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Abstract

Modern demand for energy-efficient computation has spurred

research at all levels of the stack, from devices to microarchi-

tecture, operating systems, compilers, and languages. Unfor-

tunately, this breadth has resulted in a disjointed space, with

technologies at different levels of the system stack rarely

compared, let alone coordinated.

This work begins to remedy the problem, conducting an

experimental survey of the present state of energy manage-

ment across the stack. Focusing on settings that are exposed

to software, we measure the total energy, average power, and

execution time of 41 benchmark applications in 220 config-

urations, across a total of 200,000 program executions.

Some of the more important findings of the survey in-

clude that effective parallelization and compiler optimiza-

tions have the potential to save far more energy than Linux’s

frequency tuning algorithms; that certain non-complementary

energy strategies can undercut each other’s savings by half

when combined; and that while the power impacts of most

strategies remain constant across applications, the runtime

impacts vary, resulting in inconsistent energy impacts.

1. Introduction

Modern computational needs and resource constraints have

promoted energy efficiency to a first order design goal, pre-

cipitating a wide array of energy conservation techniques

from the circuit to the user and everywhere in between. De-

spite marked advances in energy efficiency, the anticipated

constraints of future domains such as wearable or implanted

computers necessitate continued advances.

The fragmentation of work between different communi-

ties is one obstacle to progress. Individual research papers
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tend to compare a new technique against the next closest,

which rarely extends into other layers of the system stack.

When the energy savings of a new technique are not com-

pared to existing techniques at multiple levels of the stack,

it is hard to evaluate the new idea’s broader impact to en-

ergy research. Since experimental methods vary widely, us-

ing different hardware, versions of the OS, compilers and

flags, languages, and benchmarks, comparing results across

research papers is rarely a viable option. For example, some

studies report power while others report energy, some mea-

sure power while others model it, and some report usage for

the entire package while others report usage only for the

cores. Accurately comparing a new technique to old tech-

niques requires normalized experimental evaluation method-

ologies on similar software and architectural platforms.

Understanding how a research project fits into the quan-

titative landscape of existing work enables researchers to

evaluate the new work’s energy savings and tradeoffs in the

proper context. For example, if one strategy decreases en-

ergy consumption by 50% but requires new hardware, it

might be less desirable than an alternative that saves only

40% but uses commodity hardware. Or, a language exten-

sion that saves 200% of the energy of existing system level

strategies may be more readily adopted into the language

standard than one that saves only 20%. It is also important

to understand how techniques combine, both in deployment

and when discerning the most promising future research di-

rections. For example, if a compiler level energy optimiza-

tion complements an operating system level technique, both

techniques merit further investigation regardless of which

saves more in isolation. However, if one eclipses or elimi-

nates the impact of the other, the lower saver may be less

valuable.

To restore a broad context for software energy research,

this work measures the relative power, performance, and en-

ergy effects of a range of energy management strategies.

While most of the strategies we study have been previ-

ously evaluated in some context, this is the first time that

all of the results can be compared, because our experiments

have standardized the architecture, OS, measurement tools,

and benchmarks. We examine each technique in isolation



as well as in combination with other techniques at differ-

ent parts of the system. Examining 220 experimental con-

figurations of 41 applications totaling more than 200,000

trial runs, we juxtapose the energy impacts of frequency

scaling, sleep states, parallelism, compiler optimizations,

application-specific power caps, and source-level optimiza-

tions. These are some of our key findings.

There is only so much room to save power in software (Sec-

tion 3). We found that the lowest system baseline power

(i.e., the operating system running with no user applications)

consumed 60% of serial application power, and 35% of the

power of a well parallelized application. Moreover, single-

threaded power varies relatively little across programs.

Linux does not provide energy-efficient frequency tuning

algorithms (Sections 4.1, and 4.5). Add us to the cho-

rus [39] noticing that Linux’s energy-efficient frequency

scaling algorithm, ondemand, is not great at its purported

job. Particularly when applications were parallelized, onde-

mand often increased energy rather than saving it. The aptly

named powersave algorithm does save some power but at

great cost to performance, so it is also an energy loser.

Overclocking has little to no effect on energy (Sections 4.1

and 4.5). While overclocking saves runtime, it eats away

a commensurate amount of power, resulting in no net effect

on energy for most applications. At increased thread counts

(e.g., 16 threads), overclocking’s power increases begin to

outstrip its runtime savings, meaning overclocking reduces

energy by a small amount.

Parallelization can save so much energy relative to other

strategies that energy-conscious software developers must

embrace it (Section 4.3). Most desktop, server, and mo-

bile chips have multiple cores, each of which costs power

even when unused. When these cores are utilized, the per-

formance gains more than offset their power costs. For ex-

ample, increasing parallelization from 1 to 16 threads saved

energy for all the applications we tested — even the poorly

scaling applications — for an average of 55% energy savings

across applications.

Good compilation beats most other energy management

techniques (Section 4.4). Performance-oriented optimiza-

tions (e.g., gcc’s -O3) offer significant energy savings, with

-O3 optimized software consuming less than 43% of -O0

optimized. As for power-oriented optimizations, despite re-

search proposals dating back 20 years [67], modern compil-

ers still do not explicitly optimize for, or significantly impact

power.

Java programs require special energy attention, but they

don’t make it easy (Sections 4.4 and 5.1). Optimizing

Java for energy is even more important than optimizing

native languages. Not surprisingly, interpreted Java costs

nearly 8X the energy of compiled Java. Additionally, prior

work has found that Java is particularly prone to source-level

inefficiencies, possibly in part from the development tools

used to produce it [15]. Despite this, we observed that Java

is challenging to manually optimize for energy.

Power-oriented source code optimizations are probably

not worth the average programmer’s time (Section 5.1).

Source-level power tuning suggested by previous research [44]

may be effective for tiny embedded programs but is chal-

lenging in larger programs. Despite hundreds of micro-

optimizations across eight selected benchmarks, we were

unable to produce significant power savings for any of the

applications.

Idle states are very complementary to other techniques

(Sections 4.5 and 5.4). Processor idle or sleep states saved

energy — up to 19% — with nearly all of the energy man-

agement strategies we combined it with.

