
Lime: a Java-Compatible and Synthesizable
Language for Heterogeneous Architectures

Joshua Auerbach David F. Bacon Perry Cheng Rodric Rabbah
IBM Research

{josh,dfb,perry,rabbah}@us.ibm.com

Abstract
The halt in clock frequency scaling has forced architects and
language designers to look elsewhere for continued improve-
ments in performance. We believe that extracting maximum
performance will require compilation to highly heteroge-
neous architectures that include reconfigurable hardware.

We present a new language, Lime, which is designed to
be executable across a broad range of architectures, from
FPGAs to conventional CPUs. We present the language as a
whole, focusing on its novel features for limiting side-effects
and integration of the streaming paradigm into an object-
oriented language. We conclude with some initial results
demonstrating applications running either on a CPU or co-
executing on a CPU and an FPGA.

Categories and Subject Descriptors B.6.3 [Design Aids]:
Hardware Description Languages; D.3.3 [Programming
Languages]: Language Constructs and Features; D.1.3
[Programming Techniques]: Concurrent Programming, Object-
oriented Programming

General Terms Design, Languages

Keywords object oriented, value type, streaming, func-
tional programming, reconfigurable architecture, FPGA,
high level synthesis

1. Introduction
The search for single-CPU performance has moved beyond
clock frequency scaling which has almost ground to a halt.
The vast majority of effort, by both industry and academia,
has focused on homogeneous multicore systems.

We take the opposite view, namely that achieving high
performance with limited power consumption will require
a heterogeneous architectural approach in which there is a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA/SPLASH’10, October 17–21, 2010, Reno/Tahoe, Nevada, USA.
Copyright © 2010 ACM 978-1-4503-0203-6/10/10. . . $10.00

considerable degree of specialization of the hardware re-
sources to the desired mix of applications. This is already
evident to some degree with the addition of GPUs and fixed-
function accelerators for cryptography. We believe this trend
will accelerate. Achieving maximal performance will re-
quire exploitation of reconfigurable hardware and other very
fine-grained resources – in addition to, rather than instead of,
more conventional approaches like GPUs and homogeneous
multicores.

The disadvantage of such heterogeneous systems is that
without sufficient levels of abstraction and compilation tech-
nology, they will be very difficult to program. Currently,
CPUs are often programmed in high-level managed lan-
guages like Java; GPUs are programmed with dialects of C;
and reconfigurable hardware is programmed with hardware
description languages like Verilog and VHDL.

We believe exploiting heterogeneous systems will require
a language, compiler, and run-time system with the follow-
ing properties:

• A single language that can be compiled to a highly di-
verse set of computational elements;

• The capability to express many different forms of paral-
lelism so that those computational elements can be ex-
ploited in the manner best suited to them;

• A dynamic run-time system that is capable of sub-
dividing programs to run across a variety of compu-
tational elements, and dynamically re-partitioning pro-
grams as they change or as the system application mix
changes;

• A uniform semantic model that allows transparent migra-
tion between computational elements; and

• A language sufficiently familiar to achieve a wide degree
of adoption.

In this paper we present Lime, a language designed to
meet these requirements. We will describe the various fea-
tures of the language and how they emerge from and attempt
to address the sometimes conflicting needs of such vastly
different kinds of computational elements.

Our implementation has so far focused on the most diver-
gent kinds of computational elements: traditional processor

89

cores and reconfigurable hardware (field-programmable gate
arrays or FPGAs). This has placed the maximal stress on
the language design. While our implementation has so far
emphasized semantic completeness over performance opti-
mization, we present preliminary results for some represen-
tative applications that can be compiled into bytecode, C,
or Verilog, and co-execute across a CPU/FPGA system. We
have currently written and run over 40,000 lines of Lime
code.

1.1 Key Lime Features
Before diving into the details of the language, we begin by
providing an overview of the language features and how they
address the requirements set out earlier.

Lime is a Java-based language with significant exten-
sions. Using Java as a starting point provides both a fully
machine-independent semantics and a dynamic execution
model in which the run-time system adaptively recompiles
the program as needed.

While abstract semantics and dynamicity are required to
allow computations to be shared across divergent computa-
tional elements, effective compilation to hardware requires
the ability to conveniently express statically known code,
types, and sizes. To this end Lime provides unerased gener-
ics (which can be compiled in a template expansion style
to maximize compile-time knowledge), ordinal types (inte-
ger ranges with a statically known number of elements), and
bounded arrays indexed by (possibly parameterized) ordinal
types.

The lack of side-effects and explicit pointers make a func-
tional programming style well-suited to hardware. Lime
adds both “micro-functional” and “macro-functional” fea-
tures that integrate cleanly with an imperative, object-
oriented style. The micro-functional features center around
recursively immutable value types. The macro-functional
features are based on isolated tasks that internally allow
arbitrarily complex sequential imperative code, but can be
modularly replaced with purely functional code.

Lime allows the convenient expression of various styles
of parallelism. Fine-grained parallelism can be expressed
down to the bit-level since bits are first-class objects in
Lime, and “primitive” types with bit-level parallelism can be
programmed directly in the language (e.g., 27-bit fixed-point
numbers). Fine- and medium-grained data parallelism can be
expressed with collective and reduction operations on both
built-in and user-defined array and collection types. This
includes operations as fine-grained as performing a “not”
operation across an array of bits.

Medium- and coarse-grained pipeline and data paral-
lelism can be expressed using new streaming primitives
which compose individual tasks into computation graphs.

Streaming features are integrated into the language with
the introduction of a task operator that converts a method
into a component in a stream computation graph. A connect
operator then allows rich graphs to be composed from tasks.

It is the responsibility of the run-time system to handle
buffering, partitioning, and scheduling of the stream graphs.

Many languages that introduce streaming or message
passing have suffered from a “two paradigms” problem, in
which programmers must decide early whether they will
code a computation in “function style” or “stream style”.
For instance, in StreamIt [33] stream computations are writ-
ten with explicit operators that dequeue and enqueue one or
more objects for the worker computation; such computations
can not subsequently be used in a context where function ap-
plication is being used.

In Lime, the same method body can be used in either
style (the distinction being whether the task operator is ap-
plied). Rather than provide explicit enqueue/dequeue opera-
tors, Lime has tuples and bounded arrays that can be used
to express multi-input/multi-output operations, and a match

operator is used to connect tasks with different data rates.
To expose functional properties and strong isolation

within an imperative language, Lime relies on three key
concepts: valueness, localness, and sole-reference isolation.
Valueness or immutability is declared using the value key-
word to modify a type declaration. Localness is declared us-
ing the local keyword which may be applied to any method
declaration. It means that the method does not access mu-
table static fields (although it may read certain final static
fields). Finally, sole-reference isolation means that only the
task has a reference to the underlying object and hence any
mutation of instance fields occur as a result of the instance
itself.

These properties are easy to check and verify. Using
these properties, Lime can classify the world of objects into
tasks that are provably functional and those that are mutable
but sole-reference isolated. These properties afford a great
deal of compilation flexibility in realizing efficient parallel
implementations that eschews data races and implicit non-
determinism.

1.2 Contributions
A language is much more than the sum of its parts, and
this paper is primarily organized so as to give the reader
an overview of the language as a whole. The language is
based on Java, extended with a combination of well-known
and novel features. The novel features described for the first
time in this paper are:

• a simple, polymorphic, statically checked mechanism for
preventing non-local side-effects (Section 3);

• the composition of the effect mechanism with value types
to obtain referentially transparent imperative expressions
(Section 3.1);

• the integration of stream-based computation into an
object-oriented language (Section 6);

• the introduction of rate matchers, which combined with
fixed-size arrays can express non-unit-rate stream com-

90

putations without requiring methods to be expressed in a
different paradigm (Section 7); and

• description of the compiler and run-time system with
preliminary results showing that programs can be co-
executed across conventional processors and field pro-
grammable gate arrays (Section 9).

Language constructs for expressing micro-functional op-
erations and bit-level parallelism, and their compilation to
FPGAs were previously described in [21]. The full language
is described in detail in the language reference manual [5].

2. Lime Language Fundamentals
Two of the biggest challenges in the design of Lime were (a)
to provide convenient ways to expose many levels of paral-
lelism and (b) to enable, encourage, and simplify the use of
language constructs that can be used to generate the kinds of
static structures required when compiling to hardware. The
latter is particularly difficult in Java-like languages which
tend to have the opposite goal.

Many fundamental language features are shown in the
single example of Figure 1, a partial and simplified imple-
mentation of the built-in unsigned type. An unsigned num-
ber is defined as a fixed-size array of bits, and each operation
is then defined as a function on those bit arrays.

Since much of the computation and parallelism available
in hardware occurs at the bit-level, it is essential that Lime
provide constructs for exposing such operations, and yet
maintain a high level of abstraction. Thus the ability to
compute at the bit-level is combined in Lime with the ability
to define what in almost every other language are included
as “primitive” types.

2.1 Value Types
One of the most fundamental aspects of Lime is the intro-
duction of value types. An object of value type is deeply im-
mutable; that is, all of its fields must be both unmodifiable
(“final”, in Java parlance) and must themselves be of value
type. This is in contrast to the struct value types of C#, whose
fields are immutable but may point to mutable objects.

Deeply immutable objects provide a host of beneficial
mathematical properties (long espoused by adherents of pure
functional programming) which are exploited extensively in
the other features of the language and in its compilation. For
compilation to hardware, Lime’s value classes are essential
since they can be freely moved across a chip as a chunk of
bits, without requiring any remote accesses.

Greatly motivated by the needs of both hardware com-
pilation and exposure of parallelism, Lime pushes Java to-
wards a more functional style. Value types provide a “micro-
functional” portion of the language. Streaming computation
(see Section 6) provides the “macro-functional” portion of
the language.

Value classes are defined by adding the keyword value

to the class definition, as in line 1 of Figure 1. All fields of

1 public final value class

2 unsigned<N extends ordinal<N>> {

3 private bit[[N]] data;

4 public unsigned() {

5 this.data = new bit[[N]];

6 }

7 public unsigned(bit[N] data) {

8 this.data = new bit[[N]](data);

9 }

10 public unsigned<N> this & unsigned<N> that {

11 var result = new bit[N];

12 for (N i: N.first::N.last)

13 result[i] = this.data[i] & that.data[i];

14 return new unsigned<N>(result);

15 }

16 ...

17 }

18 public typedef uint = unsigned<enum<32>>;

Figure 1. Unsigned number implementation in Lime

a value class are implicitly final, and must themselves be
value classes. A default constructor is auto-generated by the
compiler if it is not explicitly defined.

Value classes have no reference identity: the equality
(“==”) operator recursively compares the equality of the
fields, and the hashCode() method is a deterministic function
of the values of the fields. Synchronization operations on
value classes are statically forbidden, except when they are
up-cast to Object or non-value interface types, in which
case a dynamic check guards against the synchronizing on a
value object by throwing an exception.

2.2 Ordinals
Ordinals are finite non-negative integral types, and are fun-
damental to the way statically sized and bounded objects are
expressed in Lime. Despite their superficial resemblance to
integers, ordinals are a special kind of enumeration type.
Thus they are defined using the enum keyword: enum<3> is
the ordinal type with members {0, 1, 2}.

