
LegUp: High-Level Synthesis for FPGA-Based
Processor/Accelerator Systems

Andrew Canis1, Jongsok Choi1, Mark Aldham1, Victor Zhang1, Ahmed Kammoona1,
Jason Anderson1, Stephen Brown1, and Tomasz Czajkowski‡

1ECE Department, University of Toronto, Toronto, ON, Canada
‡Altera Toronto Technology Centre, Toronto, ON, Canada

legup@eecg.toronto.edu

ABSTRACT
In this paper, we introduce a new open source high-level
synthesis tool called LegUp that allows software techniques
to be used for hardware design. LegUp accepts a standard C
program as input and automatically compiles the program to
a hybrid architecture containing an FPGA-based MIPS soft
processor and custom hardware accelerators that communi-
cate through a standard bus interface. Results show that
the tool produces hardware solutions of comparable quality
to a commercial high-level synthesis tool.

Categories and Subject Descriptors
B.7 [Integrated Circuits]: Design Aids

General Terms
Design, Algorithms

1. INTRODUCTION
Two approaches are possible for implementing computa-

tions: software (running on a standard processor) or hard-
ware (custom circuits). A hardware implementation can
improve speed and energy-efficiency versus a software im-
plementation (e.g. [3]). However, hardware design requires
writing complex RTL code, which is error prone and diffi-
cult to debug. Software design, on the other hand, is more
straightforward, and mature debugging and analysis tools
are freely accessible. Despite the potential energy and per-
formance benefits, hardware design is too difficult and costly
for most applications, and a software approach is preferred.

In this paper, we propose LegUp – an open source high-
level synthesis (HLS) framework we have developed that
provides the performance and energy benefits of hardware,
while retaining software ease-of-use. LegUp automatically
compiles a C program to target a hybrid FPGA-based soft-
ware/hardware system, where some program segments ex-
ecute on an FPGA-based 32-bit MIPS soft processor and
other program segments are automatically synthesized into
FPGA circuits – hardware accelerators – that communicate
and work in tandem with the soft processor. Since the first
FPGAs appeared in the mid-1980s, access to the technol-
ogy has been restricted to those with hardware design skills.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’11, February 27–March 1, 2011, Monterey, California, USA.
Copyright 2011 ACM 978-1-4503-0554-9/11/02 ...$10.00.

However, according to labor statistics, software engineers
outnumber hardware engineers by more than 10X in the
U.S. [10]. An overarching goal of LegUp is to broaden the
FPGA user base to include software engineers, thereby ex-
panding the scope of FPGA applications and growing the
size of the programmable hardware market.

LegUp includes a soft processor because not all program
segments are appropriate for hardware implementation. In-
herently sequential computations are well-suited for software
(e.g. traversing a linked list); whereas, other computations
are ideally suited for hardware (e.g. addition of integer ar-
rays). Incorporating a processor also offers the advantage of
increased high-level language coverage. Program segments
that use restricted C language constructs can execute on the
processor (e.g. recursion).

LegUp is written in modular C++ to permit easy exper-
imentation with new HLS algorithms. The LegUp distribu-
tion includes a set of benchmark C programs [6] that can
be compiled to pure software, pure hardware, or a hybrid
system. In this paper, we present an experimental study
demonstrating that LegUp produces hardware implementa-
tions of comparable quality to a commercial tool [13], and
we give results demonstrating the tool’s capabilities for hard-
ware/software co-design.

2. RELATED WORK
Among prior academic work, the Warp Processor pro-

posed by Vahid, Stitt and Lysecky bears similarity to our
framework [12]. The Warp Processor profiles software run-
ning on a processor. The profiling results guide the selec-
tion of program segments to be synthesized to hardware.
Such segments are disassembled from the software binary to
a higher-level representation, which is then synthesized to
hardware [9]. We take a somewhat similar approach, with
key differences being that we compile hardware from the
high-level language source code and our tool is open source.

On the commercial front is Altera’s C2H tool [1]. C2H al-
lows a user to partition a C program’s functions into a hard-
ware set and a software set. The software-designated func-
tions execute on a Nios II soft processor, and the hardware-
designated functions are synthesized into custom hardware
accelerators. The C2H system architecture closely resembles
that targeted by LegUp.