Non-complementary conservation strategies can undercut

one another by half (Sections 5.3, 4.5 5.4). Not all of the

management techniques play well together and their benefits

are absolutely not additive. For example, the 19% idle state

savings can be cut in half when frequency is tuned to lower

levels. However, none of the management strategies inter-

fere so badly that they completely negate another strategy’s

effects when combined.

2. Background on Energy Management

To set the context for the techniques that this work measures,

this section provides a short primer on energy management

strategies. For a more complete survey, we refer the reader

elsewhere [54, 72, 73, 75]. Although these techniques span

many fields of computer science, they all boil down to two

broad strategies: reduce a computation’s resource require-

ments and use no more than the required resources.

Circuit One popular energy conservation technique is to

turn off or turn down underutilized components. This is usu-

ally accomplished by reducing or stopping the clock and/or

supply voltage. An integrated circuit’s power consumption

is the sum of the active (Pactive = α·C ·V 2

dd
·f ) and leakage

(Pleak = Vdd · Ileak) power, where α is an activity factor

determined by the dynamic switching activity in the circuit,

C is the circuit’s capacitative load, Vdd is the supply voltage,

f is the clock frequency, and Ileak is the amount of leakage

current. Frequency scaling reduces the clock for a linear re-

duction in active power, while clock gating stops it entirely.

Power gating turns off current to idle components, while dy-

namic frequency and voltage scaling (DVFS) reduces supply

voltage and frequency together. Targeting supply voltage is

particularly effective as it reduces both active and leakage

power, the latter of which accounts for up to 50% of total

power today [1].

When applied to an idle or near-idle circuit (e.g., a proces-

sor executing a memory-bound workload) these techniques



save power while minimally impacting application runtime,

ultimately saving energy. The control policies to manage

these settings is an active area of research, particularly with

respect to emerging integrated voltage regulators [65], which

are improving the spatial and temporal resolution of DVFS.

These controls are increasingly being exposed to software,

however it remains to be seen what type of control policy is

best.

Architecture Above the circuit, there is a huge volume

of work in energy-oriented microarchitecture including

cache tuning [37], on-chip networks [38], memory com-

pression [7], and instruction speculation control [36]. The

research community is also embracing heterogeneity in the

form of specialized accelerators [23, 28] and asymmetric

designs [14] such as ARM’s big.LITTLE. Even the now

mainstream chip multiprocessors originated out of a need to

scale performance without increasing power density, so the

software parallelization it forced could be considered part of

the power-conservation landscape.

Platform Off-chip, there are numerous other strategies.

DC to AC conversion, which consumes 0.9 Watts for every

compute Watt [68], is unsurprisingly a focus of datacenter

energy efficiency. Cooling, which incurs similar overheads,

has also received significant attention (e.g., [51]). On laptops

and mobile devices, reducing screen brightness and duty

cycling for services such as GPS are other proven energy

savers [4, 16].

Operating System Operating systems get involved by ex-

plicitly treating energy as another hardware resource to be

managed [46, 70]. To save energy, they control software’s in-

teractions with lower level resources, for example adjusting

DVFS on the fly [47], mapping processes to cores to keep

total power below a cap [5, 56], or strategically offloading

computation to achieve battery lifetime goals [71].

Compiler and Runtime Via static analysis, feedback di-

rected compilation, or JIT compilation, compilers can ana-

lyze applications to insert hints about when to change fre-

quencies [62], rearrange computation to create longer idle

periods [3], and place instructions and data into memory in

a more energy efficient manner – either by reorganizing in-

structions in the register file [59] or by creating a compiler-

managed scratchpad [32]. There is also research on offload-

ing compilation to a remote machine [42] to save energy and

on power-saving hybrid garbage collection schemes [24].

Source and Language At the source level, energy opti-

mization strategies range from micro-optimizations such as

manual loop unrolling [19] to macro solutions like updating

software development environments to encourage program-

mers to be more energy friendly [15]. Additionally, language

extensions (such as EnerJ, which recruits programmer as-

sistance in finding opportunities for power-accuracy trade-

offs [55]) and new languages (such as Eon, which has pro-

grammers identify high and low power energy regions at the

source level [63]) have been proposed to improve energy ef-

ficiency.

Suite Applications Used

Parsec 3.0

blackscholes*, bodytrack, canneal, dedup,

ferret, fluidanimate*, raytrace, swaptions,

streamcluster, x264

SPLASH-2X
barnes, fft, fmm, ocean cp*, radix*

water spatial

Spec CPU 2006

bzip2, gcc, mcf, hmmer, sjeng, milc, gromacs,

cactusADM, astar*, lbm*, wrf, sphinx3, tonto,

povray, GemsFDTD, gamess, omnetpp

DaCapo 9.12
avrora, h2, jython, luindex, lusearch*, pmd*,

sunflow

Spec JBB 2013 pjbb2005 with 8 warehouses and 100,000 transactions.

* benchmark chosen for application-specific experiments

Table 1: Experimental benchmarks, chosen to represent a range of

languages, programming styles, and application domains.

3. Experimental Design and Methodology

Good experimental design and methodology were crucial for

this survey. This section describes and justifies the design

choices we made.

Experimental System All the experiments in this paper use

a single, dedicated Dell PowerEdge R420 server. The server

is dual socket with Intel Sandybridge E5-2430 chips, each

with six cores and two-way hyper-threading for a total of

24 hardware contexts. The system has 24GB of DRAM and

runs Ubuntu 12.04.2 with the 3.9.11 version of the Linux

kernel, the latest release at the time of our first data collec-

tions. To allow the operating system and userspace to adjust

certain controls such as frequency tuning, we switched the

Dell BIOS settings to ‘operating system control’. The ma-

chine runs gcc Version 4.6.3 compiler and Java HotSpot 64-

bit server VM with JRE 2, build number 1.5.0.

Power Measurements For all of the power and energy

measurements, we use Intel’s Running Average Power Limit,

or RAPL, interface [29]. RAPL uses non-architectural,

model-specific registers (MSRs) that indicate the amount

of energy consumed by different parts of the system (e.g.,

package, cores, DRAM). We sample all the energy coun-

ters every 50ms over the course of each program’s run and

then combine the values to compute total energy. Dividing

this value by the total runtime produces the average power

during a program’s execution.

