IP-XACT Standard/D4, December 19, 2007

Draft Standard for the
IP-XACT meta-data and tool interfaces

Prepared by the

Schema Working Group
of
The SPIRIT Consortium

Copyright © 2007 by the Spirit Consortium.
1370 Trancas Street #184, Napa, CA 94558
All rights reserved.

All rights reserved.This document is an unapproved draft of a proposed IP-XACT Standard. As such, this document is
subject to change. USE AT YOUR OWN RISK!

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Abstract: The IP-XACT Standard forms the conformance checks for XML data designed to de-
scribe electronic systems. The meta data forms which are standardized include: components, sys-
tems, bus interfaces and connections, abstractions of those buses, and details of the components
including address maps, register and field descriptions, and file set descriptions for use in automat-
ing design, verification, documentation, and use flows for electronic systems. The standard includes
a set of XML schemas of the form described by the World Wide Web Consortium (W3C) and a set
of semantic consistency rules (SCRs). The standard also provides for a generator interface that is
portable across tool environments. The specified combination of methodology-independent meta-
data and the tool-independent mechanism for accessing that data provides for portability of design
data, design methodologies and environment implementations.

Keywords: Electronic Design Automation, EDA, XML Design Meta Data, IP-XACT, XML Schema,
Tight Generator Interface, TGIl, Semantic Consistency Rules, SRCs, Design Environment, Use
Models, Tool And Data Interoperability, Implementation Constraints, Register Transfer Logic, RTL,
Electronic System Level, ESL, Bus Definitions, Abstraction Definitions, and Address Space Speci-
fication.

The SPIRIT Consortium.
1370 Trancas Street #184, Napa, CA 94558

Copyright © 2007 - 2008 by the SPIRIT Consortium.
All rights reserved. Published xx month 2008. Printed in the United States of America.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior
written permission of the publisher.

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

Introduction

This introduction is not part of the Draft Standard for the IP-XACT meta-data and tool interfaces.

The purpose of this standard is to provide the electronic design automation (EDA), semiconductor,
electronic intellectual property (IP) provider, and system design communities with a well-defined and
unified specification for the meta-data which represents the components and designs within an electronic
system. The goal of this specification is to enable delivery of compatible IP descriptions from multiple IP
vendors; better enable importing and exporting complex IP bundles to, from and between EDA tools for
SoC design (system on a chip design environments); better express configurable IP by using IP meta-data;
and better enable provision of EDA vendor-neutral IP creation and configuration scripts (generators). The
data and data access specification is designed to coexist and enhance the hardware description languages
(HDLs) presently used by designers while providing capabilities lacking in those languages.

The SPIRIT Consortium is a consortium of electronic system, IP provider, semiconductor, and EDA
companies. IP-XACT enables a productivity boost in design, transfer, validation, documentation, and use of
electronic IP and covers components, designs, interfaces, and details thereof. It is extensible in specified
locations.

IP-XACT enables the use of a unified structure for the meta specification of a design, the components that is
based on manual or automatic methodologies. IP-XACT specifies the tight generator interface (TGI) for
access to the data in a vendor-independent manner.

This standardization project provides electronic design engineers with a well-defined standard that meets
their requirements in structured design and validation and enables a step function increase in their
productivity. This standardization project will also provide the EDA industry with a standard to which they
can adhere and which they can support in order to deliver their solutions in this area.

The SPIRIT Consortium has prepared a set of bus and abstraction definitions for several common buses. It is
expected, over time, that those standards groups and manufacturers who define buses will include IP-XACT
XML bus and abstraction definitions in their set of deliverable. Until that time, and to cover existing useful
buses, a set of bus and abstraction definitions for common buses has been created.

A set of reference bus and abstraction definitions allows many vendors who define IP using these buses to
easily interconnect IP together. The SPIRIT Consortium posts these for use by its members, with no
warranty of suitability, but in the hope that these will be useful. The SPIRIT Consortium will, from time-to-
time, update these files and if a Standards body wishes to take over the work of definition, will transfer that
work to that body.

These reference bus and abstraction definition templates (with comments and examples) are available from
the public area of the http://www.spiritconsortium.org web site.

Notice to users

Errata

Errata, if any, for this and all other standards of The SPIRIT Consortium can be accessed at the following
URL: http://www.spiritconsortium.org/releases/errata/. Users are encouraged to check this URL for errata
periodically.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. iii
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

http://www.spiritconsortium.org/releases/errata/
http://www.spiritconsortium.org/releases/errata/

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

Interpretations

Current interpretations, users guides, examples, etc. can be accessed at the following URL: http://www.spir-
itconsortium.org/tech/docs/.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken with respect to the existence or
validity of any patent rights in connection therewith.

iv Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

Participants

The following members and observers took part in the IP-XACT Schema Working Group (SWG) and the
Electronic System Level (ESL) Working Group (EWG):

Greg Ehmann, NXP Semiconductors, Chair SWG
Jean-Michel Fernandez, Cadence, Chair EWG
Gary Delp, LSI Corporation, Technical Director

Joe Daniels, Technical Editor

ARM: Allan Cochrane, Christopher Lennard, Andrew Nightingale, Chulho Shin, Peter Grun,
Anthony Berent, Sheldon Woodhouse

Cadence: Jean-Michel Fernandez, Giles Hall, Saverio Fazzari, Victor Berman

CoWare: Cesar A. Quiroz, Kris Dekeyser

Denali: Gary Lippert

Infineon: Wolfgang Ecker, Thomas Steininger

LSI: Gary Delp, Wayne Nation, Gary Lippert, Dave Fechser

MatiTech: Aaron Baranoff

Mentor: John Wilson, Gary Dare, Mark Glasser, Matthew Ballance, Mike Andrews, Ajay Kumar

NXP Semiconductor: Geoff Mole, Ahmed Hemani, Roger Witlox, Greg Ehmann, Maurizio Vitale,
Erwin de Kock

Prosilog/Magillem: Stephane Guntz, Cyril Spasevski

Sonics: Kamil Synek

ST Microelectronics: Christophe Amerijckx, Serge Hustin, Anthony Mclsaac, Stephane Guenot
Synopsys: Mark Noll, Bernard DeLay, John A. Swanson, Paul Wyborny

Texas Instruments: Bob T. Maaraoui, Bertrand Blanc

Special acknowledgment is given to:
Mentor: Contribution of initial schema upon which the work is based

Synopsys: Contribution of constraint structure
The Board of Directors of The SPIRIT Consortium active during the release of the IP-XACT Standard:

Ralph vonVignau, NXP, President
Christopher Lennard, ARM, Vice-President
Lynn Horobin, Executive Secretary

John Goodenough, ARM
Stan Krolikoski, Cadence
Luke Smithwick, Kathy Werner, Freescale
Jean Bou-Farhat, Gary Delp, LSI
Bill Chown, Mentor Graphics
Bart de Loore, NXP Semiconductors
Serge Hustin, ST Microelectronics
Pierre Bricaud, Synopsys
Loic Le-Toumelin, Texas Instruments

Copyright © 2007 The SPIRIT Consortium. All rights reserved. v
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007

vi

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Draft Standard for

IP-XACT meta-data and tool interfaces

IP-XACT Standard/D4, December 19, 2007

Contents
1 OVEIVIBW ...ttt ettt ettt ettt et e et et e s e e bt e te e bt e st e s bt e et e eb e ee s et e emeeebeemteebeemeesbeemteabeensesbeenseeneenteene 1
O B 1T o T OSSR 1
1.2 PUIPOSE .eeetieiee ettt et ettt ettt e st e st eesbeestaeesbeesseesaseessaessseensaeesseenseessseenseessseanseenseesssaenseensees 1
1.3 IP-XACT design €NVIFONIMENTcc.ecuteieririeriieiieienteeieeteeteetee et eteeeesieestesbeebesseentesneensesseeneeene 1
1.3.1 SYStEM dESIZN t0O0] ..eoviiiiiiiieeiieie ettt et e et st nnnes 2
1.3.2 Design intellectual PrOPEITYcccccviereeriierieeiieeie et ete et seeeteesteesveesseesebeessaesnseenns 3
| T B € 131 1<) &2 1 () ¢SOOSO OSSPSRt 3
1.3.4 TP-XACT INEEITACES .eoueertiiuiiriiiieitieieit ettt ettt st st ae st et sbee b eseeteeae 4
1.4 TP-XACT enabled implementationscccuverveeiieeiiienieeieeiieeteeiee e esieesereeteesaeesnseensneenseenes 4
1.4.1 DeSiZN ENVITONIMENESeecvierireeieeiieriteeiieertteesseesseessseesseesseesseesssesseesssessseessasassesssesses 4
142 POINE OIS ettt ettt et sbe et bbbt nteens 5
S T | o OSSP U RO 5
L € 131 1<) &2 1 () ¢SOOSO RO SO RRRPUSRRRTINt 5
1.5 CONVENLIONS USEA ...eoutiiiiiiitieiieitiete et ettt ettt b ettt st es e e et e sbe et e sbeestesbeentenbesseenaeene 5
1.5.1 Visual cues (IMELA-SYNEAX) ...ccveerrrerireriieeirieireesieeseeeieeseesseesseesseesseesssessseensessssessseeses 5
1.5.2 Notational CONVENTIONSciuieiiiriieiintieienteetertt et ettenteette sttt et seeeseeeseenbesseesbesaeens 5
1.5.3 SYNAX €XAMPIES ..eeiviieiiiiieiiieiiesieeeeete et esteett e eeebeesteesebeesseessseesseessseenseesssesseees 5
1.5.4 Graphics used to document the Schemac.ccccoeeviieiiiiiiieniee e 6
1.6 Use of color in this standard.............ccooeeriiriiiiniiieieeeeeeee ettt 9
1.7 Contents Of this Standard............ccooieiiiiiiiiie et 9
2. NOTMALIVE TETETEICES ... ceueeteeniiriieie ettt ettt sttt sttt ettt et sb et sbeenteseeeseenbeeneentens 11
3. Definitions, acronyms, and abbreVIations...........cc.eerierrueeiieriieeiieenieeieenteesreeseesreeseesaeeseessneesseenes 12
3l DETINTIONS ..ttt ettt ettt ettt st e bt b et e et et bt et et e e sbe et e nbean 12
3.2 Acronyms and abbreVIatiONS........c.cecveeieerieiieeiiiestiesteeeteesteeseeeteesteeaeessreeseesseesnseessnessseenes 18
4. Interoperability USE MOAE]cociiiiiieiieciieeeee ettt et e e be e s e e ebeesbeesseesnsaenseenes 21
4.1 Roles and 1eSPONSIDIITLIESccuviervieriiiiieiieeit ettt ee e eteesaeeaeesteesbeeseessneeseenseenes 21
4.1.1 Component IP PrOVIAETcccueecueerieriieeiiieiieeteesieesteeieesieeeveesaeeseveesseesseesssaeseessses 21
4.1.2 SoC design IP PrOVIAETccccueecieeriieeieeiieesiieeieerieeeeeeieesereeteesaeesereesseesseeseseenseesssens 21
4.1.3 SoC design IP CONSUMETcceecveeriieriieeiiieitieeteenieeeieeieeseteeteesseeseseesseesseesnseesseesssens 22
4.1.4 DeSigN tOO] SUPPIIET ..ocvviereiiiiieeieeiieciteeie et ete ettt e eve et e seteeaeestaesbeeseesebeenseenseeas 22
4.2 TP-XACT IP €XChange flOWS......cccuieiiieiieiieiiieieeriiesieeiee st eeeseeesbeeaeesaressbeessaessseessaesssennes 22
4.2.1 Component or SoC design IP provider use modelccoevvveriervienrencieeiieeeeeenenn 23
4.2.2 Generator provider USe MOAEIc.cccueeviiiiieiieiiiiieeeeete e s 23
4.2.3 System design tool provider use Modelccoeceereiieriiriienierieeeee e 23
5. TP-XACT SCHEIMA. ...ttt ettt se e st a et sb e et b et e bt b et e e eaee 25
5.1 SCREIMA OVEIVIEW ..couviiiiniiiiiiiiitieteetieteet ettt ettt st ettt et st e bt b et sae et e ebe et e e st e naesbeeneenbeas 25
5.1 DeSign SCREMAooeiiieiiiiiieiieiie ettt ettt e et eeabeesrbeenbeenaee s 25
5.1.2 Design configuration SCHEMAc.cccieiieeiiieiieiiieieenieeteeste et esiee e ereeseveeaeeseee s 25
5.1.3 Component SCHEIMAc.eerieriieriieeieeriiesieeitesre e esteesbeeseeesaeebeesressseessseenseenseens 25
5.1.4 Bus definition SCheMAcoeiiiiiiiiiiiiiiieeeeee e 25
5.1.5 Abstraction definition SChemacccoceiiiiriiiiiiiiiineeee e 25
5.1.6 ADSHACtOr SCHEIMA «...eouiiiiiiieiiiieiceee ettt 25
5.1.7 Generator SCheMAcccoiiiriiiiiiiiiieieeiee et 26

Copyright © 2007 The SPIRIT Consortium. All rights reserved. vii
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

viii

5.2 TP-XACT ODJECLS...eeueiuieteiieeteettete et eteet ettt et e et e e seeesaeseeense s st ente et eenseeseeneeeseensesneensesneensennean 26
5.2.1 ODbJECt INTETACTIONS ...eoueeruieieiuieieiieetesteeeteete et e et etesseeseeseeeneesseeneesteeneesseeneesaeeneeeneenees 26
522 VLNV ettt ettt st sttt ettt st be e 27
523 VEISION COMLIOL ..ottt ettt ettt ettt et eae b b e e 29
5.3 DESIZN MOACLS ..ottt ettt ettt n ettt eneeneeenean 29
LG T O B T ¥ o RSP RRSRR 30
5.3.2 Hierarchy represented by a design fileccooeiirieiiiiiniieeee e, 30
5.3.3 Design iNtEICONNECTIONS ...oueervieeerieeiertieiientieieeteeieseeeeeseeeseesseeneesseeneesseeneeseeeneesseeneas 32
5.3.4 Hierarchical CONNECHIVILYeecuiiiiiiiiiieieiiieieeeee et 33
Interface definition dESCIIPLIONScovuieiiiiiiieitieiecte ettt e e e e eeee 35
6.1 Definition dESCIIPLIONSeecviiuieieiiieie sttt ettt ettt ettt e see et et e eaeenteeseeneeeseeneenseaneas 35
6.2 BUS AefINITION ..uuiiiiiiiiiieieeerer ettt sttt et 35
0.2.1 SCREIMA .ottt ettt ettt 35
6.2.2 DESCIIPLION ..ottt ettt ettt ettt e et st e te e s e e e ese e et eneeteeneesneeneenneenean 36
6.2.3 EXAMPIC oottt sae e sae s 36
6.3 AbStraction defINItiON.......cccveiririiririniiicicieee ettt ettt e 37
0.3.1 SCREIMA ..iiiiiiiiiiciect ettt sttt ettt 37
(TR TR0 B Tt {er) o5 o) o (PSSR 38
LT T8 TR 23111 o) (< PRSP R 39
0.4 POTES..eee e e ettt e s 40
0.4.1 SCREIMA ...ouiiiiiiiieiicii ettt ettt et ettt 40
6.4.2 DESCIIPLION ..ottt ettt ettt et e sttt esae et e tees e e e es e et e eseeeeeneeneeeneenseenean 40
6.4.3 EXAMPIC oottt eae s 41
L T VA T (T o T TSRS 41
0.5.1 SCREIMA ..uiiiiiiiiiiiicii ettt sttt ettt 41
6.5.2 DESCIIPLION ..eeeuiieiieiiieieite ettt ettt ettt e sttt e ae et e s tees e e ese et e ese e teeneesneeneenneenean 42
6.5.3 EXAMPIE .ottt ae et sae s 42
6.0 QUALITIETS ... eeeiiieciii ettt ettt e ettt e st e e steesebe e beessaeesbeesabaesseessseessaessaeenseesssaenseesseessseesseenes 42
0.6.1 SCREIMA ..ouiiiiiiiiiciici ettt sttt ettt 42
LT B Tt {er) o5 o) o PRSP 43
6.6.3 EXAMPIC .ooeeieieieeiee e ettt s ae et ne s 43
6.7 WL POTE SIOUP -.nveeueeiienieeitete et tete et e e et e e et eteeuteeesaeesaesaeenteeseenseeseenseeneenseeseenseeneenaesneensennean 44
0.7.1 SCREIMA ..ouiiiiiiiieiicii ettt sttt ettt et 44
6.7.2 DESCIIPLION ..ottt ettt ettt et sae et estees e e ese et e eseenteeneeseeeneenneenean 44
6.7.3 EXAMPIE .ottt sae et sae s 45
6.8 Wire port ‘MOde’ CONSIIAINES.eoieririeieieeiieie ettt et et ce et ste sttt et et entesseeeesaeeneesneeneas 45
0.8.1 SCREIMA ..uiiiiiiiiiiicti ettt ettt 45
6.8.2 DESCIIPLION ..ottt ettt ettt et st e s te st e e eae e teeseesteeneesaeeneenneenean 46
6.8.3 EXAMPIE oo ettt sae et eae s 46
6.9 Wire port mirrored-"mode’ CONSIIAINESceeerirriereiierie ettt eeeneas 46
0.9.1 SCREIMA ...eouiiiiiiiiciici ettt sttt ettt s 46
LR JR I B T {er | o5 o) o PSR 47
6.9.3 EXAMPIC oottt sttt ne s 47
6.10 TranSaCtIONAL POITSeeviruieriieeieieeieeie ettt ettt sttt este et e st e tesbeente bt et e eteeneesseeneesaeeseeneenaean 48
0.10.1 SCREIMA ...euiiiiiiiiieiiciiir ettt st s sttt ettt 48
6.10.2 DESCIIPLION ..eeiuiieiieeieiie ittt ettt ettt et et e e s et et e s et eseebeeneesteeneeeseeneesaeeneenaeenean 48
6.10.3 EXAMPIE .ooeeieieieeiee e ettt a et sae st e enean 49
6.11 Transactional POIT SIOUP ...ccueeuieriiiierieitieteet ettt ce ettt et e et stesee et e st ete e bt enteeseeeeeaeeneeseeenean 49
0.11.1 SCREIMA ..ouiiiiiiiieiicii ettt s sttt ettt 49
LT O O B Tt] o5 T) o PRSP 50
6.11.3 EXAMPIE .ottt ettt et saeeneenaeenean 50

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

6.12 Extending bus and abstraction definitionsccooeierreiieienieiree e 51
6.12.1 Extending bus definitionsccccoeiirieiinieieeeeese e 51
6.12.2 Extending abstraction definitionsccccooeeererieienieieriee e 52
6.12.3 Modifying definitionsccccceieriieiieieiieieeeeeeee et 52
6.12.4 INterface CONMNECLIONSecueeueiruieiietieieeteeie et eeeeeee et et e e st e e ese e e eneesteeneeseeeneesneeneas 53

6.13 Clock and reset RandIingcccooiiiiiieiieee ettt s 54

7. COMPONENE AESCIIPLIONSveeniiiieereeieieeieerte et eie et et e eteeee et et e seeeaeesseentesseeseenseeneenseeseenseeneesesneensensean 55

Tl COMPONEIES..c...eiiiiiiiieiieitt ettt ettt ettt et e bt et e st e eab e e sbteeabeeebeesabeebeesateebeesase e beesbaesaseenne 55
28 T B 1)1 1<) o - PSSR 56
8 TS B 101 | o5) o AP SRRR 57
28 T TR 25 C: 3111 o) (< PO R 58

A 11 u TSRS 60
7.2.1 Direct interface MOAEScceevuieiiiieieriieieee ettt 60
7.2.2 Mirrored interface MOAESc.eeceeruieiierieieieee et 60
7.2.3 Monitor interface MOAEScccueeiiriieieii et 60

7.3 Interface iNtErCONMECLIONSoiuieeeiieeietieieste e et eee et e te st e et et e st e e seeeneeeseeneesseeeeeneeneeeneas 60
7.3.1 DIreCt CONMECLION ..ouieiiieieieieieieiteeie et ete ettt et ettt e e see e te st e e sbeeneesseeneeeneeneeeneenees 61
7.3.2 Direct-mirrored CONMECTIONccueruieiiertieiietieieetieie et eree st eetesieeeeseeeneeseeeeeseeeneeseeeneas 61
7.3.3 MONItOT CONMECTIONueieieiieieieiieiteeieeteeiteete et et e et e teseeeseesbeeeeesteeneesteeneeseeeneenneeneas 61
7.3.4 Interface logical to physical port MapPINgccccceeeeeriererieienieeeeeree e 61

7.4 Complex interface iNtErCONNECIONSccueeuiruieiereeeeerieeie st ete st ete ettt et eeeeaeeee e eeeeneeneeeneas 62
A S O - 111 1<) PR RRS 63
A 57 4 U I PSR 64
7.4.3 Combining channels and brid@escccoeoierieieiiiiieie e 64

7.5 BUS INEEITACES ..ttt ettt ettt st et e b et e e e st et en et e e neenaeeneeneeenean 65
751 DUSINEEITACE ..ottt ettt e ene s 65
7.5.2 INtErface MOMESooeeiieiieiieiieie ettt ettt et enean 67

7.6 Component ChANMEIScoiiiiiiiie ettt 77
AT S 1)1 1<) - PSSP 77
7.6.2 DESCIIPLION ..ottt et ettt e e sttt e te et e s tees e e e ese e eeeneenteeneesseeneenneenean 78
KT TR 23111 o) (< PSR S 78

7.7 AQAIESS SPACEeeeeeieieiieite ettt ettt et e sttt esae st e be et e bt es e bt et e te e st et e et e naeeneeneeenean 79
A B T (6§ (TN o TR 79
7.7.2 eXeCUtableIMAZE ...cceiiiieieiieitieiieie ettt st eneas 80
I T T3 Ve L <l oo) PSR 82
774 FUEBUILACT ..ottt et 84
7.7.5 linkerCommandFileccoooiiiiiiiiiiiee e e 86
A T 7 Tor 1 B 1 1300103 740 1 3o PRSP 87

7.8 MEINOTY IMAPS. ...uttiitieuiiinieeettestte et e stte et eb e et e ebeesbt e e bt e shte e bt esste st e esbbeeaseenbeeeabeesseesabeenbnesaseeane 90
7.8.1 MEIMOTY INAP ..eeeuvieriiiriieiitieieette ettt et ettt e bt e et et e st e e bt e saeeebeesateeabeesbeeebeenaeenn 90
7.8.2 AAAIess DIOCK ...c.ooiiiiieieieee e 91
7.8.3 memoryBlockData roupccceoieierieiei et 93
T84 BANK .ottt ettt 94
7.8.5 Banked address BIOCKcciiiiiiiiiniieiet e 96
7.8.6 Banked bankoccooiiiiiii e 97
7.8.7 Banked SUDSPACEcccuevuieiieiieiieiiee ettt enean 99
7.8.8 SUDSPACE IMAP ..eoiiiiiiiieiieiieiete ettt ettt ettt ettt ettt eae e bt et esae e saeete et ennenaeens 100

7.9 REMAPPING ..ottt ettt ettt et ettt e s te et e e bt e teebeesseebeeneeeseeneeeseeeeeneenseeneensesneensenseans 102
7.9.1 MEMOTY TEMAP «.eveeeiiiiietieeiieeiee et eette st e e bt e site e bt e ssbesbeesbte e st esbeeeabeesseesateenbeenareennes 102
7.9.2 REMAP STALES ..eeevvieeiiiiieeitieeiteite ettt ettt ettt ettt ettt st e sba et neee 104

Copyright © 2007 The SPIRIT Consortium. All rights reserved. ix

This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

7.11

7.12

7.13

7.14

7.15

7.16

7.17

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

REISEEIS ...ttt ettt ettt ettt e et et e st et e ea e et e eneeeaeene e st eneeseeeneenteeneens 106
8 O R 0T 4 £ 3 USRS 106
7.10.2 ReGIStEr TESCt VAU ...cceeiiiiiiiiiieiieiieie ettt 107
7.10.3 Register Dit-fIeldScccieoiiiieieeeee e 108
IMIOGEIS ..ttt ettt ettt eb e b et ettt r e 111
TLLL MOAEL ottt et ettt 111
TLL2 VIEBWS ettt sttt ettt ettt ettt ettt ettt ene bt saesbe st be e 112
7113 COMPONENLE POTES ..eouveiirieniieiierieeniteete et et et e st ebeesbeesbeesbeesateebaesateeabeesbnesaneenees 114
7.11.4 COMPONENE WiILC POTLSeeerverueeieenietiesienteeeesteeneesteeeesseeseenseeneesseeseenseeneessesseensesneens 116
7.11.5 Component WireTypeDefcocooiiiiiiiie e 119
7.11.6 ComPONENt ATIVETeeiiiiiiiiieitieieeiiete et ettt ettt ettt ettt et s e seeeneeseeeneenneeneens 122
7.11.7 Component driver/ClOCKDITVETccciiieiiiieiiciiee e 123
7.11.8 Component driver/singleShotDITVErccoooieiiiieiiiieieee e 125
7.11.9 Implementation CONSIIAINESccceeruieriirtieiieeteeierteeee ettt et e e eneeseeeeesseeneens 126
7.11.10 Component Wire port CONSLIAINESc.eeeeruerriereerierieseietensieeesteeeeseeeeeseeeeesseeneens 126
7.11.11 Port drive CONSIIAINES ...ecvevveieieiieiiiiieiieienie ettt ettt ettt et 128
7.11.12 Port 10ad CONSIIAINTScveveieieiieiiiieiieienie ettt ettt 129
7.11.13 Port timing CONSLIAINESccueruieiiireieriietiete et eeerteeee ettt eee s e seeeseeseesneesesneens 130
7.11.14 Load and drive constraint cell specificationcceccevveeeireroereerenieee e 131
7.11.15 Other clock AITVETS ...cveuviieiriiiniiitiiererteee ettt 132
7.11.16 Transactional POITSccererieiiieieiieeiete ettt et e et see e eseeneens 134
7.11.17 PRantom POTEScc.eeieiiiieiieeiieieee ettt eee st ettt st et ese et e e st esteeneeseeeneesaeeneenseeneans 138
7.11.18 MOdEIPATAMELETSc.veuveuiiieiiriiriieieite ettt ettt ettt ettt a e 139
COMPONENTE ZENETATOTS. ...eeueeeeieitieiterite et stt et st et et e st e ebeesbee s bt esbeesateebeesateeabeesbaesaneennes 144
T12.1 SCREIMA .ottt ettt sttt ettt 144
T.12.2 DESCIIPLION eueieieiieeeieieiiteieetieie et ettt e e et e steeseeteese e teeseenteenee st eneenseeneesseeneenneeneans 144
8 7 T 2 <: 1111 o) (< TR SRSUOSRRPO 145
FILES ettt et ettt ettt ee 146
TI301 FIESEES oottt ettt sttt ettt 146
TL3.2 0 Il et ettt 147
7.13.3 buildCommandc..cceceriririiinineee et e 150
T13:4 dEfINE oottt 151
T13.5 FUNCHON oottt e sttt eae et ee 152
71306 ATZUIMIEIIE eeeiiiiiiiiieieeiee ettt ettt ettt s bt e bt et e bt e s bt e st e sbeesateenes 154
T 1307 SOUICEFILE .ttt e 156
CROICES ..ttt ettt et et ettt et sa b b ettt eae et ae et b b nee 157
TLAT SCREIMA ..ttt ettt sttt ettt ettt 157
T 142 DESCIIPLION ooueieieiieiieie it ettt ieie et ettt e e et eseeeae et e et e teeseenteeneanteeneesseeneesaeeneenseeneans 157
8 3 T 2 1111 o) (< RSRS USSR 157
WHItEDOX CIEIMENLSeviiitititeieteiet ettt sttt ettt sttt ee 159
TIS. T SCREIMA .oiiiiiiiiieiicii ettt ettt ettt 159
T.15.2 DESCIIPLION eueiueieieeeieieiiteie ettt ettt ettt e st e e ae et e see e teese et e esee st eneeseeeneesseeneeaneeneans 159
8 T T 2 1111 o) (<P RSRS USRI 160
WhiteboX element FEfEIEICE.coeviririiiiiieieietre ettt ne 160
T16.1 SCREIMA ..niiiiiiiieiieiieieret ettt st sttt et 160
T.16.2 DESCIIPLION eueieieiieieieieiiteie ettt e et ettt et e et e b e et e tees e et e eneenaeeneesseeneeseeeneenneeneans 161
8 O T 2 1111 o) LTRSS URRSRRPRI 161
CPUS .ttt ettt ettt ettt et e et ettt eat bbbt et r b nee 162
TLT.1 0 SCREIMA .ottt ettt ettt 162
T 172 DESCIIPLION ettt eiteie ettt ettt et e e et este et ete st et e es e et e eneenteeneesseeneesneeneenneeneans 162
8 N T 2 <: 1111 o) (< PR SRSUUSRRPROR 162

