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Abstract

In this paper two well known UML profiles, namely
SysML and MARTE are closely examined and compared.
Both profiles are well suited for the description of embed-
ded systems, although focusing on different aspects and can
therefore be considered as complementary. While SysML
targets system engineering descriptions in a high level of
abstraction and provide diagrams for requirements specifi-
cation, MARTE is tailored for systems in which Real Time
constraints play a major role. Expressiveness of such pro-
files and their matching with languages that represent the
next step in the development of Hardware/Software systems
will be the main subject of this work. A Wireless Sensor Net-
work scenario is taken as a reference case study and used
to illustrate a practical application of MDA.

1 Introduction

Complexity of electronic systems is constantly increas-
ing and this requires new powerful design strategies. As a
result, automatization of the design process, starting from
lightweight representations (e.g. UML [11]), is a well es-
tabilished trend nowadays. This process - that is still in
progress - produced as major results the definition of pro-
filing in modeling languages [7] and the formalization of
Model Driven Architectures [6]. UML2 has been created
with the intention of adding new capabilities for large scale
systems and achieving great semantic accuracy and con-
cepts consolidation. With UML2 it is possible to develop
very sophisticated models and profiles for nearly any type
of system (hardware, software, middleware).
In this paper we analyze two of such UML profiles,
SysML [9] and MARTE [5]. SysML targets system engi-
neering descriptions in a high level of abstraction and pro-
vides diagrams for requirements specification. MARTE on
the other hand was developed to model Real Time Systems

and is thus mainly targets timing performances (e.g. WCET
etc). In particular we show how they can be employed for
the automatic generation of executable code. We mainly tar-
get generation of SystemC models, but it is possible to think
about other possibilities as well. In particular could repre-
sent a main topic in the future the mapping into Promela so
to be able both to model systems and to extract properties
to be verified bySPINmodel-checker.
Briefly, the paper is organized as follows. Related works are
illustrated in Section 2. A summary of SysML and MARTE
profiles is provided in Section 3 and Section 4. In Section 5
we describe the process of mapping system description to
SystemC and its code generation. A simple case study con-
cerning the modeling of a Wireless Sensor Network is illus-
trated in Section 6. In Section 7 conclusions are drawn and
future work is briefly outlined.

2 Related works

In this section we present the usage of UML combined
to SystemC and related works. To allow using UML for
HW/SW co-design, [23] started to extend UML by a profile
for SystemC that allowed to express a SystemC model in
UML. In there a consistent research effort on generation of
SystemC code starting from UML diagrams has been done
(see e.g. [25], [21] and [22]). Also well known commercial
software products target similar issues. I-Logix StateMate
[3] generates executable models starting from StateCharts,
MATLAB Stateflow [4] does the same starting from a sim-
ilar concurrent FSM formalism. In [14] the translation of
StateCharts into Hierarchical Finite State Machines (HF-
SMs) is explored in order to build test cases for the corre-
sponding VHDL realization. StateCharts formalism is also
very appropriate for the formal validation of models. In
particular, automatic translation intoPromela/SPIN, a lan-
guage used for automatic Model Checking, was presented in
[19], [20] and [16]; recently an interesting approach to this
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problem was reported in [18]. A lot of work has been done
in the field of embedded systems, but unfortunately a lot of
designers were focused on software design, that excluded
hardware part of embedded systems. In [13] a specialization
of UML is presented to express embedded real-time appli-
cations in an abstract way. [12] defines an UML Profile for
SystemC, but no code generation capabilities for behavioral
information are considered. Another point of view and pro-
posal was presented in [15], the authors provide an analysis
about the structural modeling concepts in UML 2.0, which
has added structural information such as class and struc-
tured class. A lot of tools are presented that encapsulate the
possibility of UML to SystemC code generations.