Benchmark Applications and Inputs Our experiments use

41 benchmarks from five different suites, each commonly

used in previous energy management research. The appli-

cations represent a breadth of languages, design paradigms,

and application domains. Table 1 lists the applications. The

first ten come from the Parsec Benchmark Suite [9] which

contains multi-threaded programs written in C and C++.

We ran each of these programs with the ‘simlarge’ inputs.

The next six applications are from the Splash-2 Benchmark



Benchmark Suite

Parsc SpecCPU Splash2X DaCapo SpecJBB

System (Sec. 4)

Processor Frequency Tuning X X X X X

Overclocking (Turbo Boost) X X X X X

Processor Sleep States X X X X X

Parallelism X X X

Compiler Opt. Sets X X X

Interpreted v. Compiled X X

Application Specific (Sec. 5)

Source Code Tuning * * * *

Per App. Frequencies X X X X X

Per App. Power Caps X X X X X

X= full set of applications, * = select applications only

Table 2: A summary of the energy efficiency techniques explored in this experimental survey.

Suite [76], which are also multi-threaded and written in C.

In contrast to Parsec’s benchmarks, many of Splash’s bench-

marks come from high-performance computing and graph-

ics. As prior characterizations demonstrate, these two suites

are also fundamentally different with respect to their mem-

ory usage and communication patterns [10]. We use the

Splash2x variant of the suite that is distributed with the latest

version of Parsec in order to have access to the ‘simlarge’ in-

put sets. The next benchmark suite is SPEC CPU2006 [26],

which includes single-threaded, CPU-intensive workloads in

C, C++, and Fortran, of which we use 17 benchmarks and

the test input sizes. The fourth suite is DaCapo [12], a multi-

threaded Java benchmark collection with applications from

a variety of real-world domains. We benchmark seven pro-

grams using the ‘default’ input size. Although DaCapo is

multi-threaded, it does not allow the user to set the target

thread count, so we leave the ‘external’ thread count setting

at one (see the usage documentation [18]) and exclude Da-

Capo from the parallel experiments. The final benchmark

used is SPECjbb2005 [64], which is a client/server system

designed to test the performance of Java servers. As pack-

aged, SPECjbb always tries to complete in a fixed amount

of time. This makes it hard to compare energy across trials,

so we use the pjbb2005 patch [11], a variant of the bench-

mark that fixes the workload size instead of the runtime. The

workload size in pjbb is set via two inputs, a transaction

and a warehouse count (see [64] for details). Exploratory

experiments on our machine showed the most scalable con-

figuration to be 100,000 transactions and 8 warehouses, so

these are the settings we chose. Without constraints, pjbb

uses all the hardware threads. To adjust parallelism to a dis-

crete thread count, we used the taskset unix command.

Energy Management Technique Selection The energy

management techniques cited in Section 2 represent just

a fraction of work in the area. To narrow down the large

pool, this study focuses on techniques that are software-

controllable, as opposed to those that require changes to

the underlying architecture, circuitry, or hardware devices.

Because hardware energy savings are already well studied

(e.g., [20].), it made sense to cut the space this way.

We culled the remaining space by choosing a representa-

tive set of techniques that are broadly applicable to a vari-

ety of workloads and systems and that span multiple levels

of the software stack. We omitted techniques that were in-

feasible to replicate on our own machine including those

requiring complex toolchains, architectural simulation, spe-

cialized hardware, or homegrown compiler or operating sys-

tems. Table 2 summarizes the nine power management tech-

niques we chose to study. More detailed explanations of

the techniques, including pointers to relevant prior work,

are presented alongside the experimental results. Section 4

measures the individual and combined effects of six generic

system techniques: processor frequency scaling, overclock-

ing, use of idle states (all in the OS), compiler optimization

flags, interpretation versus compilation, and the effects of

parallel thread counts. Section 5 presents the results of three

application-specific experiments, namely power-oriented

source code transformations, per-application processor fre-

quency tuning, and per-application power capping. Section 5

also compares and contrasts application-specific strategies

with generic system strategies.

Experimental Rigor Given the breadth of this study, we

took particular care to gather accurate, precise, and well or-

ganized results. This strengthens our own conclusions and

enables other investigators to analyze and build on our data,

which we have provided at: www.arcade.cs.columbia.

edu/energy-study. Automated scripts managed all as-

pects of the experiment setup, data collection and labelling,

thus ensuring repeatability. In addition to the raw energy

and runtime data, we gathered supplemental data, such as

frequency readings via the i7z tool [33], to confirm that each

configuration was successfully applied and implemented as

expected. Each benchmark was run a minimum of 20 times

at each configuration, and as many times as necessary for the

95% confidence interval to come within 2% of each applica-

tion’s energy, runtime, and power means. In rare cases, this

required over 100 program runs of an application for a sin-

www.arcade.cs.columbia.edu/energy-study
www.arcade.cs.columbia.edu/energy-study
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Figure 1: Baseline Performance and Power. The 41 benchmark

applications exhibited more variation in runtime than in power

when run at our baseline configuration of a single thread utilizing

a processor set to maximum frequency, and with compiler/JVM

optimizations and processor idle states all enabled.

gle configuration. In total, the measurements represent over

200,000 application runs across the 220 individual and com-

bined energy management configurations. Using averaging

(with geometric means for any pre-normalized data [22])

and normalization we compress this vast amount of data

into easy to understand results.

Baseline Power and Performance For clarity and to aid

inter-study comparisons, nearly all experimental data is

reported relative to a single baseline configuration. This

baseline, which is our system’s default, maximizes pro-

cessor frequency (2200 MHz), enables Turbo Boost and

idle states, maximizes compiler optimizations (-O3 and

-funroll-loops for gcc, compiled for the JVM), and runs

each application with one thread. Getting the Java bench-

marks to run with one thread required using the taskset

command to force the virtual machine onto a single thread.

When not taskset, we observed that the Virtual Machine

might use any number of hardware threads even if the appli-

cation is offered only a single thread.

Figure 1 shows the measured runtime and power of the

41 benchmarks on this baseline configuration. Each point on

the plot represents the average across as many runs as re-

quired to reach our statistical standards. The runtimes (from

0.4 to 66 seconds) showed a greater range than the power

consumption (from 61 to 79 Watts). Primarily a result of the

range in runtime, energy also ranged widely from 24 to 4036

Joules.

