior uniprocessor
approaches for multiprocessor analysis [14]. For n-core mul-
tiprocessor, this naive approach samples Nnaive points from
the multiprocessor design space, evaluates each sample with
n-core simulation, and fits a spline-based regression model
to this training data. The cost of this approach is expressed
as M (nv)

n in Equation (4).
Tn = nγ · T1 expresses multiprocessor simulation times

in terms of uniprocessor simulation times where γ is a
growth factor. In the ideal case, γ = 1 and simulation times
scale linearly with the number of cores. However, for our
product simulators, γ > 1 due to the additional complexity
of coherence, synchronization modeling that adds overhead
to each cycle simulated and shared resource contention that
increases the number of cycles simulated for each benchmark.
Such simulation time scaling for various growth factors are
representative of those observed in practice from simulation
wall clock times. Superlinearly increasing multiprocessor
simulation times have also been observed for other industrial
and academic simulators [1].

Figure 11. Modeling training costs for γ = 1.2 (L) and γ = 1.4 (R).

These growth factors are dependent on particular simulator
implementations, but we take growth factors of 1.2 and 1.4
to model varying workload behavior across multiprogrammed
combinations or varying degrees of multiprocessor simula-
tion efficiency. In practice, we observe 1.2 < γ < 1.4
for our product simulators. For example, T4 ≈ 5.3T1 and
T8 ≈ 12.1T1 in a representative γ = 1.2 simulator. These
costs increase significantly for the more inefficient γ = 1.4
simulator where T4 ≈ 7.0T1 and T8 ≈ 18.4T1.

Figure 11 illustrates the number of required simulations to
train composable regression models for two growth factors:
γ = 1.2, γ = 1.4. Costs are expressed in terms of the number
of uniprocessor simulations Mn/T1. Trends are illustrated
for Nuni = Nnaive = 300, Ncon = Npen = 50. Nuni =
Nnaive conservatively assumes naive multiprocessor models
and uniprocessor models can be fit with the same number of
training samples. In practice, we expect Nnaive ≥ Nuni since
the multiprocessor design space is at least as complex as the
uniprocessor design space.

M
(lo)
n

M
(nv)
n

=
(Ncon +Npen) · nγ

Nnaive · nγ
=
Ncon +Npen

Nuni
(5)

M
(up)
n

M
(nv)
n

=
Nuni · n+ (Ncon +Npen) · nγ

Nnaive · nγ
(6)

Numbers tracking the composable regression lines in Fig-
ure 11 indicate the cost advantage relative to naive regression
as computed by Equations (5)–(6). Figure 11 illustrates
training costs with superlinear increases in simulation time
(γ = 1.2,γ = 1.4). For both values of γ, composable
regression incurs 0.33x the costs of naive regression in the
best case (green circles versus blue up-triangles). This best
case assumes a library of uniprocessor of regression models
has already been constructed for benchmarks of interest.

According to Equation (5), composable regression costs will
always be 0.33x those for naive regression in the best case
for our particular combination of Nuni = 300, Ncon = 50,
and Npen = 50.

However, in the worst case, every composable regression
model first requires the construction of uniprocessor models.
For γ = 1.2, these worst case costs for compoosable models
are comparable to those for naive regression (green circles
versus red down-triangles). However, for γ = 1.4, compos-
able regression is much less expensive than naive regression
in all scenarios with at least four cores. Composable regres-
sion incurs 0.66x to 0.91x the costs of naive regression for
any model with more than two cores. Thus, even worst case
costs of composable regression are lower than those for naive
regression. This cost advantage will further improve for less
scalable multiprocessor simulators (increasing γ) and larger
multiprocessors (increasing n).

Although we present both upper and lower bounds, sim-
ulation costs for regression modeling will asymptotically
approach the lower bound over time. Even if designers start
in the worst case scenario where no uniprocessor models
exist, they will accumulate these models as they perform
design space studies. Over time, these accumulated models
will likely span the space of uniprocessor workloads, leaving
only the marginal costs of constructing contention and penalty
models, the scenario captured by our lower bound.

5. Related Work

Li, et al., decouple core and cache simulations in chip
multiprocessors [15]. The core simulator generates single-
core traces of L2 cache accesses that are annotated with
timestamps. These traces feed a cache simulator to model
interactions within shared caches. In contrast, we rely on

regression models to estimate core and cache effects. Further-
more, we pass between models a few key contention metrics
instead of detailed traces.

Ipek, et al., and Joseph, et al., separately predict the
performance of design spaces with automated artificial neural
networks (ANN) trained by gradient descent and predicted by
nested weighted sums [3], [4]. Joseph, et al., did not consider
the multiprocessor design space. Ipek, et al., train neural
networks for the multiprocessor design space by sampling and
simulating multiprocessor designs. In contrast, we construct
composable models to reduce training simulation costs by
relying on a combination of training data from uniprocessor,
shared resource, and multiprocessor simulations. Instead of
neural networks, we use spline-based regression models from
prior work by Lee and Brooks [6], [14]. Relative to neural
networks, regression may require greater statistical analysis
during construction, but may be more computationally effi-
cient, numerically solving and evaluating linear systems for
training and prediction, respectively.