3 SysML

SysML is a modeling language for representing systems
and product architectures, as well as their behavior and
structure. It tries to adopt modeling techniques known from
software development to systems engineering, and supports
the specification, analysis, design, verification and valida-
tion of a broad range of complex systems. SysML provides
a structural element calledblock. Blocks can be used to
represent any type of components of the system, functional,
physical, and human, etc. and are used withinBlock Defi-
nition Diagrams, which aim to describe the structure of the
system. The SysML Block Definition Diagram (BDD) is
based on UML Class Diagrams and UML Composite Struc-
ture Diagrams. It is also used to represent the system de-
composition using for example associations and composi-
tion relationships.

3.1 Block Definition Diagram

The role of a BDD is to describe the relationships among
blocks, which are basic structural elements aiming at spec-
ifying hierarchies and interconnections of the system to be
modeled. A block is specified by itsparts, andflow ports.
Parts represent the physical components of the block while
flow ports represent the interfaces of the block, through
which the block communicates with other blocks. BDDs
can also represent the decomposition of a block [17] in or-
der to show by which kind of parts, including their features,
a block is composed.

3.2 Internal Block Diagram

The SysML IBD allows the designer to refine the struc-
tural aspect of the model. The IBD is the equivalent of the
composite structure in UML. In the IBD, parts are the basic
elements of the diagram and they are assembled to define
how they collaborate to realize the behavior of the block. A
part represents the usage of the corresponding block. The

most important aspect of the IBD is allowing the designer
to refine the definition of the interaction between the usage
of blocks by defining flow ports as follows:

• ports are parts available for connection from the out-
side of the owning block;

• ports are typed by interfaces or blocks that define what
can be exchanged through them;

• ports are connected using connectors that represent the
use of an association in the IBD.

Figure 1 shows how to represent the internal structure of
a block calledSoC1 by means of an IBD. The IBD cor-
responds to a block decomposition wheremodule1 and
module2 are connected each other throughin and out
ports, whilemodule2 is connected through aninout port
to the outside of the corresponding blockSoC1.

<><>

ibd   SoC1

module2module1

flowPort_1

flowPort_2

flowPort_3

Figure 1. Internal Block Diagram representing
the usage of parts within block SoC1

3.3 SysML ports

Two types of ports are available in SysML:

• standard portshandling requests and invocations of
services with other blocks (basically the same concept
as in UML2);

• flow portswhich let blocks exchange flows of informa-
tion.

Flow ports specify the interaction points among blocks and
parts supporting the integration of behavior and structure.
For standard ports, an interface class is used to list the ser-
vices offered by the block. For flow ports, a flow specifica-
tion is created to list the type of data that can flow through
the port.

4 MARTE

MARTE profile [5] is an evolution of the Schedulabil-
ity, Performance and Time (SPT) profile with the aim to
upgrade this profile to UML2. It is made of various pack-
ages: namely MARTE foundations, MARTE design model,
MARTE analysis model and MARTE annexes. The profile
is intended to be a fundamental tool in the design of real
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time systems. Both modeling and analyzing concerns are
tackled leading to a complete instrument to improve design
phase.
In this section we focus in particular on the Time modeling
which is part of MARTE foundations package. It allows
the designer to define time constraints and bind his system
to them. We focus on the granularity as well as abstrac-
tion provided in the temporal domain by this profile. As far
as generation of code is involved, this piece of the profile
is particularly useful and is fully complementary to SysML
profile as the timing aspect is not dealt with in this latter
profile.
Time constraints, to which any system must stick to, rep-
resent a fundamental analysis aspects and are necessary in
order to determine performance of any kind of system. Spe-
cially in the case of real time systems, time is very crucial
and the system must abide by the hard as well as soft time
constraints. In MARTE there are two kinds of time: the log-
ical time and the chronometric time. The chronometric time
concerns with the time cardinality alone, whereas the log-
ical time concerns the ordering and organization of events
which can again be synchronous or asynchronous. The spe-
cialization of the logical time model for synchronous events
is independently known as the synchronous time model. For
extreme real time applications the simultaneity of events oc-
currence is taken care by the synchronous time model.
The MARTE profile allows << Clocks >> which
are instances of<< ClockType >>. The <<
modelLibrary >> TimeTypesLibrary of MARTE has the
enumerations<< enumeration >> TimeNatureKind and
<< enumeration >> TimeInterpretationKind. TimeNa-
tureKind specifies whether the time is discrete or dense.
In the first case time is seen as in a High Level Hardware
Description Language in which clock ticks are discrete and
time does not elapse during delta cycles. The second case
matches the physical time that is known to be continuous.
TimeInterpretationKind specifies whether time should be
interpreted as instant or as duration. Typically the instant
and duration time interpretation kind refers to the time re-
lated events that occur in a particular instant called instant
time events or occur over some period of time called dura-
tion time events. The<< stereotype >> ClockType gives
the attributes that any clock can take. The units of time that
are supported by MARTE<< modelLibrary >> TimeLi-
brary are defined based on a base time and a conversion fac-
tor. The specifications of the clock objects can be obtained
from << ClockConstraint >> and the scheduling of
the clocked events from the<< TimedConstraints >>.
The << timedDomain >> encapsulates a certain num-
ber of events with their clocks and triggers.