This initial data corroborates existing work from Es-

maeilzadeh et al. [20], showing that power is not necessarily

related to the thermal-design point, or TDP, of the CPU.

While the TDP of our machine is 190 Watts across both

sockets, a multithreaded microbenchmark designed to gen-

erate large amounts of busywork consumed only 120 Watts.

The fact that we never near TDP even at peak system usage

could be a symptom of a good cooling system, though this

theory has not been tested. We have marked the busywork

micromenchmark as “Measured Max” power on Figure 1.

We also record a “Measured Min” at 43 Watts, which is is

the machine power when nothing other than system utilities

and our power profiler were running. Note that this back-

ground power is significant, accounting for an average of

60% of the single-threaded benchmark power and for 35%

of the multithreaded busywork program.

4. System-Level Results

Here, we present the system-level measurements of fre-

quency tuning, overclocking, processor idle states, paral-

lelism, and compiler flags. We first examine the impact

of each setting in isolation and then examine how the

five techniques combine. Section 5 presents the remaining

application-specific techniques listed in Table 2.

4.1 Frequency Tuning and Overclocking

A huge body of prior work uses dynamic frequency scaling

to improve energy efficiency. The key insight is that lower

processor frequencies consume less power, so energy can be

conserved if processor frequencies are reduced during pe-

riods of low work. The challenge of frequency tuning is to

figure out when and by how much to reduce frequency with-

out causing performance losses significant enough to negate

the power savings. Operating systems are often tasked with

this, because they can measure application performance and

then reactively set the clock frequency via software exposed

registers in the CPU [13]. Linux provides several algorithms,

called cpufreq governors, to manage this process. The avail-

able algorithms depend on the machine architecture and ver-

sion of Linux, so we measure three commonly available

ones:

• The performance governor sets frequency to its maxi-

mum, 2200 MHz on our test machine. We call this set-

ting perf w/ Turbo because, as described below, it also

includes Turbo Boosting. It is the baseline described in

Section 3.

• The powersave governor also uses a constant frequency,

but at the system minimum, which is 1200 MHz on our

machine.

• The ondemand governor increases or decreases fre-

quency, reportedly per processor, when a (tunable) thresh-

old of dynamically measured CPU utilization is reached [47].

We leave all tunables at their default settings, for example

leaving the utilization threshold at 95%.

In addition to frequency, power governors also have lim-

ited influence on overclocking, which means temporarily

raising frequency above the processor manufacturers’ rec-

ommend level for sustained computation. Both Intel and

AMD offer dynamic overclocking called Turbo Boost [30]

and Turbo CORE [2] respectively. Overclocking may or may
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of maximum frequency with Turbo Boost enabled (perf w/ turbo). Other frequency tuning options include disabling Turbo Boost for decreased

runtime but no net energy savings (perf no turbo) or a powersave option that saves an average of 31% of the power, but with great costs to

runtime (powersave).

not have significant bearing on energy; while it reduces com-

pute time, it also causes the system to run hotter and dissi-

pate more power. For safety reasons, hardware has ultimate

control over when and for how long overclocking can occur,

however, the operating system does have the option to dis-

able overclocking all together. By default, the ondemand and

performance governors permit overclocking, which kicks in

only when the processor frequency has reached the maxi-

mum rating. Using an Intel-supported driver, we were able

to create a fourth governor that isolates the effects of Turbo

Boosting:

• The performance no Turbo governor sets the CPU fre-

quency to its maximum, but disables Turbo Boost (i.e.,

no dynamic over clocking).

On our system, disabling overclocking for the ondemand

algorithm is not an option. Disabling overclocking for the

powersave algorithm would not make sense because by the

algorithm’s definition, frequency is always set to minimum.

Experiments show that these four frequency management

strategies yield a range of power-performance tradeoffs. The

left panel of Figure 2 plots the individual application run-

times and power consumption at each of these four settings,

while the right panel summarizes the impact of these settings

across all applications.

Disabling Turbo Boost and removing the machine’s abil-

ity to ramp up frequency for short periods of time resulted

in a runtime increase of 20% across applications. We did not

monitor the frequency changes across all of our experiments,

but observed using the i7z tool [33] that Turbo Boost almost

always increases frequency (up to 2700 MHz, or 500 MHz

above the normal maximum frequency) when a single pro-

cesor is working at 100% utilization but the remaining pro-

cesses are idle, as was the case for most of the experiments

in Figure 2. In many cases, the frequency was allowed to re-

main at 2600-2700 Mhz for the duration of the application’s

execution provided the other cores remained idle, which ex-

plains the significant performance differential.

Conversely, disabling Turbo Boost decreased power by

an average of 17% across applications, a direct consequence

of the lower average processing frequency. The nearly equiv-

alent increase in runtime and decrease in power meant that

across applications, disabling Turbo Boost produced no net

change in energy versus Turbo Boost enabled. Individual ap-

plications saw some minor energy shifts with Turbo Boost

disabled versus enabled: at most a 9% increase and a 6% de-

crease with 17 applications increasing in energy consump-

tion and 24 decreasing.

Similarly, the out-of-the-box ondemand algorithm affects

energy by only a small amount, with 6% average savings

across applications. Most of the individual applications (38

out of 41) saved a little energy, but only six saved more than

10% relative to the baseline. This limited savings may be un-

surprising to some in the operating systems community, who

have questioned the efficacy of the ondemand frequency tun-

ing algorithm [39] as well as frequency tuning’s potential to

save energy at all on modern processors [40]. Powersave is a

big energy loser, with an average increase of 47% versus the

baseline and with not a single individual application saving

energy. From these results, it is clear that powersave, or any

similar strategy that reduces frequencies to a minimum, is

not a desirable policy for active processors.

4.2 Idle States

Most computers spend a significant amount of time under-

utilized, for example while serving I/O. Datacenter servers

reportedly use only 10-50% of their processors at a time; the

remainder are idling [6]. Idleness can be costly in terms of

power draw with under-utilized servers still drawing more

than 50% of their peak power [6]. In recent years processor

vendors have offered a rich menu of processor idle states,

that send the processor to increasingly deep levels of ‘sleep’
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Figure 4: Parallelization increases energy savings for all applica-

tions tested. For our 12 core, 24 hyperthread server, running 16

application threads consumed just 45% of the energy of the serial

execution.

for increasing power savings. The specifics vary from vendor

to vendor, but as an example, a first level of sleep might be

to stop the CPU clocks, a second to turn down CPU voltage,

and a third to reduce the voltage further and stop refreshing

cache [69]. The reason for multiple levels of idleness, some-

times called c-states, is that each deepening state comes at

an added transition cost, taking increasingly more time for

the processor to switch back to active. If a processor is sent

into a deep idle state immediately before an application re-

quests its resources, the application will experience runtime

delays. Thus, the main challenge to managing idle states is

to figure out when to idle, how deeply to idle, and when to

wake up.