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

8. DeSIGNS AESCIIPLIONS ...uveeuieiieteetieiietieste ettt e sttt et et e et et e e et es e neeesee st emeesaeeseenseensenseeneensesneenseenean 165
T R B 1TSS ¥ o PO SSURRSE 165
8Ll SCREIMA .ottt ettt 165

E T R B {1) o5) 1 ARSI 166

T8 UG R 2 1111 o) (<SRRI 166

8.2 Design COMPONENE INSTANCEScveeueereeeuieiieiiertieienteeeesteeeesseeeesseeseeseeneeeseensesseeeesseeneesseesens 167
8.2.1 SCREIMA .ottt ettt 167

8.2.2 DESCIIPLION ettt e ettt et e e st e st et e st e e et e et e eneeteeneeeeeneesaeeneeneeneens 168

8.2.3 EXAMPIC .o ettt se e eneen 169

8.3 DesSign INEICONNECTIONSeveuiiieeiietienieteeeiesteetteeteetesteeneesseeeesseeseeseeseeeseeneesseeeesseeneesseennens 169
8.3.1 SCREIMA ..ttt ettt 169

8.3.2 DSCIIPLION ettt ettt ettt et e st e e e st e e et ent e ese et e eneeneeeneesaeeneeneeneens 170

8.3.3 EXAMPIC .ottt st 171

8.4 Design interconnection and monitor interconnection active interface...........c.ceccevvrveenennene 171
84l SCREIMA ..ttt e ettt 171

8.4.2 DESCIIPLION ..eeiuiieiieitieieite ettt ettt et et ettt et et e e et ent e e st eteeseenseeneesaeeneeneeneens 172

8.4.3 EXAMPIC .ottt st enee 172

8.5 Design ad-hoc CONNECTIONS.ccuiiieiiieiieiieiete ettt ettt et e e eeseeeneesneeneens 172
8.5 1 SCREIMA ..iiiiiiiieiei ettt 173

8.5.2 DSCIIPLION .eeeiueieiieitieieeeieete ettt ettt ettt st ettt e e st e en e ene et e esee et eneesaeeneeseeneans 173

T TR TR 21111 o) (<SRRI 174

8.5.4 Ad-hOC WiIre CONNECHIONouveueiuiriiiiiiiiniiniertentetetee ettt ettt 174

8.5.5 Ad-hoc transactional CONNECIONccccoiruiriirierienieieieieietieenee et 175

8.6 Design hierarchical CONNECHIONS.cccuiiuieriiiieieie ettt s 176
8.0.1 SCREIMA ..cuiiiiiiiciii ettt ettt 176

8.0.2 DESCIIPLION .eeeiuiieiieitieiieeie ettt ettt et sttt st et e st e e et en e ese et e esee et eneesaeeneeneeneens 176

8.6.3 EXAMPIC oottt st 176

9. ADSIIACLOT AESCIIPTIONS -..veueetieiietieie et ettt e e stee e st et e s bt en e s st e e eseeneesaeenaesneensesseenseeseenseesesneensesnean 177
0.1 ADSITACTOTS ...ttt sttt ettt ettt ettt sa sttt et es e ae e bt e bt bbb se et e bt e e entebenbeneens 177
0. 1.1 SCREIMA ..ttt sttt 177

O.1.2 DESCIIPLION ..eeeieeieiieieieiieiteete et eete ettt e et e e st e ste s et et e sse e te et e enteeseeseeneeeeeneeaseeneesesneens 178

128 U5 TR 2 1111 o) (<R SSUSRSRIRN 179

0.2 ADSIraCtOr INEEITACEScuveuieuieiiiiiriirtieertert ettt sttt sttt s 179
0.2.1 SCREIMA ..ttt ettt 179

0.2.2 DESCIIPLION ...ttt ettt ettt et st ettt et e s st et e eteenteeneeeeeneeneeeneesaeeneeseeneans 180

L2 TR £ C: 1111 o) (<SRRI 180

9.3 ADSIIaCtOr MOACLS ...cueeuiriiiiriiniintitctectet ettt ettt s sttt 181
0.3.1 SCREIMA .ottt 181

L2 TRV B 101] o5) 1 NSRRI 181

L2 T0C TR 2 1111 o) (<R SURUSRIRN 181

0.4 ADSITACTOT VIEWS....cueeuiiuiiuieiiniertententententeiteutettett et et sttt bt e et eatesesbtebesaesee st e besse e ennenesaeneens 182
041 SCREIMA ..uiiiiiiieiiei ettt sttt ettt 182

0.4.2 DESCIIPLION .eeeiuiieiieitieiieite ettt ettt et st et e st et e sbe et e et e enteeneeeeeneenseeneesaeeneesesneans 183

L2 TR 2 C: 1111 o) (<SR SURRUSIIN 183

0.5 ADSIACEOT POTES ..euvitieneeeiieiteetieie et ee it et ettt et e ea e te et e stees e et e et e teese e st eseenseeneenseeneesaeeneensenseens 184
0.5 1 SCREIMA ..cuiiiiiiciicii ettt sttt 184

0.5.2 DESCIIPLION .eeeiueieiieitieiieite ettt ettt ettt e et et e eb et e et e enteeseeteeneenseeneesaeeneeneeneans 185

L2 T T 2 C: 1111 o) (<P SSURRUSRIIN 185
Copyright © 2007 The SPIRIT Consortium. All rights reserved. xi

This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

0.6 ADSIIACLOTr ZENETALOTS ...eueitieieeieeiesteeeteteete et eate st etesteeneesseeeesseenseseeneeeseenseeseensesseensesnesneens 186

0.6.1 SCREIMA ...cuiiiiiieiieii ettt sttt 186

0.6.2 DESCIIPLION ..eeiuiieiieieieiieite ettt ettt ettt et et e e st e b e sse e e ebeenteeneeeeeseenseeneessesneeseeneens 186

LT TR 2 1111 o) (< SRS 186

10. GENETATOTS ...ttt et et st s h e b e e s e e e eeee e e e saeeseesaeenesneenneneeas 189

10.1 Tight INEEIALIONeeiieiieiieeieie ettt ettt et e et e st e e st e bt e e et ene e seeneeeneeneesneeseenean 189

10.2 GENETatOr ChAINevuiiititiicecieit ettt st sttt eb et e nes 190

10.3 PRASE NMUIMDETSc.viteieieiteieieiteieeieete ettt ettt ettt ettt et s e e et ettt ebesuesaenen 190

10.4 GENETAtOr SCRHEIMAcuititiiiieiieiieiteieeteetert ettt ettt ettt sttt ettt ebe bt euesaenes 191

10.4.1 2eNeratorCRAINcoouiiiiiieiiee ettt ettt ee e 191

10.4.2 generatorChain SEIECLOTccocieiieuieiiiiee et 194

10.4.3 generatorChain component SElECTOTccueerieriieiirieierieie e 195

10.4.4 generatorChain GENETAtOrcceiieuierieieie ettt see e seeeneens 196

11. Design configuration deSCIIPLIONSeevuertierierieriietieteeie sttt sttt ee st e e neesneeneesneesaeeneas 199

11.1 DeSign CONTIGUIATION ...cuvitieuiieeieie ettt ettt ettt et et e st es e et e ee s st eseeseentesseeneesseeneesseenean 199

11.2 desig@NCoONTIGUIALIONeiiiiieietieiiieeee ettt ettt sttt e e te et et e eneeeeeneeneas 199

T1.2.1 0 SCHEIMA ..ottt ettt 199

11.2.2 DESCIIPION .eoueieniitieieitieieete ettt et e ettt te et ettt et e bt es e bt et e eteeneesseeneeseeeneenneennens 200

11.2.3 EXAMPIE oottt ettt ee ettt ee et ae et enee e eneens 201

11.3 generatorChainConfigUIation.........c.oeieriiriereriere ettt st e e e eeeneeeas 202

T1.3.1 0 SCHEIMA ..ottt ettt 202

11.3.2 DESCIIPLION .eeueiiiiitieieetieie ettt ettt ettt te et ettt et et ent et e e e steene e st eneesseeneenseennans 202

11.3.3 EXAMPIE oottt et ee et e e et s naeeaeeeeeneen 202

11.4 interconnectioNCONTIGUIATION.ccuietieriieiieit ettt ettt et e st eneeseeeneeneas 203

T1.4.1 SCHEIMA ..ottt ettt 203

11.4.2 DESCIIPION .eouuieiiiitieieitieie et iete ettt ettt sttt e ettt et e st e es et e et e saeeneesseeneeseeeneenseennans 204

11.4.3 EXAMPIC eoiiiiiiieiiieeeee ettt ettt ettt ettt et nae et eteeneen 204

12. Addressing and addressing fOrmulascoooeiiriiiiiieiie e 207

ANNEX A BiDlOZIAPNY ...t ettt ens 209

Annex B Semantic CONSISTENCY TULES.ec.uiruieiieiieiertiee ettt ettt et e e e e e eeeene 211

Annex C Y DS ettt ettt e b e e h bttt s bt e bt e bt e e e e bt bt e beenbeeeates 231

Annex D Dependency XPATH. ..ottt ettt et sbe et eneesneens 233

Annex E External bus vs. an internal/digital interface.............coeoerieiiiiieiiiieieee e 237
xii Copyright © 2007 The SPIRIT Consortium. All rights reserved.

This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Draft Standard for the IP-XACT
meta-data and tool interfaces

1. Overview

This clause explains the scope and purpose of this standard; gives an overview of the basic concepts, major
semantic components, and conventions used in this standard; and summarizes its contents.

1.1 Scope

This standard describes an eXtensible Markup Language (XML) data format and structure, documented with
a schema! for capturing the meta-data which documents design intellectual property (IP) used in the
development, implementation, and verification of electronic systems. The standard also includes a tight
generator interface (TGI) to provide consistent, tool-independent access to the meta-data. The XML
documents described and validated by the schema comprise a standard method to document IP that is
compatible with automated integration techniques. The TGI provides a standard method for linking
generation tools into a system development framework, enabling a more flexible, optimized development
environment. Tools compliant with this standard shall be able to interpret, configure, integrate, and
manipulate IP blocks that comply with the proposed IP meta-data description. This standard is independent
of any specific design process. It also does not cover the behavioral characteristics of the IP.

1.2 Purpose

This standard provides a well-defined XML schema for meta-data that documents the characteristics of IP
required for the automation of the configuration and integration of IP blocks; and also defines a TGI to make
this meta-data directly accessible to automation tools.

1.3 IP-XACT design environment

While the document formats are the core of this standard, describing the IP-XACT specification in the
context of its basic use-model, the design environment (DE) more readily depicts the extent and limitations
of the semantic intent of the data. The DE coordinates a set of tools and IP, or expressions of that IP (e.g.,
models), through the creation and maintenance of a meta-data description of the SoC such that its system-
design and implementation flows are efficiently enabled and re-use centric.

IP-XACT uses the World Wide Web Consortium (W3C) standard for the eXtensible Markup Language (XML) data. The valid format
of that XML data is described in a schema by using the Schema description Language described therein.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 1
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

The IP-XACT specification can be viewed as a mechanism to express and exchange information about
design IP and its required configuration. For the IP provider, the IP configuration or generator script
provider, the point-tool provider, or the SoC design-tool provider to claim IP-XACT compliance, they shall
adhere to the completeness and IP-XACT semantic consistency rules (SCRs) as outlined in 1.4 and
Annex B.

The use of The SPIRIT Consortium specified formats and interfaces are shown in Figure 1 and described in
the following subsections. The IP-XACT specifications relate directly to those aspects of the DE indicated
in bold.

IP-XACT IP-XACT Compliant IP-XACT Compliant
Compliant IP SoC Design Tool Generators
IP-XACT
Design Capture T™GIL
?ddress > i’l-----------------------Ei
:Zi:: : grolo?gll l i generatOI' i

Design Build “F T T T

Component] }J.P

[] ® S v
: system s Configured| Point
. mem IP Tool
‘! Soc | IP-XACTIP
Design IP Import Iﬂ”ﬂl
sesmmmmm--=t - Export

Figure 1—IP-XACT design environment
1.3.1 System design tool

System design tools enable the designer to work with IP-XACT design IP through a coordinated front-end
and IP design database. These tools create and manage the top-level meta-description of system design and
provide two basic types of services: design capture, which is the expression of design configuration by the
IP provider and design intent by the IP user; and design build, which is the creation of a design (or design
model) to those intentions.

As part of design capture, a system design tool must recognize the structure and configuration options of
imported IP. In the case of structure, this implies both the structure of the design (e.g., how specific pin-outs
refer to lines in the HDL code) as well as the structure of the IP package (e.g., where design files and related
generators are provided in the packaged IP data-structure). In the case of configuration, this is the set of
options for handling the imported IP (e.g., setting the base address and offset, bus-width, etc.) that may be
expressed as configurable parameters in the IP-XACT meta-data.

As part of design build, generators are provided internally using a system design tool to achieve the required
IP integration or configuration, or provided externally (e.g., by an IP provider) and launched by the system
design-tool as appropriate.

The system design tool set defines a DE where the support for conceptual context and management of IP-
XACT meta-data resides. However, the IP-XACT specifications make no requirements upon system design

2 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

tool-architecture or a tool’s internal data structures. To be considered IP-XACT v1.4 enabled, a system
design-tool must support the import/export of IP expressed with valid IP-XACT v1.4 meta-data for both
component [P and systems, and it must support the Tight Generator Interface (TGI) for interfacing with
external generators (to the DE).

1.3.2 Design intellectual property

IP-XACT is structured around the concept of IP re-use. IP may be considered from the perspective of the
object itself, its supporting views, and meta-data description. In IP-XACT vl .4, the specifications need to be
comprehensive for all design objects required to support ESL and RTL design and integration. These
include the following:

a) Design objects
1) TLM descriptions: SystemC & SystemVerilog
2) Fixed HDL descriptions: Verilog, VHDL
3) Configurable HDL descriptions (e.g., bus-fabric generators)
4) Design models for RT and transactional simulation (e.g., compiled core models)
5) HDL-specified verification IP (e.g., basic stimulus generators and checkers)

b) IP views—This is a list of different views (levels of description and/or languages) to describe the IP
object. In IP-XACT vl.4, these views include:

1) Design view: RTL Verilog or VHDL, flat or hierarchical components
2) Simulation view: model views, targets, simulation directives, etc.

3) Documentation view: specification, User Guide, etc.
1.3.3 Generators

Generators are executable objects (e.g., scripts) that may be integrated within a SoC design tool (referred to
as ‘internal’), or provided separately as an executable that can be launched (referred to as ‘external’).
Generators may be provided as part of an IP package (e.g., for configurable IP, such as a bus-matrix
generator) or as a way of wrapping point tools for interaction with a SoC design tool (e.g., an external design
netlister, external design checker, etc.). In IP-XACT vl1.4, external generators may only use the Tight
Generator Interface (TGI) (see 1.3.4). IP-XACT is neutral regarding the underlying language of a generator
(e.g., Tcl/Tk, Perl, Java, C, etc.).

Generators operate upon an IP or the system design based upon a configuration request. They are launched
during the build phase of a design environment, i.e., generators create the design to the specification
provided in the design capture phase. Generators may perform multiple tasks, such as IP creation,
configuration, post-generation checking, simulation set-up, etc. They may also be part of a configurable IP
package or a specific design-automation feature, such as an architecture-specific design-rule checker. Some
generation services are provided internally to SoC design tools and some specialized generation services
may need to be provided externally. For IP-XACT v1.4, external generators can only operate upon IP-
XACT compliant meta-data through the TGI.

Not all generators require the ability to modify the internal meta-data representation of the SoC, e.g., a
generator checking build correctness may just return a pass/fail result. However, many generators do need to
modify the meta-data description, even if only minor modifications occur, e.g., an IP generator will need to
communicate with the SoC design tool where the generated RTL is placed.

Finally, generators can be associated with phases in the design process that enable sequencing of chains of
generator chains. This is critical for providing script-based support of SoC creation and simulation.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 3
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1.3.4 IP-XACT interfaces

There are two obvious interfaces expressed in Figure 1: from the SoC Design Tool to the external IP
libraries and from the SoC design Tool to the generators. In the former case, the IP-XACT specifications are
neutral regarding the use of design-tool interfaces to IP repositories. While being able to read and write IP
with IP-XACT meta-data is a requirement of the specification, the formal interaction between an external IP
repository and a SoC design-tool is not specified.

IP-XACT vl1.4 supports a TGI that is Simple Object Access Protocol (SOAP) based and Web Services
Description Language (WSDL) specified. The TGI provides an efficient interface for external generators,
which is required due to the generally rapid nature of generator execution. Using the language-independent,
SOAP-based message passing interface, generators that are [IP-XACT compliant are DE independent, i.e., a
generator running on a design shall produce the same results independent of the DE in which it is run.

1.4 IP-XACT enabled implementations

Complying with the rules outlined in this section allows the provider of tools, IP, or generators to class their
products as IP-XACT Enabled. Conversely, any violation of these rules removes that naming right. This
section first introduces the set of metrics for measuring the valid use of the specifications. It then specifies
when those validity checks are performed by the various classes of products and providers: DEs, point tools,
IPs, and generators.

a) Parse validity
1) Parsing correctness: Ability to read all IP-XACT files.

2) Parsing completeness: Cannot require information which could be expressed in an IP-XACT
format to be specified in a non- IP-XACT format. Processing of all information present in an
IPXACT document is not required.

b) Description validity
1) Schema correctness: IP is described using XML files that conform to the IP-XACT schema.

2) Usage completeness: Extensions to the [P-XACT schema shall only be used to express infor-
mation that cannot otherwise be described in IP-XACT.

c) Semantic validity

1) Semantic correctness: Adheres to the semantic interpretations of IP-XACT data described in
this standard.

2) Semantic completeness: Obeys all the semantic consistency rules described in Annex B.

These validity rules can be combined with the product class specific rules to cover the full IP-XACT enabled
space. The following subsections describe the rules a provider has to check to claim a product is IP-XACT
Enabled.

1.4.1 Design environments

An IP-XACT Enabled design environment:
a) Shall follow the Parse Validity Requirements shown in 1.4.
b) Shall only create IP which is IP-XACT Enabled.

¢) When modifying any existing IP-XACT files, shall do so without losing any pre-existing informa-
tion. In particular, it shall preserve any vendor extension data included in the existing IP-XACT file.

d) Shall support the IP-XACT generator interfaces fully for interaction with underlying database.
e) Shall be able to invoke all IP-XACT Enabled generators.

4 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1.4.2 Point tools

An IP-XACT Enabled point tool:
a) Shall follow the Parse Validity Requirements shown in 1.4.
b) Shall only create IP which is IP-XACT Enabled.

¢) When modifying any existing IP-XACT files, shall do so without losing any pre-existing informa-
tion. In particular, it shall preserve any vendor extension data included in the existing IP-XACT file.

1.4.31IPs

An IP-XACT Enabled IP shall have an IP-XACT description that follows the Description and Semantic
validity requirements. In addition, any generators associated with this IP shall be IP-XACT Enabled
generators.

1.4.4 Generators

An IP-XACT Enabled generator:
a) Shall only create IP which is IP-XACT Enabled.

b) When modifying any existing IP-XACT files, shall do so without losing any pre-existing informa-
tion. In particular, it shall preserve any vendor extension data included in the existing IP-XACT file.

¢) Shall be callable though the IP-XACT generator interface.
d) Shall only communicate with the DE that invoked it through the IP-XACT generator interface.

1.5 Conventions used

Each clause which details any IP-XACT usage defines it own conventions and meta-syntax as needed. The
conventions used throughout the document are included here.

1.5.1 Visual cues (meta-syntax)

Bold: shows required keywords and/or special characters, e.g., addressSpace. For the initial use
(per element), keywords are shown in boldface-red text, e.g, bitsinLau (see also: 1.6).

Bold italics: shows group names, e.g., nameGroup. **Need to do so **

Courier: shows examples, external command names, directories and files, etc.,
e.g., address 0x0isonD[31:0].

Add any other document conventions here. See IEEE Std 1800-2005 for an example.

1.5.2 Notational Conventions

The keywords "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in the
IETF Best Practices Document 14, RFC-2119.

1.5.3 Syntax examples

Any syntax examples shown in this Standard are for information only and are only intended to illustrate the
use of such syntax.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 5
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1.5.4 Graphics used to document the Schema

http://www.w3.0rg/TR/2004/REC-xmlschema-1-20041028/ specifies the XML schema language used to
define the IP-XACT XML schemas. Normative details for compliance to the IP-XACT standard is
contained in the schema files. Within this document, pictorial representations of the information in the
schema files illustrate the structure of the schema and define any constraints of the standard. With the
exception of scope and visibility issues, the information in the figures and schema files is intended to be
identical. Where the figures and schema are in conflict, the XML schema file shall take precedence.2

In the schema diagram figures, the various parts of the schema structure are represented graphically; the
elements used to make up these figures contain much of the information contained in the schema
specification. The graphics are organized into two broad categories: compositors (see 1.5.4.1) and elements
(see 1.5.4.2).

1.5.4.1 Compositors in the graphic representations

Compositors define the order in which child elements occur. There are two compositors: sequence and
choice.

1.5.4.1.1 Sequence collections

A sequence is represented in the schema diagrams using this graphic:

(5

An example of using sequence:

fileSets [== L spiritifileSet [

o

1@

and its accompanying xml file fragment:

<xs:element name="fileSets">
<xs:complexType>
<XS:sequences>
<xs:element ref="spirit:fileSet"
maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
</xs:element>

1.5.4.1.2 Choice collections

A choice is represented in the schema diagrams using this graphic:

&:

’The graphics for this document have been generated by taking “screen-shots” of the various files as they are displayed in Altova’s
XML environment XMLSpyTM. The use of these illustrations is not an endorsement of this tool.

6 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

An example of using choice:

Espirit:fiIIE&T',r;:rE:

= spirituserFileType

and its accompanying xml file fragment:

<xs:group name="fileType">
<xs:choices>
<xs:element name="fileType">

<xs:simpleType>

</xs:simpleType>
</xs:element>
<xs:element name="userFileType" type="xs:string">
</xs:choices>

</xs:group>
1.5.4.2 Elements of the graphic representations

The subsequent elements are composed in diagrams using the constructors in 1.5.4.1. The graphical
representation provides detailed information about the component's type and structural properties.

1.5.4.2.1 Mandatory single elements

The rectangle indicates an element and the solid border indicates the element is required. The absence of a
number range indicates a single element (i.e., minOcc=1 and maxOcc=1). **Define minOcc, maxOcc,
etc.**

Er——
spirit:name
x=:ztring

1.5.4.2.2 Single optional elements

The rectangle indicates an element and the dashed border means the element is optional. The absence of a
number range indicates a single element (i.e., ninOcc=0 and maxOcc=1).

___________________ -
1
1

_ FspiritdisplayName
itype | xgistring :

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 7
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1.5.4.2.3 Mandatory multiple elements

The rectangle indicates an element and the solid border indicates the element is required. The number 2
means minOcc=2 and maxOcc=2.

spirit:abstractorinterface -
type | apirt:abstractorBusinterfaceType T

2

e

1.5.4.2.4 Optional multiple elements

The rectangle indicates an element and the dashed border means the element is optional. The number range
0..infinity means minOcc=1 and maxOcc=unbounded.

(=g

1.5.4.2.5 Mandatory multiple element containing child elements

The rectangle indicates an element and the solid border indicates the element is required. The number range
1..infinity means minOcc=1 and maxOcc=unbounded. The plus sign (+) indicates the element has
complex content (i.e., at least one element or attribute child).

spiritport

1.

wd

1.5.4.2.6 Elements that reference a global element

The arrow in the bottom-left means the element references a global element. The rectangle indicates an
element and the dashed border indicates the element is optional. The plus sign (+) indicates the element has
complex content (i.e., at least one element or attribute child). The element name is

spirit:vendorExtensions.
: - -+ »spiritvendorExtensions

1.5.4.2.7 Complex types

The irregular hexagon with a plus sign (+) indicates an element of a complex type.

(nameVaIuePairType

8 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1.5.4.2.8 Macro groups

The irregular octagon with a plus sign (+) indicates a macro group. A macro group defines a reusable set of
element declarations which are then included in schema locations with the identical effect as including the
individual elements. While the diagram includes the element nameGroup, the actual XL documents do not
include a nameGroup element; they can include spirit:name and, optionally,
spirit:displayName and/or spirit:description.

"~ spirittname

nameGroup

1.5.4.2.9 Wildcards

The irregular octagon with any at the left indicates a wildcard. Wildcards are used as placeholders to allow
elements not specified in the schema or from other namespaces. ##any elements can belong to any
namespace; ##other elements can belong to any namespace other than the ones declared in the document.

1.5.4.2.10 Attributes of an element

A rectangle with the term attributes (in italics) in it indicates attributes are defined for this element. Each
attribute is shown in a rectangle with a dashed border.

B sttributes

Es;'_lirit:al:)stra-::’l-:-r!.ﬂrt:»c:le: |
type spiritabstracterModeType El—
4By | extension

1.6 Use of color in this standard

This standard uses a minimal amount of color to enhance readability. The coloring is not essential and does
not affect the accuracy of this standard when viewed in pure black and white. The places where color is used
are the following:

— Cross references that are hyperlinked to other portions of this standard are shown in underlined-blue
text (hyperlinking works when this standard is viewed interactively as a PDF file).

— Syntactic keywords and tokens in the formal language definitions are shown in boldface-red text.

1.7 Contents of this standard
The organization of the remainder of this standard is as follows:

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 9
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

10

Clause 2 provides references to other applicable standards that are assumed or required for this
standard.

Clause 3 defines terms and acronyms used throughout the different specifications contained in this
standard.

Clause 4 defines the interoperability use model.

Clause 5 previews the schema and their object definitions.
Clause 6 defines the buses and interconnect models.

Clause 7 defines the component models.

Clause 8 defines the designs and their connections.

Clause 9 defines the adapters between abstraction definitions.
Clause 10 describes generators and their use in [P-XACT.
Clause 11 defines the design models and their configuration.
Clause 12 previews addressing and addressing formulas.

Annexes. Following Clause 12 are a series of annexes.

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

2. Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments or corrigenda) applies.

IEC/IEEE 61691-1-1, Behavioral languages—Part 1: VHDL language reference manual.'> 2

IEEE Std 1364 ™, IEEE Standard for Verilog Hardware Description Language.3

ISO/IEC 8859-1, Information technology—=8-bit single-byte coded graphic character sets—Part 1: Latin
Alphabet No. 1.4

ISO/IEC 8879, SGML **Get exact title and call numbers.**

The IP-XACT Schema v1.4 is available from the SPIRIT Consortium web site at:
http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4/index.xsd

The IP-XACT TGI API v1.4 format is available from the SPIRIT Consortium web site:
http://www.spiritconsortium.org/releases/tgi/TGIL.wsdl

SOAP (Simple Object Access Protocol) Version 1.2 is a lightweight protocol intended for exchanging struc-
tured information in a decentralized, distributed environment. “Part 1: Messaging Framework™ defines,
using XML technologies, an extensible messaging framework containing a message construct that can be
exchanged over a variety of underlying protocols:
http://www.w3.0rg/TR/2007/REC-soap12-part1-20070427/

Web Services Description Language (WSDL) 1.1 is used to describe the Tight Generator interface. The
specification can be found at: http://www.w3.org/TR/wsdl

The XML version 1.0 is available from the W3C web site:
http://www.w3.0rg/TR/2000/REC-xml-20001006.

