MPSoC Power Estimation Framework at Transaction
Level Modeling

Rabie Ben Atitallah, Smail Niar and Jean-Luc Dekeyser
DaRT Project, INRIA-FUTURS, France
Email: {benatita, niar, dekeyser} @lifl.fr

Abstract—Early power estimation is increasingly important
in MultiProcessor System-On-Chip (MPSoC) architectures for a
reliable Design Space Exploration (DSE). In this paper, we present
an MPSoC power modeling framework at the Timed Programmer
View (PVT) level that offers a good performance/power tradeoff to
be found early in the design flow. Using a hybrid power modeling
methodology, we developed several power models derived from
both physical measurements and analytical expressions. Plugging
these power models into the PVT architectural simulator makes
it easy to estimate the application’s performance and power
consumption with high simulation speedup. The effectiveness of
our method is illustrated through a DSE for a parallelized version
of H.263 encoder application.

I. INTRODUCTION

Designing next generation MultiProcessor Systems-on-Chip
(MPSoC) dedicated to high-performance embedded applications
will be increasingly complex. An efficient and fast design space
exploration (DSE) of such systems needs a set of tools capable
of estimating performance and power at higher abstraction level
in the design flow. Nowadays, power consumption has emerged
as a primary design metric when developing MPSoC circuit
taking into account silicon integration, IP multiplicity and clock
frequency rise.

Power estimation at the RTL level cannot adequately support
the complex design of future MPSoC since RTL tools require
increased simulation time to explore the huge architectural
solution space. Among the existing tools which operate at
the RTL level we can mention, SPICE [1] and PETROL [2].
These tools are fairly accurate, but require significant amount
of simulation time. In an attempt to reduce simulation time,
significant research efforts have been expended to evaluate
MPSoC power consumption at the Cycle Accurate Bit Accurate
(CABA) level [3]. Usually, to move from the RTL to the CABA
level, hardware implementation details are hidden from the
processing part of the system, while preserving system behavior
at the clock cycle level. Though using the CABA level has
allowed accurate power estimation, MPSoC DSE at this level
is not yet sufficiently rapid compared to RTL [4].

In this paper, we focus on higher abstraction levels especially
at the TLM (Transaction Level Modeling) for evaluating power
consumption on MPSoC design. In TLM, a set of abstraction
levels simplifying the description of inter-module communi-
cation is defined. Consequently simulation time is reduced
by augmenting communication operation granularity. Signal
handshaking, as used in CABA level, is replaced in TLM by
transactions using communication channels [5]. Consequently,

modeling MPSoC architectures becomes easier and faster than
at the CABA level. TLM [5] does not represent one level
of abstraction but rather, it refers to a taxonomy of several
abstraction levels. Each level differs from the others in the
degree of functional or temporal details it expresses. To maintain
a good accuracy/simulation speedup tradeoff, our framework
is designed at the Timed Programmer View (PVT) level [5].
At this level, the hardware architecture is specified for both
processing and communication parts and some arbitration of
the communication infrastructure is applied. For performance
estimation, this level is annotated with timing specifications.
Recently, we start thinking about the efficiency of power estima-
tion at the transactional levels. In [6] and [7], authors present
a characterization methodology for generating power models
within TLM adopted to peripheral components. The pertinent
activities are identified at several levels and granularities. The
characterization phase of the activities is performed at the gate
level and helps to deduce power of coarse-grain activities at
higher level. However, this methodology cannot be applied to
different kinds of components such as processors or interconnect
networks. Thus in our approach, characterization from low
level will be used as well as analytical modeling methodology.
This hybrid approach yields acceptable levels of precision and
speed. Another key point in this paper is that we propose a
methodology for generating power models with accuracy level
control. Thus, we have developed several power models for
components that make up the MPSoC architecture: processors,
caches, interconnects and memories. Within this framework,
a reliable DSE for MPSoC is conceived allowing a good
performance/power tradeoff to be found with high simulation
speedup. This paper is organized as follows. An overview of our
MPSoC platform described at the PVT level is given in Section
2. Section 3 describes the major power modeling methodology
at the PVT level. Section 4 includes the developed power
consumption models for the MPSoC components. Section 5
presents experimental results for a parallel version of the H.263
encoder application.

II. THE MPSOC PLATFORM OVERVIEW

In our previous work, we have developed an MPSoC platform
described at the PVT level [8]. This platform includes various
kinds of component models that have been designed: processors,
caches, interconnection network, RAM, DMA controller and a
DCT hardware accelerator. Fig 1 shows the general architecture
of the MPSoC used in the experiments. At the PVT level, details

related to the computation resources are omitted. Details related
to communication are also hidden. To do so, transactions are
performed through channels which implement one or several
interfaces. Each interface has a set of read and write methods. To
load or store data, read() or write() function calls are instantiated
by masters and sent through the port to the channel interface. At
the level of slaves, the transaction will be recovered to execute
the corresponding methods and to send the response. At this
level, a timing model is defined and plugged in the architectural
simulator to approximate the execution time.