As with frequency scaling, the operating system has been

tasked with observing application behavior and managing

idle states accordingly. Linux provides a cpuidle idle state

manager [48], which is analogous to its cpufreq frequency

algorithms. The cpuidle manager monitors the dynamic use

of all the system processors and uses this information to de-

termine the appropriate depth of sleep. It is also possible to

force a processor to use a specific idle state (see instructions

in [25]) rather than allowing the automated manager to con-

trol sleep depth. According to the documentation [25], man-

ual settings are helpful for reducing system latency but not

likely to save more power than the cpuidle manager, so we

limit our experiments to the managed algorithm rather than

manual settings. This narrows our idle state exploration to

just two settings:

• The idle on data is measured with the perf w/ turbo fre-

quency tuning, per application thread count of one, and

gcc-O3 or the default javacc options (i.e., the baseline).

• The idle off is the same configuration but with cpuidle

disabled (i.e., the cores are not allowed to sleep).

Figure 3 plots the comparison, which reveals a 19% en-

ergy difference between idle on and off across all 41 applica-

tions. For individual applications, the differences range from

11 to 25%, with all applications seeing a net energy decrease

when idle states are enabled. Also in line with expectations,

power is on average 13% higher when idle states are turned

off, at most 24%, and at least 8%. Unexpectedly, all of the

applications run faster by an average of 6% when idle states

are enabled. We found that this runtime difference reverses

when Turbo Boost is disabled, and we suspect that with idle

states enabled, the core used by the single-threaded appli-

cation is able to take advantage of the lower overall system

power and turn on Turbo Boost more frequently than when

idle states are disabled, resulting in the shorter runtimes.

4.3 Parallelism

Although the idea of parallelism has been around since the

first computers [74], multicores became mainstream roughly

a decade ago, when AMD and Intel started selling dual

core processors for desktops. This revolution was driven

largely by energy and power concerns. The increasing clock

speeds and transistor counts that drove performance higher

for fifty years also drove power density to unsustainable

levels. Computer architects reacted by simplifying processor

cores and offering more of them, which kept heat levels

under control while allowing performance to continue to

grow. The catch is that to effectively increase performance,

software must actually use multiple cores.

As core counts grow, software engineers are left to deal

with the difficult challenges of writing well parallelized

code to improve performance on future generations of

chips [43]. One could argue (as Urz Holzle, SVP at Google,

did [27]) that it is the responsibility of computer architects

to keep serial processing efficient so that software is not

forced into parallelism. However, for better or worse, chip-

multiprocessors now dominate the desktop market, and core

counts in the mobile market are also creeping up [61]. In

addition to runtime efficiency, prior research has shown that
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Figure 5: Standard compiler optimization sets save energy, but

largely through runtime reductions not power reductions. Applica-

tions without optimization take 133% more energy and 131% more

time than fully optimized applications.
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Figure 6: Java compilation saves substantial energy versus inter-

preted code, which consumes 8X the energy, but again these sav-

ings are due to runtime, not power.

energy efficiency is similarly reliant on effective paralleliza-

tion [52], so energy conscious programmers must also deal

with this reality.

We measured the interplay of performance, energy, and

parallelism on our 12 core, 24 hyperthread machine; Fig-

ure 4 summarizes the results. The baseline is the same

as before, with the data showing average changes in run-

time, power, and energy for 4-thread and 16-thread program

runs versus single-threaded runs. The results are averaged

across multiple runs of the 17 benchmarks from the Par-

sec, Splash2x, and SPECjbb suites, the three suites that sup-

ported discrete thread count settings. From the runtime val-

ues, it is evident that some of the applications scale poorly:

on average the applications show only a 2X speedup over

serial with four threads, and a 3X times speedup with 16

threads. The most scalable application tested, radix, saw

only an 8X speedup at 16 threads. Jumping from 4 to 16

threads caused radix’s power to increase by 50%, thanks

to increased core activity reducing the opportunity to ex-

ploit idle states. This power increase tempered the run-

time savings, so that radix’s energy at 16 threads was

about 20% of its single-threaded energy. In other applica-

tions, a similar phenomenon occurred: speedups provided

by added parallelism were offset by the power increases

resulting from more concurrently active threads. However

the power increases did not exceed the runtime savings for

any of the applications we tested, meaning all of the appli-

cations saved energy. Even the most poorly scaling appli-

cation, raytrace, whose runtime at 16 threads decreased

only 19% versus one thread saved a non-negligible amount

of energy at 13%. On average, the applications saved 55%

of the single-threaded energy when run with 16 threads.

4.4 Compiler optimizations

Most existing work on energy efficient compilation focuses

on the power and energy impacts of performance optimiza-

tions. They typically find that these optimizations reduce

runtime much more than they increase power, resulting in a

net decrease in energy. In attempts to isolate which optimiza-

tions are the most power efficient, a number of studies apply

individual optimizations such as function in-lining, loop un-

rolling, and loop vectorization to benchmarks (e.g., [58]).

Other research has constructed new optimization sets for en-

ergy rather than performance (e.g., [49]). The conclusion

of all prior studies seems to be the same: when it comes to

compilation, what is best for performance is best for energy.

This is not a surprising conclusion when the optimiza-

tions tested affect performance almost exclusively (and

not power). The community has proposed a few power-

optimizations, such as reordering instructions or memory

operands or reassigning registers to reduce control path

switching. A good overview of these techniques is presented

in a 1994 paper by Tiwari et al. [67]. Twenty years later

it seems none of these techniques have made it into main-

stream compilers, so quantitative data on their ability to im-

prove power and energy is sparse. Given the lack of power-

specific optimizations in commercial compilers, we measure

the energy effects of standard sets of compiler optimizations.