3. LEGUP FLOW AND ARCHITECTURE
The LegUp design flow comprises first compiling and run-

ning a program on a standard processor, profiling its execu-
tion, selecting program segments to target to hardware, and
then re-compiling the program to a hybrid hardware/software
system. Fig. 1 illustrates the detailed flow. Referring to
the labels in the figure, at step ➀, a C compiler compiles a
program to a binary executable [7]. At ➁, the executable

Program code

C Compiler
Processor

(MIPS)

Self-Profiling
MIPS Processor

Profiling Data:

Execution Cycles
Power

Cache Misses

High-level
synthesis Suggested

program
segments to

target to
HW

FPGA fabric

μP Hardened
program
segments

Altered SW binary (calls HW accelerators)

....
y[n] = 0;
for (i = 0; i < 8; i++) {

y[n] += coeff[i] * x[n-i];
}
....

1

2

3

LegUp

6

5

4

Figure 1: Design flow with LegUp.

runs on an FPGA-based MIPS processor. We evaluated
several publicly-available MIPS processor implementations
and selected the Tiger MIPS processor from the University
of Cambridge [11], based on its full support of the MIPS
instruction set, established tool flow, and well-documented
modular Verilog.

The MIPS processor has been augmented with extra cir-
cuitry to profile its own execution. Using its profiling abil-
ity, the processor is able to identify sections of program code
that would benefit from hardware implementation. Specif-
ically, the profiling results drive the selection of program
code segments to be re-targeted to custom hardware from
the C source. Profiling a program’s execution in the proces-
sor itself provides the highest possible accuracy. Presently,
we profile program run-time at the function level.

Having chosen program segments to target to custom hard-
ware, at step ➂ LegUp is invoked to compile these segments
to synthesizeable Verilog RTL. LegUp’s hardware synthe-
sis and software compilation are part of the same compiler
framework. Presently, LegUp HLS operates at the function
level: entire functions are synthesized to hardware from the
C source. The RTL produced by LegUp is synthesized to
an FPGA implementation using standard commercial tools
at step ➃. In step ➄, the C source is modified such that
the functions implemented as hardware accelerators are re-
placed by wrapper functions that call the accelerators (in-
stead of doing computations in software). This new modified
source is compiled to a MIPS binary executable. Finally, in
step ➅ the hybrid processor/accelerator system executes on
the FPGA.

Our long-term vision is to fully automate the flow in Fig. 1,
thereby creating a self-accelerating adaptive processor in which
profiling, hardware synthesis and acceleration happen trans-
parently without user awareness. In the first release of our
tool, however, the user must manually examine the profiling
results and place the names of the functions to be acceler-
ated in a file that is read by LegUp.

Fig. 2 elaborates on the target system architecture. The
processor connects to one or more custom hardware accel-
erators through a standard on-chip interface. As our initial
hardware platform is the Altera DE2 Development and Edu-
cation board (containing a 90 nm Cyclone II FPGA), we use
the Altera Avalon interface for processor/accelerator com-
munication [2]. A shared memory architecture is used, with
the processor and accelerators sharing an on-FPGA data
cache and off-chip main memory. The on-chip cache memory
is implemented using block RAMs within the FPGA fabric
(M4K blocks on Cyclone II). Access to memory is handled
by a memory controller. The architecture in Fig. 2 allows

FPGA

MIPS Processor
Hardware

Accelerator

AVALON INTERCONNECT

Hardware
Accelerator

Memory Controller
On-Chip
Cache

Off-Chip Memory

Figure 2: Target system architecture.

processor/accelerator communication across the Avalon in-
terface or through memory.

The architecture depicted in Fig. 2 represents the target
system most natural for an initial release of the tool. The ar-
chitecture of processor/accelerator systems is an important
direction for future research.