The XML Schema specification is available from the W3C web site:
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028;
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028;
http:/www.w3.0org/TR/2004/PER-xmlschema-2-20040318.

The XPath specification, version 1.0, is available from the W3C web site:
http:// www.w3.0org/TR/1999/REC-xpath-19991116.

The XPath version 2.0 is available from the W3C web site:
http://www.w3.0org/TR/2005/CR-xpath20-20051103.

EC publications are available from the Sales Department of the International Electrotechnical Commission, Case Postale 131, 3, rue
de Varembé, CH-1211, Geneve 20, Switzerland/Suisse (http://www.iec.ch/). IEC publications are also available in the United States
from the Sales Department, American National Standards Institute, 25 West 43rd Street, 4th Floor, New York, NY 10036, USA (http://
www.ansi.org/).

2IEEE publications are available from the Institute of Electrical and Electronics Engineers, Inc., 445 Hoes Lane, Piscataway, NJ 08854,
USA (http://standards.ieee.org/).

3The IEEE standards or products referred to in this clause are trademarks of the Institute of Electrical and Electronics Engineers, Inc.
4ISO/IEC publications are available from the ISO Central Secretariat, Case Postale 56, 1 rue de Varembé, CH-1211, Genéve 20, Swit-
zerland/Suisse (http://www.iso.ch/). ISO/IEC publications are also available in the United States from Global Engineering Documents,
15 Inverness Way East, Englewood, CO 80112, USA (http://global.ihs.con/). Electronic copies are available in the United States from
the American National Standards Institute, 25 West 43rd Street, 4th Floor, New York, NY 10036, USA (http://www.ansi.org/).

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 11
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

http://www.spiritconsortium.org/releases/tgi/TGI.wsdl
http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4/index.xsd
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

The XSLT version 1.0 is available from the W3C web site:
http:// www.w3.0rg/TR/1999/REC-xsl1t-19991116.

**Move this into DE compliance?? XSLT version 1.0 support is required for DE compliance, XSLT,
version 2.0 is optional. For maximum portability, IP and generators should make use of version 1.0.

3. Definitions, acronyms, and abbreviations

For the purposes of this document, the following terms and definitions apply. The Authoritative Dictionary
of IEEE Standards Terms [B2]° should be referenced for terms not defined in this clause.

3.1 Definitions

3.1.1 abstraction definition: An object that describes a type of bus interface, including details of the ports
this type of bus interface may have and the constraints that apply to these ports.

3.1.2 ad-hoc connection: Directly connects two ports without the use of bus interfaces or
interconnections. Wire ad-hoc connections have a wire protocol and cable ad-hoc connections have a cable
connection.

3.1.3 abstractor: A top level IP-XACT element used to convert between two bus interfaces having
different abstraction types and sharing the same bus type.

3.1.4 active interface: An interface that participates in the transactions.

3.1.5 AMBA: An open specification on-chip backbone for interconnecting intellectual property (IP)
blocks.

** AMBA is a Registered Trade Mark owned by ARM, and needs to be acknowledged as such some-
where in this document. I am not sure if the specific AMBA bus types (AHB, APB, AXI etc.) are
also registered trade marks.**

3.1.6 application programmers interface (API): A method for accessing design and meta-data in a
procedural way.

3.1.7 architectural rules: Generic rules which define how subsystems relate to platforms that relate to
components of system design.

3.1.8 behavioral properties of a memory location: The behavioral properties of a bit in memory are
defined as

a) Its access rights.

b) Its volatility.

¢) Whether it has a defined reset value and what this value is.

d) The width of the memory area containing it:
1) For bits within parallel banks, this is the width of the top-level parallel bank containing it.
2) For all other bits, this is the width of the containing address block.

e) The effective least addressable unit (i.e., the value of bitsInLau) of its containing memory map.
Bridges between the memory location and the bus interface from which it is observed may modify a
location’s effective least addressable unit from is the one defined in the memory map.

3The number in brackets correspond to those of the bibliography in Annex A.

12 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

f) The endianness of its containing address block.
g) The usage of its containing address block
h) Its dependencies:

Two bits have the same dependencies if they depend on the same values of the same bits at the same
address. Since different memory maps may vary in how they name registers and fields (and even in
how they split the address spaces into registers and fields), it is possible for two dependencies to
match even if they use different register and field names.

This should move to another chapter

3.1.9 bridge: A mechanism to model the internal relationship between master interfaces and slave
interfaces inside a component. Bridges explicitly describe the internal point-to-point connections between
the component interfaces. A bridge can have multiple address spaces, can be hierarchical, supports memory
mapping and re-mapping, and can only have direct interfaces. Syn: bus bridge.

3.1.10 bus: A collection of ports used to connect blocks connected to it involving both hardware and
software protocols. Within IP-XACT, buses are components.

3.1.11 bus definition: An object that describes the high-level properties for a bus, such as the maximum
masters allowed or if one bus expands upon the definition of another.

3.1.12 bus interface: The interface of an IP to a bus. Components are connected together by linking the
bus interfaces together. There are three different classes of bus interfaces: master, slave, and system with
two flavors: direct and mirrored.

3.1.13 channel: A special object that can be used to describe multi-point connections between regular
components, which may require some interface adaptation.A channel connects component master, slave,
and system interfaces on the same bus. A channel can also represent a simple wiring interconnection or a
more complex structure, such as a bus. A channel can only have one address space. Channel interfaces are
always mirrored interfaces. A channel supports memory mapping and re-mapping.

3.1.14 component: The central place holder for object meta-data and its bus and generator interfaces.
Components are used to describe cores, peripherals, and buses. Components may reference designs to create
hierarchy. Syn: component description.

3.1.15 configurable component: A component which has some parameters the DE can configure; these
parameters are also configurable in the RTL or TLM model.

3.1.16 configurable IP: IP which has parameters and is customized by setting/configuring the parameters.
There may also be IP-specific generators capable of creating new components from the configured
component and updating the design with the new version of the component.

3.1.17 configuration manager: An object which creates and manages top-level meta-description of system
on a chip (SoC) design. It can annotate SoC schema with details of a specific SoC design including: IP
versions, IP views, IP configuration, IP connectivity, and IP constraints. It manages the launching of IP
generators and tool plug-ins, and any meta-data updates occurring as a consequence of a launch. It also
handles the updating and retrieval of relevant IP meta-data from the IP repository.

3.1.18 connection: Generally describes a communication mechanism between one or more components.

3.1.19 constraint: A constraint defines a limitation on a part of the system that needs to be satisfied for the
system to be correct. Timing constraints are often specified on ports, requiring that during a given clock
cycle the value of the signal become stable in a certain time period and remain stable for a certain time
period relative to a particular clock edge.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 13
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

3.1.20 constraint set: Constraints defined in groups to associate different constraints with different views
of the component.

3.1.21 design: An IP-XACT description of a system or subsystem listing its components, the connections
between these components, and the interfaces exported by the system or subsystem.

3.1.21.1 design configuration: This file contains non-essential ancillary information for generators, the
active or current view selected for instances in the design, and configurable information defined in vendor
extensions. It references a design file and can specify a view for the component instances and abstractors
for each interconnection, and configure generator chains. Syn: configuration.

3.1.22 design database: Working storage for both meta-data and component information that helps create
and verify systems and subsystems.

3.1.23 design environment (DE): The coordination of a set of tools and IP, or expressions of that IP (e.g.,
models) so the system-design and implementation flows of a SoC re-use centric development flow is
efficiently enabled. This is managed by creating and maintaining a meta-data description of the SoC.

3.1.24 endianness: big endian is the most significant byte at the lowest memory address and little endian is
the least significant byte at the lowest memory address.

3.1.25 electronic system level (ESL) A high level of design modeling typically done with, but not limited
to, SystemC or SystemVerilog design languages.

3.1.26 external components: Components that do not end up on the SoC, but are needed for total system
verification.

3.1.27 fixed IP: IP that has no parameters which are configured by the DE or set by industry de-facto tools.

3.1.28 generator: Combines component meta-data with architectural rules to provide a consistent
system description which uses a specified tight generator interface (TGI) to generate specific design
views or configurations for the purposes of supporting a number of design styles. The generator may add/
remove/replace components, add/remove/replace interconnections, add/remove/replace project settings, and
add/remove/replace persistent data.

3.1.29 generator API: This API provides a common interface for algorithmic code in a generator or tool
plug-in to the SOAP interface of the TGI.

3.1.30 generator TGI: This SOAP messaging interface connects the generators and tool plug-ins to the
design environment (DE), allowing the execution of these scripts and code-elements against the SoC meta-
description. The DE enables the registration of new generators or plug-ins, exporting SoC meta-data and
updating that data following generator or plug-in execution, and handling generator or plug-in error
conditions which relate to the meta-data description.

3.1.31 generator chain: A collection of hierarchical generators to be executed in a sequence containing
generators that call other generators. A design flow can be represented by a generator chain.

3.1.32 generator group: A named generator that contains a sequential list of generator invocations.

3.1.33 generator invocation: A method of running an application at a defined phase in the generator group
with a given number of parameters.

3.1.34 hierarchical child bus interface: A bus interface IC of component CC is a hierarchical child of bus
interface IP of component CP if and only if CP contains a hierarchical view, the design file of which con-

14 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

tains a hierarchical connection with interface name IP, component ref CC, and interface ref IC. A hierarchi-
cal child bus interface may be a hierarchical bus interface itself.

3.1.35 hierarchical component: A component that has one or more views which reference IP-XACT
design files.

3.1.36 hierarchical descendant bus interface: A bus interface DC is a hierarchical descendant of bus inter-
face AC if and only if DC is a hierarchical child of AC or a hierarchical child of a hierarchical descendant of
AC.

3.1.37 hierarchical family of bus interfaces: A hierarchical family of bus interfaces is a set of bus inter-
faces composed of a hierarchical bus interface and all its hierarchical descendants.

3.1.38 hierarchical child component: A hierarchical child of a component C is any component referenced
in a design of C.

3.1.39 hierarchical descendent component: A hierarchical descendent of a component is any hierarchical
child of that component or any hierarchical child of any hierarchical descendent of the component.

3.1.40 hierarchical family of components: A hierarchical family of components is a component and all its
hierarchical descendents.

**I’m not sure about having all these ‘hierarchical’ definitions here, especially the ‘bus interface’
ones; consider moving them into Chap 5 re: hierarchy and hierarchy connections**

3.1.41 initiative: An abstract description of port modes: requires, provides, or both. Used for transactional
level modeling.

3.1.42 interconnection: Defines the point-to-point connection between two bus interfaces.
3.1.43 interface: A way to connect a component to the outside world—either bus interfaces or ports.

3.1.44 interface connection: Component interfaces with bus definitions and abstraction definitions can
be listed in the design as connected to another compatible interface on another component. The listing of the
interconnection creates a connection to that interface.

3.1.45 intellectual property (IP): Property utilized in the context of a SoC design or design flow, including
specifications; design models; design implementation description; verification coordinators, stimulus
generators, checkers and assertion / constraint descriptions; soft design objects (such as embedded software
and real-time operating systems); design and verification flow information and scripts. IP-XACT
distinguishes between fixed IP, parameterized IP, and configurable IP.

3.1.46 IP generators: Tools which create specific IP based upon SoC meta-data details entered into the
configuration manager. IP generators serve as interfaces to IP repository for placing and retrieval of IP.
and can annotate completion details (e.g., generated IP or failure of generation of IP) back into the
configuration manager.

3.1.47 1P integrator: A party in the design process who receives configured IP and subsystems and
combines them into a larger system.

3.1.48 IP platform architect: Creator of platform-based architectures.
3.1.49 IP provider: Creator and supplier of IP.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 15
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

3.1.50 IP repository: Database of IP.

3.1.51 leaf component: Components that do not contain other IP-XACT IP.

3.1.52 legacy IP: IP that has no specific IP-XACT meta-data view.

3.1.53 master interface: The bus interface that initiates a transaction (like a read or write) on a bus.

3.1.54 memory map: Organization of memory elements as seen from a master interface when no memory
range transformations are made, e.g., in bus bridges. Within IP-XACT, three different methods are used: a

memory map at channels, at transparent bridges, or at opaque bridges.

3.1.55 meta-data: A tool-interpretable way of describing the design-history, locality, object association,
configuration options, constraints against, and integration requirements of an object.

3.1.56 meta IP: Meta-data description of an object.
3.1.57 mirror interface: Has the same (or similar) ports to its related direct bus interface, but the port
directions are reversed. So, a port that is an input on a direct bus interface would be an output in the

matching mirror interface.

3.1.58 monitor interface: An interface used in verification that is neither a master, slave, nor system
interface.

3.1.59 multi-layer buses: Buses that have to be modeled as component bridges with direct interfaces or as
a hierarchical component.

3.1.60 objects: Those XML document types listed in the schema index.xsd: components, designs, bus
definitions, abstraction definitions, abstractors, and generators. To be able to be uniquely referenced,
each object has an unique identifier called its Vendor Library Name Version (VLNYV).

3.1.61 opaque bridge: A bus interconnect that may modify the address.

3.1.62 Open SystemC Initiative (OSCI): An independent non-profit organization composed of a broad
range of companies, universities and individuals dedicated to supporting and advancing SystemC as an open

source standard for system-level design (see [B7])

3.1.63 parameter: statically characterize (or configure) the IP. Parameters can be configured by the
DE and are also configurable in the models.

3.1.64 parameterized IP: IP with parameters that can be handled by industry de-facto tools.

3.1.65 phantom port: A direction or initiative of a port which indicates this port does not have a true
connection to the implementation, e.g., the port does not appear on the VHDL entity.

3.1.66 phase number: Define the sequence in which generators should be fired.

3.1.67 platform: Architectural (sub)system framework.

3.1.68 platform consumer: User/group who builds a SoC based on a particular platform.

3.1.69 platform provider: User/group that develops and delivers platforms to platform consumers.

3.1.70 platform rules: Rules that define how components interface to a specific platform.

16 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

3.1.71 port: Specifies interface items of a component. These interface items allow dynamic exchange of
information. Connections between ports may be specified by using ad-hoc connections or by including
them in bus interfaces connected together by interconnections.

3.1.72 programmers view (PV): A level of ESL design.
3.1.73 programmers view with timing (PVT): A level of ESL design.

3.1.74 schema: A means for defining the structure, content, and semantics of Extensible Markup
Language (XML) documents.

3.1.75 schema API: This API allows the configuration manager to query the XML IP meta-data.
Queries may be for the existence of IP, the structure of IP, or features offered by that IP, such as
configurability and interface protocol support. This API is also used for the import and export of meta-data
when an IP block is extracted from, or imported back into, the [P management system

3.1.76 semantic rules: Additional rules applied to an XML description that cannot be expressed in the
schema. Typically, these are rules between elements in one of multiple XML files.

3.1.77 slave interface: The bus interface that terminates or consumes a transaction initiated by a master
interface. Slave interfaces often contain information about the registers accessible through the slave

interface.

3.1.78 system on chip (SoC): Also refers to a general system which may not be implemented on a chip,
such as a transaction-level modeling (TLM) design.

3.1.79 SoC platform: The top netlist containing all the instances and connections of the design.
3.1.80 style sheets: How documents are presented on screens and in print.

3.1.81 subsystem: A set of connected components that have dependencies on other IP.

3.1.82 system: A configured set of connected components.

3.1.83 system interface: An interface that is neither a master nor slave interface, and allows specialized
(or non-standard) connections to a bus (e.g. clock).

3.1.84 task-level interface (TLI): Used for streaming interfaces between software and hardware.

3.1.85 tight generator interface (TGI): Used to manipulate values of elements, attributes, and parameters
for IP-XACT compliant XML.

3.1.86 transaction-level modeling (TLM): An abstraction level higher than register transfer level (RTL),
used for specifying, simulating, verifying, implementing, and evaluating SoC designs.

3.1.87 tool plug-ins: Tools which integrate IP, based upon SoC meta-data details, and prep IP for
animation (e.g., simulation or emulation), optimization (e.g., synthesis) and verification (e.g., regression-
suite generation). They can also annotate completion details (e.g., integrated SoC IP or failure of integration)
back into the configuration manager.

3.1.88 transactional port: A port that has a service name (which can specify the data type of the port) and
a port initiative. Used for high-level modeling.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 17
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

3.1.89 transparent bridge: A bus interconnect that does not modify the address; it just decodes the address
(by default).

3.1.90 use model: A process method of working with a tool.

3.1.91 user interface: Methods of interacting between a tool and its user.

3.1.92 validation: Proving the correctness of construction of a set of components.
3.1.93 verification: Proving the behavior of a set of connected components.

3.1.94 view: An implementation of a component. A component may have multiple views, each with it's own
function in the design flow.

3.1.95 verification IP (VIP): Components included in a design for verification purposes.

3.1.96 Vendor Library Name Version (VLNV): Each IP-XACT object is assigned a unique identifier that
is defined in the header of each XML file.

3.1.97 wire port: A port that describes binary values or an array of binary values. Wire ports can have a
direction: in, out, or inout.

3.1.98 wire connections: Connections that connect wire ports.

3.1.99 white box interface (WBI): Internal points in the IP to be probed or driven by verification tools and/
or test benches.

3.1.100 Extensible Markup Language (XML): A simple, very flexible text format derived from SGML
(ISO/IEC 8879). ** this in Chap 2**

3.1.101 Xpath: An expression language used by XSLT to access or refer to parts of an XML document.
3.1.102 XSL: A language for expressing style-sheets and transforming XML data into HTML.

3.1.103 XSLT: A language for transforming XML documents into other types of documents.

3.1.104 3 levels of meta-data (3MD): This phrase refers to a hierarchy of meta-data used to support
platform-based SoC architectures. The lowest level defines IP parameters and constraints and is known as
the IP-level. The second level is known as the platform-level; it can be used to further constrain and capture

platform rules for all SoC derivatives. The third level is the chip-level, used for any system, production, and
verification tests needed to be captured for re-use and reproducibility.

3.2 Acronyms and abbreviations
AHB AMBA high speed bus

API application programmers interface
DE design environment

EDA electronic design automation

ESL electronic system level

18 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces

IP-XACT Standard/D4, December 19, 2007

HDL hardware description language

IP intellectual property

LAU least addressable unit (of memory)

OSCI Open SystemC Initiative

PV programmers view

PVT programmers view with timing

RTL register transfer level (design)

SCR semantic consistency rule

SoC system on chip

TGI tight generator interface

TLI task level interface

TLM transaction-level modeling

VIP verification IP

VLNV Vendor Library Name
WBI white box interface
XML Extensible Markup La

3MD 3 levels of meta-data

This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Version

nguage

Copyright © 2007 The SPIRIT Consortium. All rights reserved.

19

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007

20

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Draft Standard for

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

4. Interoperability use model

To introduce the use-model for the IP-XACT specifications, it is first necessary to identify specific roles and
responsibilities within the model, and then relate these to how the IP-XACT specifications impact their
interactions(s). All or some of the roles can be mixed within a single organization,e.g., some EDA providers
are also providing IP, a component IP provider can also be a platform provider, and an IP system design
provider may also be a consumer.

4.1 Roles and responsibilities

For this User Guide, the roles and responsibilities are restricted to the scope of IP-XACT v1.4 HDL and
TLM system design.

4.1.1 Component IP provider

This is a person, group or company creating IP components or subsystems for integration into a SoC design.
These IPs can be hardware components (processors, memories, buses, etc.), verification components, and/or
hardware-dependent software elements. They may be provided as source files or in a compiled form (i.e.,
simulation model). An IP is usually provided with a functional description, a timing description, some
implementation or verification constraints, and some parameters to characterize (or configure) the IP. All
these types of characterization data may be described as meta-data compliant with the IP-XACT Schema.
Those elements not already provided in the base schema can be provided using name-space extensibility
mechanisms of the specification.

The IP provider can use one or more EDA tools to create/refine/debug IP. During this process, the IP
provider may export and re-import his design from one environment to another. The IP-XACT IP
descriptions need to enable this exchange for component IP.

At some point, this IP can be transferred to customers, partners and external EDA tool suppliers by using IP-
XACT compliant XML. IP can be characterized into different types.

— Fixed IP is IP that is straightforward to describe and exchange as there are no configurable parame-
ters. No generators need to be provided. An example of a fixed-IP is an APB GPIO block with a
fixed base address.

— Parameterized IP are those IP blocks that do not need IP specific generators, but have ‘standard’
customizations (where ‘standard’ is defined as industry de-facto tool support), i.e., no generators
need be provided for SoC design tools that support these parameterizations. An example of a param-
eterized IP is an AHB / APB bridge with configurable bus-widths.

— Configurable IP is 1P created or modified as a direct result of running an IP-specific generator to
build the IP to the user’s specified configuration. This IP usually requires generators to be provided
with it. An example of a configurable IP is an AHB bus fabric component which has selectable num-
ber of masters and slaves, and automatic generation of decode functionality.

4.1.2 SoC design IP provider

This is a person, group or company that integrates and validates IP provided by one or more IP providers to
build system platforms, which are complete and validated systems or sub-systems. Like the IP provider, the
platform provider can use EDA tools to create/refine/debug its platform, but at some point the IP needs to be
exchanged with others (customers, partners, other EDA tools, etc.). To do so, the platform IP has to be
expressed in the IP-XACT specified format as a hierarchical component.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 21
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

4.1.3 SoC design IP consumer

This is a person, group or company that configures and generates system applications based on platforms
supplied by SoC Design IP providers. These platforms are complete system designs or sub-systems. Like the
platform provider, the platform consumer can use EDA tools to create/refine/debug its system application
and/or configure the design architecture. To do so, the EDA tool needs to support any platform IP expressed
in the IP-XACT specified format.

4.1.4 Design tool supplier

This is a group or company that provides tools to verify and/or implement an IP or platform IP. There are
three major tools (which could be combined) provided in a system flow:

— Platform builder (or System Design Environment) tools: these help to assemble a platform with some
automation (e.g., automatic generation of interconnect).

— Verification point-tools: these handle functional and timing Simulation, Verification, Analysis,
Debugging, Co-simulation, Co-verification, and acceleration.

— Implementation point-tools: these handle Synthesizing, Floorplaning, Place and routing, etc.

The EDA provider needs to be able to import IP-XACT component or system IP libraries from multiple
sources and export them in the same format.

Further, IP-XACT EDA tools need to recognize, associate and launch generators that may be provided by a
Generator or IP provider in support of configurable IP bundles. The imported IP might need to be created
and/or modified by the tool and then exported back (e.g., to be exchanged with other EDA vendor tools) to
satisfy the customer design flow.

To further support any generators supplied with IP bundles, the IP-XACT DE tools need to be able to
recognize and interface with generator-wrapped point-tools. These may be provided by another EDA
provider or by the IP designer/consumer as part of a company’s internal design and verification flow. In
general, these will support specialized design-automation features, such as architectural-rule checking.

4.2 IP-XACT IP exchange flows

This section describes a typical IP exchange flow that the IP-XACT specifications technically support
between the roles defined in 4.1. By way of example, the following specific exchange flow can benefit from
use of the IP-XACT specification.

The Component IP provider generates an IP-XACT XML package and sends it to a SoC design-tool
(EDA tool supplier) or directly to a Platform (i.e., SoC Design IP) provider. The EDA tool supplier
imports IP-XACT XML IP and generates platform IP and/or updates (configures) the IP compo-
nents. The Platform provider generates a configurable platform IP and exports it in [P-XACT XML
format, which the end-user imports to build system applications. The platform provider can also
generate its own platform IP into IP-XACT format and send it to the EDA provider.

Although many different possible IP exchange flows exist, from the user’s viewpoint, there are three main
use models:

— TP (Component or SoC Design) provider use model
— Generator (IP provider and Design tool provider) use model

— SoC design-tool provider use model

22 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

4.2.1 Component or SoC design IP provider use model

The IP provider (a hardware component IP designer or platform IP architect) can use IP-XACT to package
IP in a standard and reusable format. The first step consists in creating an IP-XACT XML package (XML
plus any IP views) to export the IP database in a valid format. To express this IP as an IP-XACT IP, the IP
provider needs to parse the entire design file tree (which is composed of files of different types: HDL source
files, data sheets, interfaces, parameters, etc.) and convert it into an [P-XACT XML format. This can be a
manual step (by directly editing [P-XACT compliant XML) or an automated one (using scripts to generate
Schema compliant [IP-XACT XML).

Once the IP has been packaged in an IP-XACT format, the IP provider can use a SoC design-tool to write/
debug/simulate/implement the IP.

4.2.2 Generator provider use model

The author of a generator expects to interact with the SoC design tool through a fixed interface during well
defined times in the design life-cycle: when components are instantiated or modified or when a generator
chain is started.

Generators are used within the SoC design-tool to extend its capabilities: wrapping a point tool, e.g. a
simulator; wiring up IP within the design; or checking the design is correct or maybe modifying the design.
Many of these features may be supplied by the IP author and handled by generators embedded in the IP
itself.

Consequently, there are at least two groups of generator providers: the IP vendor, who supplies generators
that are written specifically to support their IP and generic generator authors who wish to extend the features
available within the SoC design-tool. This latter group will be mainly SoC-design tool vendors at first, but
will also come to include third-party generator vendors.

4.2.3 System design tool provider use model

This is the chunk of the use model which needs the most expansion, TBD later.

The system design-tool takes an IP-XACT component or SoC design as input, configures it, and loads it into
its own database format. Then it can automate some tasks, such as creating the platform, generating the
component interconnect the bus fabric, and generating or updating the IP-XACT IP as an output (by
providing new or updated XML with the attached information: new source files, parameters, documentation,
etc.).

Customer design flows are usually composed of a chain of different tools from the same or different EDA
vendors (e.g., when an EDA provider is not providing the entire tool chain to cover all the user flow or the
customer is selecting the best-in-class point tools). To address this requirement, the EDA vendor providing
an IP-XACT enabled tool needs to read and produce the IP-XACT specified format, and utilize and
implement the interfaces defined by The SPIRIT Consortium. In this use model, each SoC design-tool uses
its own generators (utilizing the IP-XACT TGI) to build and update its internal meta-data state in an IP-
XACT format. Then the IP-XACT file can be imported by another IP-XACT enabled EDA tool.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 23
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007

24

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Draft Standard for

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

5. IP-XACT schema

In addition to the in-line documentation for the IP-XACT Schema [BS5], this chapter explains how the
different schema files link to each other and when to use them.

5.1 Schema overview

The IP-XACT schema is composed of a set of main files representing the top elements (the root objects
defined in 5.2) and sub files included from the main files.

NOTE—AII these schema files are included by reference in the top-level schema file, index . xsd. IP-XACT files and
DEs should reference index . xsd as the schema, rather than referencing the individual schema files described here.

5.1.1 Design schema

This schema defines the way in which designs can be described. A design includes instances of IP
components and the interconnections between these components. The IP-XACT design schema file is called
design.xsd.

5.1.2 Design configuration schema

This schema defines the way in which a specific configuration of a design can be described. A design
includes instances of IP components and the interconnections between these components. The IP-XACT
design schema file is called design.xsd.

5.1.3 Component schema

The component schema defines the description of an IP component. Typically, an IP component defines bus
interfaces, memory maps, sub-instances, configuration information, file sets, port lists, and generators. The
IP-XACT component schema file is called component . xsd.

5.1.4 Bus definition schema

A bus definition describes those elements of a bus that are true for all levels of abstraction. This definition
also serves as a point of reference for the abstraction definitions. The IP-XACT bus definition schema file is
called busDefinition.xsd.

5.1.5 Abstraction definition schema

An abstraction definition describes the ports that make up a bus and some expected values for port widths
and usage (e.g., the ADDR pins can be defined as carrying address information and 16 bits wide). There is
also information on expected port directions when the port is on a master, slave, or system interface. The IP-
XACT abstraction definition schema file is called abstractionDefinition.xsd.

5.1.6 Abstractor schema

This schema defines the way that an abstractor is defined. An abstractor is a meta-design element which
provides for interconnection between two abstraction definitions of the same bus definition. The abstractor
can be chosen by the DE if not specified, or it can be specified in the design configuration document. The IP-
XACT abstractor schema file is called abstractor.xsd.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 25
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

5.1.7 Generator schema

These schema files define how generators are described and interact with the design environment. The IP-
XACT generator schema files is called generator.xsd.