While we are far from the first to take these measurements,

we include them to provide a quantitative comparison point

for the other measurements in this paper.

Figure 5 shows the energy effects of the standard gcc

compiler optimization sets for applications in the three na-

tive benchmark suites. On average, the applications ran in

131% less time for gcc-O3 versus gcc-O0, meaning the op-

timized code took 43% of the time of the unoptimized code

to run. The change in power was negligible, about 1% on av-

erage, so the energy effects track the runtime, with gcc-O0

taking 233% of gcc-O3’s energy. The per application energy

savings of turning on optimizations ranged wildly, from less

than 1% to nearly 700%, likely a reflection of how optimized

the original source code was. In terms of energy and runtime
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configurations discussed so far, as a percentage of the baseline, (i.e., baseline = 100%). Note that the matrix includes data from only the

parallel, native benchmark suites: Parsec, Splash2x.

the -O2 optimizations were very similar to -O3 on average,

with 8 of the 33 applications actually saving more energy

with -O2 than with -O3. These numbers emphasize compil-

ers’ important contributions to energy savings, but confirm

that all the savings come in the form of reduced runtime.

For the eight Java benchmarks, we measured the energy

of interpreting rather than compiling. On average, the cost

of interpreting was huge, consuming 818% more energy

on average than compilation, which is roughly in line with

the runtime impact of 795%. Again, the energy changes

varied between applications, from an energy savings of 23%

for pmd (the only application to save energy, and purely a

result of runtime savings), to an increase of over 2600% for

sunflow. Average power increases were barely significant

at just 3%, and varied less between applications (-0.5% to

6%).

4.5 Cross-Layer Energy Effects

The preceding sections explore the impact of each optimiza-

tion in isolation. We wanted to know whether turning on

multiple techniques resulted in additive, negative, or syner-

gistic interference, so we ran experiments that combine all

of the techniques presented so far. The heatmap matrix in

Figure 7 shows all of these combinatorial effects as a per-

centage of the baseline. The data in the matrix comes from

the 16 applications in the two parallelizable, native bench-

mark suites, Splash2x and Parsec. The rows represent differ-

ent system frequency algorithms, while the columns cover

all of the idle states, compiler options, and parallelism con-

figurations previously discussed.

A number of insights could be drawn from these compar-

ative experiments. Most notably, the energy savings of one

strategy can be cut by half depending on what other strate-

gies are in use (e.g., enabling idle states saves 19% at the

baseline frequency, but only 10.4% when the powersave al-

gorithm is used.) Similarly, the ondemand frequency algo-

rithm saves less energy at 16 threads than with one thread.

In fact, at 16 threads, ondemand actually increases energy re-

gardless of compiler optimization or idle state configuration.

Compiler optimizations follow this pattern as well, saving

less energy at 16 threads (about 40% across configurations)

than at one thread (57%).

Several techniques were a win across the board. For all 18

configurations, disabling Turbo Boost saved energy because

the runtime savings from Turbo Boost’s increased frequency

were more than offset by corresponding power increases.

However, unlike the other techniques, disabling Turbo Boost

saves more energy for 16 threaded trials than serial trials.

Idle states also provided nearly universal energy savings,

with 34 out of 36 configurations showing energy decreases

when they were enabled. Increasing parallelism, even with-

out perfect performance scaling, was also a relatively large

energy winner, with energy decreasing from 1 to 4 to 16

threads for all configurations.

Ultimately, the best energy configuration was with idle

states on, the -O3 optimization set, 16 threads, and the per-

formance no turbo frequency tuning. Note that this does not

match our baseline and the system default, which enables

Turbo Boost. The worst configuration was essentially the

opposite: -O0, idle off, one thread, and the powersave al-

gorithm. The difference between these two configurations is

a whopping 10.3X.

5. Application-Level Energy Management

This section presents the measurements of three application-

specific energy management techniques: source code tuning,

custom frequency scaling, and power capping. It then links

these techniques to system-level techniques in a combination

study.

5.1 Source Code Tuning

A number of recent and older works suggest that optimiz-

ing source code for power savings can have significant im-

pact [8, 15, 44, 67]. Surveying these works and others, we

found eight kinds of source-level transformations purported

to save power or energy, and applied these transformations

to the eight benchmarks marked with a * in Table 1. The

transformations aim to:



1. reduce temporary variables,

2. eliminate common subexpressions (e.g. consolidate du-

plicate computations or lookups in complex structures),

3. postpone variable declarations until needed,

4. use operator= instead of the operator alone and use prefix

instead of postfix operators (but only for complex types),

5. use direct assignments of variables rather than initializa-

tions followed by assignment,

6. replace multiply and divide operations with shifts or ad-

dition when possible,

7. optimize loops with unrolling and unswitching (moving

a conditional from inside to outside of a loop)

8. reduce the number of arguments passed to functions.

To focus our efforts, we looked for opportunities to apply

the first six optimizations within loops or within functions

called inside loops. In total, we made 688 changes across

the eight applications, ranging from 5 to 292 changes per

application. Figure 8 shows the exact number of changes

per application, in square brackets above each triplet of

bars. It was simpler to make changes in the less optimized

applications of the Splash2x and Parsec benchmarks, and

conversely more difficult to improve the already-optimized

SPECCPU benchmarks. The DaCapo benchmarks were es-

pecially challenging to transform. This is partly because they

are already well optimized, and partly because it is difficult

to track the scope of objects whose instantiation may be far

removed from use, as opposed to variables in native bench-

marks, whose scope often lasts only one function. When the

scope of an object was unclear, it was necessary to be more

conservative about deletion or modification.
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Figure 8: Source code tuning methods from prior embedded sys-

tems research were not very effective energy savers for for our com-

plex and already well-optimized benchmarks running on servers.

Figure 8 shows the power, performance, and energy ef-

fects of our transformations relative to the unoptimized pro-

grams. The data represents multiple trials, all utilizing the

same baseline as previous experiments, with gcc optimiza-

tion level O3 and the -funroll-loops options enabled for

native programs, and the compiled virtual machine used for

the Java programs. Only one application saw a significant

reduction in energy — blackscholes — while four oth-

ers’ energy was slightly reduced by our transformations. The

effective transformations in blackscholes were common

subexpression elimination, the reduction of temporary vari-

ables, and direct assignment, all within a ‘hot’ function, and

missed by the optimizing compiler due to the complex ob-

jects involved in the computation. The transformations re-

duced power for five of the eight applications, but none of

these measured reductions were outside of our 2% confi-

dence interval range, so they should be considered statisti-

cally insignificant. One application, radix, experienced a

significant power increase at 17%, likely due to additional

loop unrolls that the compiler would normally not perform.