Dubach, et al., reduce the marginal cost of building neural
networks by expressing a new benchmark’s performance as
a linear combination of performance from already modeled
benchmarks [2]. The linear model, relying on performance
trends captured by previously constructed networks, is less
expensive to construct than a full-fledged neural network
trained from scratch. Dubach, et al., implement this approach
for serial workloads and do not consider multiprocessors.
Their proposed approach is orthogonal to ours and combining
the two approaches is an avenue for future work.

Khan, et al., implement models for thread-parallel
SPLASH workloads and speculatively parallelized SPEC
workloads [5] for a four-core symmetric multiprocessor.
Although the authors attempt to control training costs with
techniques similar to those by Dubach, et al., they rely solely
on multiprocessor simulations to train neural networks. In
contrast, we implement composable models, reducing the
reliance on expensive multiprocessor simulations while lever-
aging inexpensive uniprocessor and shared resource simula-
tions. Furthermore, we extend the state-of-the-art in predictive
modeling to an industrial simulator infrastructure with a broad
range of workloads. In contrast to prior work, we consider
multiprogrammed workloads and propose a framework to
handle combinatorial workload complexity, which is not
present in thread-level parallel workloads.

6. Conclusions

Recent advances in applying statistical regression to micro-
processor studies have enabled fundamentally new capabil-
ities in uniprocessor design space exploration. To extend
these achievements to the multiprocessor domain, we propose
composable regression models that combine uniprocessor,

contention, and penalty models to accurately predict multi-
processor performance running multiprogrammed workloads
with median errors of 4.83 and 6.63 percent for dual- and
quad-core predictions. Furthermore, composable regression is
scalable, requiring 0.33x the simulations of naive regresion
for model construction. Collectively, this work establishes a
rigorous foundation for large-scale multiprocessor analysis.

Acknowledgment

This work is supported by NSF grant CCF-0048313 (CA-
REER), Intel, and IBM. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those
of the author(s) and do not necessary reflect the views of the
National Science Foundation, Intel or IBM.

References

[1] J. Donald and M. Martonosi, “An efficient, practical paral-
lelization methodology for multicore architecture simulation,”
IEEE Computer Architecture Letters, August 2006.

[2] C. Dubach, T. Jones, and M. O’Boyle, “Microarchitectural de-
sign space exploration using an architecture-centric approach,”
in MICRO: International Symposium on Microarchitecture,
December 2007.

[3] E.Ipek, S.A.McKee, B. de Supinski, M. Schulz, and R. Caru-
ana, “Efficiently exploring architectural design spaces via pre-
dictive modeling,” in ASPLOS: Architectural Support for Pro-
gramming Languages and Operating Systems, October 2006.

[4] P. Joseph, K. Vaswani, and M. J. Thazhuthaveetil, “A predictive
performance model for superscalar processors,” in MICRO: In-
ternational Symposium on Microarchitecture, December 2006.

[5] S. Khan, P. Xekalakis, J. Cavazos, and M. Cintra, “Using pre-
dictive modeling for cross-program design space exploration
in multicore systems,” in PACT: International Conference on
Parallel Architectures and Compilation Techniques, Sept 2007.

[6] B. Lee and D. Brooks, “Accurate and efficient regression mod-
eling for microarchitectural performance and power predic-
tion,” in ASPLOS: International Conference on Architectural
Support for Programming Languages and Operating Systems,
October 2006.

[7] S. Duvall, “Statistical circuit modeling and optimization,” in
5th International Workshop Statistical Metrology, June 2000.

[8] F. Harrell., Regression modeling strategies. Springer, 2001.
[9] PCMark04, Futuremark Corporation.

[10] SPECweb99, Standard Performance Evaluation Corporation.
[11] TPC-C v5, Transaction Processing Performance Council.
[12] JAppServer2004, Standard Performance Evaluation Corpora-

tion.
[13] S. Shenoy and A.Daniel, “Intel architecture and silicon ca-

dence: The catalyst for industry innovation,” Technology at
Intel Magazine, October 2006.

[14] B. Lee and D. Brooks, “Illustrative design space studies
with microarchitectural regression models,” in HPCA: Inter-
national Symposium on High-Performance Computer Architec-
ture, February 2007.

[15] Y. Li, B. Lee, D. Brooks, Z. Hu, and K. Skadron, “CMP design
space exploration subject to physical constraints,” in HPCA:
International Symposium on High-Performance Computer Ar-
chitecture, February 2006.

	1 Introduction
	2 Methodology and Background
	2.1 Regression Modeling
	2.2 Simulation Framework
	2.3 Design Space
	2.4 Uniprocessor Regression Model Validation
	2.5 Case Study: Evolutionary Design Optimization

	3 Composable Performance Regression
	3.1 Overview
	3.2 Training
	3.3 Prediction

	4 Multiprocessor Model Evaluation
	4.1 Accuracy Analysis
	4.2 Scalability Analysis

	5 Related Work
	6 Conclusions
	References