DCT
DMA Hard

controller Acc

INST
Shared
Mem

DATA
Shared
Mem

[/\] Target Port 7N Initiator Port

Fig. 1. Exemple of MPSoC structure

III. POWER MODELING AT THE PVT LEVEL

Compared to lower levels, estimations done at the PVT level
are sufficiently rapid to allow the entire multiprocessor system to
be analyzed in a reasonable time. The total power consumption
of a given system is obtained by adding the consumption of each
system component together. For this study, we developed power
models for the main components in the MPSoC architecture.
We integrated these models into the PVT simulator, taking
the architectural and technological parameters into account.
Our power estimation strategy is based on identifying each
component’s pertinent activities. For this, a counter is allotted to
each kind of activity, and each counter is incremented during the
simulation. Thus, the number of activity occurrences is obtained
for each component. A power consumption cost is also evaluated
for each activity. At the end of the simulation, the values on
the activity counters are transmitted to the power consumption
models to calculate the total power dissipation. The overall
methodology for component power modeling at the PVT level
can be described as follows (see Fig 2):

« Identify the pertinent activities that consume power at two
granularity levels; fine grain and coarse grain which are
adopted respectively for CABA and PVT power models.

o Characterize power consumption of fine grain activities.

— Using low level simulation with CAD tools for preex-
isting components like the processor or the memory.
Estimation is done with real inputs data.

— With an accurate analytical model for non preexisting
component.

o Deduce coarse grain activities power characterization from
its definition and the fine grain activities power.

e Developing the corresponding CABA and PVT power
models of the selected component.

o Plugging the developed power models into the architectural
simulator and performing simulation.

o Evaluate the power estimation error between CABA and
PVT levels. If the error is over the fixed threshold, the
coarse grain granularity definition step is then restarted.

[S——
IP model
selection

Fine grain pertinent activities
definition

Activities characterization
[
Real Yes
inputs l

4

Gate level simulation
with CAD tools

Coarse grain pertinent
activities definition

Capacitance estimation
with analytical models

=
S|
=
@
il 2
=
e —— =
Fine grain activities power Coarse grain activities A
database power estimation o
1 fim;
CABA power model PVT power model
development development

Power model

Power model
integration

integration

+

CABA simulation + PVT simulation +
power estimation power estimation

——————————————————————————

Power modeling methodology

Fig. 2.

In our approach, a 90nm technology process is adopted. To
predict physical parameters, we used the Berkeley Predictive
Technology Model (BPTM) [9].

IV. POWER MODELS DEVELOPMENT FOR THE PVT
PLATFORM

A. SRAM Memory Power Model

For a SRAM, three main activities consume power: Read,
Write and Idle. These activities correspond respectively to the
read, write access modes and the waiting state. In fact for the
SRAM model, the defined granularity of pertinent activities at
the PVT level is the same as proposed at the CABA level.
This is because it is possible to recover these activities at
the transactional level which is not usually possible for other
components. Nevertheless, this recovery is not obviously found.
At the CABA level, activity counters are injected in the FSM
which control the component. At the PVT level, the FSM is
not implemented. The number of Read and Write occurrences
are deduced from the read() and write() methods described into
the component. The waiting time, which corresponds to the idle
state power consumption, is calculated as the difference between
the total application execution time and the total read and write
access time of the memory. To estimate an activity’s power cost,
different SRAM sizes are simulated at the physical level using
the ELDO analog simulator [10]. The objective is to produce
a parameterized power model for estimating the cost of SRAM
activities, according to the number of words (M) and number of
bits per word (N). In our platform, this power model is used to
deduce the total consumption of the data memory, instruction
memory and FIFO buffer components.