This study could be considered a failure given that the

optimizations did not result in significant power or energy

savings, but we still felt it important to include the nega-

tive results. They demonstrate that, at least for previously

optimized applications run on servers, micro-optimizations

for power and energy are challenging. Given that the results

were poor and the source-level transformations require dis-

proportionately more effort than other energy saving tech-

niques, we suggest that power-specific source transforma-

tions are not worth the average programmer’s time once the

code has been optimized for performance.

5.2 Application Tuned Frequencies

As previously shown, the ondemand frequency governor

provides only small energy savings. In part this is because

it is conservative (optimizing for performance) and reactive

(waiting to measure processor utilization before adjusting

frequency). We also observed (using the i7z frequency mon-

itoring tool [33]) that even when only one core is utilized by

an application, ondemand tends to unnecessarily ramp up the

frequency of the entire socket. All of these behaviors limit

ondemand’s ability to conserve energy.

A number of researchers have noticed that reactive mea-

surements coupled with the high latencies of switching fre-

quencies through the OS may result in less than optimal fre-

quency tuning, and have proposed alternate methods. For ex-

ample, a recent paper by Rangan et al. [53] proposes set-

ting individual core frequencies to different static values,

then migrating application threads to improve both energy

and throughput. Hints from compilers [77], static analy-

sis tools [60], and even software developers [63] have also

been proposed to tune frequencies more effectively. None of

these papers distribute open-source code, so in lieu of reim-

plementing their work, we contextualize it by running in-

dividual applications at discrete, constant frequency levels.

This obviously does not replicate techniques that continually

switch applications between frequency levels, but it at least

gives us an idea of the range of power-performance tradeoffs

involved in application-specific frequency tuning.
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Figure 9: Application-specific frequency tuning, or running

an application at a single discrete frequency, allows power-

performance tradeoffs to be flexibly manipulated.
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Figure 10: RAPL power caps, which limit the amount of power a

part of the chip is allowed to consume over a given time window,

yield a more limited power-performance tradeoff range.

Linux provides a mechanism for root to change individ-

ual processor frequencies through a userspace governor. On

the machine used for these experiments, frequencies can be

set to 11 distinct levels, from 1200 MHz through 2200 MHz

at 100 MHz steps. A twelfth option is to set the frequency

to maximum (2200 MHz) and enable Turbo Boost. Figure 9

shows how all 41 benchmarks perform, on average, at dif-

ferent frequency levels. So that all the applications could

be used, these results show single-threaded runs: the unused

11 cores (22 hyperthreads) were set to minimum frequency

while the occupied processor’s frequency was varied. Idle

states are turned on for all of these experiments. In the av-

erage case, none of the frequency configurations saves en-

ergy relative to 2200 MHz with Turbo Boost; instead, there

is a smooth power-performance tradeoff curve with runtime

increases always slightly over-shadowing power decreases.

Looking at individual applications, three of the 41 save a

negligible amount of energy when Turbo Boost is disabled

but frequency remains set to 2200 MHz. Moving down the

frequency scale to 2100 MHz none of the applications save

any significant amounts of energy. Power decreases are rel-

atively uniform across applications, sinking a little more at

each frequency. The corresponding runtime increases, how-

ever, vary significantly between applications. For example,

at 1700 MHz, runtime may increase as little as 38% or as

much as 74% relative to the baseline, resulting in relative en-

ergy losses of 9 to 35%. Future algorithms should be sure to

account for this highly application-specific response to fre-

quency tuning.

5.3 Per Application Power Caps

While hardware ensures that on-chip power levels do not ex-

ceed the TDP, sometimes there is a need to cap power at a

lower level. For example, in datacenters, enforcing a strict

power cap somewhere below the TDP could make energy

expenses more predictable and affordable. Several research

projects have addressed this need via power-attentive thread

to core scheduling and DVFS [17, 31, 56]. A couple of in-

dustrial tools exist as well, for example, Intel’s RAPL Power

Caps [29]. Since our machine contains Intel processors, we

experiment with this particular implementation.

RAPL allows a user with sufficient privileges to limit

power across multiple domains per socket: power plane 0

which includes cores and private caches, power plane 1

which includes alternate processing units such as GPUs, the

package which includes both power planes as well as shared

caches, and finally DRAM. The user selects a domain to cap,

then gives the RAPL interface a specific power value to limit

that domain, as well as a time window. The time window

specifies periods during which average power levels must

meet the cap. For example, if the given window is 100ms

and the cap is 30W, RAPL promises that every 100ms, the

average power of the specified domain will not exceed 30W.

RAPL documentation is unclear about how these power lim-

its are maintained, but our reverse engineering shows that

frequency scaling is at least part of their strategy. RAPL cap-

ping overrides system frequency algorithms, but does allow

idle states to be enabled.

Figure 10 shows the results of capping both sockets’

package power at various levels. Initial experiments showed

that useful package capping values fell between 30 and 10

Watts. Only the 8 applications marked with a * in Table 1

were used for these results. Across applications, capping

traded modest (up to 11%) decreases in power for modest

but slightly larger (up to 20%) increases in runtime, resulting

in a slight net energy increase. The graph indicates that

the power increases and runtime decreases were not quite

monotonic as power caps were lowered, but the slight up

and down fluctuations are less than our error range at 1%,

and thus should not be considered statistically significant.
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Figure 11: Application-specific strategies versus system level strategies for frequency tuning. RAPL caps, application-specific frequency

tuning, and system frequency governors could not be combined with each other, so we compared their power performance effects instead.

All three could be combined with idle states, however, which when enabled saved energy across all of the different frequency configurations.

5.4 Comparing Application-Specific to System-Level

Strategies

We wrap up our study by showing how system-level strate-

gies (frequency governors and idle states) compare with

application-level techniques (application-specific frequency

tuning and RAPL caps). The frequency governors, application-

specific frequencies, and RAPL caps all control the same

knob of processor frequency, so these three strategies cannot

be combined and should be considered mutually exclusive.