Ordinals have successor and predecessor operations (writ-
ten “+++” and “---”, respectively), can be compared by order
(e.g. with “<”), and can be added to or subtracted from each
other (in which case the arithmetic is performed modulo the
size of the ordinal).

2.3 Bounded Arrays and Value Arrays
In Lime, there are two different kinds of arrays: mutable
arrays and value arrays. Lime’s mutable arrays are similar
to Java’s arrays.

Value arrays, like value classes, are deeply immutable,
meaning that the arrays elements may not be changed and

91

the element types must themselves be value arrays or value
classes. Value arrays are written with a double-bracket nota-
tion. For instance, an unbounded value array of int elements
is written as int[[]].

An array with a statically fixed size is called a bounded
array. Bounded arrays are heavily used in Lime, both to
express fixed-size components of value classes, as well as to
describe the input and output rates of stream operators (see
Section 7).

A bounded array type is written with its ordinal bounding
type inside of the square brackets as in bit[enum<3>], which
is a 3-element array of bits. When the bounding type can
be expressed without using type variables, it is commonly
abbreviated to just a constant expression, as in bit[3]. A
bounded array is indexed by integer expressions that are stat-
ically confined to be within range. The two easiest ways to
achieve this are (1) to use either integer literals or (2) to use
expressions of the ordinal bounding type (which are implic-
itly turned into integers whose range is known). This leads to
more reliable code and reduces the need for exception logic
in hardware.

Bounded arrays are subclasses of unbounded arrays, and
can thus be implicitly cast to their unbounded form. Thus a
variable of type bit[3] can be assigned to a variable of type
bit[], and vice-versa if an explicit cast is used. In Lime, the
unbounded array types are abstract; all arrays are actually
instances of bounded arrays parameterized by their size.

Bounded and value arrays are used extensively in the
definition of unsigned in Figure 1. The only field of the
class (line 3) is a bounded value array of bits. In this case,
the bounding type of the array is the generic parameter N

(Lime generics are described in more detail below). There
is also a constructor (line 7) which takes a mutable bounded
array of bits, and uses it to create a new unsigned number. It
uses the array constructor (“new bit[[N]](data)”), which
inputs the mutable bounded array and returns an equivalent
immutable bounded array, which is then used to initialize the
newly constructed object.

Finally, bounded arrays are used in the definition of the
“&” operator on lines 10–15. The bounded mutable array
result is defined on line 11, and its elements are initialized
on lines 12–13. Finally, on line 14, the constructor of line
7 is invoked to create a new unsigned value from the bits
assembled in the result array.

2.4 Unerased Generics
As can be seen from our example, generics of fixed size are
extremely important for the generation of hardware. Unfor-
tunately, Java’s implementation of generics uses erasure, in
which all instances of a generic class are compiled into a sin-
gle class in which the generic parameters have been erased.
This has three implications: (1) the information needed by
the hardware backend (or indeed by a highly optimized soft-
ware backend) to generate specific types is lost; (2) safety
is compromised, since erasure loses information, and (3) ex-

pressivity is lost, since any operation requiring the exact type
of the generic parameter must be disallowed. For instance,
the expression new T[10], where T is a generic parameter, is
not permitted in Java.

In Lime, generics are compiled without erasure, obtaining
semantics similar to those of NextGen [28]. We rely on this
property in Figure 1 in lines 5, 8, and 11, which construct
new bounded arrays where the bounding type is a generic
parameter. In addition, and unlike NextGen, Lime generics
are capable of being parameterized by primitive types.

Compilation strategies for generics have typically suf-
fered from a tension between time- and space-efficiency.
Parameterization (where the type parameters are included
as parameters to the methods) produces the most space-
efficient code (since there is only one copy) but loses any
opportunity for type-specific optimization. Template gener-
ation produces one instance of the generic class for each
unique combination of type parameters in the source code;
this maximizes opportunities for optimization, but can result
in huge space overheads.

In Lime, we use a hybrid implementation strategy. In soft-
ware, the default compilation is parameterized; in hardware,
the default is templatized. However, where needed templa-
tized compilation can be used in software, and in some
restricted cases, parameterized compilation can be used in
hardware.

2.5 User-Defined Operators
Lime allows programmers to define the behavior of stan-
dard unary and binary operators as they apply to new types.
“Operator overloading” as practiced in C++ was deliberately
avoided in Java since many felt its overuse resulted in con-
fusing code. In Lime, however, the ability to define basic op-
erators associated with arithmetic and logical operations is
essential to the strategy of bringing object orientation down
to the bit level and on a par with primitive types. As an ex-
ample, the “&” operator for the unsigned<N> type, is shown
on lines 10-15 of Figure 1. The following unary and binary
operators can be user-defined:

~ ! +++ --- + - * / & | ^ %
< <= > >= && || << >> >>> :: []

The operators +++ and --- are the successor and prede-
cessor operators introduced in Section 2.2. and the range op-
erator :: is explained in Section 2.6. Lime does permit the
array indexing operator “[]” to be redefined both for ac-
cess (when not the target of an assignment) and for setting
an element. The equality operators (“==” and “!=”) may not
be redefined in Lime. Value types have compiler-generated
equality operators that check for recursive value equality.
The language also prohibits the overloading of “exotic” op-
erators such as the dot operator for method call

Certain binary operators implicitly define their corre-
sponding compound operator. For instance, the “+” operator
implicitly defines the “+=” operator. More subtly, the pre-

92

and post-increment/decrement operators are respectively de-
fined by the successor and predecessor operators.

2.6 Ranges
Ranges are a convenience feature to support iteration over
subranges of value types (assuming the type provides order-
ing operations). Examples include Lime ordinals and value
enums as well as the Java integral primitive types.

The expression x::y has the type lime.lang.range<T>

where T is the least upper bound type of x and y. The type
range<T> implements the Iterable<T> interface from Java,
but is itself a value type. Ranges are thus usable in the “for-
each” style loops introduced since Java 5 and also as values
in their own right.

Ranges are particularly useful in conjunction with the
constructs .first and .last which resemble fields and ap-
ply to all bounded types (most notably, ordinals). Unlike or-
dinary fields, the .first and .last “special selectors” (also
.size) are dispatched virtually through type variables. An
example is line 12 of Figure 1, which loops over the range
of the ordinal N which is a type parameter.

Lime also provides a special shorthand when the iteration
is over the entire range of a value type. For example, the
loop on line 12 of the example could be written “for (N i)”
(with the limits N.first and N.last implied).

2.7 Typedefs
Given that Lime permits the definition of new “primitive
types,” it is convenient to be able to give those types short
intuitive names, especially when the types are defined using
generic types which tend toward verbosity. Thus, Lime pro-
vides typedefs similar in flavor to what are offered in the C
language. An example is shown on line 18 of Figure 1.

Semantically, a type definition is just one step above a
lexical macro and is substituted for the defined symbol prior
to any other semantic analysis. However, the scoping and
visibility for typedefs follows that for class definitions. Thus,
the typedef in the example is public just as unsigned<N> is
public (as a result, it actually needs to be in a source file of
its own). Typedefs at package scope, class scope, and local
scope are also possible.

2.8 Local Type Inference
Lime programs can make heavy use of the expanded generic
types. Parameterized types tend to be verbose, and some
of the types introduced by task programming are especially
verbose (see Section 6.3). As a compensating convenience,
Lime provides a limited form of local type inference to
avoid the need to present verbose type declarations twice.
The pseudo-type var in a field or local variable declaration
causes the type to be inferred from the initializer. When the
variable or field being defined is also final one simply uses
final rather than final var.

An example is shown on line 11 of Figure 1 where the
var keyword is used to avoid having to type bit[N] twice on

the same line. Inference is limited to these contexts and there
is no attempt to infer types across multiple expressions.

2.9 Java Compatibility
A key design decision in developing Lime has been to make
it Java compatible. Most legal Java programs become legal
Lime programs without change. All legal Java programs can
be imported as Lime programs by a purely syntactic trans-
formation that is extremely non-intrusive and trivially per-
formed by a development tool. Lime reserves twelve addi-
tional keywords. These identifiers, if present in a Java pro-
gram, can continue to be used by escaping them with a “`”
(backtick) character. Generic types and methods have an ex-
panded semantics in Lime, but the original Java semantics
can be obtained by use of the “~” (tilde) character. Simi-
larly, arrays have been enhanced in Lime but one can es-
cape back to Java arrays with a tilde. Usually the tilde es-
cape proves unnecessary and can be removed, conferring
some Lime advantages immediately. Then, Lime language
features can be gradually added making the program more
readily parallelized by the compiler. Lime programs are also
binary compatible with Java in that they can freely invoke
Java methods; if Lime-specific types are avoided in public
signatures, then Java code can call back into Lime.

3. Local Method Checking
The goals of Lime require a classification of methods into
those that are pure functions, those that are stateful but
isolated (receiving new information only as arguments and
providing results only as return values), and those that have
arbitrary side-effects. For modular compilation and efficient
implementation, this classification should be decidable by
examining single methods without computing a call-graph
or similar structure and in the presence of inheritance and
virtual dispatch.

More precisely, a stateful isolated method is an instance
method that may read and mutate all information reachable
from the “this” instance. It may not read or mutate any
other information, thus excluding all information reachable
from static fields of any class. It may read, but not mutate,
argument information. It may not retain a reference to its
return value or anything reachable from it.

We rejected the idea of translating these properties di-
rectly into checkable keywords like pure or isolated. While
both properties are easy to state as requirements, enforcing
them as unitary properties in an imperative language would
require complex checking. To ensure that a method is pure in
the absence of an independent immutability property means
analyzing all of its actions in context (what the method is
doing and which objects it is doing it to). To ensure that a
method is stateful but isolated is similarly difficult since one
must enable one large class of accesses while disabling an-
other large class which will break isolation.

93

Lime substantially simplifies and modularizes the re-
quired checking for both pure functions and stateful isolated
methods by decomposing both of these properties into two
simpler properties. The first is valueness which is already
captured by the Lime value types (see Section 2.1). Value-
ness is useful in its own right and can mostly be checked by
examining field declarations and by directly generating the
code for equality checking (constructor code is also checked
to prevent exposure of uninitialized final fields). The sec-
ond property is localness, which simply means that no side-
effects can be propagated through static fields or information
reachable from them. In the presence of valueness, localness
is readily checked method-by-method, examining only field
accesses and method calls. Two different compositions of
valueness and localness yield the desired purity and isola-
tion properties as explained below.

The method modifiers for localness are called local

and global (explained next) and glocal (explained in Sec-
tion 3.2). A method labeled local must not write any static
fields and must not read any static fields except repeatable
static fields as defined in Section 3.1. A global method may
freely access all static fields.

By default, the instance methods and constructors of
value types are considered to be local, while all static meth-
ods and the instance methods and constructors of non-value
types are considered to be global. The defaults may be over-
ridden by using the explicit keywords.

A local method may only invoke other local methods. A
global method may invoke either local or global methods.
A local method may not be overridden or implemented by
a global method. These rules together ensure that the prop-
erty asserted by local can be checked without recursively
investigating callees, and without knowing the complete in-
heritance hierarchy.