5 Mapping to SystemC

Automatic code generation is a fundamental objective
when dealing with design of complex systems. On one hand
it speeds up development time, on the other extensive test-
ing is possible from the early development stages therefore
improving quality and reliability of final products. Choice
of the starting and target formalisms are the main issues in
such process. In fact they have a major impact on expres-
siveness and performance of the generated code that are the
major concerns in such an effort. UML represents a con-
vincing starting point as it is the most widely used plat-
form independent modeling language. It contains possibil-
ity of conveying both structural and behavioral information,
moreover its expressiveness can be enriched by profiling. In
particular subset of the language or of its profiles can con-
tain useful information for the generation phase as will be
shown later. SystemC [10] represents a convenient choice
as target formalism. It can be used to bridge high level spec-
ifications (normally expressed in languages as C or through
scripts in an environment like Matlab) with actual imple-
mentation of Hardware systems (normally described in lan-
guages such as Verilog or VHDL). SystemC is a class of
libraries built on top of C++ that add to such language a sim-
ulation framework, a conceptual representation of time and
Hardware oriented datatypes. For this reason it represents a
valid option for prototyping and early design phases but can
also be employed for later phases up to syntesis. There ex-
ist commercial tools for generating Hardware starting from
SystemC representations (e.g. Cynthesizer [2]) and transla-
tion of SystemC into synthesizable VHDL or Verilog is not
known to be an untractable problem.

5.1 Code Generation

The process of code generation happens in two steps as
in a Software Compiler. Starting from information exported
in textual format from the UML tools (i.e. xmi or di2) an in-
termediate representation is built. Then code is built starting
from such a representation. In this way it is possible to ex-
tend the reuse of both parts. Changing the UML tool (and as
a consequence the source XMI dialect) reflects only in ap-
plying changes to the frontend reusing the existing backend.
In case different target formalisms are used the frontend part
can be reused and only the backend needs to be modified.

5.2 Translation Template

In order to define how high level UML specifications are
translated into SystemC code it is necessary to define a tem-
plate code. Ideally there is a one to one mapping between
UML (also involving stereotypes coming from profiles) and
transformations can be performed in both directions using

3



such mapping. In practice realization of such mapping is
not straightforward. While it is possible to profile UML
in a way that all the SystemC building blocks can be rep-
resented (see e.g. [24]) it is not straightforward to create
a consistent UML model starting from representation of a
given SystemC code. Limits on the style of coding must
be imposed so that behavioral information can be conveyed
into appropriate state diagrams.