B. Cache Memory Power Model

In the cache description at the CABA level, different states
have been defined to guarantee that the component behaves
correctly. For instance, the CACHE_IDLE state corresponds to
the data loading from the cache. The cache power consumption
depends on the state of the FSM that controls the component.
Each state corresponds to one or several fine grain read or write
operations from the tag array, the data array and the FIFO buffer
(Fig 3). Therefore, estimating the power consumption of an
FSM state is equivalent to evaluating the power cost of a write or
read access to the SRAM memory (tag array or data array) and
evaluating the power cost of a write access to the FIFO buffer.
At the PVT level, details related to the cache FSM are hidden,

Coarse grain
activities

Fine grain
activities

N: number of cache lines; M: cache bloc size

Fig. 3. cache activities definition

thus the defined fine grain cannot be recovered. We have defined
a set of coarse grain activities which are Read hit or miss, Write
access modes and the Idle state. Each coarse grain activity refers
to one or several cache FSM states and thus to several fine grain
activities such as read or write operations from the tag and the
data array (Fig 3). The power cost of coarse grain activities
is then deduced from the preceding SRAM experiments. A
set of counters, corresponding to the coarse grain activities,
are declared in the component description. At the end of the
simulation, the values of these counters are read, and then they
are multiplied by the activity power costs to find the overall
consumption of the cache component.

C. Processor Power Model

In our study, we used the MIPS R3000 processor. This scalar
processor has a 5-stage pipeline. At the CABA level, to estimate
the processor power contribution, the most accurate solution
is to evaluate the internal unit activities such as the fetch
and decoder stages. Nevertheless, the implementation details
of these units are omitted at the PVT level. In this level, the
processor is described using an Instruction Set Simulator (ISS)
on which instructions are executed sequentially. The processor’s
power consumption in the active state depends on the instruction
to be executed. The set of all the instructions’ power will
constitute the processor power model, and the cost of each
instruction can be determined from low level measurements or
from micro-architectural power simulator. In this work, the Sim-
Panalyzer simulator [11] has been used to measure the power
cost of the MIPS R3000 instruction set. Simulation results
show that the maximum current variation between instructions

is only 8%. Consequently, for a processor with a relatively
simple architecture, a consumption model that considers only an
average power value per instruction is sufficient. In our power
consumption model for the Mips R3000, we considered two
states: Running (execution of an instruction) and Waiting for
data or instruction. The power consumptions for these two states
are different.

D. Crossbar Power Model

The main activity of the crossbar is to transfer data between
two ports, and its most significant consumption is at the wire
level. The power dissipation of these wire connections depends
on their length and the used process technology. Thus, to
estimate the crossbar consumption accurately, the connection
lengths between components must first be estimated, and these
lengths depend on the final organization of the components on
the chip. For our study, we supposed a particular component
structure in order to obtain approximate wire lengths, using a
layout editor to measure the size of each component. The power
consumption during a data transfer from the initiator ¢ to the
target j depends on the number of transmitted words in the
packet and the power transfer cost of a word from ¢ to 5. A word
transfer from an initiator ¢ to a target j (request word) or vice
versa (response word) corresponds to several wire activation.
At the CABA level, the Virtual Component Interface (VCI)
protocol is adopted [12]. Data transfer along the VCI request
interface (93 bits) or the VCI response interface (46 bits) needs
several cycles and power estimation is analyzed cycle by cycle.
At the PVT level, this transfer is considered undivided and a
power cost is attributed to the entire request or response packet.

V. SIMULATION RESULTS

Several experiments were conducted to measure the simu-
lation speedup, the accuracy of the performance and power
predictions. These metrics have been reported in comparison
to the CABA level. The simulation speedup factor is defined
as the ratio between the PVT simulation time and the CABA
simulation time. All experiments were conducted using the
H.263 coder [13] which is parallelized to be executed using
an MPSoC with 4 up to 16 processors and instruction and
data cache size varied from 1KB to 32KB (Kilo Bytes). Fig 4
demonstrates PVT level makes it possible to accelerate the
simulation by a factor of up to 18. Second, adding processors
increased this speedup factor due to the amplification of the
communication between the processors and the shared mem-
ory modules. In the same way, we can deduce that reducing
the data and instruction cache size improves the simulation
speedup factor. This is because reduced cache sizes increase
cache misses and consequently the traffic in the interconnection
network. Despite its performance in terms of speedup, the PVT
level suffers from a reasonable performance estimation error.
As shown in Fig 4, when the number of processors increases or
when the cache size decreases, communication becomes more
significant and estimation error increases. This error can be
as much as 8% for 16 processors and 1KB cache size; this
is because the MPSoC behaves differently with PVT level

@4 proc B 8 proc 012 proc O 16 proc\

A Ao aN
ONPOOONIMO®O
I

=
=

-

Speedup
Time error(%)
Power error (%)
Speedup
Time error(%
Power error (%)
Speedup
Time error(%)
Power error (%)
Speedup
Time error(%)
Power error (%)
Speedup
Time error(%)
Power error (%)
Speedup
Time error(%)
Power error (%)

Py
@
N
A
@
IS
A
@
®
A
@

16KB 32KB

Fig. 4. Simulation speedup, Time error and Power error

in terms of contentions in the interconnection network. The
previously developed power models were integrated into the
PVT level architectural simulator in order to benefit from a fast
architectural exploration environment for MPSoC design. Fig 4
illustrates that the accuracy of the power prediction is more than
93%. The error in power estimation is due to the inaccuracy in
counting waiting cycles of the contentions in the interconnection
network. During these waiting cycles, static power dissipation
of inactive components should be taken into account. Thus the
power estimation error increases by adding more processors or
using less cache sizes which adds new conflicts in the crossbar.