To ensure full checking, local and global apply equally
to concrete and abstract methods (including the methods
of interfaces). In Figure 2, the interface IRandom provides
a single method, nextInt(), which generates a random
integer. nextInt() is declared global since that is the
most permissive qualifier. There are two implementations:
Random and PseudoRandom. The first implementation calls
nanoTime() and therefore accesses global system state, and
so the method is also declared global. However the sec-
ond implementation, PseudoRandom, uses a (very primitive)
deterministic function (for the purpose of illustration) to
generate pseudo-random numbers; therefore, its nextInt()

method is declared local and can be called in any context.
Recall that one motivation was to determine when meth-

ods are pure functions. The rules for determining this prop-
erty are as follows:

1. A local static method whose arguments are all value
types is necessarily a pure function. It cannot communi-
cate through static fields, it has no this argument, and its
explicit arguments have no mutable instance fields.

1 public interface IRandom {

2 global int nextInt();

3 }

4 public class Random implements IRandom {

5 public global int nextInt() {

6 return (int) System.nanoTime();

7 }

8 }

9 public class PseudoRandom implements IRandom {

10 int nextValue = 17;

11 public local int nextInt() {

12 nextValue = nextValue * 317 + 9;

13 return nextValue;

14 }

15 }

16 public final value class

17 unsigned<N extends ordinal<N>> {

18 ...

19 static glocal unsigned<N> random(IRandom g) {

20 return new unsigned<N>(g.nextInt());

21 }

22 }

23 public class BoundedMap<K extends ordinal<K>, V> {

24 protected final V[K] mapping = new V[K];

25 ...

26 public glocal boolean containsValue(V val) {

27 for (K key)

28 if (val.equals(mapping[key]))

29 return true;

30 return false;

31 }

32 }

33 class Test {

34 static final boolean repeatable = hasFoo();

35 static local boolean hasFoo() {

36 var g = new PseudoRandom();

37 var u = unsigned<32>.random(g);

38 var map = new BoundedMap<enum<20>,

39 unsigned<32>>();

40 map[enum<20>.random(g)] = u;

41 return map.containsValue(u);

42 }

43 }

Figure 2. Example of Local, Global, and Glocal Methods.

2. A local instance method of a value type whose argu-
ments are all value types is a pure function. Although
there is a this argument, that argument is a value too.

A second motivation was to determine when methods,
though stateful, are isolated. This requires controlling the

94

reachability of objects from instance fields. The desired
property can be computed by first defining an isolating con-
structor as follows: a constructor is isolating if it is local

and has only value arguments. Instances that are created
with isolating constructors are guaranteed to have no aliases
initially stored in their instance fields. We can then guar-
antee that a method is stateful but isolated with respect to
a particular instance if (1) the instance was created with
an isolating constructor, and (2) the method has only value
arguments and a value return.

A pure function may return non-values (since they cannot
also store a reference to what they return) but returning
a non-value from a stateful isolated method could break
isolation by creating an alias. Stateful isolation with respect
to a particular instance is useful when we can guarantee that
a task holds the only reference to the instance. This final
guarantee is quite easy to achieve as described in Section 6.2.

3.1 Repeatable Static Fields
Recall that a local method may read certain static fields
deemed to be “repeatable.” The concept of a repeatable ex-
pression is thus an extension of the concept of a compile-
time constant expression (which in Java is limited to primi-
tive types). Repeatable expressions allow complex initializa-
tion of any value type with complex imperative code.

A static field is repeatable if it is recursively immutable
(i.e., a final field of value type) and all accesses to it during
the lifetime of the computation produce the same result.

The recursive immutability property is clearly needed to
avoid introducing new opportunities for side-effects. Re-
peatability is added to avoid the subtle requirement that
would otherwise exist that all static final fields that are
read by local methods must be initialized before those
methods can be allowed to execute. It eschews any non-
determinism due to class loading order, and it makes it sub-
stantially easier to relocate computations to hardware ele-
ments that lack a distinguished “class initialization” phase.

In Lime, the only sources of non-determinism in a
single thread are limited to global methods, such as
System.nanoTime() in the example in Figure 2. So, the re-
peatability property is obtained if the following properties
hold in addition to recursive immutability.

1. The field must have an explicit initializer.

2. Its initializer must be an expression that would be legal
in a local method.

3. The field’s initializer may not refer directly or indirectly
(via other static variables) to the field itself (this would
make the value dependent on the order in which classes
are initialized).

3.2 Local/Global Polymorphism
It was said earlier that abstract methods (and more generally,
methods “high” in the class hierarchy that are intended to be
overridden) must commit to being either local or global.

This is not quite true: Lime provides a third option, moti-
vated by the following observation. The fact that local can
override global but not vice versa would tend to favor using
global for abstract or frequently overridden methods. But,
the fact that global can call local but not vice versa favors
making methods local whenever feasible so that they can
be used in more contexts. Thus, a user designing a class hi-
erarchy to be used in multiple contexts has a conflict if only
those choices exist.

In fact, abstract methods which have, as yet, no actual
behavior, can later be implemented in either a local or a
global fashion, as in the IRandom class hierarchy of Figure 2.
But, simply declaring a “neutral” category would do no
good by itself, since a conservative analysis would have to
preclude calling any “neutral” method in a local context.

Lime solves this problem with a context-dependent cate-
gory, called glocal, with rules and a supporting static analy-
sis that allows many calls to glocal methods to be treated as
local calls. This promotes the more extensive use of local
methods without compromising efficiency or re-usability.

Our solution is based on the observation that, for many
methods, whether the method accesses global state is a func-
tion of its input arguments. For instance, Figure 2 lines 16–
22 show the random() method of the unsigned type. It is
a glocal method that accepts a random generator of type
IRandom. On line 37, unsigned’s random() method is in-
voked with a parameter of type PseudoRandom, all of whose
methods are local. Therefore, we can treat the random()

method as local in the calling context at line 37.
Lime’s glocal modifier exploits the greater information

available at call sites by defining localizing calls and defin-
ing glocal methods so that calls to them are localizable.

At the call site, a local method may only call a glocal

method when all of its parameters are localizing. An actual
parameter localizes a formal parameter when all of the ac-
cessible non-final instance methods of the formal parameter
are overridden to be local in the static type of the actual pa-
rameter. When used in combination with generics, a call to
a glocal method is localizing only when all of the generic
and method parameters are localizing.

At the method definition, a glocal method has the same
restriction as a local one in its access to static fields. In
addition

1. calling final global methods is prohibited (such a call
can never be localized);

2. calling non-final global methods is prohibited except
when (a) the receiver is a parameter of the method being
defined, or (b) its type is determined by a type variable
(only calls indirected in such a fashion can hope to be
localized);

3. calling other glocal methods is only allowed when it
would be allowed for a global one by the previous rule
or when such a call is localizing;

95

4. a glocal method may not override a local method and a
global method may not override a glocal one (this en-
sures that the strongest necessary check is always per-
formed at call sites).

In Figure 2, unsigned.random() is a valid glocal method
by rule 2(a): it calls a non-final global method of its pa-
rameter g of type IRandom. The call on line 37 is localizing
because all methods of PseudoRandom are local.

The locality-polymorphism provided by glocal is also
essential for generic classes, as shown in the fragment of the
definition of the class lime.util.BoundedMap on lines 23–
32. This class implements a mapping where the key is of an
ordinal type, allowing a very efficient implementation with
a fixed-size bounded array. The values held by the mapping,
on the other hand, are of unconstrained type (type V).

Consider the implementation of the containsValue()

method on lines 26–31: it iterates over the mapping array
checking whether it contains the passed parameter val. It
does this by calling the equals() method, which, since V is
of unconstrained type, is considered to be Object.equals().
Although it is considered good style for equals() to be a
local method, we do not constrain it as such (in particu-
lar, doing so would break Java compatibility). Thus the call
to equals() on line 28 is not local, but it is localizable

by rule 2(b). The call to containsValue() on line 41 is lo-
calized because the actual type of the generic parameter V

is unsigned<32>, which is a value type whose equals()

method is therefore guaranteed to be local.
The analysis that supports glocal is conservative in two

ways. First, the simple name of the parameter must be the
receiver of the call. Second, all accessible non-final instance
methods of a substituting type must be local, regardless of
which of those methods are actually called. Because calls
can occur in subroutine methods as well as the one being
analyzed, the additional analysis to support greater precision
would be complex and non-modular, but more to the point,
the reasoning required on the part of the programmer to
understand what is safe and what isn’t would likely be quite
challenging. Over time, experience with the language may
lead us to attempt a more precise definition and analysis.

To maximize reuse, it is highly desirable that classes be
usable in a local method, and as localizing parameters. In
particular, the three overridable public methods of Object –
equals(), hashCode(), and toString() – should be local

whenever possible. Since a value type causes all of these
methods to become local, substituting a value type for the
Object type is always localizing (e.g., BoundedMap).

For non-values, the programmer must take care to en-
sure the same property holds wherever possible. The eas-
iest way to do so is to have a non-value class extend
lime.lang.Mutable rather than Object. The former pro-
vides local implementations of the three key Object meth-
ods. The equals() method simply uses the “==” method on
its arguments (checking for object identity); the toString()

method returns the class name appended with an “@” and the
object’s hash code, and the hashCode() method produces a
hash code computed entirely from the immutable values of
the fields of the object.

Note that the default Object.hashCode() method, as well
as System.identityHashCode(), are global methods. Be-
cause their values change unpredictably with each instance
of an object, they can not be used to create repeatable static
fields. On the other hand, Mutable’s hashCode() method can
be used in computing a repeatable static.

4. Collective and Data-Parallel Operations
Lime encourages programmers to use collective operations
by making them convenient and general. They are not in-
herently data parallel in that there is no explicit prohibition
against using collective operations with mutable types where
there are dependencies between elements. The semantics are
defined as if there was an implicit iteration (in order) over the
subject collections. However, collective operations applied
in the presence of the value and local properties will reveal
parallelism to the compiler without the need to analyze loops
or perform interprocedural analysis.

Collective operations (indicated by “@”) may be applied
to operators, instance methods, and static methods. On in-
fix and prefix operators, the “@” precedes the operator. On
instance method calls, the “@” takes the place of the “.” in
the method call. On static methods, the “@” appears next to
a specific argument which is to supply the Collector as ex-
plained below.

The “&” operator defined in Figure 1 may actually be
written more compactly as follows:

public unsigned<N> this & unsigned<N> that {

return new unsigned<N>(this.data @& that.data);

}

The “@&” pair is like a “map” operation in that it extends
its subject operator (“&”) to apply (in this case pair-wise)
between all the elements of an array or collection.