5.2.1 SysML models

We will start by defining basic SystemC entities likemod-
ule, port andprocess. The mapping between SysML and
SystemC items is defined as follows:

• SysMLpartsmapped to SystemCmodules;

• SysMLflow portmapped to SystemCports;

• SysMLallocationsmapped to SystemCprocesses.

Now we are able to firstly create a header file (.h) for each
module that must include:moduledefinition;port declara-
tion; processdeclaration. The header files ofmodule1 and
module2 of SoC1 described in Figure 1 can be translated
into SystemC code as follows:

SC_MODULE (module_1) {

public:
sc_out <int> flowPort_1: type;
sc_in <int> flowPort_2: type;

SC_CTOR (module_1)
{

SC_THREAD(verifyValue);
}

void verifyValue();
};

SC_MODULE (module_2) {

public:
sc_in <int> flowPort_1: type;
sc_out <int> flowPort_2: type;
sc_inout <int> flowPort_3: type;

SC_CTOR (module_2)
{

SC_THREAD(getValue);
SC_THREAD(increaseValue);

}

void getValue();
void increaseValue();

};

Secondly we can build the implementation files (.cpp) that
describes the module behavior and could be implemented
starting from StateCharts diagrams as described in our pre-
vious [21].

5.2.2 MARTE models

The main limitation we encountered with SysML is the lack
of constructs for modelling time. Thus we were pushed
to examining different packages and model libraries in the
MARTE time profile and try to find a mapping into Sys-
temC. This way increasing the expressiveness of the mod-
elling formalism by the concurrent use of multiple profiles
we improve the automatic generation phase.
Discrete time can be mapped in SystemC to any digital
clock object with a defined period and duty cycle and also
the unit of time but it fails to map the dense time to any kind
of clock. In fact being SystemC a high level programming
language the representation of dense time in non-discrete
domain is not feasible.
The chronometric time model can be considered as directly
mapped to SystemC simulation time that expresses the time
cardinality. Logical time can be represented by means of the
sensitivity list of any process of the system. Since the idea
behind the notion of logical time is the ordering of events in
a sequence, we take the advantage of the execution of pro-
cesses on triggering of certain events. For example if we
want to order the execution of events A, B and C in the or-
der C follows B follows A. And the only criterion for their
execution is following the preceding event.
These events are mapped to processes in SystemC namely
proc a, proc b, andproc c. We make these processes sen-
sitive to only a single signal saytrig a, trig b andtrig c re-
spectively. The state oftrig b is changed only at the end of
proc a. Process A may include the modifications of one or
many signals but we need to make sure that the last change
that the process makes is that oftrig b which triggers the
execution ofproc b. Similarly proc b should also change
state oftrig c at its end to triggerproc c. This assures the
ordered execution of the processes. We trigger the first pro-
cess (A) in the main control unit by changing the state of
trig a. There may be a case when the criteria for execution
of a process may not be following the preceding event alone.
In such case the additional signals to which the process is
sensitive are moved from the sensitivity list of each process
and appended to the sensitivity list of the first process (in
this caseproc a).
The SystemCwait (duration, unit)function can be used to
regulate the time constraint equations. For example if a spe-
cific event is expected to occur within a particular duration
of time after a preceding event , we can wait for that amount
of time and then poll for the completion of the event. If the
poll fails then the constraint is no longer valid and system
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gives up in performance. Thewait () should be invoked
at the end of the preceding process (in the control unit of
the system) and flow should be directed to polling the next
event. Similar visualization in SystemC is achieved by the
clock object which is an object of the classsc clock.
Mapping sc time unit (SCFS; SCPS; SCNS; SCUS;
SCMS; SCSEC) to the TimeLibrary, we can design any
specific clock with any time unit. As long as the TimeInter-
pretationKind is involved the mapping s as follows:

• Duration is mapped to a scheduler,started withsc start
(double d, sctime unit t) and executing a sequence of
operations which cannot be accomplished with a single
instruction in an instant. It takes more than one clock
cycle to complete the job.