4. DESIGN AND IMPLEMENTATION
4.1 High-Level Hardware Synthesis

High-level synthesis has traditionally been divided into
three steps [4]: allocation, scheduling and binding. Alloca-
tion determines the amount of hardware resources available
for use, and manages other hardware constraints (e.g., speed,
area, and power). Scheduling assigns each operation in the
program being synthesized to a particular clock cycle (state)
and generates a finite state machine. Binding saves area
by sharing functional units between operations, and sharing
registers/memories between variables.

LegUp leverages the low-level virtual machine (LLVM)
compiler framework. At the core of LLVM is an inter-
mediate representation (IR), which is essentially machine-
independent assembly language. C code is translated into
LLVM’s IR then analyzed and modified by a series of com-
piler optimization passes. LLVM IR instructions are sim-
ple enough to directly correspond to hardware operations
(e.g., an arithmetic computation). Our HLS tool operates
directly with the LLVM IR, scheduling the instructions into
specific clock cycles. LegUp HLS algorithms have been im-
plemented as LLVM passes that fit neatly into the existing
framework. Implementing the HLS steps as distinct passes
also allows easy experimentation with different HLS algo-
rithms; for example, one could modify LegUp to “plug in” a
new scheduling algorithm.

The initial release of LegUp uses as-soon-as-possible (ASAP)
scheduling [5], which assigns an operation to the first state
after its dependencies are available. In some cases, we can
schedule an instruction into the same state as one of its de-
pendencies. This is called operation chaining. Chaining can
reduce hardware latency (# of cycles for execution) without
impacting the clock period.

Binding consists of two tasks: assigning operators from
the program being synthesized to specific hardware units,
and assigning program variables to registers (register allo-
cation). When multiple operators are assigned to the same
hardware unit, or when multiple variables are bound to
the same register, multiplexers are required to facilitate the
sharing. We make two FPGA-specific observations in our
approach to binding. First, multiplexers are relatively ex-
pensive to implement in FPGAs using LUTs. A 32-bit mul-
tiplexer implemented in 4-LUTs is the same size as a 32-bit
adder. Consequently, there is little advantage to sharing all
but the largest functional units, namely, multipliers and di-
viders. Likewise, the FPGA fabric is register rich and shar-

ing registers is rarely justified. The initial relase of LegUp
uses a weighted bipartite matching heuristic to solve the
binding problem [8]. We minimize the number of multi-
plexer inputs required, thereby minimizing area.

4.2 Processor/Accelerator Communication
Functions selected for hardware implementation are au-

tomatically replaced with a wrapper by the LegUp frame-
work. The wrapper function passes the function arguments
to the corresponding hardware accelerator, and receives the
returned data over the Avalon interconnect. While waiting
for the accelerator to complete its work, the MIPS processor
can do one of two things: 1) continue to perform computa-
tions and periodically poll a memory-mapped register whose
value is set when the accelerator is done, or, 2) stall until a
done signal is asserted by the accelerator. The advantage of
polling is that the processor can execute other computations
while the accelerator performs its work. The advantage of
stalling is reduced energy consumption – the processor is in
a low-power state while the accelerator operates. In our ini-
tial LegUp release, both modes are functional; however, we
use stalling for the results in this paper.

4.3 Language Support and Benchmarks
LegUp supports a large subset of ANSI C for synthesis

to hardware including: control flow statements, all integer
arithmetic and bitwise operations, and integer types. Pro-
gram segments that use unsupported language features are
required to remain in software and execute on the MIPS
processor. LegUp also supports functions, arrays, structs,
global variables and pointer arithmetic. Dynamic memory,
floating point and recursion are unsupported in the initial
release.

With the LegUp distribution, we include 13 benchmark
C programs. Included are all 12 programs in the CHStone
high-level synthesis benchmark suite [6], and Dhrystone – a
standard integer benchmark. A key characteristic of the
benchmarks is that inputs and expected outputs are in-
cluded in the programs themselves. The presence of golden
outputs for each program gives us assurance regarding the
correctness of our synthesis results.

5. EXPERIMENTS
The goals of our experimental study are three-fold: 1) to

demonstrate that the quality of result (speed, area, power)
produced by LegUp HLS is comparable to that produced
by a commercial HLS tool (eXCite [13]), 2) to demonstrate
LegUp’s ability to effectively explore the hardware/software
co-design space, and 3) to compare the quality of hardware
vs. software implementations of the benchmark programs.