Collective operations may be used with methods of any
number of parameters, and the parameters may be a combi-
nation of either collections of the parameter type, or single
instances of the parameter type. In the latter case, the pa-
rameter expression is evaluated exactly once and used as the
argument of every individual operation. For example:

string[] v1 = { "x", "y" };

string[] v2 = v1@toUpperCase(); // v2=={"X", "Y"}

int[] a1 = { 1, 2, 3 };

int[] a2 = a1 @+ 1; // a2=={ 2, 3, 4 }

int[] a3 = a1 @+ a2; // a3=={ 3, 5, 7 }

If the arrays are not of the same size, a domain con-
formance exception is thrown. Lime’s array types and the
collection types supplied by Lime’s development library all
implement the appropriate interfaces to ensure participa-
tion. The interfaces are Indexable and Collectable. The

96

Indexable interface specifies that the collection has some
index value type and an indexing operator that returns an
object of the element type. Furthermore, it has a domain()

method which returns an object that allows iteration over all
of the valid indices of the objects contained in the collection.

The Collectable interface extends Indexable with a
method that returns a collector. A collector is an object that
is used to gather the results together to produce the new
collection resulting from the operation. A collector must im-
plement the Collector interface which provides an indexed
store operation to allow the individual results to be collected,
and a result() method that returns a new collection1 which
must also be Collectable.

Data-parallelism. A collective operation is data parallel if
the elements are all values and the collector meets the state-
ful isolation requirements described in Section 3. The com-
piler may be able to determine other data parallel cases, but
that is more dependent on the use of various optimizations
that were not the specific focus of this language feature.

Reductions. Lime also provides facilities for perform-
ing reduction, namely applying a binary operator, instance
method or static method across the elements of a collection
to generate a single result of the element type.

Reduction can be applied to any Iterable class. The
method must take two arguments of the same type and pro-
duce a result of that type. Thus an instance method of a class
T must have the signature T foo(T) and a static method must
have the signature T foo(T,T). A reduction is indicated by
the use of @@ as the examples below illustrate.

int a = { 1, 2, 3 };

string[] fooletters = { "f", "o", "o" };

// reduction with binary operators:

int sum = @@+ a; // sum==6

string foo1 = @@+ fooletters; // foo1=="foo"

// reduction with instance methods:

string foo2 = fooletters@@concat; // foo2="foo"

// reduction with static methods:

int max = Math.max(@@a); // max==3

5. Enabling Features for Stream Computing
Tuples. Lime’s model of stream computation is based on
turning methods into compute nodes in a graph. This implies
a way to turn the multiple arguments of a method into a
single structure that can be transmitted. A similar need exists
on the return side. Both goals are accomplished by Lime’s
tuple types. Tuples are shallowly immutable collections of
heterogeneous objects.

A tuple type is written as a comma separated parenthe-
sized list of types with an initial backtick. Tuple expressions
are similarly written. For example, `(3, "foo") is a tuple

1 It is usually of the same type as the original collection, but need not be.

expression of tuple type `(int, string). A tuple type is a
value type if and only if all of its member types are value
types since the tuple type itself only guarantees shallow im-
mutability.

Tuple types are anonymous and defined structurally. That
is, two tuple type declarations that employ the same types in
the same positions are the same type and will interoperate.

The elements of a tuple can be accessed using a dot
(“.”) followed by a 0-based integer literal indicating its po-
sition in the tuple. Projection of multiple fields may also
be more succinctly expressed with a left-hand tuple of vari-
ables. Element-wise type compatibility and widening is pro-
vided for tuples. These features are shown by the following:

var triple = `(1, 3.14159, "blah");

double pi = triple.1; // project one field

`(a, b, c) = triple; // project all fields

`(double, String) x = `(1, "as"); // 1 is widened

`(long, Object) y = `(1, "as"); // "as" is upcast

Closed World. In a language designed both to be Java com-
patible and to support direct execution in hardware there is a
tension between the Java development model (separate com-
pilation, dynamic class loading, no “closed world” assump-
tion) and the requirements of hardware (it is impractical to
support dynamic class loading in an FPGA).

Our strategy for generating hardware-related artifacts
necessarily employs some closed-world assumptions. With
one notable exception, we accomplish these by extra lin-
guistic means: we require that all Lime source and object
artifacts be stored in a directory structure similar to the Java
classpath. We support version-based invalidation and regen-
eration of hardware artifacts in our toolchain.

To avoid dynamic class loading in hardware, one must
be able to explicitly seal parts of a class hierarchy so that
the subtypes of a given class is finitely enumerable during
hardware synthesis. The necessary support takes the form
of an extendedby keyword, which follows the standard Java
extends and/or implements clauses of class and interface
declarations.

public interface Animal extends Comparable

extendedby Cat, Dog { ... }

public final class Cat implements Animal { ... }

public class Dog implements Animal

extendedby Hound, Poodle { ... }

When an extendedby keyword is present on a type, the
following consequences follow.

1. Exactly the types listed must exist and must directly
extend or implement (as appropriate) the present type.

2. No other types may extend or implement the present type.

It is expected practice that a type named in an extendedby

clause but that does not itself have an extendedby clause
will be final. If this practice is not followed, the compiler
will issue a warning that the type extension subhierarchy is
not closed. Otherwise, hardware synthesis can proceed in a
“closed world” fashion by exploiting closed types, which are

97

types that are either final or extendedby a list of types all
of which are closed.

It is never an error to write a Lime program that does not
use extendedby. If used where appropriate, portions of the
program will have the necessary closed world property to
increase the likelihood of efficient synthesis to hardware.

6. Task Programming Model
Lime offers language features for expressing task, data,
and pipeline parallelism. They are based on the creation
of dataflow graphs that perform computation on streams of
data. The approach exposes algorithmic data-locality and
communication topologies to a compiler that can then de-
cide on the best implementation choices depending on the
target platform. A dataflow graph, also known as a stream
graph, consists of nodes that perform computation and edges
that imply an exchange of data between connected nodes.

In Lime, nodes are tasks which read data from an input
port, apply a worker method to the data, and commit the re-
sults to an output stream. A task’s worker method is applied
repeatedly as long as there are input data available on the
port. A connected set of tasks form a closed world if the
types that can enter them from the outside (via initialization
or via ports) are all closed types and there is no explicit re-
flection (e.g., Class.forName) in any of the worker method.

An example stream graph is illustrated in Figure 4. It de-
scribes the processing steps required to decode a JPEG im-
age and convert it to an RGB bitmap. There are four pro-
cessing stages: bitstream parsing, channel decoding, color
space conversion and descrambling. The first stage parses
an encoded string of bits to extract the decoding properties
and the sequence of macroblocks comprising the image. A
macroblock (mb) represents an 8x8 block of pixels from a
particular color channel as a 64 pixel array. There are three
color channels, one for luminance (Y) and two for chromi-
nance (Cb and Cr). The parser produces a sequence of n
macroblocks arranged as

(mbY
1 ,mbCb

1 ,mbCr
1) . . . (mbY

n ,mbCb
n ,mbCr

n).

Each of the macroblocks is channel decoded to reconstruct
the original image2. The channel decoding consists of five
steps: zigzag decoding, DC coefficient decoding, inverse
quantization, inverse discrete cosine transform, and value
centering. Each of these steps is a function f : block →
block where block is a bounded value array of 64 pixel

values (i.e., pixel[[64]]). We can summarize the channel
decoding using function composition as

center ◦ iDCT ◦ deQuantize ◦ dcDecode ◦ zigzag

which in an imperative programming style may be coded as
shown in Figure 3 lines 11-18. The decode method applies
the five transforms sequentially for every macroblock. The

2 JPEG encoding is usually lossy hence the reconstruction is approximate.

1 typedef pixel = unsigned<24>;

2 typedef block = pixel[[64]];

3 public class Channel {

4 static final Decode d = new Decode();

5 private final Coefficient dc;

6 public final Quantization q;

7 public Channel(Color c) {

8 dc = new Coefficient();

9 q = new Quantization(c);

10 }

11 public block decode(block mb) {

12 return d.center(128,

13 Transforms.iDCT(

14 q.deQuantize(

15 dc.dcDecode(

16 d.zigzag(mb)))));

17 }

18 }

Figure 3. Lime pseudocode for JPEG decoder in an imper-
ative programming style.

transforms are stateless except for dcDecode which decodes
the first pixel of each macroblock relative to the value of the
corresponding pixel in a previous macroblock. Each of the
transforms is carried out by a local method that produces a
value that is consumed by another method. The composition
of methods in this way lends itself well to pipeline paral-
lelism where each of the five methods is concurrently oper-
ating on different (but successive) macroblocks in the same
color channel as illustrated in Figure 4. However, the in-
troduction of pipeline-parallelism in an imperative language
is intrusive, requiring the incorporation of buffering stages
between method-calls or the use of other schemes that ul-
timately obfuscate the program. This in turn leads to rigid
implementations that are difficult to modify or tune for per-
formance. In addition, the language semantics in an imper-
ative programming model ensure eager evaluation and the
resultant code dictates a specific execution order or schedule
that may not be easily ported between architectures.

The JPEG example also affords opportunities for data
parallelism. Data parallelism is readily apparent from the
stream graph: each color channel decoder may operate on
its corresponding macroblocks independent of the other de-
coders. In this case, threads could have been used to achieve
coarse-grained parallelism. However, threads are often too
heavy-weight an instrument for this purpose. In general it is
better to let the compiler or an independent scheduler decide
how to assign computation to threads.

Lime overcomes these challenges by introducing lan-
guage features that enable lazy evaluation, encapsulate com-
putation, abstract away communication, and provide strong
isolation guarantees that make it feasible to realize scalable

98

>"4>'4)

?@)3&+,3&)

3&BC'.D>&)

"./&%$&)?@A)

+&.#&%) !"#$

!"%$

!"&$

!"'$

!"($>"4>'4)

?@)3&+,3&)

3&BC'.D>&)

"./&%$&)?@A)

+&.#&%))#$

)%$

)&$

)'$

)($ >"4>'4)

?@)3&+,3&)

3&BC'.D>&)

"./&%$&)?@A)

+&.#&%) !*#$

!*%$

!*&$

!*'$

!*($

!*+$

!"#$#%&'())
*'%$&%)

F)
+,
-,
%)
+G
'.
.&

-)3
&+
,3

&%
)

@%
)+
,-
,%
)+
G'
..

&-
)3
&+
,3

&%
)

!-,+E) !-,+E)

@!
)+
,-
,%
)+
G'
..

&-
)3
&+
,3

&%
)

!-,+E))+$!"+$

HIJ1)"('4&)

+,-,%)$*'+&)
+,./&%$",.)

012)3&$+%'(!-".4)

012)!"#('*)

56!7#&8)!7#&8)!7#&9::;<==)

Figure 4. Pipeline and data parallelism in JPEG. Mac-
roblocks are illustrated as circles. Each macroblock is la-
beled with the color channel it belongs to. Pipeline paral-
lelism here refers to the concurrent processing of different
macroblocks in a single color channel, and data parallelism
refers to the concurrent processing of macroblocks from dif-
ferent color channels so while the left most pipeline is pro-
cessing the Y blocks, the middle pipeline processes the Cb
blocks and the right most pipeline processes the Cr blocks.

parallelism and to synthesize Lime programs into custom
hardware. The subsequent sections both explain task pro-
gramming in some depth and return repeatedly to the JPEG
decoder example to show how the task programming fea-
tures apply to that program.