‘ —m— Execution time (ms) —e— Total power (mW) ‘
70 4500
® —
£ 60 “~ e 14000 g
@ et { 3500 £
E 50 D —— = 5
b + 3000 %
S 40 b=
* T 2000 °
o [
20 1500
4 8 12 16
Number of processors

Fig. 5. Performance and power variation in terms of the number of processors

To evaluate the impact of the number of processors on the
performance and the total power dissipation of the system,
we executed the H.263 coder application using systems with
4 up to 16 processors. The size of the instruction and data
caches was set to 8 KB. Fig 5 reports the execution time in ms
and the total power in mW. Given these results, it seems that
adding processors to the system decreases execution time, which
improves system performance. This variation is not linear be-
cause the processors share resources, and sometimes they cannot
reach the same target simultaneously, which necessitates waiting
cycles. Over certain limit, increasing the number of processors
tends to be ineffective, as it just adds new conflicts. In terms
of power dissipation, although execution time is reduced by
30% while moving from 4 to 8 processors system, the total
power dissipation increases slightly. By adding more than 8
processors, the system execution time tends to be stabilized,
however this alter dramatically the total power consumption

which is raised by 50% while moving from 8 to 12 processors
system. Next, we used a 8-processor configuration to examine
the impact of varying instruction and data cache size on the
performance and power consumption of the whole system. The
increase in the cache size significantly increases overall system
performance in term of execution time and power consumption.
In general, larger caches improve system performance; however,
this depends on the size of the task or data to be handled. In our
example, the move from 1KB to 2 KB, for instance, reduced
execution time by 24% and power consumption by 37% (Fig 6).
However, Using more than 8 KB cache size did not improve the
execution time which increases the total power consumption.

‘ —m=—Execution time (ms) —e— Totale power (m\W) ‘
90 7000
— 80 -
»n ®| 4 6000 —
E 70 =
1 5000 T
@ 60 -— E
E 5 . 4 4000
= —_ = = g
8 40 ~—__ | . = 7T3000%g
5 30 1 2000 §
o [}
@ 20 £
= 10 + 1000 ©
(0] (0]
1 2 4 8 16 32
Cache sizes (KB)
Fig. 6. Performance and power variation in terms of cache sizes

VI. CONCLUSION

A reliable DSE for MPSoC requires rapid and accurate tools
for estimating performance and power consumption. In this
study, we enhanced an MPSoC architectural simulator at PVT
level with a power consumption estimator. We have designed a
flexible MPSoC environment at the PVT level providing a high
simulation speedup factor with a negligible performance and
power estimation error margin. For future research, we plan to
apply the same methodology to more complex architectures, in-
cluding other types of processors and interconnection networks.

REFERENCES

[1] “SPICE manual,” University of Berkeley
http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE/.

[2] R. Peset et al., “The petrol approach to high-level power estimation,” in
ISLPED’98, California, USA.

[3] SoCLib project, 2003, http://soclib.lip6.fr/.

[4] R. Ben Atitallah et al., “Estimating energy consumption for an MPSoC
architectural exploration,” in ARCS’06, Frankfurt, Germany.

[5] A. Donlin, “Transaction level: flows and use models,” in CODES+ISSS
’04, Stockholm, Sweden.

[6] I Lee et al., “PowerViP: SoC power estimation framework at transaction
level,” in ASP-DAC’06, Yokohama, Japan.

[7] Nagu Dhanwada et al., “A power estimation methodology for systemc
transaction level models.” in CODES+1SSS’05, New Jersey, USA.

[8] R. Ben Atitallah et al., “An MPSoC performance estimation framework
using transaction level modeling,” in IEEE RTCSA’07, Daegu, Korea.

[9] Y. Cao et al.,, “New paradigm of predictive MOSFET and interconnect

modeling for early circuit simulation,” /JEEE CICC,, May 2000.

“Mentor home page,” http://www.mentor.com.

Sim-Panalyzer home page, www.eecs.umich.edu/panalyzer/.

Virtual Component Interface Standard, http://www.vsi.org/.

G. Cote et al., “H.263+: Video Coding at Low Bit Rates,” IEEE Trans.

On Circuits And Systems For Video Technology, November 1998.

(USA), URL:

[10]
(11]
[12]
[13]