5.2 IP-XACT objects

The IP-XACT schema is the core of the IP-XACT specification. An IP-XACT IP appears as two distinct
objects: the top-design SoC object and the Component object instantiated in the top design.

--> missing abstractor and designConfig schema
5.2.1 Object interactions

The following types of objects are those listed in the schema index . xsd file. See also Clause 3.
— meta-data
— bus definitions
— abstraction definitions
— components
— designs
— abstractors
— generator chains

— design configurations

The links (reference calls) between these objects is illustrated in Figure 2. The arrows (A = B) illustrate a
reference of object B from object A.

26 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

Component

Design Design
— Configuration

I I

Component Abstractor
A 4 A 4
Abstraction Bus

Definition |——p| Definition

Generator

Figure 2—IP-XACT object interactions

--> Figure 2 is not correct w.r.t. its definition. If it is intended to show the VLNV relationship, the generator
(generatorChain to be exact) should only be referenced from designConfig.

To be uniquely referencable, each of these objects has a unique identifier in IP-XACT terms, called a
Vendor Library Name Version (VLNYV).

5.2.2 VLNV

Each object is assigned a VLNV that is defined in the header of each XML file, e.g.,

<spirit

<spirit:

<spirit:

<spirit

:vendor>spiritconsortium.org</spirit:vendors>

library>Leon2</spirit:library>

name>simple design</spirit:names>

:version>1.0</spirit:version>

The VLNV is used as a unique identifier in an design environment. Only one object with a given VLNV
may be present in a design environment at any given time. The timing and way to change the VLNV of an
object is completely up to the user or developer.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 27
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

The vendor (first V of VLNV) element shall be the domain name of the organization responsible for the
object (e.g., spiritconsortium. org). This need not be the owner or creator of the IP described by the
object. If company XYZ creates a object, the vendor element shall be set to their domain name, which could
be xyz.com.

The version number (last V of the VLNV) assigned to any object may be more complex than an integer
number. The version number may appear as an alphanumeric string and contain a set of substrings, with
non-alphanumeric delimiters in-between. Each IP supplier shall have their own cataloguing system for
setting version numbers.

5.2.2.1 Sorting and comparing

Sorting and comparing a VLNV string determines whether:
— an IP is a component that has been previously imported;

— multiple versions of the same IP can exist in a design.

To sort and compare the VLNV, subdivide the version number into major fields and subfields. Major fields
may be separated by a non-alphanumeric delimiter such as /, ., -, , etc. Each major field can be compared
to determine equivalence and broken down further into subfields if necessary.

5.2.2.2 Comparison rules

a) Each version number is broken into its major fields, which are separated using the appropriate
delimiter (e.g., / or .)

b) Major fields are compared against each other from left-to-right.

¢) Subfields, within each major field, need to be examined if the major fields are alphanumeric. Each
major field shall have alphabetical and numerical subfields that are separated from right-to-left.

d) To summarize the rules for the comparison of each subfield in a major field:
1) Numeric—compare the integer values of numeric subfields.
2) Alphabetic:
i) String—perform a simple string comparison.

i) Case—ignore alphabetic case (e.g., a—A are the same).

There are a few cases where the version numbers are considered as equal, but this may not be obvious to the
user. For example, under these rules, A1 and A0l are equal, since numerical subfields are compared
numerically, and A. B equals A B, since delimiters are not compared.

5.2.2.3 Examples
The following examples illustrate the sorting and comparing of a VLNV.
Example 1

The first case uses: 205/75WR16 and 215/50HR15.

a) Each of these version numbers break down into the following two major fields, separated by the /
delimiter: 205 75WR16 and 215 50HR1S5.

b) Major fields are compared against each other from left-to-right. In this example, the first major
fields (205 and 215) differ between the VLNV strings and the comparison ends there. This case is
also simplified since the first major field is an integer (i.e., numeric).

¢) Subfields, within each major field, need to be examined if the major fields are alphanumeric. Each
major field shall have alphabetical and numerical subfields that are separated from right-to-left.

28 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

Example 2

In the next example, two VLNV have the same first major field, their second major subfields need to be
compared: e.g., 205/45R16 and 205/55R15.

a) The first major field (205) is equal between these two VLNV so the second major field is checked.
These second major fields are broken down into the following alphabetic and numeric subfields: 45
R l16and 55 R 15.

b) The subfields are compared from left-to-right. The first (and in this case only) comparison is 45
versus 55, so these subfields are not equal. The major fields are not equivalent.

5.2.3 Version control

Each file conforming to the top-level schema has a set of VLNV elements which, when considered together,
form a unique identifier (a version control number) for the information contained in that XML document.
The VLNV of any IP-XACT information is not the same as the version of the file which might contain that
information.

NOTE—A XML file might be revised in a way that does not materially affect the IP-XACT information content. For
example, copyright notices are updated, comments are added, and environment variable names used as part of the filena-
mes might be changed (but still point to the same files). These changes do not necessitate changing the VLNV.

Many developers of IP libraries use a version control system to track updates and changes to the various files
that contribute to the overall design and IP package information. At any time, individual files may be
modified and updated as development of that design or IP progresses. At appropriate junctures, releases are
made, each consisting of a particular combination of files at different levels of version.

An IP-XACT file is one of the files that can be very usefully tracked in this way and updated in-line with
other design modifications. There is no direct link between the version number of the file and the VLNV
identifier contained in that file. In many, but by no means all cases however, the VLNV will be coordinated
with the overall release package version.

5.3 Design models

An IP-XACT design is a description that contains all instances and connections of the design. The following
sections have to be defined in the design:

— the VLNV of this IP
— the component instances (e.g., core, peripherals, and buses)
— the connections between the component instances.

Figure 3 illustrates a simple IP-XACT platform design.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 29
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

master_1
(processor)

ambaAPB if — | masterAPB. i

bus_1 (APB_bus)

/'

slaveAPB_if_3

slaveAPBif_1 slaveAPB_if_2

uart_interface

ambaAPB_if vart if
slave_1 slave_2 slave_3 uart_verifier
(timer) (irgctrl) (uart) (uart_tester)

Figure 3—Simple SoC design example

The equivalent XML file for this simple design is described in the remainder of this chapter. The rest of this
Standard defines the IP-XACT elements and attributes used in building this design and its sections.

5.3.1 Design

The design starts with the standard XML headers and includes the design’s VLNV, there’s then a list of
components, followed by a list of interconnections, as shown in the following XML fragment.

<?xml version="1.0" encoding="UTF-8" ?>
<spirit:design
xmlns:spirit="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4"
xmlns:xsi=http://www.w3.0rg/2001/XMLSchema-instance
xsi:schemalocation="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4
http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4/index.xsd">
<spirit:vendor>spiritconsortium.org</spirit:vendors>
<spirit:librarys>simple lib</spirit:library>
<spirit:name>simple design</spirit:namex>
<spirit:version>1l.0</spirit:versions>
<spirit:componentInstances>
<spirit:interconnectionss>
</spirit:design>

5.3.2 Hierarchy represented by a design file

Hierarchical designs can be described in IP-XACT. In any IP-XACT design, the design file references
components files. In a hierarchical design, some or all of these component files have views which reference
further design files or design configuration files describing the design of those components, as depicted in
Figure 4. This linking allows for unlimited levels of hierarchy in a design. All referencing of designs and
configurations of designs and components in IP-XACT are done through the VLNV (see 5.2.2). Four
elements (vendor, library, name, and version) uniquely identify a design, a configuration of a
design or a component.

30 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

design = top

APB_top\

component = APB top

APBSubSystem \

design = APBSubSystem

Figure 4—Hierarchy example

This is an example of the highest Design file in a hierarchical design.

<spirit:designs>
<spirit:vendor>spiritconsortium.org</spirit:vendors>
<spirit:library>Example</spirit:library>
<spirit:name>Top</spirit:name>
<spirit:version>1.00</spirit:version>

<spirit:componentInstances>
<spirit:instanceName>APB</spirit:instanceName>
<spirit:componentRef
spirit:vendor="spiritconsortium.org"
spirit:library="Example"
spirit:name="APB_top"
spirit:version="1.00" />
</spirit:componentInstances>

This is an example of a Component file in a hierarchical design.

<spirit:component>
<spirit:vendors>spiritconsortium.org</spirit:vendors>
<spirit:library>Example</spirit:library>
<spirit:name>APB_ top</spirit:namex>
<spirit:version>1.00</spirit:version>

<spirit:model>
<spirit:views>

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

31

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

<spirit:view>
<spirit:name>Hierarchical</spirit:name>
<spirit:envIdentifier>::</spirit:envIdentifiers>
<spirit:hierarchyRef

spirit:vendor="spiritconsortium.org"
spirit:library="Example"
spirit:name="APBSubSystem"
spirit:version="1.2"/>

</spirit:view>

This is an example of the lower Des ign file in a hierarchical design, showing the hierarchical connection of
a bus interface.

<spirit:design>
<spirit:vendorsspiritconsortium.org</spirit:vendors>
<spirit:library>Example</spirit:library>
<spirit:name>APBSubSystem</spirit:name>
<spirit:version>1l.2</spirit:versions>

<spirit:hierConnectionss>
<spirit:hierConnection spirit:interfaceRef="UartIF1">
<spirit:activelInterface spirit:componentRef="slave 3”
spirit:busRef="uart if”></spirit:activeInterfaces>
</spirit:hierConnections>
</spirit:hierConnections>

5.3.3 Design interconnections

Design interconnections (interConnections between active interfaces and monitorInterconnections
between active and monitor interfaces) can be given a name, as illustrated in Figure 5.

conn_12
component_1 M -

\ /

master_if slave_if

component_2

1

Figure 5—Connectivity name example

These interconnections could be built using the following XML fragment.

<spirit:interConnectionss>
<spirit:interConnections
<spirit:name>conn 12</spirit:names>
<spirit:activeInterface
spirit:componentRef="component 1"
spirit:busRef="master if"/>
<spirit:activeInterface
spirit:componentRef="component 2"
spirit:busRef="slave if"/>
</spirit:interConnections>
</spirit:interConnections>

32 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

This fragment illustrates the connectivity between the bus interface master if (on component 1) and
the bus interface slave if (on component 2) in the design shown in Figure 5. The DE (or the user)
can name this connection (e.g., conn_12). This name is optional, but if defined, it shall be unique for all
interConnections elements inside the design.

**This last sentence shows semantics; add a xref here or move this to interConnections??

5.3.4 Hierarchical connectivity

In IP-XACT, hierarchical connectivity can also be expressed in the design file, as shown in Figure 6.

master_1
(processor)

ambaAPB.if — | masterAPB. it

bus_1 (APB_bus)

/'

slaveAPB_if 3

slaveAPB”if 1 slaveAPB_if_2

ambaAPB_if uart_if UartIF1

slave_1 slave_2 slave_3
(timer) (irgctrl) (uart) -

—
—

Figure 6—Hierarchical connectivity example

These hierarchical connections could be built using the following XML fragment.

<spirit:hierConnectionss>
<spirit:hierConnection spirit:interfaceRef="UartIF1">
<spirit:activelInterface spirit:componentRef="slave 3”
spirit:busRef="uart if”/>
</ spirit:hierConnections>
</spirit:hierConnections>

This fragment illustrates the connectivity between the bus interface UartIF1 (on the component that is
being described by this design) and the bus interface uart if on the UART instance slave 3 in the
design shown in Figure 6. The DE needs to ensure the interface UartIF1 exists on the component when
referencing a design file from a component.

**This last sentence and the following Note show semantics; add a xref here or move these to
hierConnections??

NOTE—A bus cannot be hierarchically connected, this would require splitting the bus component. However, it is possi-
ble to connect an interface of a bus via hierarchical connection to a bus on a higher level. In most cases, this is done via
an additional bus bridge.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 33
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007

34

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Draft Standard for

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

6. Interface definition descriptions

6.1 Definition descriptions

In IP-XACT, a group of ports that together perform a function are described by a set of elements and
attributes split across two definitions, an bus definition and an abstraction definition. These two descriptions

are referenced by components or abstractors in their bus interfaces.

The bus definition description contains the high-level attributes of the interface, including items such as the

connection method and indication of addressing. 7.5 describes bus interfaces.

The abstraction definition contains the low-level attributes of the interface, including items such as the
name, direction, and width of the ports. This is a list of logical ports that may appear on a bus interface for

that bus type.

6.2 Bus definition

6.2.1 Schema

The following schema details the information contained in the busDefinition element, which is one of the

seven top-level elements in the IP-XACT specification used to describe the high-level aspects of a bus.

spirit versionedidertifier

This group of elernents identifies a top level itern (2., 2
carnponent of a bus definition) with wendar, library, name
and a warsion nurnber,

E3|)irit:(Iirei:tlitol1|lei:tic:»|1

[tvpe [#shoolean

This element indicates that a master interface may be
directly connected to a slawe interface (under certain
conditions) For busses of this bype,

= spiritisAddressable

wahoolean

IF true, indicatas that this is an addreszable bus,

Optional name of bus type that this bus definition is
cornpatible with, Thiz bus definition may change the
definitions in the existing bus definition

= spiritimaxMasters v

A3pirith

To define all elerments and attibutes supported when
defining a bus,

(=== EH e [xsmoniegtiveinieger |

! Indicates the maximurn nurber of rnasters this bus
' supponts, IF this element is not present, the number of
' masters allowed is unbounded.

Indicates the maximum nurnber of slawes this bus supparts,
IF the elemnent iz nat present, the nurnber of slawes allowed
iz unbounded,

Indicates the list of systern group names that are defined
For this bus definition,

(Dafspirit:systemﬁroupllame
|lype |xS:Name

1.m

Indicates the narme of a systern group defined For this bus

10

15

20

25

30

35

40

45

50

55

definition.
String For describing the bus definition to users; no semantic
imnpact
Container fiar wendor specific extensions,
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 35

This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

6.2.2 Description

The top-level busdefinition element describes the high-level aspects of a bus or interconnect. It contains the
following elements and attributes.

a)

b)

¢)

d)

e)

2

h)

)

The versionedldentifier group provides a unique identifier; it consists of four subelements for a top-
level IP-XACT element.

1) vendor (mandatory) identifies the owner of this description. The recommended format of the
vendor clement is the company internet domain name.

2) library (mandatory) identifies a library of this description. This allows one vendor to group
descriptions.

3) name (mandatory) identifies a name of this description.

4) version (mandatory) identifies a version of this description. This allows one vendor to provide
many descriptions which all have the same name, but are still uniquely identified.

directConnection (mandatory) specifies what connections are allowed. The directConnection cle-
ment is of type Boolean. A value of True specifies these interfaces may be connected in a direct
master to slave fashion. A value of False indicates only non-mirror to mirror type connections are
allowed (master—mirroredMaster, slave—mirroredSlave, or system—mirroredSystem).

isAddressable (mandatory) specifies the bus has addressing information. The isAddressable cle-
ment is of type Boolean. A value of True specifies these interfaces contain addressing information
and a memory map can be traced through this interface. A value of False indicates these interfaces
do not contain any traceable addressing information.

extends (optional) specifies if this definition is an extension from another bus definition. The
extends element is of type libraryRefType (see X.Y.Z), it contains four attributes to specify a unique
VLNV. See 6.12 on extending bus definitions.

1) vendor attribute (mandatory) identifies the owner of the referenced description.
2) library attribute (mandatory) identifies a library of referenced description.

3) name attribute (mandatory) identifies a name of referenced description.

4) version attribute (mandatory) identifies a version of referenced description.

maxMasters specifies the maximum number of masters that may appear on a bus. If the maxMas-
ters element is not present, the numbers of masters is unbounded. The maxMasters elements is of
type nonNegativelnteger.

maxSlaves specifies the maximum number of slaves that may appear on a bus. If the maxSlaves
element is not present, the numbers of slaves is unbounded. The maxSlaves elements is of type non-
Negativelnteger.

systemGroupNames (optional) defines an unbounded list of systemGroupNames elements, which
in tern, define the possible group names to be used under an onSystem element in an abstraction
definition. The definition of the group names in the bus definition allows multiple abstraction defini-
tions to indicate which system interfaces match each other. The systemGroupNames element is of
type Name.

description (optional) allows a textual description of the interface. The type of this element is
string.

vendorExtensions (optional) contains any extra vendor-specific data related to the interface.

See also: SCR 9.1 and SCR 9.2.

6.2.3 Example

This is an example of an AHB busDefinition.

36

<?xml version="1.0" encoding="UTF-8" ?>

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces

<spirit:busDefinition

xmlns:spirit= http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4
xmlns:xsi=http://www.w3.0rg/2001/XMLSchema-instance
Xsi:schemalocation="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4
http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4/index.xsd">

<spirit

<spirit
<spirit

:vendor>amba.com</spirit:vendor>
<spirit:
:name>AHB</spirit:name>

:version>vl.0</spirit:versions>
<spirit:
<spirit:
<spirit:

library>AMBA</spirit:library>

directConnection>false</spirit:directConnection>
isAddressable>true</spirit:isAddressables>
extends spirit:vendor="amba.com"

spirit:library="AMBA"
spirit:name="AHBlite"
spirit:name="v1.0"” />

<spirit:
<spirit:
<spirit:

maxMasters>16</spirit:maxMasters>
maxSlaves>16</spirit:maxSlavess>
systemGroupNames >

<spirit:systemGroupName>ahb clk</spirit:systemGroupName>
<spirit:systemGroupName>ahb reset</spirit:systemGroupName>
</spirit:systemGroupNames>
</spirit:busDefinitions>

6.3 Abstraction definition

6.3.1 Schema

IP-XACT Standard/D4, December 19, 2007

The following schema details the information contained in the abstractionDefinition element, which is one
of the seven top-level elements in the IP-XACT specification used to describe the low-level aspects of a bus.

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

37

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

—(spir'rt:versiunedlderﬂifier

Thiz group of elerments identifies a top lewel itemn (2.9, 2
cornponent or a bus definition) with wendor, library, narme
and a wersion nurnber,

spirit:busType .

I_]
Iype | spirtlibraryRetType

Reference to the busDefnitian that this abstractionDefinition
irmplernents,

: :

Optional narme of absteaction type that this abstraction
definition is compatible with, This abstraction defnition may

=N change the definitions of ports in the existing abstraction
-Ilspirit:ahstrac’tiunﬂeﬁnitiun = C)EI— definition and add new ports, the parts in the ariginal
abstraction are not deleted but may be rmarked illegal to
Cefine the ports and ather information of a particular dizallows their use,
abstraction of the buz Thiz abstraction

definition may only extend another absteaction definition iF
the bus tyvpe of this abstraction definition extends the bus
type of the extended abstraction definitian

. spirit:ports

i This iz a list of logical ports defined by the bus,

= - - s
: " spirit:description

[
[
['
[
[

String For describing the abstraction definition to users; no
semantic impact

_________________________ .

L-E, spirittvendorExtensions

Caontainer For wendor specific extensions,

6.3.2 Description

The abstractionDefinition element describe the low-level aspects of a bus or interconnect. It contains the
following elements and attributes.

a) The versionedldentifier group provides a unique identifier; it consists of four subelements for a top-
level IP-XACT element.

1) vendor (mandatory) identifies the owner of this description. The recommended format of the
vendor clement is the company internet domain name.

2) library (mandatory) identifies a library of this description. This allows one vendor to group
descriptions.

3) name (mandatory) identifies a name of this description.

4) version (mandatory) identifies a version of this description. This allows one vendor to provide
many descriptions which all have the same name, but are still uniquely identified.

b) busType (optional) specifies if this definition is an extension from another abstraction definition.
The busType element is of type libraryRefType (see X.Y.Z), it contains four attributes to specify a
unique VLNV. See 6.12 on extending bus definitions.

1) vendor attribute (mandatory) identifies the owner of the referenced description.
2) library attribute (mandatory) identifies a library of referenced description.
3) name attribute (mandatory) identifies a name of referenced description.

4) version attribute (mandatory) identifies a version of referenced description.

38 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

c) extends (optional) specifies if this definition is an extension from another abstraction definition. The
extends element is of type libraryRefType (see X.Y.Z), it contains four attributes to specify a unique
VLNV. See 6.12 on extending bus definitions.

1) vendor attribute (mandatory) identifies the owner of the referenced description.
2) library attribute (mandatory) identifies a library of referenced description.
3) name attribute (mandatory) identifies a name of referenced description.
4) version attribute (mandatory) identifies a version of referenced description.
d) ports (mandatory) is a list of logical ports, see 6.4.

e) description (optional) allows a textual description of the interface. The type of this element is
string.

f) vendorExtensions (optional) contains any extra vendor-specific data related to the interface.

The abstractionDefinition element contains a list of logical ports that define a representation of the bus
type to which it refers. A port can be a wire port (see 6.7) or a transactional port (see 6.10). A wire port
carries logic information or an array of logic information. A transactional port carries information that is
represented on a higher level of abstraction.

An abstractionDefinition can extend another abstractionDefinition if and only if the bus type of the
abstraction definition extends the bus type of the extending abstraction definition. The extending abstraction
definition may change the definition of logical ports, add new ports, or mark existing logical ports illegal (to
disallow their use).

See also: SCR 3.1, SCR 3.23, and SCR 3.24.

6.3.3 Example
The following example shows an abstraction definition for the interrupt bus in the Leon2 TLM example.

<spirit:vendor>spiritconsortium.org</spirit:vendors>
<spirit:librarysLeon</spirit:library>
<spirit:name>INT PV</spirit:name>
<spirit:version>l.4</spirit:versions>
<spirit:busType spirit:vendor="spiritconsortium.org"
spirit:library="Leon" spirit:name="Int" spirit:version="v1.0"/>
<spirit:portss>
<spirit:ports>
<spirit:logicalName>INT TRANSACTION</spirit:logicalName>
<spirit:wire>
<spirit:onMasters>
<spirit:presences>required</spirit:presence>
<spirit:direction>out</spirit:directions>
</spirit:onMasters>
<spirit:onSlaves>
<spirit:presences>required</spirit:presence>
<spirit:direction>in</spirit:direction>
</spirit:onSlave>
</spirit:wire>
</spirit:port>

</spirit:ports>

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 39
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

6.4 Ports

6.4.1 Schema

The following schema details the information contained in the ports element, which appears part of the
abstractionDefinition element within an abstraction definition.

_spiitport |
1.0

This iz a list af lagical ports defined
by the bus,

B e -
spiritlogicalllame

bype [xsMame

The assigned name of this port in
buz specifications,

Shott description string, typically For
user interface

@E‘_ Full description string, typically For

dacurnentatian

A port that caries logic or an array
of lagic walues

Pott style, = =
spirittransactional

A part that camies comnplax
information rmodeled at a high lewel
of abstraction,

_________________________ e

5 ' ‘spirit:vemlorExtensions

Container For wendor specific
artansions,

6.4.2 Description

The ports element is an unbounded list of port elements. Each port element defines the logical port
information for the containing abstraction definition. It contains the following elements.

a)

b)

¢)
d)

40

logicalName (mandatory) gives a name to the logical port that can be used later in component
description when the mapping is done from a logical abstraction definition port to the components
physical port. The type of this element is Name.

displayName (optional) allows a short descriptive text to be associated with the port. The type of
this element is string.

description (optional) allows a textual description of the port. The type of this element is string.

Each port also requires a wire element or a transactional element to further describe the details
about this port. See 6.5 or 6.10, respectively. A wire style port is a port that carries logic values or an
array of logic values. A transactional style port is a port that carries any other type of information,
typically used for TLM.

vendorExtensions (optional) contains any extra vendor-specific data related to the port.
Copyright © 2007 The SPIRIT Consortium. All rights reserved.

This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces

6.4.3 Example

See 6.3.3 for an example.

6.5 Wire ports

6.5.1 Schema

The following schema details the information contained in the wire element, which may appear as part of

IP-XACT Standard/D4, December 19, 2007

the port element within an abstraction definition (abstractionDefinition/ports/port).

A pott that candes lagic or an aray
of logic walues

The type af information thiz part
catties A wire part can carny bath
address and data, but may not mic
this with a clock or reset

~ spirit:group

Uzed to group systern signals inte

,
- spiritonSystem different groups within a cornmeon
B LA bus,
0.0

Crefines constraints for this part
when present in a system bus

intatface with a matching group Group of elernants uzed in & wirs
nane, pott,

- spirit: = spirt wirePort
Defines constraints for this port Group of elements uzed in 2 wire

when prezent in a rnaster bus patt,
intetface,

—i- -s]l-i;i-t:-‘:;l;él-a-\r_e- - spiritwirePort

Defines canstraints far this port

Graup of elernents used in a wire

when present in a slave bus part,
interface,

fspir'rt:(lefault\{alue
|t\,r'pe | spirit scaledionMegativelnteg. ..

Indicates the default walue For this wire

ot
E attribotes

| spiritdriver Type
bype

Espir'rt'r-equir-esDrimz:r | —

E L ze optional

L.-l clefault |any P

| Drefines the type of driver that iz
Specifies iF a port requires a driver, required. The default is amy type of
Crefault is False. The attribute driver, The 2 other options are a
drverType can further qualify what clack type driver or a singleshat
type of driver is required, Undefined type driver,

behaviour if direction is nat input or
inout, Drwver bype any indicates that

any unspecified type of diwar rmust
b connectad

]
xatoken i
]
]
]

tvpe xahoolean
default | false

10

15

20

25

30

35

40

45

50

55

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 41
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

6.5.2 Description

A wire element represents a port that carries logic values or an array of logic values. This logical wire port
may provide optional constraints for a wire port, to which it is mapped inside a component or abstractor’s
busInterface. It contains the following elements and attributes.

a)

b)

qualifier (optional) indicates which type of information this wire port carries. See 6.6.

onSystem (optional) defines constraints, e.g., timing constraints, for this wire port if it is present in a
system bus interface with a matching group name.

)]

2)

The group (mandatory) attribute indicates the group name for the wire port. It distinguishes
between different sets of system interfaces. Usually, all the arbiter ports are processed together,
or all the clock or reset ports are processed together. So, this is really a mechanism to specify
any sort of non-standard bus interface capabilities for the interconnect. The group name shall
match the one specified in the bus definition. The type of this element is Name.

The group wirePort specifies what elements are used in this port. See 6.7.

onMaster (optional) defines constraints for this wire port when present in a master bus interface.
The group wirePort specifies what elements are used in this port. See 6.7.

onSlave (optional) defines constraints for this wire port when present in a slave bus interface. The
group wirePort specifies what elements are used in this port. See 6.7.

Either of the follow two element are allowed, but not both.

1))

2)

defaultValue (optional) contains the default logic value for this wire port. This value is applied
when the port is left unconnected. The type of this element is scaledNonNegativelnteger.

requiresDriver (optional) specifies whether the port requires a driver when used in a com-
pleted design. The type of this element is Boolean. Its default value is False, indicating this
does not require a driver. When set to True, the attribute driverType further qualifies what
driver type is required: any (the default, meaning any logic signal or value), c/lock (meaning a
repeating type waveform), or singleshot (a non-repeating type waveform).

NOTE—The onMaster, onSlave, and onSystem elements associated with each logical port provide optional con-
straints. So, if none of these constraints are specified, that port is unconstrained in how it appears in any interface. The
abstraction definition author has the choice of how far to constrain the definitions. Generally speaking, more constraints
in the definitions reduce implementation flexibility for whoever is creating bus IP that conforms to the abstraction defi-

nition.

6.5.3 Example

See 6.3.3 for an example.

6.6 Qualifiers

6.6.1 Schema

The following schema details the information contained in the qualifier element, which may appear as part
of the wire element within an abstraction definition (abstractionDefinition/ports/port/wire).

42

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT

meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

_________________ 1

=
TgpiritisAddress |

'bype | xeboolean]

IF this elernent is present, the port
contains address informnation,

fmmmmm—m e m =

IF thiz element iz present, the port
cankains data information,

................ 1 spiritisClock :

The type of inforrnation this port camies Tl

& wire

data, but riay nat mix this with a clack

ar reset

6.6.2D

pott can cary bath address and ! ifype | x=thoolean

i IFthis elerment is present, the part
. : ; .

i+ contains only clock informnation,

1

.