6.1 Task and Connect
Lime facilitates the expression and discovery of coarse-
grained parallelism by introducing the task and “=>” (con-
nect) operators. These features free the programmer from
specific implementation and performance details, and em-
power the compiler (and language runtime) with far more
freedom in realizing high-performance executions for a
wider range of architectures.

The task operator creates an execution entity that reads
data from an input port, applies a worker method to the data,
and commits the results to an output stream. The port type is
derived from the worker method’s parameter list. Similarly,
the stream type is the return type of the method3. The port is
a tuple type if the number of arguments is greater than one,
otherwise it is the type of the method’s single argument.

3 Methods with empty parameter lists or void returns can be used to create
sources and sinks, as described later.

The “=>” (connect) operator connects the stream (output)
of one task to the port (input) of another. A connection be-
tween tasks can viewed as a double-ended queue with a task
writing at one end and another reading at the other end. The
language forbids connections between ports and streams that
are already connected to avoid common programming errors
or scheduling complications that may arise from simultane-
ous connections. This prohibition sometimes arises in hard-
ware description languages as well, for example when a wire
is connected to multiple sources which can affect the value
read from that wire.

A connection between tasks also requires that the receiv-
ing port is of the same or wider type than the providing
stream. If the types do not quite match but are compatible,
Lime provides an operator to match the data types as detailed
in Section 7.

The JPEG channel decoder pipeline for a single color
channel can be expressed as follows in Lime.

task Decode().zigzag

=> task Coefficient().dcDecode

=> task Quantization(component).deQuantize

=> task Transforms.iDCT

=> task Decode().center(128, block);

The task operator constructs a new task whose worker
method is bound to the method specified after the dot. The
task worker method is invoked repeatedly as long as data
are available on the task port. Methods in Lime are agnos-
tic to their eventual use: a method may be used as a worker
method in a task, or as a method invoked from an instance
object. One can think of the task operator as supplying a
system wrapper method that is aware of the task port and
stream. The wrapper reads a number of data items from the
input port, invokes the intended method using the appropri-
ate parameters, and writes the returned results to the output
stream. The three ways of applying the task operator are il-
lustrated above.

Static Methods. In general, the task keyword may be fol-
lowed by the name of a static method, qualified by its signa-
ture to make the reference unambiguous. Transforms.iDCT
is a task created from a static method.

Non-value Instance Methods. Tasks with mutable state
are created from non-value classes that provide an isolat-
ing constructor. The tasks constructed from the dcDecode

and deQuantize methods are examples of stateful tasks. The
task operator in this case performs the equivalent of a new

operation on the class using the isolating constructor, and
then instantiates a task that executes the specified method for
each value supplied on its input port. The task holds the sole
reference to the object thus assuring that state is not shared
between tasks. This eschews data races and non-determinism
when executing tasks concurrently. The task creation expres-
sion for stateful tasks must name both the isolating con-
structor and its arguments if any, as well as the instance
method to be used, all in a single expression. Thus, task
Quantization(component).deQuantize must be thought of

99

as a single grammatic production that cannot be broken up.
Attempting to create a task from an already-instantiated ob-
ject using a method that is not isolated as in the following is
a compile-time error.

Quantization dq = new Quantization(component);

... => task dq.deQuantize // error

Value Instance Methods. Any isolated instance method of
a value class may be used to create a task. The rules for
task construction from value instance methods are the same
as those for task creation from static methods except that
the method or operator is associated with a specific value
instance, as in the following.

final Decode d = new Decode();

...

task d.zigzag

=> ...

=> task d.center(128, block);

The example above also illustrates constant task parame-
ters, namely the pixel value 128 is bound as a constant first
parameter to the center method. The missing parameters are
specified by their type, and the supplied parameters are spec-
ified as expressions.

For generality, we allow the form of task expression that
is required for non-value instance methods to be used for iso-
lated methods as in the example (task Decode().zigzag).
This form of task construction also permits operators includ-
ing user-defined operators of user-defined value classes and
primitive types. The operator must be one that is legal for
the value, either because the value is of primitive type, or
because it is a user-defined value type that implements the
operator. The set of operators that can be used in this way is
exactly the set of normally immutable operators that may be
user defined (Section 2.5) except indexed assignment.

Task and connect expressions are a convenient and nat-
ural way of describing dataflow computation, compared to
the imperative function composition paradigm. The former
allows for a textual representation of the dataflow graph that
matches the graphical representation whereas the latter does
not. Another worthy property of task and connect expres-
sions is that they simply direct the construction of dataflow
graphs, but they do not cause any evaluation of the compu-
tation to occur. That happens when tasks are started as de-
scribed in Section 6.5. This two step process of establishing
a dataflow graph and then later starting the evaluation is at-
tractive because it decouples the expression of parallelism
from its implementation, allowing not only the compiler but
also the runtime to transform and refine the input dataflow
graph into implementations suitable for the intended archi-
tecture. Just as function inlining reduces function call over-
head and increases the opportunities for instruction level par-
allelism, task fusion—where pairs of connected tasks are
fused into one—can lower communication costs and lead to
more load-balanced implementations that are more efficient
to run [14, 15].

6.2 Filters and Isolation
Tasks with exactly one port and exactly one stream are
called filters. User filters are constrained to produce one
output value for each input value, but there are system
filters that are not so constrained. The tasks that perform
the channel decoding for a single color channel comprise
a filter of port and stream type block. Filters have the
type Filter<Tin extends Value, Tout extends Value>

and hence we can define a filter-generating method equiva-
lent to Channel.decode (Figure 3 lines 11-17) as shown.

Filter<block, block> decodeFilter(Color c) {

return task Decode().zigzag

=> task Coefficient().dcDecode

=> task Quantization(c).deQuantize

=> task Transforms.iDCT

=> task Decode().center(128, block);

}

Filters and most but not all tasks have the property that
they are isolated from the rest of the system in that they only
observe values via their ports and only generate values via
their streams. Therefore, most tasks can not perform side-
effects on other tasks or on the program heap (the exceptions
are sources and sinks, which are discussed in Section 6.4).

Filters satisfy one of two isolation properties: inherent
isolation or sole-reference isolation. An inherently isolated
task is constructed from a pure function4 whose return type
is either a value or void. Such tasks are stateless by defini-
tion. A stateful task on the other hand must be sole-reference
isolated. It is constructed from a stateful isolated method as
defined in Section 3 by adding the constraint that the task
must hold the sole reference to the isolated instance.

Sole-reference isolation works even if the class defines
global instance methods, because the local method will (by
definition) not call global methods and isolation assures that
no other code will either. Sole-reference isolation also works
if the class has mutable public fields because, even if the
chosen instance method accesses such fields, no other code
will. Since the object starts with no aliases, the task holds
the sole reference, and non-values cannot enter the worker
method, it follows that no new aliases can be created.

6.3 Split and Join
In addition to filters, Lime provides split and join sys-
tem tasks to facilitate the expression of task and coarse-
grained data parallelism. The split task, also known as a
splitter, transposes a one-dimensional stream into a multi-
dimensional one. Specifically, it inputs a stream of tuples
and outputs the members of each tuple on the members of a
tuple of streams. Similarly, a join task or joiner individually
inputs values from the members of a tuple of streams and
outputs a stream of tuples formed from those inputs.

The JPEG decoder offers an opportunity for data par-
allelism amongst the three color channel decoders: if the

4 Recall from Section 3 that Lime recovers pure functions by composing
valueness and localness.

100

stream of macroblock tuples produced by the bitstream
parser is transposed to produce three separate streams, then
it is possible to apply a separate channel decoder filter to
each stream.

1 var parser = ...; // task not shown

2 var filterY = decodeFilter(Color.Y);

3 var filterCb = decodeFilter(Color.Cb);

4 var filterCr = decodeFilter(Color.Cr);

5 var splitter = task split `(block, block, block);

6 var joiner = task join `(block, block, block);

7 parser

8 => splitter

9 => task [filterY, filterCb, FilterCr]

10 => joiner

11 => ...

In the example code above, lines 2-4 create the three inde-
pendent filters, and lines 5-6 define the tasks that transpose
the macroblock streams. The overall task graph can then be
assembled using these building blocks as shown on lines 7-
11. The splitter produces three separate streams each of type
block. It is connected to a compound task consisting of the
three decoding filters. The compound task operator [...]

constructs compound tasks from simple task types (i.e., task
with one port and one stream). The compound task created
on line 9 is such that each filter port connects in order to one
of the splitter streams, and each of the filter streams connects
in order to a joiner port. The output of the joiner is again a
stream of ‘(block, block, block).

Splitters and joiners are reified by the following types
respectively Splitter<Tin extends Value, Touts> and
Joiner<Tins, Tout extends Value>. These make it pos-
sible to create and save intermediate components of a task
graph or to write utility methods that generate them.

Instances of these types are created by the task split

and task join operators as shown in the example. The ar-
gument to these operators must be a splittable type, meaning
a value type that is either a tuple or a bounded value array.
The Touts type of a splitter and the Tins type of a joiner are
derived such that a tuple type is split to a tuple of streams
or joined from a tuple of ports, and a bounded value array
type is split to a bounded (non-value) array of streams or
joined from a bounded array of ports. Writing out the ex-
act Splitter<...,...> or Joiner<...,...> types is tedious
and normally avoided by using var.

6.4 Sources and Sinks
In addition to filters, Lime allows for Source and Sink tasks
which need not be isolated. Such tasks are necessary for
performing I/O and globally side-effecting operations.

The simplest form of a (source) task is created from
a simple value using the task operator followed by the
value keyword and an expression that evaluates to a value
(e.g., task value bit.zero). Such a construction results in

a source task that produces an infinite stream of that value.
Source tasks are parameterized types Source<Tout extends

Value> and may be constructed directly from a value or from
methods with no parameters. Similarly, sinks are created
from methods with void returns and have the type Sink<Tin

extends Value>.
When a source or a sink is isolated, the getWorker()

method can be used to access the internal state of a task
when it is no longer running. The method returns the object
whose instance method is the task worker (or null if the work
method is static) but only if the task is no longer running.
An example of a sink task in JPEG decoder is the RGB
descrambler which comprises the final stage of the decoding
process. The descrambler writes the decoded macroblocks
into a two-dimensional array of RGB pixels.

1 typedef rgb = `(byte, byte, byte);

2 class RGBDescrambler {

3 public rgb[][] bitmap;

4 public local void descramble(rgb[[64]] mb) {

5 ...

6 }

7 }

8 Sink<rgb> sink =

9 task RGBDescrambler(...).descramble;

10 ...

11 rgb[][] bitmap =

12 ((RGBDescrambler) sink.getWorker()).bitmap;

The getWorker method is used to access the results of
the computation, namely the RGB bitmap in this case. With-
out such a method, the descramble method would have to
perform I/O, meaning that it could not be local and would
not be treated as isolated. Lime programmers can use either
isolated or non-isolated sources and sinks based on a conve-
nience versus performance tradeoff.

6.5 Running and Terminating Tasks
We have shown examples of tasks, created with the task

operator. The operator returns a handle for the task. This
handle is always a subclass of the type Task, such as Filter,
Source, etc. The Task interface itself is not generic and has
only methods related to running and terminating a task.