• Instant is mapped to the processes that are involved in
signal modifications or initializing a scheduler as this
is done only with one instruction in an instant. It takes
only one clock cycle to complete job.

6 Case Study

This section discusses a case study with the aim to
present the general rules described in this paper and apply
them to aSensorNode within a Wireless Sensor Network
(WSN) system. Figure 2 shows the IBD of a Sensor Node
describing its internal structure. As we can see our system
is composed ofCPU , Sensor, Actuator, RF transceiver,
andMemory. When switched on, the Sensor measures the
external temperature and sends the value to the CPU to be
elaborated. If a predefined threshold is overflown, the CPU
tells the Actuator to perform the appropriated action, other-
wise it stores the data in the Memory. If the Memory is full,
the CPU sends the data to another sensor through its RF
transceiver and then goes to the Idle state waiting for the
next measurement to be performed. Given SysML diagram

ibd  SensorNode

RF

CPU

Sensor

ActuatorMemory

<> <> <>

<> <>

<>
dataExchange

data

dataStored actionDecided action

measuredTemp extTemp

Figure 2. Internal Block Diagram of the Sensor
Node

in Figure 2 the following SystemC code will be generated:

SC_MODULE(CPU) {
public

sc_in <float> measuredTemp:Temperature;
sc_inout <float> data:Info;
sc_inout <float> dataStored:Info;
sc_out <bool> actionDecided:Impulse;

SC_CTOR(CPU)
{

SC_THREAD(elaborate);
SC_THREAD(store);

}
void elaborate()
void store()

};

SC_MODULE(Sensor) {
public

sc_in <float> extTemp:Temperature;
sc_out <float> measuredTemp:Temperature;

SC_CTOR(Sensor)
{

SC_THREAD(measure);
}

void measure()
};
SC_MODULE(Actuator) {

public
sc_in <bool> actionDecided: Impulse;
sc_out <bool> action: Impulse;

SC_CTOR(Actuator)
{

SC_THREAD(performAction);
}

void performAction()
};

SC_MODULE(RF) {
public

sc_inout <float> dataExchange: Info;
sc_inout <float> data: Info;
SC_CTOR(RF)

{
SC_THREAD(send);

}
void send()

};

As it is easy to notice no information on timings (i.e. clocks
of the system) is available. For this reason we used the pre-
viously described mapping of the MARTE time profile. As
a simplification we use a single clock for the whole system
that defines the timescale of the simulation. In practice it is
possible to have multiple clocks in the various blocks.
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The classes sketched in Figure 3 allow defining a clock for

 
       << clockType  >> 
{ nature=discrete, isLogical=false, 
unitType=ns } 
     TIMECLK 

period: Integer 

                   << clock >> 
{ unit= ns  } 
                  clk1:TIMECLK 
 
period=10 

 << TimedDomain >> 
           Clocks 

Figure 3. MARTE representation of a 100MHz
Clock

the whole system. In particular the information contained
in such figure can be translated in SystemC in the statement
sc clock(clk1,10,SCNS,0.5). It is straightforward to insert
in the classes more information (e.g. duty cycle) and reuse
them for generation of code.

7 Conclusions

In this paper we investigated how enrichment coming
from UML profiles can be used in order to enhance code
generation techniques. We closely analyzed both SysML
and MARTE profiles and found that even though the former
looks better suited for generating SystemC code, interest-
ing possibilities can be enabled also by the latter. In partic-
ular we noticed that contemporary use of stereotypes from
both profiles may represent an interesting option. We found
that tool support for such operation is still to be improved.
Some tools (i.e. Rhapsody [1]) do not support MARTE pro-
file. On the other hand Papyrus [8], supporting both profiles
through plugins, has some major limitations in the available
features (i.e. missing diagrams, limited xmi translation).
Future work will involve refinement of obtained results and
application of similar techniques for validation of systems.
Analysis of existing UML tools and possibly extensions are
foreseen.
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