' = gpiritisReset

bype | xehoolean

Is this elernent is present, the port
contains only reset information,

escription

The qualifier element indicates which type of information a wire port carries. It contains the following

element

a)

b)

d)

S.

isAddress (optional), when True, specifies the port contains address information. This qualifier
may be paired with the isData element (useful for serial protocols). The type of this element is Bool-
ean.

isData (optional), when True, specifies the port contains data information. This data resides in reg-
isters defined in the memory map referenced by the interface. The width defined by the port on each
side of the two connected bus interfaces can be used to determine which portions of the data may be
lost or gained (tied off to defaults) during transfers if the two widths do not match. This qualifier
may be paired with the isAddress element (useful for serial protocols). The type of this element is
Boolean.

isClock (optional), when True, specifies this signal is a clock for this bus interface, i.e., it provides a
repeating signal which the interface uses to implement the protocol. No method of processing is
implied with this tag. This tag shall only be applied to pure clock signals. This qualifier may not be
combined with other qualifiers. The type of this element is Boolean.

isReset (optional), when True, specifies this signal is a reset for this bus interface., i.e., it provides
the necessary input to put the interface into a known state. No method of processing is implied with
this tag. This tag should only be applied to pure reset signals. This qualifier may not be combined
with other qualifiers. The type of this element is Boolean.

See also: SCR 9.1 and SCR 9.2.

6.6.3E

xample

See 6.3.3 for an example.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 43
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

6.7 Wire port group

6.7.1 Schema

The following schema details the information contained in the wirePort group, which may appear as part of
the onSystem, onMaster, or onSlave element within a wire element within an abstraction definition
(abstractionDefinition/ports/port/wire/onmode).

— =pirit: wirePart GB

Group of elernents used in a wire port,

= .
Spiritpresence

rilerivedBy | restriction
wefaut | optional

Etype xzstring

IF thiz elerment is present, the existance
of the port is controlled by the specified
walue, walid values are 'illeqal’,
'required' and 'optional',

.Espirit:witlth E

--r

Murnber af bits raquired to represent
thiz signal. Absence of this element
indicates unconstrained nurber of bits,
ive, the camponent will define the
nurnber af bits in this signal,

= spirit:direction

Etype watoken :
vilerivedBy | restriction |

IF this elernent is present, the direction
of thiz part is restricted to the specified
value, The direction iz relative ta the
non-rnirvored interface,

spirtmodeConstraints A

vpe | spirit:abstractionDefPortConstraintsType T

Specifies default constraints For the enclasing wire type
pott, IF the mirraredMadeConstraints element is not
- . defined, then these canstraints applied ta this port when
it appears in a 'mode’ bus interface or a mirrored-'mode’
bus interface, Otherwise they only apply when the port
appears in a 'mode’ bus interface,

[i il

Specifies default constraints For the enclasing wire type
pott when it appears inoa roirrored-'mode’ bus interface,

6.7.2 Description

The group wirePort specifies what elements are used in a wire port. It contains the following elements.

44

a)

b)

presence (optional) provides the capability to require or forbid a port from appearing in a busInter-
face. The three possible values are illegal, required, or optional (the default).

width (optional) represents the number of logical bits that are required to represent this signal.
When mapping to this logical port in a busInterface/portmap, the numbering shall start from O to
width-1. If width is not specified, the component shall define the number of bits in this signal, but

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

the logical portmap numbering shall still start at 0. If necessary, logical bit O shall be the least sig-
nificant bit. The width element is of type positvelnteger.

c) direction (optional) restricts the direction of the port relative to the non-mirrored interface. The
three possible values are in, out (the default), or inout.

d) Each wirePort group can also have a sequence of modeConstraints and mirroredModeCon-
straints specifying the default constraints of this interface during synthesis. The modeConstraints
apply to this port if it appears in a non-mirrored ‘mode’ bus interface (see 6.8). Any mirroredMo-
deConstraints apply to this port if it appears in a mirrored-‘mode’ bus interface (see 6.9).

If mirroredModeConstraints are not specified, the modeConstraints also apply to this port in a
mirrored-‘mode’ bus interface.

6.7.3 Example

See 6.3.3 for an example.

6.8 Wire port ‘mode’ constraints
6.8.1 Schema

The following schema defines the information contained in the modeConstraints element, which may
appear within an onMaster, onSlave, or onSystem eclement within an abstraction definition
(abstractionDefinition/ports/port/wire/onmode).

Ifs|1irit.'timingCons’trairrt "

WIype shirit:delayPercentag. . |‘_",J
mindmaxincl [0.0 1000 i

Defines a timing constraint For the
aszociated signal, The constraint is relative
to the clock specified by the cockMarne
attribute, The clockEdge indicates which
clock edge the canstraint is aszociated with
[default is rising edge), The delayType
attribute can be specifed to Further refine
the constraint,

irit:modeConstraints et bl =t
= = F-1_spirit:driveConstraint
bype | spirtt abstractionDefPortCon... [P

Defines a constraint indicating hows
an input is ta be driven, The
preferred methodalogy is to specify
a library cell in technalogy
independent Fashion. The
implemention toal shauld assume
that the associated signal is driven
by the specified call, ar that the
drive strangth of the input signal is
indicated by the specified resistance
walue,

Cpecifies default constraints For the |
enclosing wire type port, IF the
rmirroredModeConstraints element is not
defined, then these constraints applied to
this port when it appeats in a 'mode’ bus
interface o a mivored-mode’ bus interface,
Otherwize they only apply when the port
appears in a 'mode’ bus interface,

Crefines a constraint indicating the
type of load on an output signal,

|
|
|
|
|
:
.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 45

This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

6.8.2 Description

The modeConstraints element defines any default implementation constraints associated with the
containing wire port of the abstraction definition. It contains the following elements.

a) timingConstraint (optional) element defines a technology-independent timing constraint associated
with the containing wire port. See 7.11.13.

b) driveConstraint (optional) element defines a technology-independent drive constraint associated
with the containing wire port. See 7.11.12.

c) loadConstraint (optional) element defines a technology-independent load constraint associated
with the containing wire port. See 7.11.11.

The constraints contained within the modeConstraints element are only applied to the corresponding
physical port in a component when the physical port does not have any constraints defined within its own
port element and there is no SDC file associated with the component. For example, if it appears inside an
onMaster eclement, the constraints apply when the port appears in a master interface. If the
modeConstraints element is immediately followed by a mirroredModeConstraints element (see 6.9), the
constraints defined in the modeConstraints element apply only when the port is used in a non-mirrored
mode interface. Otherwise, the constraints apply when the port appears in a mode interface or a mirrored-
mode interface.

6.8.3 Example

The following example shows a port within an abstraction definition, containing a single timing constraint.
Since there is no mirroredModeConstraint element, this timing constraint applies when the HRDATA
port appears in either a master interface or a mirrored-master interface.

<spirit:port>
<spirit:logicalName>HRDATA</spirit:logicalNames>
<spirit:wire>
<spirit:onMasters>
<spirit:modeConstraintss>
<spirit:timingConstraint spirit:clockName="HCLK"” >40
</spirit:timingConstraint>
</spirit:modeConstraintss>
</spirit:onMasters>
</spirit:wire>

</spirit:ports>

6.9 Wire port mirrored-‘mode’ constraints
6.9.1 Schema

The following schema defines the information contained in the mirroredModeConstraints element, which
may appear within an onMaster, onSlave, or onSystem clement within an abstraction definition
(abstractionDefinition/ports/port/wire/onmode).

46 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

CspirittimingConstraint |

WLype shirit: delayPercentag... |i‘.J
'mirdmacene! [0.0 [100.0 i

EETT T | Sysy=p ey

Drefines a tirning constraint For the
associated signal, The constraint is relative
ta the clock specified by the clockMarne
attribute, The clackEdge indicates which
clack edge the constraint is associated with
[default is rizing edqe). The delayType
attribute can be specified to further refine
the constraint,

! spirit:mirroredModeConstrai... e e S =1
o sp E—I-@EH -:,splrlt:(lrwetons’tralnt

Defines a constraint indicating haw
an input is to be dhiven, The
preferred methodolagy is to specify
a library cell in technology
independent Fashion, The
irnplernention tool should assurne
that the associated signal is driven
by the specified cell, or that the
drive strength of the input signal is
indicated by the specified resistance
walue,

Specifies default constraints For the
enclasing wire type part when it appears in
a rnirvored-'mode’ bus interface,

Crefines a constraint indicating the
type of laad on an output signal,

6.9.2 Description

The mirroredModeConstraints element also defines any default implementation constraints associated
with the containing wire port of the abstraction definition. It contains the following (optional) elements.

a) timingConstraint (optional) element defines a technology-independent timing constraint associated
with the containing wire port. See 7.11.13.

b) driveConstraint (optional) element defines a technology-independent drive constraint associated
with the containing wire port. See 7.11.12.

c¢) loadConstraint (optional) element defines a technology-independent load constraint associated
with the containing wire port. See 7.11.11.

The constraints contained within the mirroredModeConstraints element are only applied to the
corresponding physical port in a component when the physical port does not have any constraints defined
within its own port element and there is no SDC file associated with the component. For example, if it
appears inside an onMaster element, the constraints only apply when the port appears in a mirrored-master
interface.

6.9.3 Example

The following example shows a port within an abstraction definition, containing a single timing constraint.
On a master interface the port gets 40% of the cycle time and on a mirrored master interface it gets 60% of
the cycle time.

<spirit:ports>
<spirit:logicalName>HRDATA</spirit:logicalName>
<spirit:wire>
<spirit:onMasters>

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 47
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

<gpirit:modeConstraintss>
<spirit:timingConstraint spirit:clockName="HCLK"”>40
</spirit:timingConstraint>
</spirit:modeConstraintss>
<spirit:mirroredModeConstraints>
<spirit:timingConstraint spirit:clockName="HCLK”>60
</spirit:timingConstraint>
</spirit:mirroredModeConstraintss>
</spirit:onMaster>
/spirit:wire>
</spirit:port>

6.10 Transactional ports
6.10.1 Schema

The following schema defines the information contained in the transactional element, which may appear
within a port within an abstraction definition (abstractionDefinition/ports/port).

h
h
Ha i gt i IF thiz elerant iz present, the part
o spirit:qualifier ! contains address information.
h
|

The type of infarmation this port carries
A tranzactional port can camy bath L
address and data inFormnation,

IF this elernent is present, the part
contains data information,

= o
spirit:group

ype | ¥E:Mame

- - - spirit:onSystem IJzed to group systern signals into
—I B E]—E:EH :r___l_ _________________________ Py different groups within a commmon bus,

A

A pott that caries connplex information
rmodeled at a high lewel of abstraction,

Drefines constraints For this part when
present in a systern bus interface with

. Group of elernents used in a
a matching group name.

transactional part,

zpirt:transactionalPort [

Defines constraints For this port when Group of elernents used in &
present in a master bus interface, transactional part,

L _- -spl;ltf:l'ISl-ﬂ'l'f.: - spirit:transsctionalPort

Defines constraints For this port when Group of elernents used in &
present in a slave bus interface. transactional part.

6.10.2 Description

The transactional element defines a logical transactional port of the abstraction definition. This logical
transactional port may provide optional constraints for a transactional port, to which it is mapped inside a
component or abstractor’s busInterface. The transactional element also contains the following elements
and attributes.

a) The qualifier (optional) element indicates which type of information this transactional port carries.
It contains either or both of the following elements.

1) isAddress (optional) specifies the port contains address information.

2) isData (optional) specifies the port contains data information.

48 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces

b)

d)

IP-XACT Standard/D4, December 19, 2007

onSystem defines constraints for this transactional port if it is present in a system bus interface with
a matching group name.

1)

2)

The group attribute indicates the group name for the transactional port. It distinguishes
between different sets of system interfaces. Usually, all the arbiter ports are processed together,
or all the clock or reset ports are processed together. So, this is really a mechanism to specify
any sort of non-standard bus interface capabilities for the interconnect. The group name shall
match the one specified in the bus definition.

The group transactionalPort specifies what elements are used in this port. See 6.11.

onMaster defines constraints for this transactional port when present in a master bus interface. The
group transactionalPort specifies what elements are used in this port. See 6.11.

onSlave defines constraints for this transactional port when present in a slave bus interface. The
group transactionalPort specifies what elements are used in this port. See 6.11.

See also: SCR 6.14 and SCR 6.17.

6.10.3 Example

The following example shows a transactional port within an abstraction definition, carrying data

information.

<spirit:ports>

<spirit:logicalName>pv_data</spirit:logicalName>

<spirit:transactionals

<spirit:qualifier>
<spirit:isData>true</spirit:isDatas>
</spirit:qualifiers>
<gpirit:onMasters>
<spirit:presences>required</spirit:presences
<spirit:services>
spirit:initiativesrequires</spirit:initiatives>
<spirit:typeName>pv basic type</spirit:typeName>
</spirit:service>

</spirit:onMasters>

</spirit:transactionals>

</spirit:ports>

6.11 Transactional port group

6.11.1 Schema

The following schema defines the information contained in the transactionalPort group, which may appear
within an onMaster, onSlave, or onSystem element within an abstraction definition (abstractionDefinition/
ports/port/transactional/onmode).

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 49
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

:spirit:presence

xs:atring

IF this elernent is present, the
existance of the port is controlled ko
the specified walue, walid walues are
‘illegal', 'required’ and ‘aptional',

]

pirit:serviceType

spirttransactionslPort [== spiritinitiative

Mivpe | xEstrin
Group of elements used in & | bt | . 2
transactional port, | default |requwes

IF this elernent is present, the type
of access iz restricted to the
specified walue,

[attributes

spirit:service =
Iype | spirtserviceType

The zervice that this tranzactional
pott can provide of requires,

= ¥ hoolean «
spirit:typellame Bl—| idefauf [false .
U |tvpe [xs:anyURI |

= [rafines that the typetame supplied
1.0 For this service i implicit and 2
netlister should not declare this
seruice in
2 language specific top-lewvel netlist

H
H

1 Drefines the name of the
1 tranzactional inteface type,
H
H
H
H

e LR T TP -
L-I,l3|)iri't:\.rf':mlorE)t:tve'.-nsions
T A L ,
Container for wendor specific
extensions,

6.11.2 Description

A transactionalPort group contains elements defining constraints associated with a transactional logical
port within an abstractionDefinition. It contains the following elements.

a) presence (optional) provides the capability to require or forbid a port to appear in a busInterface.
Its three possible values are illegal, required, or optional (the default).

b) service (mandatory) defines constraints on the service type, which the component transactional port
can provide or require. It also contains the following elements or attributes.

1) initiative (mandatory) defines the type of access: requires (the default), provides, or both. For
example, a SystemC sc_port is defined using requires, since it requires a SystemC inter-
face.

2) typeName (mandatory) is and unbounded list that defines the names of the transactional inter-
face types. The typeName element is of type anyURI. The implicit (optional) attribute may be
be used here to indicate this element is implicit and a netlister shall not declare this service in a
language-specific top-level netlist.

3) vendorExtensions contains any extra vendor-specific data related to the interface.

See also: SCR 6.5.1, SCR 6.5.2, SCR 6.5.3, and SCR 6.7.

6.11.3 Example

The following example shows a custom transactional port within an abstraction definition. Constraints are
defined for transactional port used in master or slave interfaces.

<spirit:ports>
<spirit:logicalName>custom tlm port</spirit:logicalNames>
<spirit:transactionals

50 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

<gpirit:onMasters>
<spirit:services>
<spirit:initiativesprovides</spirit:initiatives
<spirit:typeName implicit="true”>TLM
</spirit:typeName>
</spirit:services>
</spirit:onMasters>
<spirit:onSlaves>
<spirit:service>
<spirit:initiativesrequires</spirit:initiatives
<spirit:typeName implicit="true”>TLM
</spirit:typeName>
</spirit:services>
</spirit:onSlave>
</spirit:transactionals>
</spirit:port>

6.12 Extending bus and abstraction definitions
6.12.1 Extending bus definitions

Bus definitions may use the extends element to create a family of compatible inter-connectable bus
definitions. A bus definition (B) extends another existing bus definition (&) by specifying the extends
element in the B bus definition’s element list. Bus definition B is referred to as the extending bus definition
and bus definition A is referred to as the extended bus definition. For two bus definitions related by the
extends relation to be inter-connectable, they need to be in a direct line of descent in the hierarchical
extension tree, as illustrated in Figure 7.

Figure 7—Extends relation hierarchy tree

In Figure 7, bus definition B extends bus definition A. Bus interfaces of bus definition E shall only be
connected with bus interfaces of bus definitions E, B, and A. By the same token, bus interfaces of bus
definition F shall only be connected with bus interfaces of bus definitions F, B, and A.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 51
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

6.12.2 Extending abstraction definitions

The abstractionDefinition that references the extended busDefinition via the busType element is referred
to as the extended abstractionDefinition. The bus definition writer shall supply an abstractionDefinition
that references the extending busDefinition and it is referred to as the extending abstractionDefinition. The
extending abstractionDefinition shall reference the extended abstractionDefinition via its extends
element. An example of extending is shown in Figure 8.

busDef
AHBLite

absDef busDef
AHBLite_rtl AHB
extends: ?usType
absDef
AHB _rtl

Figure 8—Example of extending

The extending bus definition and abstraction definition pair shall be able to stand on its own independent of
the extended bus definition and abstraction definition pair; therefore, all the elements and attributes of the
extended bus definition and abstraction definition pair shall be specified in the extending bus definition and
abstraction definition pair. Also, all the ports in the extended abstraction definition shall be explicitly
defined in the extending abstraction definition. Some of the elements and attributes of the extending bus
definition and abstraction definition pair may be modified from the extended bus definition and abstraction
definition pair, while others may not.

6.12.3 Modifying definitions

Table 1 specifies which elements and attributes may be modified in a bus definition and Table 2 specifies
which elements and attributes may be modified in an abstraction definition.

Table 1—Elements of extending bus definition

Item Modified Comment

directConnection No

isAddressable No

maxMasters Yes Smaller number applies
maxSlaves Yes Smaller number applies
systemGroupNames Yes New group names may be added
description Yes

vendorExtensions Yes

52 Copyright © 2007 The SPIRIT Consortium. All rights reserved.

This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

Table 2—Elements of extending abstraction definition

Item Modified Comment
ports Yes See Table 3
description Yes
vendorExtensions Yes

The extending abstraction definition may add new ports and the extending abstraction definition may mark
certain ports as illegal to disallow their use. Table 3 specifies which port elements may be modified when
extending bus definitions.

Table 3—Elements of a port in an extending abstraction definition

Item Modified Comment
logicalName No Changing this name implies a port that is different
than the one in the extended abstractionDefini-
tion.
requiresDriver Yes
isAddress No
isData No
isClock No
isReset No
onSystem/group Yes
presence Yes
width Yes
direction No
modeConstraints Yes
mirroredModeConstraints Yes
defaultValue Yes
service/initiative No
service/typeName No
service/vendorExtensions Yes
vendorExtensions Yes

6.12.4 Interface connections

When a bus interface of the extended bus definition and abstraction definition pair is connected with a bus
interface of the extending bus definition and abstraction definition pair, it is possible either interface may
have unconnected ports due to the previous extensions of the port list (i.e., port additions or disownment).

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 53
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

The bus definition writer needs to be aware of these scenarios and specify defaultValues where necessary.
Here is a sample of the possible connections between two extended interfaces (A and B).

master(2) connecting to slave(B) (if directConnection = True)
master(A) connecting to mirror-master(B)

slave(2) connecting to mirror-slave(B)

master(B) connecting to slave(2) (if directConnection = True)
master(B) connecting to mirror-master(2)

slave(B) connecting to mirror-slave(2)

6.13 Clock and reset handling
GEE--This needs a new home

Abstraction definitions shall include all the logical ports that can participate in the protocol of the bus and
bus interfaces need to map to the component all the logical ports that participate in the protocol of that bus at
that interface. For example, on an AXI bus, the ports of the write channel can participate in the protocol of
the bus, so they shall be included in the AXI abstraction definition. These ports will participate in the
protocol at any AXI bus interface that supports writes, so they need to be included in all such bus interfaces,
but not included in any AXI bus interfaces that only support reads.

This requirement applies to clock and ports signals as much as it does to other ports. If the protocol of a bus
is dependent on a clock or reset port, the bus definition for that bus shall include that clock or reset port.
Similarly if the bus protocol at a bus interface is dependent on a particular clock or reset port, the port map
of that bus interface shall include that port. The clock or reset port, however, do not need to exist as a port of
the component implementation, since it may be mapped to a phantom port of the component (see
7.11.16.3.2). Also, since multiple bus ports may be mapped to a single component port (and component
ports may also participate in ad-hoc connections), the clock routing is not required to match or be defined by
the bus infrastructure.

In some cases, a component may have clock or reset ports that are not associated with and do not participate
in the protocol of any bus interface, but do provide a clock or reset signal to the internal logic of the
component instead, e.g., a processor clock. In such cases, the clock port should be included in a special
purpose clock or reset bus interface, with an appropriate special purpose bus type, or not be mapped into any
interface and connected using ad-hoc connections instead.

54 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

7. Component descriptions

7.1 Components

An IP-XACT component is the central placeholder for the objects meta-data. Components are used to
describe cores (processors, co-processors, DSPs, etc.), peripherals (memories, DMA controllers, timers,
UART, etc.), and buses (simple buses, multi-layer buses, cross bars, network on chip, etc.). An IP-XACT
component can be of two kinds: static or configurable. A DE cannot change a static component. A
configurable component has configurable elements (such as parameters) that can be configured by the DE
and these elements may also configure the RTL or TLM model.

An IP-XACT component can be a hierarchical object or a leaf object. Leaf components do not contain other
IP-XACT components, while hierarchical components contain other IP-XACT sub-components. This can
be recursive by having hierarchical components that contain hierarchical components, etc.—leading to the
concept of hierarchy depth. The IP being described may have a completely different hierarchical
arrangement in terms of its implementation in RTL or TLM to that of its IP-XACT description. So, a
description of a large IP component may be made up of many levels of hierarchy, but its IP-XACT
description need only be a leaf object as that completely describes the IP. On the other hand, some IP can
only be described in terms of a hierarchical IP-XACT description, no matter what the arrangement of the
implementation hierarchy.

An IP-XACT component may contain a channel or a bridge. A channel is a special IP-XACT object that can
be used to describe multi-point connections between regular components that may require some interface
adaptation. A bridge is a point-to-point reference of slave to master interfaces. Both of these concepts are
used to describe the interconnect between components.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 55
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007

7.1.1 Schema

Draft Standard for

The following schema details the information contained in the component element, which is one of the

seven top-level elements in the [P-XACT specification used to describe a component.

56

,spir'rt:cnmpnnent

To define all elernants and atrbures
supparted when defining a
campanent,

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

type |spir'rt:u:u:umpnnentTvpe T :

—(Spirit:veraiunedldemifier

This group of elements identifies a
top lewel itern (2.9, a companent ar
a bus definition) with wendar,
library, name and a version
nurnber,

- aShirthusinterfaces

A list of bus interfaces supported by
thiz component.,

Lists all channel connections
between mitror interfaces of this
campanent.

Caontains a list of remap state
names and associated signal walues

IF this component is a bus master,
this lists all the address spaces
defined by the cornpanent,

Lists all the slawe memory maps
defined by the cornpanent,

L Shirtichoices
Choices used by user defined
propetties of spiritFormat="choice"

IP-XACT meta-data and tool interfaces

,spirit:cnmpnnen‘t

To define all elerments and attibutes
supported when defining a
COMMPOnEnt,

7.1.2 Description

IP-XACT Standard/D4, December 19, 2007

I
— — —Easpir'rt:componentGenerators
type | spirt componert Type i

Chaices used by user defined
propetties of spirtFarrnat="chaoica"

List af file sets associated with
COMpOnEnt.

Dafines a set of clock drivers that
are not directly assaciated with an
input signal of the cormponent,

String For describing the component
bo users

_________________________ 5

H
-Easpir'rt:vemlorErtensions

Container far wendor specific
extensions,

Each element of a component is detailed in the rest of this clause; the main sections of a component are:

a) versionedldentifier group provides a unique identifier; it consists of four subelements for a top-level

IP-XACT element.

1) vendor (mandatory) identifies the owner of this description. The recommended format of the
vendor element is the company internet domain name.

2) library (mandatory) identifies a library of this description. This allows one vendor to group

descriptions.

3) name (mandatory) identifies a name of this description.

4) version (mandatory) identifies a version of this description. This allows one vendor to provide
many descriptions which all have the same name, but are still uniquely identified.

b) buslInterfaces (optional) specifies all the interfaces for this component. A busInterface is a group-
ing of ports related to a function, typically a bus, defined by a bus definition and abstraction defini-

tion. See 7.5.

c) channels (optional) specifies the interconnection between interfaces inside of the component. See

7.6.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 57
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

d) remapStates (optional) specifies the combination of logic states on the component ports and trans-
lates them into a logical name for use by logic that controls the defined address map. See 7.9.2.

e) addressSpaces (optional) specifies the addressable area as seen from a busInterface with an inter-
face mode of master. See 7.7.

f) memoryMaps (optional) specifies the addressable area as seen from a busInterface with an inter-
face mode of slave. See 7.8.

g) model (optional) specifies all the different views, ports, and model configuration parameters of the
component. See 7.11.

h) componentGenerators (optional) specifies a list of generator programs attached to this component.
See 7.12.

i) choices (optional) specifies multiple enumerated lists. These lists are referenced by other sections of
this component description. See 7.14.

j) fileSets (optional) specifies groups of files and possibly their function for reference by other sec-
tions of this component description. See 7.13.

k) whiteboxElements (optional) specifies all the different locations in the component that can be
accessed for verification purposes. See 7.15.

1) cpus (optional) indicates this component contains programmable processors. See 7.17.

m) otherClockDrivers (optional) specifies any clock signals, which are not external ports on the com-
ponent, where implementation constraints are associated. See 7.11.15.

n) description (optional) allows a textual description of the component. The description element is of
type string.

0) parameters (optional) describes any parameter that can be used to configure or hold information
related to this component. See X.Y.Z.

p) vendorExtensions (optional) contains any extra vendor-specific data related to the component. See
X.Y.Z.

7.1.3 Example

GEE--This example needs to be filled out more. Maybe just reference a large example at the end

This is an example of a component (a Leon Timer peripheral).

58

<?xml version="1.0" encoding="UTF-8" ?>

<spirit:component

xmlns:spirit="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xsi:schemalocation="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4
http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4/index.xsd">
<spirit:vendors>spiritconsortium.org</spirit:vendors>
<spirit:librarysLeon2</spirit:library>

<spirit:name>timers</spirit:name>

<spirit:version>1.00</spirit:version>

<spirit:busInterfacess>

<spirit:memoryMaps>
<spirit:models>
<spirit:choices>
<spirit:fileSets>
Copyright © 2007 The SPIRIT Consortium. All rights reserved.

This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

</spirit:component>

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

59

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007

60

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Draft Standard for

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

7.2 Interfaces

Each IP component normally identifies one or more bus interfaces. Bus interfaces are groups of ports that
belong to an identified bus type (i.e., a reference to a busDefinition (see 6.2)) and an abstraction type (i.e., a
reference to an abstractionDefinition (see 6.3)). The purpose of the bus interface is to map the physical
signals of the component to the logical ports of the abstraction definition. This mapping provides more
information about the interface.

There are seven possible modes for a bus interface: master, slave, and system; each with two flavors: direct
and mirrored. Additionally, a monitor interface can be used to connect IP into the design for verification.

7.2.1 Direct interface modes

A master interface is the interface mode that initiates a transaction (like a read or write) on a bus. Master
interfaces tend to have associated address spaces (address spaces with programmers view).

A slave interface is the interface mode that terminates or consumes a transaction initiated by a master
interface. Slave interfaces often contain information about the registers that are accessible through the slave
interface.

A system interface is neither a master nor slave interface; this interface mode allows specialized (or non-
standard) connections to a bus, such as external arbiters. System interfaces can be used to handle situations
not covered by the bus specification or deviations from the bus specification standard.

The following guidelines also apply to the direct interface modes.

— Ifaport’s functionality is documented in the bus’s documentation, then it shall be included in master
and slave interfaces; only those ports that do not have documented functionality should be included
in system interfaces.

— Some buses have specialized sideband ports. If these are tied or related to the standard ports in the
bus (as opposed to being completely standalone), these ports should have some sort of system cle-
ment designator in the bus definition.