Typically, one starts a task by calling its start() method
and awaits completion by calling rendezvous() which
blocks the caller until the task is in the terminated state.
Starting a task has the side effect of starting all the tasks
connected to it. The start operation can throw an exception
if the graph is found to be cyclic at the time it is started.
The fact that explicitly cyclic graphs are illegal should not
be taken as meaning that feedback within a graph is impos-
sible. Such feedback must employ the messaging techniques
described in Section 8.

Connecting a task in an already-started graph to another
task causes the new task to be started as part of the running
graph. Connecting two graph segments that were previously

101

started is allowed (as long as no cycle is created). This
action may temporarily pause both graphs to calculate a new
schedule before the resultant fused graph is restarted.

A task stops running when an uncaught exception of any
kind occurs during the execution of the task worker method.
By convention, tasks are expected to indicate “normal” ter-
mination by throwing Completion or one of its subclasses.

Task termination propagates in either an orderly or less
orderly fashion depending on the reason for termination. If
the task terminates due to throwing Completion or a subclass
thereof, then termination is “orderly,” meaning that there is
an attempt to consume all queued values. If the graph has a
single source and that task is the first to terminate, the graph
will drain as much data as possible before terminating.

If termination is caused by a Throwable that is not a
Completion, the tasks of the graph are each stopped as soon
as feasible, generally upon return from their current execu-
tion. This may leave data on some connections.

Lastly, if more than one task terminates independently,
before the propagation of termination from one reaches the
other, or if an exception occurs while a task is draining its
port, the result is non-deterministic and generally follows the
abrupt termination model.

7. Rate Matching
The tasks described in the previous section had compatible
port and stream types so that connecting one task to the
another was straightforward. The channel decoding tasks for
example all have the same type Filter<block, block>. In
practice however it is necessary to connect tasks from types
that are not strictly compatible but only compatible modulo
the degree of aggregation. Lime addresses such situations
using a language feature called rate matching.

In JPEG, each macroblock output from the three chan-
nel decoders has to be spliced with the others, one pixel at a
time. This is because the color space conversion accepts a tu-
ple corresponding to the color channels of a pixel and coverts
the colors from the YCbCr space to the RGB space. In
other words, the stream produced by the task in Section 6.3
(lines 7-10) is of the type `(block, block, block) whereas
the desired type is rgb or `(pixel, pixel, pixel). A rate
matcher (“#”) in this case automates the disaggregation of
the blocks into pixels and produces the desired type with
very little programmer effort:

=> task [filterY, filterCb, filterCr]

=> task [(block # pixel),

(block # pixel),

(block # pixel)]

=> task join `(pixel, pixel, pixel)

=> task Color.toRGB => ...;

In general, the # operator is enclosed in parentheses with
an optional port type parameter written before it and an op-
tional stream type parameter written after it. The left and
right types may be omitted if they can be readily inferred
across the connect operator, in which case the parenthe-

value type base value type
value array base type of array element type
bounded value array base type of array element type
homogeneous tuple common base type of elements
heterogeneous tuple itself
all other value types itself

Table 1. Base value type rules for matchers.

ses may be elided as well. The input and output types of a
matcher are related by sharing a base value type, as summa-
rized in Table 1. Because the rules are recursive, rate match-
ing can handle multiple levels of aggregation and disaggre-
gation in a single operation5.

An example of a disaggregating matcher is the rate
matching from block to pixels as in (block # pixel) since
the aggregate type is on the left and the base type on the
right. Each matcher inputs a macroblock from its port,
buffers all of its array elements internally, and produces a
single pixel at a time on its stream. For each input mac-
roblock, the matcher will run 64 times, and thus it has an
input:output rate of 1:64. This is in contrast to user-filters
which have an input:output rate of 1:16.

JPEG also features an aggregating matcher which is
needed between the color space conversion task and the
RGB descrambler shown in Figure 4. The latter inputs an
entire macroblock of rgb pixels whereas the former outputs
a single rgb pixel at a time. To make the connection work,
we interpose a matcher to aggregate values into a single
array for the sink as follows.

=> task Color.toRGB

=> (rgb # rgb[[64]])

=> task RGBDescrambler(...).descramble;

In addition to aggregation and disaggregation, a matcher
may be used solely for the purpose of re-shaping argu-
ments, for instance (pixel[[64]] # pixel[[8][8]]) does
not change the rate of the data. This kind of usage eases the
use of a native “shape” of the data for the method at hand.

Matchers are generally realized as buffers, and the bias
in the language toward types of known sizes aid the com-
piler and scheduler in appropriately allocating storage for
the connections between tasks joined through a matcher. In
the case of hardware synthesis, matchers, especially when
connected to joiners, may sometimes be synthesized directly
into wires that route the base values directly between tasks
without buffering values at all. This is especially attractive
when the base type is a bit or a relatively small-sized value.
Such direct routing generally increases bit-level parallelism
that is difficult to achieve in software.

The examples shown so far are fixed rate matchers. How-
ever, if the input to the matcher is of variable size and the

5 All levels are flattened for this purpose.
6 Note that the rate is with respect to the input tuple and the output tuple. A
filter may input a tuple comprised of multiple elements and produce a tuple
of multiple elements but the input rate is 1 tuple, as is the output rate.

102

output is fixed then the matcher will have a variable rate.
A fixed size output is normally declared by using a type
with inherently fixed size (tuple or bounded array). It is
also possible to specify matchers with a stream type of stati-
cally unknown size (unbounded array) and supply the actual
size of each output at runtime as a (non-constant) expres-
sion which is evaluated when the matcher is instantiated.
The syntax for this uses the contextual keyword size7. As
an example, the disaggregating matcher (block # pixel)

is equivalent to (pixel[[64]] # pixel [[]], size 1) =>

(pixel[[]] # pixel).
There are other modifiers that affect the behavior of a

matcher, including for example the ability to implement a
sliding window over a stream. Refer to [5] for more details.

8. Messaging
The JPEG decoder implementation presented in Section 6
omitted a detail related to the setting of quantization coeffi-
cients needed during channel decoding. The dequantization
task uses image-specific coefficients that are not static. The
task is stateful (allowing for the coefficients to change) but
the information is not available at construction time. It is
however known to the bitstream parser once the graph has
started. Furthermore, this is a one time operation so attempt-
ing to pass this information through the graph, although pos-
sible, is difficult and leads to inefficient code.

Lime overcomes this limitation while maintaining iso-
lation properties with a feature called messaging. It allows
two tasks to communicate using a side “channel” that is out-
side the normal flow of data along port-to-stream connec-
tions. Messaging works using a restricted broadcast model
in which the timing of message delivery is controlled, a re-
quirement in certain applications including JPEG decoding.

Messaging involves three steps: declaring a message in-
terface type, implementing the receiver, and implementing
the sender. A Lime message type is an interface with the
additional message modifier. All of the methods of a mes-
sage interface are considered local and must return void

and only have value arguments. Tasks specify that they can
receive a message type by implementing its interface. For
example, the Quantization class might be defined as shown.

public message interface Quantizers {

public void setQC(int[[Color]] ac,

pixel[[][64]] qt);

}

public class Quantization implements Quantizers {

pixel[[64]] quantizers; // default values

...

public local void setQC(int[[Color]] ac,

pixel[[][64]] qt) {

quantizers = new block(qt[ac[component]]);

}

}

7 Contextual keywords are not reserved words outside this one context.

A method indicates that it may send a particular message
type by using the sends clause as part of its declaration. In
JPEG decoding, the bitstream parser could indicate that it
sends the quantization coefficients as shown below.

1 public class BitstreamParser {

2 ...

3 public block nextBlock() sends Quantizers {

4 if (pixelsProcessed < pixelsExpected) {

5 if (!messageSent) { // only send once

6 setQC(acCoefficients, qtCoefficients);

7 messageSent = true;

8 }

9 return parsedMacroblock();

10 } else

11 throw new StreamUnderflow(); // done

12 }

13 }

The call to setQC on line 6 invokes the message interface
method. Every task created from a class that implements the
message interface will receive that message.

In general, messages can be sent downstream (in the same
direction as the dataflow) or upstream, but not ”sideways”
which will result in a runtime illegal message exception if
attempted. Thus for any sender-receiver pair, there must ex-
ists a sequence of dataflow edges that connect them in one
direction or the other. This is necessary for establishing tim-
ing which can be described using the metaphor of a “sticky
tag”. When a task worker method returns after having called
a sender method, its normal output is tagged with the sent
message. Thereafter, that tag will remain on that data item
and stick to any new results on which that data item par-
ticipates in. Thus the tag will flow through the task graph
in a downstream manner and eventually reach the receiver.
Because there are potentially multiple paths connecting the
sender and receiver, the receiver may observe this tag multi-
ple times. When a tag is first observed by a receiver of that
message type, the receiver method from the message inter-
face will be called prior to running the worker method.

The timing for messages that are sent upstream can be
described in a similar way. One might think of the path
connecting the upstream receiver to the downstream sender
as establishing synchronization by tagging all data items that
the upstream receiver generates. This stream of tags will, in
the same order though possibly with gaps, be observed by
the downstream sender. When the sender issues a message,
it does so after having observed the most recent tag from
the receiver. The message should be delivered immediately
before the sender invocation that would generate the next
tag. Further details are found in [5].

Finally, note that because messages can be sent upstream,
the acyclic restriction on task graphs is not so severe as
to prevent all communication upstream. However, because
messaging is considered an unusual channel of communica-
tion (like exceptions), it is advisable to devise the algorithm
such that the frequency of messaging is low.

103

9. Preliminary Experiments
We present some preliminary experimental results of our
compiler and runtime system on two benchmarks, JPEG de-
coding and DES. The former is described extensively in pre-
vious sections. DES is a popular block cipher and our im-
plementation of it in Lime makes extensive use of bounded
arrays of bits. Besides the source which generates the test
data and the sink which confirms that the result is correct,
the structure of DES is relatively simple, consisting of an ini-
tial permutation doIP, 16 stages of Feistel encoding, and a
final doIPm1. The bit-width varies within the Feistel method
so the bounds on the bit arrays vary greatly (64, 56, 48, 32,
28, 6, and 4).

In addition to the JPEG and DES, we have written more
than 40,000 lines of Lime code. These include a Black-
Scholes implementation, Fast Fourier Transforms, audio and
image processing algorithms, network intrusion detection, a
MIPS processor simulator, and a few other benchmarks. In
addition we have developed a substantial Lime Development
Kit that mirrors the Java collection classes and also provides
graph building utilities for common stream processing id-
ioms.

Our compiler generates Java bytecode, C which is com-
piled into DLLs, and Verilog which is compiled into FPGA
bitfiles. The Lime language runtime can replace tasks dy-
namically, choosing among the different implementations
that may exists. The bytecode backend is the most mature
and is a complete implementation of the language. The C
backend, which targets the generation of user-defined tasks,
handles all the built-in primitive types, bounded array types,
some collective operations, and all control flow constructs
except for exceptions. It does not yet handle unbounded ar-
rays, values, or objects. Nevertheless, this is sufficient to
compile both DES and JPEG decoding.