We map each benchmark program using 5 different flows,
representing implementations with increasing amounts of
computation happening in hardware vs. software: 1) A soft-
ware only implementation running on the MIPS soft proces-
sor (MIPS-SW); 2) A hybrid software/hardware implemen-
tation where the second most compute-intensive function
(and its descendants) in the benchmark is implemented as
a hardware accelerator (LegUp-Hybrid2); 3) A hybrid soft-
ware/hardware implementation where the most compute-
intensive function (and its descendants) is implemented as a
hardware accelerator (LegUp-Hybrid1); 4) A pure hardware
implementation produced by LegUp (LegUp-HW); 5) A pure
hardware implementation produced by eXCite (eXCite-HW);
The two hybrid flows correspond to a system that includes
the MIPS processor and a single accelerator, where the ac-
celerator implements a C function and all of its descendant
functions. For the back-end of all flows, we use Quartus II
ver. 9.1 SP2 to target the Cyclone II FPGA.

Three metrics are employed to gauge quality of result:
1) circuit speed, 2) area, and 3) energy consumption. For
circuit speed, we consider the cycle latency, clock frequency
and total execution time. Cycle latency refers to the number
of clock cycles required for a complete execution of a bench-
mark. Clock frequency refers to the reciprocal of the post-
routed critical path delay reported by Altera timing analysis.
Total execution time is simply the cycle latency multiplied
by the clock period. To measure energy, we use Altera’s
PowerPlay power analyzer tool, applied to the routed de-
sign. We use switching activity data gathered from a full
delay simulation with Mentor Graphics’ ModelSim.

Table 1 presents speed performance results for all circuits
and flows. Three data columns are given for each flow: Cy-
cles, Freq in MHz, and Time in µS (Cycles/Freq). The sec-
ond last row of the table contains geometric mean results for
each column. The dhrystone benchmark was excluded from
the geomean calculations, as eXCite was not able to compile
this benchmark. The last row of the table presents the ratio
of the geomean relative to the software flow (MIPS-SW).

For the MIPS-SW flow, Table 1 indicates that the proces-
sor runs at 74 MHz on the Cyclone II and the benchmarks
take between 6.7K-29M cycles to complete their execution.
In the LegUp-Hybrid2 flow, the number of cycles needed for
execution is reduced by 50% compared with software, on av-
erage. The Hybrid2 circuits run at 6% lower frequency than
the processor, on average. Overall, LegUp-Hybrid2 provides
a 47% (1.9×) speed-up in program execution time vs. soft-
ware (MIPS-SW). In the LegUp-Hybrid1 flow, cycle latency
is 75% lower than software alone. However, clock speed is
9% worse for this flow, which results in a 73% reduction
in program execution time vs. software (a 3.7× speed-up
over software). Looking broadly at the data for MIPS-SW,
LegUp-Hybrid1 and LegUp-Hybrid2, we observe a trend: ex-
ecution time decreases substantially as more computations
are mapped to hardware.

Benchmark programs mapped using the LegUp-HW flow
require 12% of the clock cycles of the software implementa-
tions, on average, yet they run at about the same speed in
MHz. Benchmarks mapped using eXCite-HW require even
fewer clock cycles – just 8% of that required for software im-
plementations. However, implementations produced by eX-
Cite run at 45% lower clock frequency than the MIPS proces-
sor, on average. LegUp produces heavily pipelined hardware
implementations, whereas, we believe eXCite does more op-
eration chaining, resulting in fewer cycles yet longer critical
path delays. Considering total execution time of a bench-
mark, LegUp and eXCite offer similar results. LegUp-HW
provides an 88% execution time improvement vs. software
(8× speed-up); eXCite-HW provides an 85% improvement
(6.7× speed-up).

It is worth highlighting a few results in Table 1. Com-
paring LegUp-HW with eXCite-HW for the benchmark aes,
LegUp’s implementation provides a nearly 5× improvement
over eXCite in terms of execution time. Conversely, for the
motion benchmark, LegUp’s implementation requires nearly
4× more cycles than eXCite’s implementation. We believe
such differences lie in the extent of pipelining used by LegUp
vs. eXCite.