7.2.2 Mirrored interface modes

As the name suggests, a mirrored interface has the same (or similar) ports to its related direct bus interface,
but each port’s direction or initiative is reversed. So a port that is an input on a direct bus interface would be
an output in the matching mirrored interface. A mirrored bus interface (like its non-mirrored counterpart)
supports the master, slave, and system classes.

7.2.3 Monitor interface modes

A monitor interface connects verification IP used to a master, slave, system, mirrored-master, mirrored-
slave, or mirrored-system for observation. The connection shall not modify the connected interfaces. A
monitor interface is identified by using the monitor element in the interface definition and specifying the
type of active interface being monitored (master, slave, etc.).

7.3 Interface interconnections

IP-XACT provide for three different types of connections between interfaces. A direct connection is a
connection between a master interface and a slave interface. A direct-mirrored connection is a connection
between a direct interface and its corresponding mirrored interface (i.e. slave and mirrored-slave). A monitor
connection is a connection between any interface type (other than monitor) and a monitor interface. It is not
possible to connect two mirrored interfaces.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 60
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

All interconnections are described in a top-level design object. See X.Y.Z.
7.3.1 Direct connection

A direct connection is a connection between a master interface and a slave interface. This connection is a
single point-to-point connection. More complex connection schemes with direct connections are possible
with the use of a bridge component. The direct connection shall meet the following conditions and rules.

a) The bus definition permits a direct connection, as specified in the bus definition. See 6.2.
b) The two interfaces shall be of the same or extended bus definitions and/or extended abstraction def-
initions.
¢) For addressable buses:
1) The value of bitsInLau at the master and the slave shall match.
2) The value of endianness at the master and the slave shall match.
3) The value of bitSteering at the master and the slave shall match.

4) The address range defined on the slave interface shall be less than or equal to the address range
defined on the master interface.

7.3.2 Direct-mirrored connection

A direct-mirrored connection is a connection between a master interface and a mirrored-master interface, a
slave interface and a mirrored-slave interface, or a system interface and a mirrored-system interface. These
connections are all single point-to-point connections. More complex connection schemes with direct-
mirrored connections are possible with the use of a channel component. The direct-mirrored connection
shall meet the following rules.

a) The two interfaces shall be of the same or extended bus definitions and/or extended abstraction def-
initions.

b) For addressable buses:
1) The value of bitsInLau at the master and the slave shall match.
2) The value of endianness at the master and the slave shall match.

3) The value of bitSteering at the master and the slave shall match.
7.3.3 Monitor connection

A monitor connection is a connection between a monitor interface and any other interface mode, master,
mirrored-master, slave, mirrored-slave, system, or mirrored-system interface. The monitor interface is
defined for only one mode and can only be used with that specific mode. Monitor connections are purely for
non-intrusive observation of an interface. These connections are single-point to multi-point connections: the
single point being the interface to be monitored and the multi-point being the monitor interface. More than
one monitor may be attached to the same interface. The monitor connection shall meet the following rules.

a) The monitor interface mode shall match the monitored interface mode.

b) The two interfaces shall be of the same or extended bus definitions and/or extended abstraction def-
initions.

¢) The connection of a monitor interface shall not count as a connected interface in the determination
of the maximum master or maximum slave calculations.

7.3.4 Interface logical to physical port mapping

An interface on a component contains a port map to associate the physical ports on the component with the
logical ports in the abstraction definition. This mapping is what provides the extra information needed to
enable higher level of design.

61 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

A physical port defined in a component is assigned a physical port name and optionally can be assigned a
left and a right element to represent a vector. The left element indicates the first boundary, the right
element, the second boundary. left may be larger than right and that left may be the MSB or LSB (the right
being the opposite). The left and right elements are the (bit) rank of the left-most and right-most bits of the
port.

A logical port defined in an abstraction definition is assigned a logical port name and, optionally, a width.
The logical port is assigned a numbering from 0 to the width-1 if the width is present. If the width is not
present, the logical port number shall start at 0 and not have an upper bound.

7.3.4.1 Mapping rules

These rules describe the assignment of logical bit numbers to a physical port.

a) If both ports have a vector defined, the logical port width=max(logical.left,logical.right) - min(logi-
cal.left,logical.right) +1 shall be equal to the physical port width=max(physical.left,physical.right) -
min(physical.left,physical.right) +1. The mapping is such that logical.left-> physical.left down to
logical.right-> physical.right.

b) If only the physical port has a vector defined, the logical port width=(width from abstraction defini-
tion, if defined) shall be equal to the physical port width=max(physical.left,physical.right) -
min(physical.left,physical.right) +1. The mapping is such that logical.width-1-> physical.left down
to logical.0-> physical.right.

c) If only the logical port has a vector defined, then logical port width=max(logical.left,logical.right) -
min(logical.left,logical.right) +1 shall be equal to the physical port width=max(port.left,port.right) -
min(port.left,port.right) +1. The mapping is such that logical.left-> port.left down to logical.right->
port.right.

d) If neither vector is defined, the logical port width=(width from abstraction definition, if defined)
shall be equal to the physical port width=max(port.left,port.right) - min(port.left,port.right) +1. The
mapping is such that logical.width-1-> port.left down to logical.0-> port.right.

7.3.4.2 Physical interconnections

With all logical bits having been assigned from the abstraction definition to physical port, it is a simple
matter to describe the physical connections that result from an interface connection. All connections are
made purely based on the logical bit assignment. Like logical bit numbers from each interface are connected.
The alignment is always such that logical bit 0 from interface A connects to logical bit 0 from interface B,
logical bit 1 from interface A connects to logical bit 1 from interface B, and so on.

7.4 Complex interface interconnections

There are two constructs used to connect interfaces of standard components together (traditional
components, usually with ‘masters’ and ‘slave’ interfaces), a channel and a bridge. These constructs are also
encapsulated into components. Not only does the channel or bridge component provide a connection
between the standard components, but it also provides information on the addressing and data flow. With
this information, it is possible to construct things such as a memory map for the system.

A channel connects component master, slave, and system interfaces on the same bus. All masters connected
to a channel see all slaves at the same physical address and only one transaction can be active in a channel at
a time. This does not preclude bus protocols that utilize pipelining.

A bridge is an interface between one bus and another (often a peripheral bus to the main system bus). Such a
component has at least one master interface (onto the peripheral bus) and one slave interface (onto the main
system bus). Crossbar bus infrastructure (e.g., an ARM Multilayer AMBA) is also treated as a bus bridge—

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 62
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

such examples might have multiple master and multiple slave interfaces. A bridge can support multiple
simultaneous transactions and the slaves existing in the master interface address spaces may appear at
different address to any masters connected (by a channel) to each of the bus bridge’s slave ports.

7.4.1 Channel

The channel is a general name which denotes the collection of connections between multiple internal bus
interfaces. The memory map between these connections is restricted so that, for example, a generator can be
called to automatically compute all the address maps for the complete design. A channel can represent a
simple wiring interconnect or a more complex structure such as a bus.

A channel also encapsulates the connection between master and slave components. A channel is the
construct, which represents the bus infrastructure and allows transactions initiated by a master interface to
be completed by a slave interface.

The following rules apply for using channels.

a) A channel can only have one address space (i.e., transmission/transformation matrix). In other
words, a slave connected to a channel has the same address as seen from all masters connected to
this channel. This guarantees the slave addresses (as seen by each master) are consistent for the sys-
tem. As a consequence, all slave interfaces connected to a channel see the same address (if they do
not, they are connected to different channels); and if more than one master/slave interface pair is
active or selected simultaneously, there is more than one channel present.

b) A channel can only relate mirrored interfaces because some buses can have asymmetric interfaces
(e.g., AHB). To cover all type of buses, the channel interfaces are always mirrored interfaces. As a
consequence, a channel can only connect to a direct interface (it can not connect directly to another
channel). However, not all mirrored interfaces of a channel need to be connected.

¢) A channel cannot be hierarchical.

d) A channel supports memory mapping and re-mapping (see 7.8 and 7.9).

Simple wire connections (e.g., a clock port connecting to all components of the system) may be modeled as
an [IP-XACT channel or as IP-XACT port object.

The following is a sample of the XML code describing the channel and its mirrored interfaces for a simple
AHB-like bus component.

<spirit:component>

<spirit:busInterfaces>
<spirit:busInterface spirit:id="AHB MS">
<spirit:name>AHB mirror slave</spirit:namex>
<spirit:busType spirit:library="AMBA" spirit:name="simpleAHB"
spirit:vendor="spiritconsortium.org" />
<spirit:mirroredSlave/>
<spirit:connection>required</spirit:connection>
<spirit:busInterface spirit:id="AHB_MM">
<spirit:name>AHB mirror master</spirit:names>
<spirit:busType spirit:library="AMBA" spirit:name="simpleAHB"
spirit:vendor="spiritconsortium.org" />
<spirit:mirroredMaster/>
</spirit:busInterface>
</spirit:busInterfacess>

<spirit:channelss>
<spirit:channels>

63 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

<spirit:name>channelAHBl</spirit:name>
<spirit:busInterfaceRef>AHB mirror_slave</spirit:busInterfaceRef>
<spirit:busInterfaceRef>AHB mirror master</spirit:busInterfaceRef>
</spirit:channel>
</spirit:channelss>

</spirit:component>
7.4.2 Bridge

Some buses can be modeled using component bridges. The bridge is a mechanism to model the internal
relationship between slave interfaces and master interfaces inside a component. The slave interface in a
bridge is the interface where a transaction arrives and the master interface is the interface where the
transaction exits. There two different types of bridges defined in IP-XACT, a transparent bridge
(opaque="false”) and an opaque bridge (opaque="true”).

The following rules apply for using bridges.

a) A bridge can have multiple address spaces. Specifically, a bridge shall have one or more master
interfaces and each master interface may have a local address space associated with that interface.

b) A bridge can only have direct interfaces. As a consequence, a bridge can directly connect to another
component (master interface to slave interface connection) under the conditions defined in section
4.8.3.2. Or it can connect to a channel (e.g., master interface to mirrored-master interface).

¢) A bridge can be hierarchical.
d) A bridge supports memory mapping and re-mapping (see 7.8 and 7.9).

In a bridge, multiple transactions can occur simultaneously, e.g., if two slave interfaces receive a transaction
addressing two distinct master interfaces who want to access the bus at the same time, both can be granted as
long as a ‘bridge path’ has been defined in IP-XACT.

7.4.2.1 Transparent bridge

Needs to be written

7.4.2.2 Opaque bridge

Needs to be written

7.4.3 Combining channels and bridges

It is possible to combine channels and bridges together each in separate components to form a new
hierarchical component for the purpose of modeling more complex interconnects. A multi-layer bus is a
more complex interconnect which may have multiple transactions active and support multiple memory
maps. As such, it cannot be modeled as a channel and if the interfaces are asymmetric (they do not allow
direct connections), then the bus also cannot be modeled as a bridge.

The solution is to use a combination of channel and bridge components. The bridge component in the center
forms the main cross-bar for the communications between components. It decides which interfaces may
bridge to other interfaces. The smaller channels then come in to convert the direct interface of the bridge
(which could not connect to the master’s or slave’s because of the asymmetric bus) into a mirrored interface
that can now connect with a direct-mirrored connection to the master or slave. An example of this is shown

in Figure 9.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 64
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007

Draft Standard for

Processor

Multi Layer
)

bus

Memory

Figure 9—Asymmetric multi-layer bus connection using channels

7.5 Bus interfaces

7.5.1 businterface

7.5.1.1 Schema

The following schema details the information contained in the busInterfaces element, which may appear as
an element inside the top-level component element.

of bus interfaces supported by this companent.

spirit rameGroup [=}

A group of elements for name
(zsiname), displayMame and
description

7.5.1.2 Description

Bus interfaces enable individual ports that

DE‘ |aShirithusinterface J],
Iy pe [spirtbusirterfaceType I‘
1w

Describes ane of the bus interfaces supported by this component.

Unique name

Elernent name Far display purpases,
Typically 3 Few words providing &
more detalled andjor user-friendy
narne than the spiritinarne,

Full description string, typically for

docurnentation

spirft: nameGroup

4 group of elements For name (sinams), displayName and description

spiritbusType
spiritlibraryRefType

The bus type of this intetface, ReFers ta bus definiion using vendor,
library, narne, version attributes.

rspl abstractionType ;

H
ibype | spirtlibraryRefType T

The abstraction typeflevel of this intarface, Refers to abstraction
definition using vendor, library, name, wersion attributes. Bus definition
can be Found through 3 reference in this R,

spirtirterfacetode

Indicates the usage mode of this instance of the bus interface,

Indicates whether 3 connection to this interface Is required for proper
component Functionality.

3 The number of bis in the least addressable unit, The deFault is byte
1 addressable 8 bis).

i Indicates whether bit steering should be used ta map this interface anto
+ & bus of different data width.

§ walues are "o, "off" (deFauits t "0fF").

! 'big't means the most significant element of any muli-zlement data Reld
}is stored at the lowest memory address. litle' means the least significant
! clement of any multi-clement data field i stored at the lowest memery
1 address. IF this element is ot present the default is Yitle' endian.

Containar For vandar spacfic smangions,

B attributes

drp spiritstring.prompt.att

Use this attribute group on string elements,

appear on the component to be grouped together into a

meaningful, known protocol. When the protocol is known, a lot of additional information can be written
down about the characteristics of that interface.

65

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

The busInterfaces element contains an unbounded list of busInterface elements; therefore, a component
may have multiple bus interfaces of the same or different types. Each busInterface element defines
properties of this specific interface in a component. It contains the following elements and attributes.

a) nameGroup group includes the following. See X.Y.Z.
1) name (mandatory) identifies a name for the bus interface.
2) displayName (optional) allows a short descriptive text to be associated with the bus interface.
3) description (optional) allows a textual description of the bus interface.

b) busType (mandatory) specifies the bus definition that this bus interface is referenced. A bus defini-
tion (see 6.2) describes the high-level attributes of a bus description. The busType element is of type
libraryRefType (see X.Y.Z); it contains four attributes to specify a unique VLNV.

1) The vendor attribute (mandatory) identifies the owner of the referenced description.
2) The library attribute (mandatory) identifies a library of the referenced description.
3) The name attribute (mandatory) identifies a name of the referenced description.

4) The version attribute (mandatory) identifies a version of the referenced description.

c) abstractionType (mandatory) specifies the abstraction definition where this bus interface is refer-
enced. An abstraction definition describes the low-level attributes of a bus description (see 6.3). The
abstractionType element is of type libraryRefType (see X.Y.Z); it contains four attributes to spec-
ify a unique VLNV.

1) The vendor attribute (mandatory) identifies the owner of the referenced description.
2) The library attribute (mandatory) identifies a library of the referenced description.
3) The name attribute (mandatory) identifies a name of the referenced description.

4) The version attribute (mandatory) identifies a version of the referenced description.

d) interfaceMode group describes further information on the mode for this interface. There are seven
possible modes for an interface: master, slave, mirroredMaster, mirroredSlave, system, mirrored-
System and monitor. See X.Y.Z for details on the interfaceMode group.

e) connectionRequired (optional), if True, specifies when this component is integrated; this interface
must be connected to another interface for the integration to be valid. If False (the default) this inter-
face may be left unconnected. The connectionRequired element is of type Boolean.

f) portMaps (optional) describes the mapping between the abstraction definition’s logical ports and
the component’s physical ports. See 7.5.2.7.

g) bitsInLau (optional) describes the number of data bits that are addressable by the least significant
address bit in the bus interface. It is only appropriate to specify this element for interfaces that are
addressable. The bitsInLau element is of type positivelnteger. The default value is 8.

h) bitSteering (optional) designates if this interface has the ability to dynamically align data on differ-
ent byte channels on a data bus. This element shall only be specified for interfaces that are address-
able. The bitSteering element is a choice of two values, on indicating this interface uses data
steering logic and off that this interface does not use data steering logic. The bitSteering element is
configurable, using attributes from string.prompt.att, see X.Y.Z on configuration.

i) endianness (optional) indicates the endianness of the bus interface. The two choices are big for big-
endian and lirtle for little-endian. For further information on endianness, see 7.5.1.2.1. This element
shall only be specified for interfaces that are addressable.

j) parameters (optional) specifies any parameter data value(s) for this bus interface.

k) vendorExtensions (optional) holds any vendor-specific data from other name spaces which is appli-
cable to this bus interface.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 66
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

7.5.1.2.1 Endianness

Endianness is defined under the busInterface element of the component. There are (only) two legal values
(big and little) to specify the endianness.

— Big endian (big) means the most significant byte of any multi-byte data field is stored at the lowest
memory address, which is also the address of the larger field.

— Little endian (little) means the least significant byte of any multi-byte data field is stored at the low-
est memory address, which is also the address of the larger field.

7.5.1.2.2 Big-endianness

There are at least two ways for big-endianness to manifest itself, byte-invariant and word-invariant (also
known as middle-endian); the difference being if data is stored as word-invariant, the data is stored
differently for transfers larger than a byte, e.g.,

a) Byte invariant: A word access to address 0x0 ison D[31:0]. The MSBis D[7:0], the LSB is
D[31:24].

b) Word invariant: A word access to address 0x0 ison D[31:0]. The MSBis D[31:24], the LSB
byteisD[7:0].

¢) InIP-XACT, the interpretation of big-endian is the byte-invariant style.
7.5.1.3 Example

The example below shows a simple bus interface for a clock signal. The interface reference a bus definition
and an abstraction definition.

<spirit:busInterfaces
<spirit:name>APBClk</spirit:name>
<spirit:busType spirit:vendor="spiritconsortium.org"
spirit:library="busdef.clock" spirit:name="clock" spirit:version="1.0"/>
<spirit:abstractionType spirit:vendor="spiritconsortium.org"
spirit:library="busdef.clock" spirit:name="clock rtl"
spirit:version="1.0"/>
<spirit:slave/>
<spirit:portMaps>
<spirit:portMap>
<spirit:logicalPorts>
<spirit:name>CLK</spirit:names>
</spirit:logicalPort>
<spirit:physicalPorts>
<spirit:name>clk</spirit:name>
</spirit:physicalPort>
</spirit:portMap>
</spirit:portMaps>
</spirit:busInterfacex>

7.5.2 Interface modes

The following schema details the information contained in the interfaceMode group, which appears as a
group inside the busInterface element.

67 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces

7.5.2.1 Schema

spiritirtetfacehode =

Indicates the usage rode of thisz
instance of the bus interface,

7.5.2.2 Description

IF this elernant iz prezent, the buz
interfaca can serve as a master,
This elerment encapsulates additional
infarmnation related to itz role az
master,

spirit:slave

IF this elernent is present, the bus
interface can serve as a slave,

[piystem

IF this elernent is present, the bus
interface is a systbern interface,
neither master nor slawe, with a
specific function an the bus,

~| spirittmirroredSlave

IF this elernant is present, the bus
intetface represents a rirvored slave
interface, &l directional constraints
on signals are reversed relative to
the specification in the bus
definition.

~| spiritmirrorediaster

IF this elerent is present, the bus
intetface represents a rnirored
master interface, All directional
constraints on signals are reversed
relative to the specification in the
bus definition,

IF this elernant iz prezent, the buz
interface represents a mirored
systern intetface, All directional
constraints on signals are reversed
relative to the specification in the
bus definitian,

spirft:monitor [

Indicates that this is a (passive)
menitor interface, All of the signals
in the interface must be inputs, The
type of interface o be maonitored is
specified with the required
interfaceType attribute, The
spititigroup elerment st be
specified if ronitoting a swstern
interface,

—— Esnnirit:gr':.m:-
% spirf:mirroredsystem £ == L
bype [meMame

IP-XACT Standard/D4, December 19, 2007

L spirit:group

g Name

Indicates which systerm interface is
being mirrored. Marme st match a
Qroup Name present on one ar mare
signals in the corresonding bus
dafinitiarn,

Indicates which systern interface is
being mitrored, Mame rust match a
Qroup name prasent of one or mare
signals in the corresonding bus
definition,

B atiributes

spiritinterfaceMode

bype [xztaken
uze |required

Indicates which systern interface iz
being mirrared, Mame rmust match a
Qroup name present on one ar mare
signalz in the corresonding bus
definition,

The busInterface’s mode designates the purpose of the busInterface on this component. There are seven
possible modes: three pairs of standard functional interfaces and their mirrored counterparts, and a monitor

interface for VIP.

The interfaceMode group shall contain one of the following seven elements.

a) A master interface mode (sometimes also known as an initiator) is one that initiates transactions.

See 7.5.2.4.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 68
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

b)

d)

2

A slave interface mode (sometimes also known as a farget) is one that responds to transactions.

A system interface mode is used for some classes of interface that are standard on different bus
types, but do fit into the master or slave category.

The group (mandatory) attribute for the system element defines the name of the group to
which this system interface belongs. The type of the group attribute is Name. The specified
value of group needs to be a group defined in the referenced abstraction definition. A connec-
tion between a system and mirroredSystem interfaces shall have matching group names.

A mirroredSlave interface mode is the mirrored version of a slave interface and can provide addi-
tion address offsets to the connected slave interface. See 7.5.2.6

A mirroredMaster interface mode is the mirrored version of a master interface.

A mirroredSystem interface mode is the mirrored version of a system interface.

The group (mandatory) attribute for the mirroredSystem element defines the name of the
group to which this mirroredSystem interface belongs. The type of the group attribute is
Name. The specified value of group needs to be a group defined in the referenced abstraction
definition. A connection between a system and mirroredSystem interfaces shall have match-
ing group names.

A monitor interface mode is a special interface that can be used for verification. This monitor inter-
face mode is used to gather data from other interfaces. A monitor may only connect to interfaces that
match its set interfaceMode. See 7.3.3.

1))

2)

The interfaceMode (mandatory) attribute defines the interface mode for which this monitor
interface can be connected.: master, slave, system, mirroredMaster, mirroredSlave, or mir-
roredSystem.

The group (optional) element is required if the interfaceMode attribute is set to system or mir-
roredSystem. This element defines the name of the system group for this monitor interface. The
type of the group element is Name. The specified value of group shall be a group defined in
the referenced abstraction definition.

7.5.2.3 Example

The example below shows a portion of a bus interface for an AHB bus interface. The interface mode is
defined as monitor for a slave.

69

<spirit:busInterface>

<spirit:name>ambaAHBSlaveMonitor</spirit:name>

<spirit:busType spirit:vendor="amba.com" spirit:library="AMBA2"
spirit:name="AHB" spirit:version="r2p0 5"/>

<spirit:abstractionType spirit:vendor="amba.com" spirit:library="AMBA2"
spirit:name="AHB rtl" spirit:version="r2p0 5"/>

<spirit:monitor spirit:interfaceMode="glave"/>

<spirit:portMaps>
<spirit:portMap>
<spirit:logicalPorts>
<spirit:name>HRESP</spirit:names>
</spirit:logicalPort>
<spirit:physicalPorts>
<spirit:name>hresp</spirit:name>
</spirit:physicalPort>
</spirit:portMap>

</spirit:busInterface>

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

7.5.2.4 Master interface

The following schema details the information contained in the master element, which appears as an element
inside the interfaceMode group inside busInterface element.

7.5.2.4.1 Schema

r- - — — — — — _|
spirit:addrSpaceRefType (exdension)

E attributes

| J'spirit:a(I(IressSum:eF!ef
| — [tvpe [zename

A veference to 3 unigue addvess
space.

uSE | peLiir e |

un -

— ! spiritaddressSpaceRef
spi ? EJE“ : B H stiributes
ibype [Sp\rrl.addrSpaceRenype
IF this elemnent is present, the bus e —
interface can serve a5 a master, IF this master connects to an grp spiritlong.att
This slemant ancapsulates sdditional SeldiessShicibus HthisSlementy —
infarmnation related to its role as references the address space it raps Lse thiz attribute group on lang
to, integer elements for which the
master, 5
= T TS S S scherna supplies a default prarpt
@ 777777777777777777 iyspirithaseAddress EF :‘_‘i‘%‘i‘i _____________
IlypeJ spirit: scaledhlonMegativelrte... 7 ! spirit:prompt v
IFthe master's mapping to the oo SSASASEAsAAnLsRSASLaALLALS 2 3
phiysical address space is not zer Biaze of an address black, bark, subspace
based, the baseAddress element map or address space, idefault |Baze Address: |
may be used to indicate the offget,. | s hasssssn s
IF nat specified the offset is 0, Pravides a stiing used to prompt the
user For user-resohred property
walues,

7.5.2.4.2 Description

A master interface (sometimes also known as an initiator) is one that initiates transactions. The master
element contains the following elements and attributes.

a) addressSpaceRef (optional) element contains attributes and subelements to describe information
about the range of addresses with which this master interface can generate transactions. If the inter-
face is a bus definition that is addressable, an address space reference shall be included.

1) addressSpaceRef (mandatory) attribute references a name of an address space defined in the
same component. The address space shall define the range and width for transaction on this
interface. See 7.7.

2) baseAddress (optional) specifies the starting address of the address space. The address space
numbering normally starts at 0. Some address spaces may use offset addressing (starting at a
number other than 0) so the base address element can be used to designate this information.
The type of this element is set to scaledNonNegativelnteger, see C.10. The baseAddress ele-
ment is configurable, with attributes from long.att, see X.Y.Z on configuration. The prompt
(optional) attribute allows the setting of a string for the configuration and has a default value of
“Base Address:”.

7.5.2.4.3 Example

The example below shows a portion of a bus interface for an AHB master bus interface. The interface
contains a reference to an address space called main, that has its base address starting at 0.

<spirit:busInterfaces>
<spirit:name>AHBmaster</spirit:name>
<spirit:busType spirit:vendor="amba.com" spirit:library="AMBA2"
spirit:name="AHB" spirit:version="r2p0 5"/>
<spirit:abstractionType spirit:vendor="amba.com" spirit:library="AMBA2"
spirit:name="AHB rtl" spirit:version="r2p0 5"/>

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 70
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007

<gpirit:masters>
<spirit:addressSpaceRef spirit:addressSpaceRef="main"/>
</spirit:master>
<spirit:connectionRequired>true</spirit:connectionRequireds>
<spirit:portMapss>
<spirit:portMap>
<spirit:logicalPorts>
<spirit:name>HRDATA</spirit:name>
</spirit:logicalPort>
<spirit:physicalPorts>
<spirit:name>hrdata</spirit:name>
</spirit:physicalPort>
</spirit:portMap>

</spirit:busInterface>

7.5.2.5 Slave interface

Draft Standard for

The following schema details the information contained in the slave element, which appears as an element
inside the interfaceMode group inside busInterface clement.

71

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

7.5.2.5.1 Schema

spirittmemoryMapRefType

I [attributes |

ey | L Shirt:memoryMapRef
:asplrrl.memoryl'ulapﬂef B [tvpe [xsName

|
|

.
Etype Lapirrt:memnrvMapRefTvpe] use |required |
|
|

- . A reference to a unique memony
narme of the mernory rap is kept in its

memaryMapRef attribute, e

References the mermory rap, The |

spiritmasterfef

bype [xs Name
Use | recquired

The name of the master bus
interface to which this interface
bridges.

E [attributes

-

spiritopaque

_IF this elernent is present, the bus IF this element is present, it type | ks boolean

intetface can senee as a slave, indicates that the bus interface use | reguired
prowides a bridge to another master
bus interface on the same IF true, then this bridge is opaque;
component, It has a masteref the whale of the address range is
attribute which containz the name of mappeed by the bridge and there
the other bus intetface, It also has ake nio gaps,

an opague attibute to indicate that
tha bus bridge iz opague,

Any slave interface can bridge to
rultiple rnaster interfaces, and
rultiple slave interfaces can bridge
to the sarne master interface,

Thiz reference iz used to point the
filasets that are associated with this
slave por,

A reference to a fileSet,

Depending on the slave pon
Function, there may be complately
different zoftware drivers associated
with the different parts,

10

15

20

25

30

35

40

7.5.2.5.2 Description

A slave interface (sometimes also known as a target) is one that responds to transactions. The memory map
reference points to information about the range of registers, memory, or other address blocks accessible
through this slave interface. This slave interface can also be used in a bridge application to “bridge” a
transaction from a slave interface to a master interface.

a) memoryMapRef (optional) element contains an attribute that references an memory map. If the
interface is a bus definition that is addressable, a memoryMapRef element shall be included, unless
the slave interface is part of a bridge with opaque=~False.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 72
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

b)

The memoryMapRef (mandatory) attribute references a name of a memory map defined in the
same component. The memory map contains information about the range of registers, memory,
or other address blocks. See 7.8.

bridge (optional) element is an unbounded list of references to master interfaces. If the interface is
of a bus definition that is addressable, a bridge element may be included.