The FPGA backend is currently less mature and can han-
dle only bits, bounded arrays, and fixed iterations, making it
able to compile only DES. The Lime FPGA tool-chain for
which results are reported in this paper makes limited use of
task- and gate-level optimizations developed in our previous
work [18, 20] which demonstrated that we can compile both
bit-level and streaming features to the FPGA with high per-
formance. We are in the process of building a new and more
robust hardware back-end, and in combination with the ini-
tial results in this paper from our new tool chain, we believe
we have significant evidence that the current version of the
language makes use of bit-level and streaming features syn-
ergistically and can be compiled efficiently to hardware.

To provide a baseline for comparison, we have coded the
DES and JPEG decoding benchmarks using almost none of
the Lime features, most notably by totally avoiding tasks.
This roughly corresponds to a vanilla Java implementation
in which the programmer has not performed any low-level
optimization such as bit packing. We then measure the total
time spent in each stage of the algorithms as comparably

Time (ms)
Lime

task name Baseline bytecode C FPGA
plainTextSource 0.4 7.9 – –
doIP 0.2 0.4 0.006 0.002
Feistel 83.3 78.9 0.105 0.114
doIPm1 0.2 0.3 0.008 0.002
CipherTextSink 0.5 23.0 – –

Table 2. Task performance data for DES.

as we can. The correlation is close but not perfect because a
stream version of an algorithm will typically be finer-grained
and will incur additional overhead from method and timer
invocation. In the stream versions (Lime, C, and FPGA),
we factor out communication costs such as marshalling and
crossing JNI boundaries to measure the execution time doing
the real work.

In Tables 2 and 3, each row corresponds to a user-defined
task of the benchmarks. The columns under the time-heading
show the total running time in milliseconds spent in a par-
ticular stage for the particular backend. The experiments
were performed on a single processor 2.4 GHz Intel Core
2 Duo machine with 4GB of 1.07 GHz DDR3 memory.
The FPGA results are based on timing analysis of our com-
piler’s generated designs after place-and-route for a Virtex-5
XC5VLX50T device using the Xilinx ISE 10.1.3 toolchain.

Because sources and sinks may be global, neither the C
nor the FPGA backend will generate artifacts for them. The
sources and sinks are also stateful in both benchmarks. All
other tasks are local and stateless unless otherwise indicated.
The source and sink rows are grayed out to indicate that, in
a real environment, they are most subject to change and are
not part of the computation kernel.

For DES, the Baseline and Lime versions are fairly com-
parable in the middle stages which is unsurprising since both
are bytecode versions of nearly the same method. The dis-
crepancy in the source and sink arise from the overhead of
Lime’s bytecode implementation of arrays which have an
additional level of boxing. The C and FPGA versions fare
much better, improving the crucial Feistel stage by several
orders of magnitude. The speed increase arises from suc-
cessfully lowering a high-level Lime array of bits to a native
version which is both packed and free from array bounds
check. Although the C and FPGA versions look very similar
in performance, the total time aggregation belies the pipeline
parallelism inherent in an FPGA implementation. The 0.114
ms represents the latency whereas the actual bandwidth that
can be achieved is 16 times greater since the entire design fits
on an FPGA. On the other hand, achieving the same level of
parallelism in C version without extensive transformation is
hard given how fine-grained the Feistel computation is.

Table 3 shows that the Lime version for JPEG decoder
is much slower than the Baseline version. The slowdown
comes from abundant use of Lime arrays which in the byte-

104

Time (ms)
Lime

task name stateless? Baseline bytecode C
bitstream parser no 213 39091 (455) –
zigzag yes 1.7 8946 (196) 6.9
dcDecode no 0.4 299 1.4
deQuantize no 1.2 423 2.3
iDCT yes 118 869 14.4
center yes 1.5 450 1.9
rgb conversion yes 83.1 31.8 8.3
rgb descramble no 1.1 45.8 –

Table 3. Task performance data for JPEG decoder.

code backend is quite unoptimized. In particular, runtime
type manipulation overhead, boxing and unboxing of primi-
tive types within the array implementation, and manipulation
of ordinals when they are the bounding type makes the array
access much slower. As confirmation, we manually modified
the bitstreamParser and zigzag tasks to internally use Java
arrays, thus eliminating most of the aforementioned over-
heads. These changes sped up the former from 39091 ms to
455 ms and the latter from 8946 ms to 196 ms. Because these
transformations are entirely local, we can improve the byte-
code backend and expect much of this overhead to disappear.
However, there will always be some overhead as long as the
system is run on an unmodified JVM. Fortunately, our inten-
tion is that the software backend will serve as a backup and
that we synthesize as much as possible to one of the native
backends. The most expensive part of the JPEG decoding is
the iDCT stage and the C version here improves over the
baseline version by a factor of about 7.

When considering the mid-stages (non-gray rows of ta-
bles) of the computation, which typically dominate in real
applications, we see that the C and HDL versions are much
faster than the baseline versions. We take these results as
only preliminary but very encouraging. Though gratifying,
it is perhaps expected that a C or HDL version of a user task
would run much faster than both the Java and Lime version.
What should not be taken for granted is that it is possible to
bridge the semantic gap by lowering a Lime program down
to C and FPGA. Rather than draw too many performance
conclusions from these numbers, which should await a more
mature implementations from which we will derive yet more
parallelism, these results should serve as convincing evi-
dence that the language design succeeds in remaining high-
level while exposing enough parallelism, valueness, and iso-
lation to make this type of compilation possible.

10. Related Work
There is of course a vast amount of related work for a new
language and its associated compilation and run-time tech-
niques. Here, we concentrate on the issues of synthesizabil-
ity, integration of data-flow into imperative languages, and
enabling these goals via the containment of side-effects.

10.1 Synthesizable High-Level Languages
There are many methodologies, both academic and commer-
cial, to compile C programs to hardware (often called “C-to-
gates” compilers, see [11] for a recent survey). C-to-gates
approaches restrict the C dialect into synthesizable subsets,
often prohibiting the use of pointers and pointer arithmetic,
arbitrary loops, memory allocation and recursion. Although
the number of C prohibitions has consistently decreased over
time, there remains a substantial programming burden on
developers to expose the kinds of parallelism that Lime at-
tempts to unify into a single semantic domain.

Unlike its C-to-gates counterparts, Bluespec [1, 24] is
a hardware description language with Verilog-like syntax.
Bluespec uses a rule-based model of computation, founded
on Term Rewriting Systems, to describe concurrency in
hardware in a way that is amenable to formal analysis and
synthesis. C-to-gates and Bluespec offer some productivity
advantages compared to programming in hardware descrip-
tion languages such as Verilog and VHDL. However they
are not as rich as Lime and do not offer the benefits of a
dynamic and managed object-orientation language that we
believe is important for effectively exploiting heterogeneous
architectures.

A more object-oriented approach, also sharing Lime’s
philosophy of covering different forms of parallelism, is
used by Greaves and Singh as described in [16] and [17].
Their work introduced Kiwi as a parallel programming li-
brary with an associated synthesis system for C# and .NET
concurrency mechanisms. They do not share our goal of
compiling the same source code into efficient software and
hardware. Rather, their work aims to define hardware se-
mantics for existing parallel programming constructs includ-
ing monitors, events, message passing, and asynchronous
threads. We believe that the task-based execution model in
Lime is simpler, offering a greater degree of determinism
and empowering simultaneous compilation to fundamentally
disparate architectures.

10.2 Data-Flow Languages
The Lime task programming model resembles Synchronous
Dataflow (SDF) [23] where actors in a dataflow graph have
statically-known input and output rates. A weakness of SDF
is the inability to address variable rate actors which arise
quite often in algorithms. This limitation is rooted in the for-
malisms of Kahn process networks [22] which gave rise to
the innovation of communicating sequential processes [19]
to introduce compositional non-determinism for streaming
models. In Lime, filters are actors with a 1:1 input to output
rate but Lime addresses the practical need for variable rates
and non-determinism with the match operator. The matching
mechanism allows the language to retain stronger guaran-
tees of dead-lock freedom than is otherwise possible using
communicating sequential processes.

105

There is a rich history of languages based on dataflow and
streaming (see [30] for a comprehensive survey and [31] for
a recent review). Dataflow principles are central to the Lime
language design, provided via the task and connect opera-
tors (to expose dataflow), value types (to disallow arbitrary
mutation), and localness (to allow side-effects but in isolated
and safe contexts). Seminal dataflow languages, such as Lu-
cid [4], Id [3], and VAL [2] restrict variables to single as-
signment, and disallow side-effecting statements as the cost
for using a dataflow model. In Lime, parts of the program are
able to remain imperative while achieving the same result.

Much of the work on dataflow and streaming has focused
on embedded systems and digital signal processing. This
usually involves completely new languages with new oper-
ational semantics. Lime is able to incorporate similar ideas
into a widely deployed language using familiar syntax and
semantics. The Lime task operator is similar to the lift oper-
ator in Functional Reactive Programming [13] (FRP) which
converts a function over a static value to a function over time
reified as a Behavior: a behavior is a continuous function that
can be sampled at any time to retrieve a corresponding value.
FRP also provides combinators similar to the Lime connect
operator to compose and create new behaviors and Events.
An implementation of the FRP model in the Java program-
ming language can be found in [12] which also compares
FRP in its pure Haskell functional form to the Java form.
In that comparison it was found that the latter is consider-
ably more verbose. In contrast, Lime introduces local type
inference and a compact grammar to cleanly integrate the
streaming model into Java.

The availability of messaging constructs in the language
address what might otherwise appear as strict limitations
on the exchange of necessary data in a distributed model.
Lime’s messaging feature is similar to the teleport mes-
saging techniques introduced by Thies et al. [34] for the
StreamIt [33] programming language. StreamIt is a language
based on SDF. It is geared toward compile time construction
and refinement of stream graphs for efficient execution on
multicore architectures. StreamIt is an elegant language but
the lack of object-orientation, variable-size arrays, generics,
run-time stream creation, and many other features available
in Lime make it inadequate for ”programming in the large”.

Other recent work on stream programming for multicore
architectures has shown that it is possible but not trivial
to introduce pipeline parallelism, inherent to stream pro-
grams, into legacy programs. In [32] and [10], profiling and
feedback tools attempt to aid the programmer in inserting
pipelining stages into existing C programs. This work is akin
to pipelining C programs for C-to-gates compilation. Lime
encourages and facilitates the expression of pipeline paral-
lelism more naturally and provides a gentle migration path
from existing Java programs to Lime.

The idea of computing explicitly with dataflow graphs in
a Java language context resembles both the Exotask [6] and

StreamFlex [29] systems. Both systems combine checkable
restrictions on field access with other restrictions on object
reachability to achieve a dataflow style of programming with
isolated nodes. Neither of the cited systems expands the Java
language and so neither is as expressive as Lime. Lime intro-
duces values as a first-class type family with both immutabil-
ity and referential transparency. Exotasks and StreamFlex,
in contrast, check for recursive immutability in a post-hoc
fashion, which can be expensive and implies a closed world.
Neither exploits referential transparency. Lime distinguishes
stateless nodes from stateful ones, permitting a class of op-
timizations not available to the others. Exotasks control ob-
ject reachability via extra-linguistic means (controlling ini-
tial conditions by instantiating graphs from templates) and
StreamFlex uses an ownership type system to tightly con-
trol object lifetimes, while Lime uses valueness, localness,
isolating constructors, and the inherent single-reference se-
mantics of the task operator to achieve the same ends.