Average area results are provided in Table 2. For each
flow, three columns provide the number of Cyclone II logic
elements (LEs), the number of memory bits used (# bits),
as well as the number of 9x9 multipliers (Mults). The num-
bers in parentheses represent ratios relative to the MIPS-SW
flow. The hybrid flows include both the MIPS processor, as
well as custom hardware, and consequently, they consume
considerably more area. The LegUp-HW flow implementa-

Table 1: Speed performance results.

MIPS-SW LegUp-Hybrid2 LegUp-Hybrid1 LegUp-HW eXCite-HW

Benchmark Cycles Freq. Time Cycles Freq. Time Cycles Freq. Time Cycles Freq. Time Cycles Freq. Time
adpcm 193607 74.26 2607 159883 61.61 2595 96948 57.19 1695 36795 45.79 804 21992 28.88 761
aes 73777 74.26 993 55014 54.97 1001 26878 49.52 543 14022 60.72 231 55679 50.96 1093
blowfish 954563 74.26 12854 680343 63.21 10763 319931 63.7 5022 209866 65.41 3208 209614 35.86 5845
dfadd 16496 74.26 222 14672 83.14 176 5649 83.65 68 2330 124.05 19 370 24.54 15
dfdiv 71507 74.26 963 15973 83.78 191 4538 65.92 69 2144 74.72 29 2029 43.95 46
dfmul 6796 74.26 92 10784 85.46 126 2471 83.53 30 347 85.62 4 223 49.17 5
dfsin 2993369 74.26 40309 293031 65.66 4463 80678 68.23 1182 67466 62.64 1077 49709 40.06 1241
gsm 39108 74.26 527 29500 61.46 480 18505 61.14 303 6656 58.93 113 5739 41.82 137
jpeg 29802639 74.26 401328 16072954 51.2 313925 15978127 46.65 342511 5861516 47.09 124475 3248488 22.66 143358
mips 43384 74.26 584 6463 84.5 76 6463 84.5 76 6443 90.09 72 4344 76.25 57
motion 36753 74.26 495 34859 73.34 475 17017 83.98 203 8578 91.79 93 2268 42.87 53
sha 1209523 74.26 16288 358405 84.52 4240 265221 81.89 3239 247738 86.93 2850 238009 62.48 3809
dhrystone 28855 74.26 389 25599 82.26 311 25509 83.58 305 10202 85.38 119 - - -

Geomean: 173332.0 74.26 2334.1 86258.3 69.98 1232.6 42700.5 67.78 630.0 20853.8 71.56 291.7 14594.4 40.87 357.1
Ratio: 1 1 1 0.50 0.94 0.53 0.25 0.91 0.27 0.12 0.96 0.12 0.08 0.55 0.15

Table 2: Area results (geometric mean).

Flow #LEs # bits Mults

MIPS-SW 12243 (1) 226009 (1) 16 (1)
LegUp-Hybrid2 27248 (2.23) 258526 (1.14) 43 (2.68)
LegUp-Hybrid1 33629 (2.75) 261260 (1.16) 51 (3.18)
LegUp-HW 15646 (1.28) 28822 (0.13) 12 (0.72)
eXCite-HW 13101 (1.07) 496 (0.00) 5 (0.32)

0

5000

10000

15000

20000

25000

30000

35000

40000

0

500

1000

1500

2000

2500

of

 L
Es

 (g
eo

m
et

ri
c

m
ea

n)

Ex
ec

ut
io

n
ti

m
e

(g
eo

m
et

ri
c

m
ea

n) # of LEs

Exec. time

-

100,000

200,000

300,000

400,000

500,000

600,000

En
er

gy
 (n

J)
 (g

eo
m

et
ri

c
m

ea
n)

b) Energya) Performance and area

Figure 3: Performance, area and energy results.

tions require 28% more LEs than the MIPS processor on
average; the eXCite-HW implementations require 7% more
LEs than the processor. In terms of memory bits, both
the LegUp-HW flow and the eXCite-HW flow require much
fewer memory bits than the MIPS processor alone. For the
benchmarks that require embedded multipliers, the LegUp-
HW implementations use more multipliers than the eXCite-
HW implementations, which we believe is due to more ex-
tensive multiplier sharing in the binding phase of eXCite.