1) The masterRef (mandatory) attribute shall reference a master interface in the containing com-
ponent. Under some conditions, transactions from the slave interface may be bridged to the ref-
erenced master interface, as defined by opaque (see also 7.4.2).

2) The opaque (mandatory) attribute defines the type of bridging. The opaque attribute is of type
Boolean. True means the addressing entering into the slave interface shall have the subspace
maps baseAddress subtracted and, if non-negative, the result shall exit on the subspace maps’
referenced master interface’s referenced address space. False means all addressing entering the
slave interface shall exit the above referenced master interface without any modifications, this
type of bridge is sometimes called transparent.

fileSetRefGroup (optional) element is an unbounded list of the references to file sets contained in
this component. These file set references are associated with this slave interface. This element may
seem out of place, but it allows each slave port to reference a unique fileSet element (see 7.13). This
element can further be used to reference a software driver, which can be made different for each
slave port.

1) group (optional) element allows the definition of a group name for the fileSetRefGroup. The
group element is of type Name.

2) fileSetRef (optional) element is an unbounded list of references to a fileSet element contained
in this component. The fileSetRef element is of type Name. See 7.13.

7.5.2.5.3 Example

The example below shows a portion of an opaque bridge from and AHB slave bus interface to an APB
master bus interface.

73

<gpirit:busInterfaces>

<spirit:name>ambaAPB</spirit:name>
<spirit:busType spirit:vendor="amba.com" spirit:library="AMBA2"
spirit:name="APB" spirit:version="r2p0 3"/>
<spirit:abstractionType spirit:vendor="amba.com" spirit:library="AMBA2"
spirit:name="APB rtl" spirit:version="r2p0 3"/>
<gpirit:masters>

<spirit:addressSpaceRef spirit:addressSpaceRef="apb"/>
</spirit:master>

<spirit:busInterface>

<spirit:name>ambalAHB</spirit:names>
<spirit:busType spirit:vendor="amba.com" spirit:library="AMBA2"
spirit:name="AHB" spirit:version="r2p0 5"/>
<spirit:abstractionType spirit:vendor="amba.com" spirit:library="AMBA2"
spirit:name="AHB rtl" spirit:version="r2p0 5"/>
<spirit:slave>

<spirit:memoryMapRef spirit:memoryMapRef="ambaAHB"/>

<spirit:bridge spirit:masterRef="ambaAPB" spirit:opaque="true"/>
</spirit:slaves>

<spirit:addressSpaces>

<spirit:addressSpaces>
<spirit:name>apb</spirit:name>

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

<spirit:range spirit:choiceRef="addressWidthChoice"
spirit:format="choice" spirit:id="masterRange" spirit:prompt="Master Port
Size :" gpirit:resolve="user">1M</spirit:range>
<spirit:width spirit:format="long">32</spirit:width>
</spirit:addressSpace>
</spirit:addressSpaces>

<spirit:memoryMapss>
<spirit:memoryMap>
<spirit:name>ambaAHB</spirit:name>
<spirit:subspaceMap spirit:masterRef="ambaAPB">
<spirit:name>bridgemap</spirit:name>
<spirit:baseAddress>0x10000000</spirit:baseAddress>
</spirit:subspaceMap>
</spirit:memoryMap>
</spirit:memoryMaps>

7.5.2.6 Mirrored slave interface

The following schema details the information contained in the mirroredSlave element, which appears as an
element inside the interfaceMode group inside busInterface clement.

7.5.2.6.1 Schema

[attributes
arp spirit:long.att

Use this attribute group on lang
integer elements Far which the
scherna supplies a default prompt
attribute,

_ i SPiritprompt
J=spiri‘t:remapA(I(Iress AL | e [xestring
[ty [spirit: scaledonhegstivelrte .. Tdefallt | Base Address: |

1.0 Provides a string used to prarnpt the
uzer for user-resalved property

Baze of an address block, The state walues,

spiritmirroredSlave [---- y

attribute indicates the narme of the remap
state for which this address iz valid,

E spirit:state |

ibvpe | xsrstring |

Marne of the state in which this
remapped address range is walid

[attributes

J'spiri‘t:range —] | grp spiritlong.prompt.att |
|type | spirt: scaledPositivelrteger

IF this elernent is present, the bus

Represents a set of remap base
intetface represents a mirrared slave addresses,

intetface, All directional constraints

on signals are reversed relative to

the specification in the bus

definition,

Lse this attribute group on long integer
The address range of mirored slave, elements,

7.5.2.6.2 Description

A mirroredSlave interface is used to connect to a slave interface. The mirroredSlave interface may contain
additional address information in the baseAddresses (optional) element.

a) remapAddress (mandatory) element is an unbounded list that specifies the address offset to apply
to the connected slave interface. The type of this element is set to scaledNonNegativelnteger, see
C.10. The remapAddress element is configurable with attributes from long.att, see X.Y.Z on con-
figuration. The prompt (optional) attribute allows the setting of a string for the configuration and
has a default value of “Base Address:”. The state (optional) attribute references a defined state in
the component and identifies the remap state name for which the remapAddress and range apply.
See 7.9.2.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 74
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

b) range (mandatory) specifies the address range to apply to the connected slave interface. The range
is expressed as the number of addressable units based on the size of an addressable unit is defined
inside the containing busInterface/bitsInLau element. See 7.5.1. The type of this element is set to
scaledPositivelnteger. The range element is configurable with attributes from long.prompt.att, see
X.Y.Z on configuration.

7.5.2.6.3 Example

This example shows a portion of a bus interface for an AHB mirroredSlave bus interface. The interface
contains two remap addresses. The first does not have a state attribute and is always active unless a named
state is active, in this case, the base address of the connected slave is offset by 0x00000000. The second
remap address is active when state equal reampped is selected, in this case the base address of the slave is
offset by 0x10000000.

<spirit:busInterfaces>
<spirit:name>MirroredSlaveO</spirit:name>
<spirit:busType spirit:vendor="amba.com" spirit:library="AMBA2"
spirit:name="AHB" spirit:version="r2p0 5"/>
<spirit:abstractionType spirit:vendor="amba.com" spirit:library="AMBA2"
spirit:name="AHB rtl" spirit:version="r2p0 5"/>
<spirit:mirroredSlaves>
<spirit:baseAddresses>

<spirit:remapAddress spirit:resolve="user"
spirit:id="start_addr_slv0_mirror" spirit:choiceRef="BaseAddressChoices"
spirit:format="choice" spirit:prompt="Slave 0 Starting
Address:">0x00000000</spirit:remapAddress>

<spirit:remapAddress spirit:resolve="user"
spirit:id="restart addr slv0 mirror"
spirit:choiceRef="BaseAddressChoices" spirit:format="choice"
spirit:prompt="Remap Slave 0 Starting Address:"
spirit:state="remapped">0x10000000</spirit:remapAddress>

<spirit:range spirit:resolve="user" spirit:id="range slv0 mirror"
spirit:prompt="Slave 0 Range:">0x00010000</spirit:range>

</spirit:baseAddresses>

</spirit:mirroredSlaves>

;)épirit :busInterface>
7.5.2.7 Port mapping

The following schema details the information contained in the portMaps element, which appears as an
element inside busInterface element.

75 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces

IP-XACT Standard/D4, December 19, 2007

7.5.2.7.1 Schema

e Defines which logical
Listing of maps batween companant 15 the physical right bit belows
ports and bus perts.

Bus port name a5 specified inside

the abstraction definition

B atiributes

o spirit prompt.att

Use thiz atbute group on long intager
elements.

spirit:legicalPort [}

Logical part From abstraction
definition

[Fspiritleft
ype [xsnenhegativelteger

Defines which lagical bit maps to
the physical leF bit belowe

[attributes
arp spir prompt.att

Use thiz atbute group on long intager
clements.

[Fspiritright
ype [xsnenhegativelteger

= s|)iri|:|)0r|Mﬂ|

h logical bit maps to

Maps a component's I

in a bus descrption, This s the
lonical to physical mapping, The
logical pin cornes Fam the bus
interface and the physical pin from
the commpanent.

Cor name as specifie
inside the madel part section

Hl sitributes
o spiritlong.prompt.att

Use thi stiibute group on long integer
slements.

spiritphysicalPort [}

Physical pert From this companent

Fspiritieft
Fopiriciens 1] 5
s

type [xs

Hl sitributes
o spiritlong.prompt.att

Use this atribute group on long integer
The apticnal elernents &ft and right elements.
n be use a

Defniton of the
vactorad port.

2 used to select 3
signal wector ta map ta the bus
interface.

7.5.2.7.2 Description

The portMaps (optional) element contains an unbounded list of portMap elements. Each portMap
element describes the mapping between the logical ports, defined in the referenced abstraction definition, to
the physical ports, defined in the containing component description.

a)

b)

logicalPort (mandatory) contains the information on the logical port from the abstraction definition.

1)

2)

name (mandatory) specifies the logical port name. The name shall be a name of a logical port
in the referenced abstraction definition that is defined as legal for this interface mode. The
name clement is of type Name.

vector (optional) is used for a vectored logical port to specify the indices of the logical port
mapping. The vector element contains two subelements: left and right. The values of left and
right shall be less than the width if specified for the logical port from the abstraction defini-
tion. The left and right elements are both of type nonNegativelnteger. The left and right ele-
ments are configurable with attributes from long.prompt.att, see X.Y.Z on configuration.

physicalPort (mandatory) contains information on the physical port contained in the component.

)

2)

name (mandatory) specifies the physical port name. The name shall be a name of a port in the
containing component. The name element is of type Name.

vector (optional) is used for a vectored physical port to specify the indices of the physical port
mapping. The vector element contains two subelements: left and right. The values of left and
right shall be within the left and right values specified for the physical port. The left and right
elements are both of type nonNegativelnteger. The left and right elements are configurable
with attributes from long.prompt.att, see X.Y.Z on configuration.

The same physical port may be mapped to a number of different logical ports on the same or different bus
interfaces, and the same logical port may be mapped to a number of different physical ports. For port
mapping rules, see 7.3.4.1.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 76
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007

7.5.2.7.3 Example

Draft Standard for

The example below shows a portion of a bus interface for an APB bus interface. A mapping from the logical
port PADDR to the lower 12 bits of the physical port paddr. A mapping from the logical port PWNRITE to

the physical port pwrite.

<spirit:portMap>

<spirit:logicalPort>

<spirit:name>PADDR</spirit:name>

</spirit:logicalPort>

<spirit:physicalPorts>

<spirit:name>paddr</spirit:names>

<spirit:vectors>

<spirit:left>11l</spirit:left>

<spirit:right>1ll</spirit:right>

</spirit:vectors>

</spirit:physicalPort>

</spirit:portMap>
<spirit:portMap>

<spirit:logicalPorts>

<spirit:name>PWRITE</spirit:name>

</spirit:logicalPorts>

<spirit:physicalPorts>

<spirit:name>pwrite</spirit:name>

</spirit:physicalPorts>

</spirit:portMap>

7.6 Component channels

7.6.1 Schema

The following schema details the information contained in the channels element, which may appear as an

element inside the top-level component element.

Lists all channel connections
between mirror interfaces of this
companent.

77

Drefines a set of mirvared intetfaces
of this carnponent that are
connected ta one another,

" spiritname

___________________ .
'

spirit nameGroup [F——— —see— [=H - 0TiZT e 1

Elernent narne for display purposes,
Twpically a few words providing a
more detailed andfor uzer-fiendly
narme than the spirit:name.,

A graup of elernents for name
(asinarne), displayMame and
deseription

Full deseription string, typically Far
documentation

Espiri't:I)l|slnterfm:e:F!e:f

|t\;pe | xzMame

2.

Caontains the name of one of the
bus interfaces that is part of this
channel, The ordering of the
references may be important to the
design environrnent.

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

7.6.2 Description

The

channels element contains an unbounded list of channel elements. Each channel element contains a

list of all the mirrored bus interfaces in the containing component that belong to the same channel.

a)

b)

The

nameGroup group includes the following. See X.Y.Z.

1) name (mandatory) identifies the channel.

2) displayName (optional) allows a short descriptive text to be associated with the channel.
3) description (optional) allows a textual description of the channel.

busInterfaceRef (mandatory) is an unbound list of references (a minimum of two) to mirrored bus
interfaces in the containing component. Each mirrored bus interface in a component may be refer-
enced in any channel at most once. The order of this list may be used by the design environment in
some way and shall be maintained. The busInterfaceRef element is of type Name.

referenced busInterfaces need to be compatible, which implies the underlying busDefinitions

(referenced by VLNV) need to be compatible as well. The maximum number of mirrored-master interfaces
that can be connected to a channel is determined by the smallest value of maxMasters in the busDefinitions
of the referenced busInterfaces. The maximum number of mirrored-slave interfaces is likewise determined
by the corresponding maxSlaves values.

See also: SCR 3.1, SCR 3.2, SCR 3.3, SCR 3.4, and SCR 3.5.

7.6.3 Example

The following example shows a channel with two connected busInterfaces.

<spirit:busInterfacess>
<spirit:busInterfaces
<spirit:name>InterfacelA</spirit:name>
<spirit:busTypes>...</spirit:busType>
<spirit:masters>...</spirit:master>
</spirit:busInterface>
<spirit:busInterface>
<spirit:name>InterfaceB</spirit:name>
<spirit:busType>...</spirit:busType>
<spirit:slave>...</spirit:slave>
</spirit:busInterface>
</spirit:busInterfaces>

<gpirit:channelss>
<spirit:channel>
<spirit:names>masterChannel</spirit:name>
<spirit:displayName>Channel for Master communication</spirit:displayName>

<spirit:description>This channel includes all transaction calls used by
the master component of the system</spirit:descriptions>

<spirit:busInterfaceRef>InterfaceA</spirit:busInterfaceRef>
<spirit:busInterfaceRef>InterfaceB</spirit:busInterfaceRef>
</spirit:channel>
</spirit:channelss>

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 78
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007

79

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Draft Standard for

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

7.7 Address space

An address space is defined as a logical addressable space of memory. Each master interface can be assigned
a logical address space. Address spaces are effectively the programmer's view looking out from a master
port. Some components may have address spaces associated with more than one master interface (for
instance, a processor that has a system bus and a fast memory bus. Other components (for instance, Harvard
architecture processors) may have multiple address spaces - one for instruction and the other for data.

7.7.1 addressSpaces

7.7.1.1 Schema

The following schema details the information contained in the addressSpaces element, which may appear
as an element inside the top-level component element.

spiritnameGroup

& group of elements for name (rsmame),
displayame and description

Hl attributes

Fovitrange 1 7 spiitlong promptat
Spir: scaledPosilivelnieger Uss this surbure group on bong Iteger

The addhess range of an addhess black, slernents.
Expressed as the number of addressable units

accessible to the block. The range and the

wiidth are related by the following formulas:

number_of_bits_in_block = spirit:bitsInLall *
spiritirange.

spirit:biockSize =]

This group of elements deseribes the number
oF addpess able univz 2nd the width oF 3 row of
an addrass block in 2 memory map.

Mot that this is a group, not an element, It
does not sppesrin the KhIL, but its contents
may.

number_of rows_in_block =
rumber_oF_bits_in_black / spirtiwidth

[Fspirit:wicth

[attributes

o spirk prompt.att

type [xsnonMegstivelnteger

The bit width of a rows in the address black.

Use this stuibute group on long integer
elements,

The range and the width are related by the
fallowing formnulas:

nuumnber_of bits_in_black =
spitit:addressUnitBits * spiritrange

.= S irk E)g_ number_of rows_in_blodk =
o 545 : rumber_of bits_in_block | spirtiwidth
TF this component is bus master, this lsts all 1.0

the address spaces
defined by the component.

i

This defines & logical space, refarsnced by »

buz master,

The number of data bits in an sddressable
sable (3 bis).

i Specfies an executable software image to be

! loaded into a processors address space. The

+ Format of the image is not specified. Tt could,

3 Forexample, be an ELF loadfile, o it could be

§ raw binary or asci hex data For loading
ctly into a rernory rodel instance,

zlocalMemoryMap
& | spirt ocaMemoryapType

V' Provides the lacal memony map of an address
| space, Blocks in this memory map are

+ accessable to master interfaces on this

i component that reference this address space.
i They are not accassabls to avy enemal

' master interface,

7.7.1.2 Description

The addressSpaces element contains an unbouded list of addressSpace clements. Each addressSpace
element defines a logical address space seen by a master bus interface. It contains the following elements.

a) nameGroup group includes the following. See X.Y.Z.
1) name (mandatory) identifies the address space.
2) displayName (optional) allows a short descriptive text to be associated with the address space.
3) description (optional) allows a textual description of the address space.

b) blockSize group includes the following.

4) range (mandatory) gives the address range of an address space. This is expressed as the num-
ber of addressable units of the address space. The size of an addressable unit is defined inside

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 79
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

g

)

the addressUnitBits element. The type of the range element is set to scaledPositivelnteger.
The range element is configurable with attributes from long.prompt.att, see X.Y.Z on configu-
ration.

width (mandatory) is the bit width of a row in the address space. The type of this element is set
to nonNegativelnteger. The width element is configurable with attributes from
long.prompt.att, see X.Y.Z on configuration.

The optional addressUnitBits elements defines the number of data bits in each address increment of
the address space.

executableImage (optional) describes the details of an executable image that can be loaded and exe-
cuted in this address space on the processor to which this master bus interface belongs.

localMemoryMap (optional) describes a local memory map that is seen exclusively by this master
bus interface viewing this address space. See 7.7.6.

parameters (optional) specifies any parameter data value(s) for this address space.

vendorExtensions (optional) holds any vendor-specific data from other name spaces which is appli-
cable to this address space.

7.7.1.3 Example

The following example shows the definition of an address space with a range (length) of 4 giga-bytes and a
width of 32 bits.

<spirit:addressSpaces>

<spirit:addressSpaces>

<spirit:name>main</spirit:name>
<spirit:range>4G</spirit:range>
<spirit:width>32</spirit:width>
<spirit:addressUnitBits>8</spirit:addressUnitBits>

</spirit:addressSpace>

</spirit:addressSpaces>

7.7.2 executablelmage

7.7.2.1 Schema

The following schema details the information contained in the executableImage element, which may appear
inside an addressSpace clement.

80

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

H attributes

spiritid

bype | xsl
| |uze |reguired

' spiritimageType |

' .
ibype |z Name '
u=e | optionsl 1

-iaspir'rt:e:ecutahlelmage mm—

Specifies an executable softweare image to
be laaded inte a processors address space,
The farmat of the image is nat specified,

It could, For example, be an ELF loadfile, Leluseis
at it could be rawe binary or ascii hex data | | L ______
Far loading directhy inta a memary model ag

instance, .

Additional infarmation about the load
rmadule, &.q. stack baze addresses, table

@ addrezzes, ate,
h

Crefault commands and Aags for softweare
language taols needed to build the
axacutable image,

" fileSetRefGroup [

T T
Contains & graup of file zet references that
indicates the set of fle sets complying 1.0
with the toaol set of the cunent executable A reference to a filaSet,
image.

Container Far wendor specific extensions.

7.7.2.2 Description

The executablelmage element contains a list of further elements.

a)

b)

¢)
d)

e)
f)

2

h)

id (mandatory) attribute uniquely identifies the executableImage for reference else where in this
description, reference location unknown.

imageType (optional) attribute can describe the binary executable format (e.g., ELF, raw binary,
etc.). The list of possible values is user defined.

name (reqired) identifies the location of the executable object. The type is spiritURI.
description (optional) allows a textual description of the address space.
parameters (optional) specifies any parameter data value(s) for this executable object.

languageTools (optional) contains further elements to describe the information need to build the
execuable image. See 7.7.3.

fileSetRefGroup (optional) element contains a list of fileSetRef subelements, each one containing
the name of a file set associated with this executableImage.

vendorExtensions (optional) holds any vendor-specific data from other name spaces which is appli-
cable to this address space.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 81
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

7.7.2.3 Example

The following example shows the definition of a binary executable produced using the Gnu C Compiler
(GCC) software tools.

<spirit:executableImage spirit:id="gnu" spirit:imageType="bin">
<spirit:name>calculator.x</spirit:name>
<spirit:description>Calculator function</spirit:names>
<spirit:languageToolss>
<spirit:fileBuilders>
<spirit:fileType>cSource</spirit:fileType>

<spirit:command spirit:id="gccCompilerDefault"s> gcc</
spirit:command>

<spirit:flags spirit:id="gccCFlags">-c -g -I${INCLUDES LOCATION}/
software/include -I${GCC_LIBRARY}/common/include</spirit:£flagss>

</spirit:fileBuilder>
<spirit:fileBuilders>
<spirit:fileType>asmSource</spirit:fileType>

<spirit:command spirit:id="gccAssemblerDefault">gcc</
spirit:command>

<spirit:flags spirit:id="gccAsmFlags">-c -Wa,--gdwarf2 -
I${INCLUDES LOCATION}/software/include -I${GCC _LIBRARY}/common/include</
spirit:flags>

</spirit:fileBuilder>
<spirit:linker spirit:id="gccLinker">gcc</spirit:linkers>

<spirit:linkerFlags spirit:id="gccLnkFlags">-g -nostdlib -static -
mcpu=arm9</spirit:linkerFlags>

<spirit:linkerCommandFile>
<spirit:name spirit:id="1nkCmdFile">linker.ld</spirit:name>

<spirit:commandLineSwitch spirit:id="1lnkCmSwitch">-T</
spirit:commandLineSwitchs>

<spirit:enable spirit:id="1lnkCmdEnable">true</spirit:enable>
<spirit:generatorRef>org.spiritconsortium.tool</spirit:generatorRef>
</spirit:linkerCommandFile>

</spirit:languageTools>

<spirit:fileSetRefGroup>
<spirit:fileSetRef>calculatorAppC</spirit:fileSetRef>
<spirit:fileSetRef>mathFunctions</spirit:fileSetRef>
<spirit:fileSetRef>coreLib-gnu</spirit:fileSetRef>

</spirit:fileSetRefGroup>

</spirit:executableImage>
7.7.3 languageTools
7.7.3.1 Schema

The following schema details the information contained in the languageTools element, which may appear as
an element inside the executableImage element.

82 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

'
r- spiritfileBuilder
T

[ittty Rt LRt
i

& genetic placeholder For any fle buildar
like compilers and assernblers, It contains
the fle types ta which the cormmand
should be applied, and the Aags ta be used

with that carnrnand.
B attributes

| grp spiritstring.prompt.att
by | xsstring

[SR A IIze this attrbute group an string
elements,

B attributes

| grp spiritstring.prompt.att

.................. . Lze this attibute group on string
elernents,

Drefault cornmands and Aags Far software
language toals needed to build the
executable image,

.
1
@ o
- !
=1
e !
-
=
{\= Y
(=]
=
=
@ |
=
(=T
(=T
[
|
%

Specifies a linker cormmand file,

7.7.3.2 Description

The languageTools element contains the following list of optional elements to document a set of software
tools used to create an executable binary documented by the parent executableImage element. Multiple
languageTools information can be created to reflect various software tool sets that can create this executable
binary file.

a) fileBuilder (optional) contains the information details of a compiler or assembler for software
source code. See 7.7.4.

b) linker (optional) documents the link editor associated with the software tools described in file-
Builder. The linker element is of type string. The linker element is configurable with attributes
from string.prompt.att, see X.Y.Z on configuration.

c) linkerFlags (optional) can also be associated with any linker information. The linkerFlags element
is of type string. The linkerFlags element is configurable with attributes from string.prompt.att, see
X.Y.Z on configuration.

d) linkerCommandFile (optional) documents a file containing commands the linker follows. See
7.1.5.

7.7.3.3 Example

The following example shows the definition of GCC software tools used together to produce an executable
binary code file.

<spirit:languageTools>
<spirit:fileBuilders>
<spirit:fileType>cSource</spirit:fileType>
<spirit:command spirit:id="gccCompilerDefault"> gcc</spirit:command>
<spirit:flags spirit:id="gccCFlags">-c -g -I${INCLUDES LOCATION}/
software/include -I${GCC_LIBRARY}/common/include</spirit:£flags>
</spirit:fileBuilder>

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 83
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

<spirit:fileBuilder>
<spirit:fileType>asmSource</spirit:fileType>
<spirit:command spirit:id="gccAssemblerDefault">gcc</spirit:commands>
<spirit:flags spirit:id="gccAsmFlags">-c -Wa,--gdwarf2 -
I${INCLUDES LOCATION}/software/include -I${GCC _LIBRARY}/common/include</
spirit:flags>
</spirit:fileBuilders>
<spirit:linker spirit:id="gccLinker"s>gcc</spirit:linker>
<spirit:linkerFlags spirit:id="gccLnkFlags">-g -nostdlib -static -
mcpu=arm9</spirit:linkerFlags>
<spirit:linkerCommandFiles
<spirit:name spirit:id="1nkCmdFile">linker.ld</spirit:name>
<spirit:commandLineSwitch spirit:id="1nkCmSwitch">-T</
spirit:commandLineSwitchs>
<spirit:enable spirit:id="1lnkCmdEnable">true</spirit:enable>
spirit:generatorRef>org.spiritconsortium.tool</spirit:generatorRef>
</spirit:linkerCommandFiles>

</spirit:languageTools>

7.7.4 fileBuilder

7.7.4.1 Schema

The following schema details the information contained in the fileBuilder element, which may appear as an
element inside a languageTools element within the executableImage element.

84

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces

A generic placeholder For anvy file builder
like cornpilers and azzernblers, It contains
the file types to which the command
should be applied, and the Aags to be used
wiith that command,

spirit: fileType [—]

con =
bype | xsstring

Drefault cornmand uzed to build files of the
specified fileTwpe,

The type of a file refenced by SPIRIT.
Either: fileType - a known SPIRIT fle
type, of uzetFileTywpe - a fle type not et
knawn by SPIRIT. IF multiple types are
specified, the arder is important, The first
type iz the primary type of the file and
the latter bypes are types that may be
ernbedded in the file. Far exarmple a
Yerlag Ale containing PSL aszartions,

Flagz given to the build comrmand whan
building Fles of this type.

IP-XACT Standard/D4, December 19, 2007

E5|1:irit.'t'llo.=:T3|r|1u.=:

w5 =tring

Enurnerated file types known by SPIRIT,

E3pirit:l|so:':rFiIo:':T3rpn.=:

|type |xs:string

Free Farm file bype, nat - yet - knosn by
SPIRIT .

B attributes

| grp spiritstring.prompt.att |

Use this attribute group an string
elernents,

B attributes

| grp spirit:string.prompt.att |

Uze thiz attribute group on string
elemants,

B attributes

| drp spirittbool.prompt.att |

Llze thiz attribute group on boolean
elements,

IF true, replace any default Aags value
with the walue in the sibling Rags elernent,
Othenwize, append the contents of the
sibling Aags elernent ta amy default Aags
walue,

I the value is true and the "Aags"
alernant iz arnpty ar mizsing, this will
have the result of cleating any default
Aags value,

Container For vendor specific extanzions.

7.7.4.2 Description

The fileBuilder element contains the following mandatory and optional elements.

a)

b)

d)

e)

fileType group includes the following, of which one is required.

fileType (required) describes a file containing software source code in a language type recog-
nized by IP-XACT, see XXX for a list of valid choices; otherwise, userFileType (required) can
be used to specify any user-defined language type.

command (optional) element defines a compiler or assembler tool that processes the software of
this type. The command element is of type string. The command element is configurable with
attributes from string.prompt.att, see X.Y.Z on configuration.

flags (optional) documents any flags to be passed along with the software tool command. The flags
element is of type string. The flags element is configurable with attributes from string.prompt.att,
X.Y.Z on configuration.

replaceDefaultFlags (optional) documents flags that replace any of the passed default flags. The
replaceDefaultFlags element is of type Boolean. The replaceDefaultFlags element is configurable
with attributes from bool.prompt.att, see X.Y.Z on configuration.

vendorExtensions (optional) holds vendor-specific data from other name spaces applicable to
building this software source code file into an executable object file.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 85
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

7.7.4.3 Example
The following example shows the specification for compiling a C language file using GCC.

<spirit:fileBuilders>
<spirit:fileType>cSource</spirit:fileType>
<spirit:command spirit:id="gccCompilerDefault"> gcc</spirit:command>
<spirit:flags spirit:id="gccCFlags">-c -g -I${INCLUDES LOCATION}/software/
include -I3${GCC_LIBRARY}/common/include</spirit:£flagss>
</spirit:fileBuilder>

7.7.5 linkerCommandFile
7.7.5.1 Schema

The following schema details the information contained in the linkerCommandFile element, which may
appear as an element inside a languageTools element within the executableImage element.