However, idle states can be combined with all three forms of

frequency tuning, and we noticed that toggling Turbo Boost

on or off has some effect on RAPL capping performance.

For the five parallelizable applications marked with * in Ta-

ble 1, we set the compiler optimization level to -O3, and the

thread counts to 16 (note this deviation from the baseline of

one thread; we return to unnormalized data here) then ran

multiple trials of the following configurations:

• 6 levels of RAPL caps × 2 idle settings × 2 turbo settings

• 12 application-specific frequency values × 2 idle settings

• 4 system frequency algorithms × 2 idle settings

This comes to a total of 56 configurations per application,

each of which is plotted in the power-performance graphs

of Figure 11. A few insights immediately jump out. First,

the fastest configurations tend to take the most power, and

overall, the majority of configurations seem to make a strict

trade of increased runtime for decreases in power. Second,

ocean cp trades off much less performance for power sav-

ings than the other three applications. Third, regardless of

the configuration, turning idle states on has a positive effect

on power. Though it may not jump out of the plots immedi-

ately, idle states also save energy for the majority of config-

urations.

Relative to the system default (i.e., the baseline), the num-

ber of configurations that save energy varies significantly

per application. For example, 50 of ocean cp’s 56 config-

urations save energy, with the best saving 24%. However,

for fluidanimate, just 12 configurations save energy with

the best saving only 5%. The lowest energy configuration

for each application varies as well: for ocean cp the best

is to turn off idle states and minimize frequency, while for

fluidanimate and blackscholes it is idle states on and

maximized frequency, and for both radix and SPECjbb

it is idle states on with RAPL caps set to 10W and no

Turbo Boost. These results show that while the power sav-

ings trends of each strategy may hold across applications, the

performance trade-offs can vary, resulting in unpredictable

energy effects.

6. Related Work

In the most comprehensive prior study of energy efficiency

techniques, Esmaeilzadeh et al. [20] examined the power-

performance tradeoffs of different microarchitectural fea-

tures including clock frequencies, memory hierarchy con-

figuration, and hardware parallelism. While the two studies

overlap in some dimensions (parallelism, frequency tuning),

ours explores a wider variety of software techniques, for the

first time allowing direct quantitative comparisons between

energy efficiency solutions at different layers of the stack.

Several other studies also compare multiple hardware-

level energy efficiency techniques. Patki et al. take an HPC

perspective, examining how overprovisioning techniques

(such as overclocking) and power capping can help im-

prove supercomputers’ efficiency [50]. Subramaniam and

Feng combine RAPL capping with a variety of server load

inputs to see how well RAPL can provide energy proportion-

ality (i.e., similarly efficient execution for different levels of

server utilization) [66]. Le Sueur and Heiser examine the

effects of DVFS and idle states across multiple processor

generations [40], finding that newer processors see smaller



energy benefits from frequency scaling. None of these works

compare the hardware-level techniques to higher level soft-

ware techniques as we do.

Like ours, Schone et al.’s experiment space includes pro-

cessor level DVFS, different degrees of parallelism, and

overclocking [57], but their study measures the impact of

these techniques on memory and last level cache bandwidth

only. The relative energy savings of multiple software-level

techniques are compared in just a few prior works. Most are

either qualitative (e.g., [21]), or focused exclusively on com-

piler or application-level energy management strategies [34,

45]), without linking those techniques to the system-level as

this study has.

7. Discussion and Conclusions

Energy management has become a large field in recent years,

with work spanning all levels of the stack. Unfortunately,

the broad interest in energy-efficiency has caused fragmen-

tation: most management strategies are not compared against

each other – especially those at different levels of the stack –

and most research papers do not quantitatively or even qual-

itatively address how their work will combine with existing

strategies.

As a first step to bridging these discontinuities, this exper-

imental survey directly compared and combined nine exist-

ing but previously uncontrasted energy management strate-

gies. The work prompts a number of suggestions and direc-

tions for future energy research, particularly for software-

controlled energy management.

Suggestions for the community. The research and in-

dustrial community should take concerted steps to reduce

the amount of fragmentation in future work. First, research

papers should compare their work to commonly available

baselines. For example, OS DVFS strategies might com-

pare their energy savings to the widely accessible Linux

frequency scaling governors. Second, researchers should at-

tempt to combine their energy saving strategies with exist-

ing energy strategies to uncover interference effects. Failing

that, they should qualitatively discuss their work in the con-

text of existing work, noting which strategies could com-

bine with their work versus which strategies it is meant to

compete with. Future work should address inter-application

differences; we found that particularly with respect to per-

formance tradeoffs, individual applications varied signifi-

cantly. Future work should also consider parallelism, given

that our work showed parallelization in particular has a large

effect on other energy management strategies, and given that

CMPs are the new normal. To help others contextualize their

work, researchers should try to open source their energy

management tools, preferably with as standard a setup as

possible (i.e., commodity languages, compilers, OS, and ar-

chitectures). Finally, outside of research, we need continued

and increased communication with industry. Conversations

with several industrial computer scientists lead us to believe

that industrial energy management is in some ways more ad-

vanced and less fragmented than public research. If existing

industry knowledge is not adequately shared, public domain

research will continue to chase and potentially clash with in-

dustrial progress.

Research areas in need of attention. Our survey high-

lighted several promising paths forward for software-level

energy research. Development aids that help programmers

write energy efficient code could overcome multiple issues

including the difficulty of manual power optimization (Sec-

tion 5.1), the needs of object-oriented programs [8], and

the inflation in energy caused by IDE programming [15].

There is also a need for power aware compiler optimiza-

tions, since present optimizations have minimal effect on

power. Machine-specific power optimizations may be espe-

cially timely, with mobile devices like Android moving to

ahead-of-time byte code compilation [41]. Our work indi-

cates that increasing parallelism as a solution for energy ef-

ficiency is another promising research direction. The prolif-

eration of CMPs also means that the wide scale effects of

inter-application power interference should be studied, per-

haps using methods analogous to existing application per-

formance interference measurements [35]. Finally, the ma-

jority of current energy solutions exploit performance trade-

offs. To exploit others, such as trading program functionality

for energy and power savings, there is a need for library or

language-level energy management tools.
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