10.3 Containment of Side-Effects
Lime uses deeply immutable value types, local methods,
and controlled initialization to compositionally obtain refer-
ential transparency and restriction of side effects to a sin-
gle isolated task. Many other approaches to bounding side-
effects have been used or proposed, motivated by various
different goals. We describe and contrast a representative se-
lection of these approaches.

Imperative and functional languages must each solve
problems that are in some sense duals: for the former, bound-
ing the scope of side-effects without making the language
overly tedious to use; for the latter, adding the capability
of side-effects without compromising the advantages of the
functional approach.

For imperative languages, there was considerable opti-
mism that compiler analysis could discover regions of code
with limited side-effects that would allow a high level of op-
timization, even in the presence of pointers (e.g., [27]). How-
ever, these analyses proved to be fragile, and programmers
could not easily comprehend the coding requirements to re-
liably enable a high degree of optimization.

Our work on containment of side-effects traces back to
Reynolds’ work on syntactic control of interference [26].
Boyland [9] includes a good summary of recent work, par-
ticularly in the context of object-oriented languages. One
strand of recent work has focused on enforcing such prop-
erties as read-only [7]. However, this is insufficiently strong
for the kind of isolation required by our task model: it only
ensures that a method will not modify its parameter, but does
not ensure that some other method does not modify it con-
currently.

Ownership types (e.g., [8]) have also been the subject of
considerable research. These type systems are designed to
allow various forms of sharing across multiple threads, but
pay a price in the complexity of the annotations and/or re-
strictions in expressiveness. Rather than attempting to allow

106

sharing of mutable state across threads or tasks, Lime makes
use of sole-reference isolation. This significantly reduces the
annotation burden on the programmer.

Monads [25, 35] are used in lazy functional languages
to encapsulate the side effects of, most notably, input and
output into IO monads which have additional arguments and
return values representing the state of the world. Lime’s eval-
uation model is eager and so there is no need to avoid side
effects for deep semantic reasons. Instead, it is enough to
limit the scope of side effects through the isolation mecha-
nism.

Acknowledgments
Shan Shan Huang made substantial contributions to an ear-
lier version of the Lime language. We thank Martin Hirzel,
Doug Lea, David Ungar and the reviewers for their valuable
comments.

References
[1] Bluespec SystemVerilog Reference Guide, version 3.8.

www.bluespec.com, 2004.

[2] ACKERMAN, W., AND DENNIS, J. VAL: a Value-Oriented
Algorithmic Language. Tech. Rep. MIT-LCS-TR-218, Mas-
sachusetts Institute of Technology, 1979.

[3] ARVIND, GOSTELOW, K., AND PLOUFFE, W. An asyn-
chronous programming language and computing machine.
Tech. Rep. 114, University of California at Irvine, 1978.

[4] ASHCROFT, E., AND WADGE, W. Lucid, a nonprocedural
language with iteration. Communications of the ACM 20, 7
(1977), 526.

[5] AUERBACH, J., BACON, D. F., CHENG, P., AND RABBAH,
R. Lime language manual (version 2.0). Tech. Rep. RC-
25004, IBM Research, Oct 2010.

[6] AUERBACH, J., BACON, D. F., IERCAN, D., KIRSCH,
C. M., RAJAN, V. T., RÖCK, H., AND TRUMMER, R. Low-
latency time-portable real-time programming with Exotasks.
ACM Trans. Embed. Comput. Syst. 8, 2 (2009), 1–48.

[7] BIRKA, A., AND ERNST, M. D. A practical type system and
language for reference immutability. In Proceedings of the
19th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (Van-
couver, BC, Canada, 2004), pp. 35–49.

[8] BOYAPATI, C., LEE, R., AND RINARD, M. Ownership types
for safe programming: preventing data races and deadlocks.
In Proceedings of the 17th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Ap-
plications (Seattle, Washington, 2002), pp. 211–230.

[9] BOYLAND, J. Why we should not add readonly to Java (yet).
Journal of Object Technology 5, 5 (2006), 5–29.

[10] BRIDGES, M., VACHHARAJANI, N., ZHANG, Y., JABLIN,
T., AND AUGUST, D. Revisiting the sequential program-
ming model for multi-core. In Proceedings of the 40th An-
nual IEEE/ACM International Symposium on Microarchitec-
ture (2007), pp. 69–84.

[11] CARDOSO, J., AND DINIZ, P. Compilation Techniques for
Reconfigurable Architectures. Springer, 2008.

[12] COURTNEY, A. Frappé: Functional reactive programming in
Java. In Proceedings of the Third International Symposium on
Practical Aspects of Declarative Languages (2001), Springer-
Verlag, pp. 29–44.

[13] ELLIOTT, C., AND HUDAK, P. Functional reactive animation.
In Proceedings of the Second ACM SIGPLAN International
Conference on Functional Programming (1997), pp. 263–273.

[14] GORDON, M. I., THIES, W., AND AMARASINGHE, S. Ex-
ploiting coarse-grained task, data, and pipeline parallelism in
stream programs. In Proceedings of the 12th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (San Jose, California, USA,
2006), pp. 151–162.

[15] GORDON, M. I., THIES, W., KARCZMAREK, M., LIN, J.,
MELI, A. S., LAMB, A. A., LEGER, C., WONG, J., HOFF-
MANN, H., MAZE, D., AND AMARASINGHE, S. A stream
compiler for communication-exposed architectures. In Pro-
ceedings of the 10th International Conference on Architec-
tural Support for Programming Languages and Operating
Systems (San Jose, California, 2002), pp. 291–303.

[16] GREAVES, D., AND SINGH, S. Kiwi: Synthesis of FPGA
circuits from parallel programs. In IEEE Symposium on Field-
Programmable Custom Computing Machines (2008).

[17] GREAVES, D., AND SINGH, S. Exploiting system-level con-
currency abstractions for hardware descriptions. Tech. Rep.
MSR-TR-2009-48, Microsoft Research, Apr 2009.

[18] HAGIESCU, A., WONG, W.-F., BACON, D. F., AND RAB-
BAH, R. A computing origami: folding streams in FPGAs. In
Proceedings of the 46th Annual Design Automation Confer-
ence (San Francisco, California, 2009), pp. 282–287.

[19] HOARE, C. Communicating Sequential Processes. Commun.
ACM 21, 8 (1978), 677.

[20] HORMATI, A., KUDLUR, M., MAHLKE, S., BACON, D. F.,
AND RABBAH, R. Optimus: efficient realization of streaming
applications on FPGAs. In Proceedings of the 2008 Interna-
tional Conference on Compilers, Architectures and Synthesis
for Embedded Systems (Atlanta, GA, USA, 2008), pp. 41–50.

[21] HUANG, S. S., HORMATI, A., BACON, D. F., AND RAB-
BAH, R. M. Liquid metal: Object-oriented programming
across the hardware/software boundary. In Proceedings of
the European Conference on Object-Oriented Programming
(2008), J. Vitek, Ed., vol. 5142 of Lecture Notes in Computer
Science, Springer, pp. 76–103.

[22] KAHN, G. The semantics of simple language for parallel pro-
gramming. In Proceedings of IFIP Congress 74 (Stockholm,
Sweden, Aug. 1974), J. Rosenfield, Ed., pp. 471–475.

[23] LEE, E. A., AND MESSERSCHMITT, D. G. Static scheduling
of synchronous data flow programs for digital signal process-
ing. IEEE Trans. on Computers 36, 1 (January 1987), 24–35.

[24] NIKHIL, R. Bluespec System Verilog: efficient, correct RTL
from high level specifications. In Proceedings of the Second
ACM and IEEE International Conference on Formal Methods
and Models for Co-Design (2004), pp. 69–70.

107

[25] PEYTON JONES, S. L., AND WADLER, P. Imperative
functional programming. In Proceedings of the 20th ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (Charleston, South Carolina, 1993), pp. 71–
84.

[26] REYNOLDS, J. C. Syntactic control of interference. In
Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages (Tucson, Arizona,
1978), pp. 39–46.

[27] RYDER, B. G., LANDI, W. A., STOCKS, P. A., ZHANG, S.,
AND ALTUCHER, R. A schema for interprocedural modifi-
cation side-effect analysis with pointer aliasing. ACM Trans.
Program. Lang. Syst. 23, 2 (2001), 105–186.

[28] SASITORN, J., AND CARTWRIGHT, R. Efficient first-class
generics on stock Java virtual machines. In Proceedings of the
2006 ACM Symposium on Applied Computing (Dijon, France,
2006), pp. 1621–1628.

[29] SPRING, J. H., PRIVAT, J., GUERRAOUI, R., AND VITEK, J.
StreamFlex: high-throughput stream programming in Java. In
Proceedings of the 22nd Annual ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages, and
Applications (Montreal, Quebec, 2007), pp. 211–228.

[30] STEPHENS, R. A survey of stream processing. Acta Infor-
matica 34, 7 (1997), 491–541.

[31] THIES, W. Language and compiler support for stream pro-
grams. PhD thesis, Massachusetts Institute of Technology,
2009.

[32] THIES, W., CHANDRASEKHAR, V., AND AMARASINGHE,
S. A practical approach to exploiting coarse-grained pipeline
parallelism in C programs. In Proceedings of the 40th An-
nual IEEE/ACM International Symposium on Microarchitec-
ture (2007), pp. 356–369.

[33] THIES, W., KARCZMAREK, M., AND AMARASINGHE, S. P.
StreamIt: A language for streaming applications. In Proceed-
ings of the 11th International Conference on Compiler Con-
struction (2002), Springer-Verlag, pp. 179–196.

[34] THIES, W., KARCZMAREK, M., SERMULINS, J., RABBAH,
R., AND AMARASINGHE, S. Teleport messaging for dis-
tributed stream programs. In Proceedings of the Tenth ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming (Chicago, Illinois, 2005), pp. 224–235.

[35] WADLER, P. Comprehending monads. In Proceedings of the
1990 ACM Conference on LISP and Functional Programming
(Nice, France, 1990), pp. 61–78.

108

	Introduction
	Key Lime Features
	Contributions

	Lime Language Fundamentals
	Value Types
	Ordinals
	Bounded Arrays and Value Arrays
	Unerased Generics
	User-Defined Operators
	Ranges
	Typedefs
	Local Type Inference
	Java Compatibility

	Local Method Checking
	Repeatable Static Fields
	Local/Global Polymorphism

	Collective and Data-Parallel Operations
	Enabling Features for Stream Computing
	Task Programming Model
	Task and Connect
	Filters and Isolation
	Split and Join
	Sources and Sinks
	Running and Terminating Tasks

	Rate Matching
	Messaging
	Preliminary Experiments
	Related Work
	Synthesizable High-Level Languages
	Data-Flow Languages
	Containment of Side-Effects