Fig. 3(a) summarizes the speed and area results. The
left vertical axis represents geometric mean execution time;
the right axis represents area (number of LEs). Observe
that execution time drops as more computations are imple-
mented in hardware. While the data shows that pure hard-
ware implementations offer superior speed performance to
pure software or hybrid implementations, the plot demon-
strates LegUp’s usefulness as a tool for exploring the hard-
ware/software co-design space. One can multiply the delay
and area values to produce an area-delay product. On such
a metric, LegUp-HW and eXCite-HW are nearly identical
(∼4.6M µS-LEs vs. ∼4.7M µS-LEs) – LegUp-HW requires
more LEs vs. eXCite-HW, however, it offers better speed,
producing a roughly equivalent area-delay product.

Fig. 3(b) presents the geometric mean energy results for
each flow. Energy is reduced drastically as more computa-

tions are implemented in hardware vs. software. The LegUp-
Hybrid2 and LegUp-Hybrid1 flows use 47% and 76% less
energy than the MIPS-SW flow, respectively. With LegUp-
HW, the benchmarks use 94% less energy than if they are
implemented with the MIPS-SW flow (an 18× reduction).
The eXCite energy results are similar to LegUp.

6. CONCLUSIONS
In this paper, we introduced LegUp – a new high-level

synthesis tool that compiles a standard C program to a hy-
brid processor/accelerator architecture. Using LegUp, one
can explore the hardware/software design space, where some
portions of a program run on a processor, and others as
custom hardware circuits. LegUp, along with its suite of
benchmark C programs, is a powerful open source platform
for HLS research that we expect will enable a variety of
research advances in hardware synthesis, as well as in hard-
ware/software co-design. LegUp is available for download
at: http://www.legup.org.

7. REFERENCES
[1] Altera, Corp. Nios II C2H Compiler User Guide, 2009.

[2] Altera, Corp. Avalon Interface Specification, 2010.

[3] J. Cong and Y. Zou. FPGA-based hardware acceleration of
lithographic aerial image simulation. ACM Trans.
Reconfigurable Technol. Syst., 2(3):1–29, 2009.

[4] P. Coussy, D. Gajski, M. Meredith, and A. Takach. An
introduction to high-level synthesis. IEEE Design Test of
Computers, 26(4):8 – 17, jul. 2009.

[5] D. Gajski and et. al. Editors. High-Level Synthesis -
Introduction to Chip and System Design. Kulwer Academic
Publishers, 1992.

[6] Y. Hara, H. Tomiyama, S. Honda, and H. Takada. Proposal
and quantitative analysis of the CHStone benchmark program
suite for practical C-based high-level synthesis. Journal of
Information Processing, 17:242–254, 2009.

[7] http://www.llvm.org. The LLVM Compiler Infrastructure
Project, 2010.

[8] C.Y. Huang, Y.S. Che, Y.L. Lin, and Y.C. Hsu. Data path
allocation based on bipartite weighted matching. In Design
Automation Conference, volume 27, pages 499–504, 1990.

[9] G. Stitt and F. Vahid. Binary synthesis. ACM Transactions
on Design Automation of Electronic Systems, 12(3), 2007.

[10] United States Bureau of Labor Statistics. Occupational
Outlook Handbook 2010-2011 Edition, 2010.

[11] Univ. of Cambridge, http://www.cl.cam.ac.uk/teaching/
0910/ECAD+Arch/mips.html. The Tiger ”MIPS” processor.,
2010.

[12] F. Vahid, G. Stitt, and Lysecky R. Warp processing: Dynamic
translation of binaries to FPGA circuits. IEEE Computer,
41(7):40–46, 2008.

[13] Y Explorations (XYI), San Jose, CA. eXCite C to RTL
Behavioral Synthesis 4.1(a), 2010.