[astriputes

Sp'm:'_rf'm"?_ = | grp spiritsstring.prompt.att |
bype | spirt:spirtURI Use this attrbute group on string

Linker cormmand file name, elernents,

B attributes

|E. N N
|| spiricommandLineSwitch L |grp spiritstring.prompt.att |
bype |xs:31ring

Ize this attrbute group on string
The cornmand line switch to specify the elements,

linker command file,
H attvibuites

~ spirit:enable

Specifies a linker command file,

=
type

| grp spirit:hool.promipt.att |

Uze this attribute group on boolean
alamnents,

H
h
 Sperifies whether to generate and enable
v the linker command fle.

H

h

& reference to a generator element,

'——Eas|rir'rt:vemlorElctensions

Cantainer For vendor specific extensions.

7.7.5.2 Description

The linkerCommandFile element contains information related to contents of the linker and linkerFlags
elements, specifically about a file containing linker commands. It contains the following mandatory and
optional elements.

a) name (mandatory) documents the location and name of the file containing commands for the linker.
The name element is of type spiritURI. The name element is configurable with attributes from
string.prompt.att, see X.Y.Z on configuration.

86 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

b) commandLineSwitch (mandatory) documents the flag on the command line calling the linker. The
commandLineSwitch element is of type spiritURI. The commandLineSwitch element is config-
urable with attributes from string.prompt.att, see X.Y.Z on configuration.

¢) enable (mandatory) indicates whether to use this linker command file in the default scenario. The
enable clement is of type Boolean. The enable clement is configurable with attributes from
bool.prompt.att, see X.Y.Z on configuration.

d) generatorRef (optional) documents the generator that creates and launches the linker command.
There may be any number of these elements present.

e) vendorExtensions (optional) holds any vendor-specific data from other name spaces applicable to
using this linker.

7.7.5.3 Example

The following example shows the definition of a status register which can be accessed within a component
during verification.

<spirit:linkerCommandFiles>
<spirit:name spirit:id="linkerCommandFileName2">linker.ld</spirit:name>
<spirit:commandLineSwitch spirit:id="1lnkCmSwitch">-T</
spirit:commandLineSwitchs>
<spirit:enable spirit:id="1lnkCmdEnable">true</spirit:enable>
<spirit:generatorRef>org.spiritconsortium.tool.gccLinkerLauncher</
spirit:generatorRef>

</spirit:linkerCommandFile>

7.7.6 Local memory map
7.7.6.1 Schema

The following schema details the information contained in the localMemoryMap element, which may
appear inside an addressSpace clement.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 87
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007

spirit nameGroup =

displayMarne and description

Pravides the local memary map of an
address space. Blacks in this memary
map are accessable to master interfaces
aon thiz carmpanent that referance this
addrezs space, They are not acceszable
to any external master interface,

>

A group elerments For 3 mernaryMap

7.7.6.2 Description

A group of elernants For narme (xsinanne],

Draft Standard for

" spiritname

Elernent narme For display purpozes.

Typically a Few wards praviding a mare
detailed andjior user-fiendly name than
the spirit:name.

Full description string, typically For
docurentation

N spirit:addressBlock

[H]

bype | spirit addressBlockType]

This iz a single contiguous block of
mernory inside a mermary map,

N spirit:bank

H
bype |spir'rt: addressBankType

Represents a bank of mermory made up of
address blocks or ather banks, It has a
bankalignrnent attrbore indicating
whether its blacks are aligned in 'parallel'
[occupying adjacent bit Felds) or ‘seral’
[occupying contiquous addrezzes), Itz child
blacks da not contain addreszes or bit
offsets,

spirit:subspaceMap A

bype [spirtt: subspaceRefType |

Maps in an address subspace from across
3 buz bridge, Itz rnasterfef attrbute
refers by name to the raster bus interface
on the other side of the bridge. It rust
match the masterkef attribute of 2 bridge
element on the slawe interface, and that
bridge elernant riust be designated az
opaque,

Some processor components require specifying a memory map that is local to the component. Local memory
maps (the localMemoryMap clement in the addressSpace clement of the component) are blocks of
memory within a component that can only be accessed by the master interfaces of that component.

a) nameGroup group includes the following. See X.Y.Z.

1) name (mandatory) identifies the address space.

2) displayName (optional) allows a short descriptive text to be associated with the address space.

3) description (optional) allows a textual description of the address space.

b) memoryMap group (optional) is any number of the following.

1) addressBlock describes a single block. See 7.8.2.

2) bank represents a collections of address blocks, banks or subspace maps. See 7.8.4.

3) subspaceMap maps the address subspaces of master interfaces into the slave’s memory map.

See 7.8.8.

7.7.6.3 Example

The following example shows a secure register space with limited access to the master bus interface as the

definition of a local memory map for an address space.

<spirit:localMemoryMap>
<spirit:name>secureRegs</spirit:name>

88 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

<spirit:displayName>Secure Registers</spirit:displayName>
<spirit:description>Secure registers area</spirit: descriptions>
<spirit:addressBlock>
<spirit:baseAddress spirit:id="secureRegs">0x50000000</
spirit:baseAddress>
<spirit:range>64</spirit:range>
<spirit:width>32</spirit:width>
<spirit:usage>register</spirit:usage>
<spirit:access>read-write</spirit:access>
</spirit:addressBlock>
</spirit:localMemoryMap>

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

89

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007

90

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Draft Standard for

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

7.8 Memory maps
7.8.1 Memory map
7.8.1.1 Schema

The following schema details the information contained in the memoryMap element, which may appear as
an element inside the component element. It is of type memoryMapType.

=pirit:nameGroup

A group of elernents For name (rs:namme),
displayMame and description

J, spirit:addressBlock ¥
|type |spir'rt:addressElIoc:kType

This is a single contiguous black of memary inside
a Memary map,

spirit:hank

E]

bype | spirit addressBankType
= Represents a bank of mermory made up of

address blocks or other banks, It has a
bankalignrent attibute indicating whether its
blocks are aligned in 'parallel’ foccupying adjacent
bit fields) or 'serial' (occupying contiguous
addresses), Its child blacks do not contain
addreszes or bit offzats,

J spirit:subspaceMap H‘FI

|type |Spir'rt:subspaceRenype

bype | spirt: memoryhdapType A group elements For 3 memoryMap

1.

The sat of address blacks a bus slave contributes
to the bus' address space,

Maps in an address subspace Fromn across a bus
bridge. Its masterfef attribute refers by name to
the master buz interface on the other side of the
bridge. It must match the masterfef attribute of
a bridge elernent an the slave interface, and that
bridge element rust be designated as opaque,

It spiritmemoryRemap

:typelspirﬂ:memoryRemapType i
S st EETL

|

|

|

|

|

|

|

|

R S

T=F

I

|

|

|

|

|

|

|

|

_E_EE;spiri‘t:a(l(lressUni‘tBi‘ts v
ibype | e postivelnteger v

The number of data bits in an addreszable unit,
The default iz byte addressable (3 bits),

7.8.1.2 Description

A memory map can be defined for each slave interface of a component. The memoryMap element is
defined at the top of the component and then referenced in a component slave interface. It contains the
following mandatory and optional elements.

a) nameGroup group includes the following. See X.Y.Z .
1) name (mandatory) identifies the memory map.
2) displayName (optional) allows a short descriptive text to be associated with the memory map.
3) description (optional) allows a textual description of the memory map.
b) memoryMap group (optional) is any number of the following.
1) addressBlock describes a single block. See 7.8.2.
2) bank represents a collections of address blocks, banks or subspace maps. See 7.8.4.

3) subspaceMap maps the address subspaces of master interfaces into the slave’s memory map.
See 7.8.8.

¢) The optional memoryRemap element describes how the address spaces, banks and subspace maps
are to be mapped differently on a slave bus interface in a specific remap state.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 90
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

IP-XACT Standard/D4, December 19, 2007

Draft Standard for

d) The optional addressUnitBits elements defines the number of data bits in each address increment of
the memory map. This is required to allow the elements in the memory map to define items such as

register offsets.

7.8.2 Address block

7.8.2.1 Schema

The following schema details the information contained in the addressBlock element, which may appear in
a memoryMap clement. It is of type addressBlockType.

‘spirii:addressBll]l:k

spiritnameGroup

A group oF slements For name (xsmams),
displayMName and deseription

t—{spirit =]

This group of slemants describes an sbsolute or
velatiwe address of an address block in @ memary
map.

Mote that this is a group, net an element, It does not
appear in the XML, but its contents may,

e | spirt addressBlockType T

This i single contiguous block of memary inside 5
memery map.

7.8.2.2 Description

spirit:blockSize [5]

This qroup of slements describes the nurber of
addrasasble units and the width of 5 rovs <F an
ddress black in 3 memeny map.

Hate that this is group, not an element, Tt does not
appear in the XML, but its contents may,

@stpim:lmseml(lress

byie | spirt scaledhonMegativel rteger
Base of an address block, bank, subspace map or bype
idetaut | Base Address: |

L {spirit:acdressBlockExtensions |}

This i 3 group of optienal slements commenty added
o warious types of address blacks in memery map,

addrass space.,

1,s|)iril:|)ronl|)t

B atiributes
orp spiritlong.att

Use thiz attribute group on leng integer elements for
wihich the schema supplies 2 default prompt attribute,

XEEring

Provides a string used to prompt the user for
User resohed propeny ales.

;spim:range l

3 attributes

type | spirt: scaledPositiventeger

The address range of an sddress block, Expressed as
the number of addresssble units accessible to the
black. The range and the width are related by the
Following Forrmulast

nurnber_of _bits_in_black = spirit:bitzInLaL *
spiritirange

number_of_ows_in_block = nurnber_of_bits_in_black
1 spiritwidt]

;spim:wi(lth l

oy spiritlong.prompt.att

Lse this sttribute group on long integer elements,

A stteibutes

type [xs:nonMegativelntener

The hit width of a rouw in the address black. The range
and the width are related by the Fallowing Formaulas:

number_of_bits_in_block = spirit:addressUnitBits *
spifitrange

number_of rows_in_block = number_of bits_in_block
I spirit it

spiri:memoryBlockData

This qroup of optional elements can be used to
provide sdditional descriptions te 2n address block or
bank.

Mote that thiz iz 2 group, not an elernent, It does not
appear in the XML, but its contents may.

k spiritregisterData

This group of optional elements describes the memary
rnapped registers of an address bloc

Container for vendor specific extensions,

ofp spiritzlong.prompt.att

Use this attribute group on long integer elements,

The addressBlock element describes a single, contiguous block of memory that is part of a memory map. It
contains the following mandatory and optional elements.

a) nameGroup group includes the following. See X.Y.Z.
1) name (mandatory) identifies the address block.
2) displayName (optional) allows a short descriptive text to be associated with the address block.
3) description (optional) allows a textual description of the address block.

b) addressSpecifier group includes the following.

1) baseAddress (mandatory) specifies the starting address of the block. The baseAddress cle-
ment is of type scaledNonNegativelnteger. The baseAddress element is configurable with

91 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

attributes from long.att, see X.Y.Z on configuration. The prompt (optional) attribute allow the
setting of a string for the configuration and has a default value of “Base Address:”.

c) blockSize group includes the following.

2) range (mandatory) gives the address range of an address block. This is expressed as the num-
ber of addressable units of the memory map. The size of an addressable unit is defined inside
the containing memoryMap/addressUnitBits element. The range element is of type scaled-
Positivelnteger. The range element is configurable with attributes from long.prompt.att, see
X.Y.Z on configuration.

3) width (mandatory) is the bit width of a row in the address block. A row in an address block sets
the maximum single transfer size into the memory map allowed by the referencing bus inter-
face and also defines the maximum size that a single register can be defined across an intercon-
nection. The width element is of type nonNegativelnteger. The width element is configurable
with attributes from long.prompt.att, see X.Y.Z on configuration.

d) memoryBlockData group contains information about usage, access, volatility and other parameters.
See 7.8.3.

e) registerData group contains information about the grouping of bits into registers and fields. See
7.10.1.

f) vendorExtensions (optional) adds any extra vendor-specific data related to the address block.

The range and width elements are related by the following formulas
number_of bits_in_block = addressUnitBits * range

number_of rows_in_block = number_of bits_in_block / width

width-1 0
« >

3

"

memoyyMap

LR/ SHENUNSSaIppE . aBuel

v

+—>
addressUnitBits

See also: SCR 8.1.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 92
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007

7.8.2.3 Example

Draft Standard for

The following example shows an address block starting at address 0x1 000 containing 64 addressable 8 -bit

units, organized into larger 32-bit units.

| <spirit:memoryMap>
<spirit:addressBlock>
<spirit:name>ABl</spirit:names>

<spirit:range>64</spirit:range>
<spirit:width>32</spirit:width>

</spirit:addressBlock>

</spirit:memoryMap>

7.8.3 memoryBlockData group

7.8.3.1 Schema

<spirit:baseAddress>0x1000</spirit:baseAddress>

<spirit:addressUnitBits>8</spirit:addressUnitBits>

The following schema details the information contained in the memoryBlockData group, an optional part of

both addressBlock and bank.

spiritmemoryBlockData [—] ==

This group of opticnal elerments can be used to
prowide additional descriptions ta an address black
or bank,

Mate that this is a group, not an element, It does
not appear in the XL, but its contents may,

7.8.3.2 Description

Indicates the usage of this block, Possible walues
are ‘memory’, 'register’ and ‘reserved',

false when not present,

|
i

:

|) . '

1 Indicates whether the data is volatile, defaulk ta
I

I

i

|

|

|

aspir'rt:access '
\

i Indicates the accessibility of the data in the
i address block, Possible values are 'read-write',
\ 'read-only' and 'write-onby's
|
Lol spirit: et
g SPINLparameters i
Any additional parareters needed to describe this
address black to the generators,

The memoryBlockData group is a collection of elements that contains further specification of addressBlock
| orbank elements. It contains the following optional elements. (needs data from Gary added)

a) usage (optional) specifies the type of usage for the block or bank to which it belongs: memory, reg-

ister, or reserved.

is False.

or write-only.

tor usage. See X.Y.Z.

b) volatile (optional) is of type Boolean and indicates the data is volatile when set to True. The default
c) access (optional) specifies the accessibility of the data in the address block: read-write, read-only,

d) parameters (optional) details any additional parameters that describe the address block for genera-

93 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
| Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces

7.8.3.3 Example

The following example shows an address block starting at address 0x0 containing 64 addressable memory

locations of 8 bits, organized into larger 32-bit units.

<spirit:memoryMap>

<spirit:addressBlocks>
<spirit:name>ABl</spirit:name>
<spirit:baseAddress>0</spirit:baseAddress>
<spirit:range>64</spirit:range>
<spirit:width>32</spirit:width>
<spirit:usage>memory</spirit:width>

<spirit:volatile>false</spirit:volatiles>

<spirit:accesss>read-write</spirit:access>

</spirit:addressBlock>

<spirit:addressUnitBits>8</spirit:addressUnitBits>

IP-XACT Standard/D4, December 19, 2007

</spirit:memoryMap>

7.8.4 Bank

7.8.4.1 Schema

The following schema details the information contained in the bank element, which can appear in a

memoryMap clement. It is of type addressBankType.

A attributes

aspirit:l)ankAlignment

— lype|sp\rn:bankAI\gnmemType
use |required

Deescribas whether this bank's blocks are aligned
in ‘parallel’ or ‘serial’,

=pirt:nameGroup

& group of elements for name (isinamel,
displayMame and description

’spirit:hank
tepe spirt addressBankType

Represents a bank of mernory made up of
address blocks or other banks, It has a
bankalignmeant atibure indicating whether its
blocks are aligned in 'parallel’ (occupying adjacent
bit. fields) or 'serial’ (accupying contiguous
addresses), Its child blocks do not contain
addreszes or bit offsats,

spirtt addressSpecifier [

This group of elements describes an absolute or
relative address of an address block in a memary
map.

Mote that this iz a group, not an elerment, It does

_E_ja_ niot appear in the KL, bUb its contents may .,

spirit bankBase [5

This group of elements is carnmon to top lewel

banks and banked banks,

== fspirit:lmseA(l(lress attribute,
|tvpe [spirtt scalzdMonMegstivelrteger i Spirit:p

[sttributes
orp spiritlong.att

Use thiz attribute group on long integer elements
For which the scherna supplies a default prornpt

Baze of an addvess block, bank, subspae map or
address space.

wietaul | Base Address: |

Provides 2 string used to prompt the user for
userrasohved property walues.

spirit:addressBlock
spirt: bankedBlockType

An address black within the bank, Mo address
infarmation is supplied.

A nested bank of blocks within a bank, Mo
address infarmnation is supplied,

spirit:subspaceMap

Thiz graup of aptional elements can be uzed 1o
provide additional descriptions to an address block
or bank.

Mote that this is a group, nat an element, It does
nat appear in the XML, but itz contents may.

Container For wendor specific extensions,

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 94

This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

7.8.4.2 Description

The bank element allows multiple address blocks, banks or subspaceMaps to be concatenated together
horizontily or veritically a single entity. It contains the following attributes and elements.

a) bankAlignment (mandatory) attribute organizes the bank:

1) parallel specifies each item is located at the same base address with different bit offsets. The bit
offset of the first item in the bank always starts at 0, the offset of the next items in the bank is
equal to the widths of all the previous items.

2) serial specifies the first item is located at the bank’s base address. Each subsequent item is
located at the previous item’s address, plus the range of that item(adjusted for LAU and bus
width considerations, rounded up to the next whole multiple). This allows the user to specify
only a single base address for the bank and have each item line up correctly.

b) nameGroup group includes the following. See X.Y.Z.

1) name (mandatory) identifies the bank.

2) displayName (optional) allows a short descriptive text to be associated with the bank.

3) description (optional) allows a textual description of the bank.

c) addressSpecifier group includes the following.

1) baseAddress (mandatory) specifies the starting address of the block. The type of this element
is set to scaledNonNegativelnteger. The baseAddress element is configurable with attributes
from bool.prompt.att, see X.Y.Z on configuration. The prompt attribute allow the setting of a
string for the configuration and has a default value of “Base Address:”.

d) bankBase group include the following. This group is later used inside the bankedBaseType type to

create recursion.

1) addressBlock (multiple usage allowed) is an address block that makes up part of the bank. See
7.8.5.

2) bank (multiple usage allowed) is a bank within the bank. This allows for complex configura-
tions with nested banks. See 7.8.6.

3) subspaceMap (multiple usage allowed) is a reference to the master’s address map for inclusion
in the bank. See 7.8.8.

4) memoryBlockData group contains information about usage, access, volatility and other param-
eters. See 7.8.3.

5) vendorExtensions adds any extra vendor-specific data related to this bank.

See also: SCR 8.2 and SCR 8.3.

7.8.4.3 Example

The following example shows a serial bank with four memory blocks of 1K units of 8-bit data. The only
address specified is 0x1 0000, but this causes address block ram0, raml, ram2, and ram3 to be mapped

to addresses 0x10000, 0x11000, 0x11000 0x12000,and 0x13000 respectively.

<spirit:memoryMap>
<spirit:bank bankAlignment="serial"s>
<spirit:name>bankl</spirit:name>
<spirit:baseAddress>0x10000</spirit:baseAddress>
<spirit:addressBlock>
<spirit:name>ramO</spirit:name>
<spirit:range>0x1000</spirit:range>
<spirit:width>32</spirit:width>
</spirit:addressBlock>
<spirit:addressBlock>

95 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

<spirit:name>raml</spirit:name>
<spirit:range>0x1000</spirit:range>
<spirit:width>32</spirit:width>
</spirit:addressBlock>
<spirit:addressBlocks>
<spirit:name>ram2</spirit:name>
<spirit:range>0x1000</spirit:range>
<spirit:width>32</spirit:width>
</spirit:addressBlock>
<spirit:addressBlock>
<spirit:name>ram3</spirit:name>
<spirit:range>0x1000</spirit:range>
<spirit:width>32</spirit:width>
</spirit:addressBlock>
</spirit:bank>
<spirit:addressUnitBits>8</spirit:addressUnitBits>
</spirit:memoryMap>

7.8.5 Banked address block
7.8.5.1 Schema

The following schema details the information contained in the addressBlock element, which can appear in a
bank element. It is of type bankedBlockType.

spirt nameGroup

& group of elements For name (rziname),
displayMarne and description

_ B attributes
stpim:range ,J.| —
|lype |spmt:scaladPDsmve\megar 'T' o spiritleng.prompt.att

Use this attibura graup on long integer elements.

Expressed as the number of addrassable units
accessible to the block. The range and the width
are related by the follawing Formulas:

nurnber_of_bits_in_block = spirit bitsInLaL *
spirt: blockSize 5 == spititirange

This group of slements describes the number of nurnber_of ows_in_black =
addvugsable unics and the width oF & rew of an b o bits_in_Block [spivt eidih

|

|

|

\

|

‘ The address range of an address block,
|

\

|

|

‘ address block in a memory map.

spirit:addressBlock =
spirit: bankedBlockType

#n address bluck within the bank. Mo address
informnation is supplied.

IMote that this is a group, not an element, It does —\—
not appear in the XML but its contents may, = B attributes
spiritwicdth
by ks nonMegativelnteger drp spiritlong.prompt.att
Use this attribut I t | s
The bit width of 2 row in the address block, The =2 this atiibute group on lang integer elemants

vange and the width are related by the Follawing
Forrmulas:

nurnber_of bits_in_black = spirit:addressUnitBits
* spiritirange

nurnber_of_rows_in_black =
nurnber_of_bits_in_block [spiritiwidth

gpitit:memoryBlockData

This group of optional elements can be used ta
pravide additional descriptions te an address block
or bank.

Mate that this is 4 group, not an element, It does
not appaar in the XKML, bur itz contenes may.

spirit: addressBlockExtensions [}

This is 2 group of optional elements cornmuonly

addd to warious types of addeess blocks in 2 B

MEMory map. 1 This group of optional elements describes the [
remmory mapped registers of an addvess black

Container For vendor specific extensions,
7.8.5.2 Description

The addressBlock element inside a bank element describes a single, contiguous block of memory that is
part of a bank. It contains the following elements.

a) nameGroup group includes the following. See X.Y.Z.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 96
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1) name (mandatory) identifies the address block.
2) displayName (optional) allows a short descriptive text to be associated with the address block.
3) description (optional) allows a textual description of the address block.

b) blockSize group includes the following.

4) range (mandatory) gives the address range of an address block. This is expressed as the num-
ber of addressable units of the memory map. The size of an addressable unit is defined inside
the containing memoryMap/addressUnitBits element. The type of this element is set to
scaledPositivelnteger. The range element is configurable with attributes from long.prompt.att,
see X.Y.Z on configuration.

5) width (mandatory) is the bit width of a row in the address block. A row in an address block sets
the maximum single transfer size into the memory map allowed by the referencing bus inter-
face and also defines the maximum size that a single register can be defined across. The type of
this element is set to nonNegativelnteger. The width element is configurable with attributes
from long.prompt.att, see X.Y.Z on configuration.

¢) memoryBlockData group contains information about usage, access, volatility and other parameters.
See 7.8.3.

d) registerData group contains information about the grouping of bits into registers and fields. See
7.10.1.

e) vendorExtensions (optional) adds any extra vendor-specific data related to the address block.

NOTE—The bankedBlockType of a addressBlock clement is almost identical to the addressBlockType of an
addressBlock element(see 7.8.2); the only difference is there is no baseAddress in the bankedBlockType version.

See also: SCR 8.3.

7.8.5.3 Example

See the example in 7.8.4.3.
7.8.6 Banked bank
7.8.6.1 Schema

The following schema details the information contained in the nested bank element, which can appear in
another bank element. It is of type bankBankType.

97 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

[attributes

'spirit:hank Alignment

— |tvpe |spir'rt:bankAIignmentType
uzg | required

|

|

|

| Drescribes whether this bank's blacks are aligned
| in 'parallel or 'serial's
|

|

|

spirit:bank
bype | spirt: bankedBankType

A nested bank of blocks within a bank. Mo
address inforrnation is supplied.

Unique narne

-:type xsstring

=pirit:nameGroup =

A group of elernents For name (xs:name], E Element name For display pUpOSEs, Typically 2
displayame and description : fesw words providing a more detailed andfor
1 uzer-fiendly name than the spiritinarme,

i " spirit:description E

ibype | xsstring

Full description string, typically for docurnentation

=pirit:hankBaze [

This group of elements is common ta top lewel
banks and banked banks.

7.8.6.2 Description
The bank element allows multiple address blocks, banks or subspace maps to be to be concatenated together
horizontily or veritically a single entity. It contains the following attributes and elements.

a) bankAlignment (mandatory) attribute organizes the bank:

1) parallel specifies each item is located at the same base address with different bit offsets. The bit
offset of the first item in the bank always starts at 0, the offset of the next items in the bank is
equal to the widths of all the previous items.

2) serial specifies the first item is located at the bank’s base address. Each subsequent item is
located at the previous item’s address, plus the range of that item(adjusted for LAU and bus
width considerations, rounded up to the next whole multiple). This allows the user to specify
only a single base address for the bank and have each item line up correctly.

b) nameGroup group includes the following. See X.Y.Z.
1) name (mandatory) identifies the bank.
2) displayName (optional) allows a short descriptive text to be associated with the bank.
3) description (optional) allows a textual description of the bank.

c) The bank element or type bankedBankType then contains the bankBase group. This group is
defined inside the bank element of type addressBankType. See X.Y.Z. The effect of its inclusion
here creates recursion, where by banks maybe included inside banks included inside banks.

NOTE—A banked bank is similar to a bank in a memory map (see 7.8.4); the only difference is there is no
baseAddress element in a bank of type bankedBankType.

See also: SCR 8.2 and SCR 8.3.

7.8.6.3 Example

Need example.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 98
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

7.8.7 Banked subspace
7.8.7.1 Schema

The following schema details the information contained in the subspaceMap clement, which can appear in
a bank element. It is of type bankSubspaceType.

[attributes

'spirit:masterRef

bype | xsMame
uzg | required

For subspaceMap elernents, this attribute
identifies the master that contains the address
space to be mapped.

V' Element narne For display purposes, Typically a
V Few words providing a more detailed andjior
1 user-fiendly name than the spiritinare,

A group of elernents For name (rs:narme),
displayMame and description where the name iz
optional

Full description string, typically for docurnentation

! Amy parameters that may apply to the subspace
! reference,

|
|
|
|
|
|
|
J spirit:subspaceMap %,_'[
|type | spirt: bankedSubspaceType
|
|
|
|
|
|
|
|
|
|

Container For wendor specific extensions,

7.8.7.2 Description

The subspaceMap element allows a bank to map the address space of a master interface into the bank. It
contains the following elements.

a) masterRef attribute contains the name of the master interface whose address space needs to be
mapped. This shall reference a bus interface name with a interface mode of master. The master inter-
face must also be referenced by a second interface through a slave/bridge/masterRef element, and
the bridge element shall also have the opaque attribute set to True.

b) nameGroupOptional group includes the following. See X.Y.Z .
1) name (optional) identifies the subspace map.
2) displayName (optional) allows a short descriptive text to be associated with the subspace map.
3) description (optional) allows a textual description of the subspace map.

¢) parameters details any additional parameters that apply to the subspaceMap. See X.Y.Z.

d) vendorExtensions adds any extra vendor-specific data related to the subspaceMap.
See also: SCR 8.2.
7.8.7.3 Example
**Add an example here. **

99 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

7.8.8 Subspace map
7.8.8.1 Schema

The following schema details the information contained in the subspaceMap clement, which can appear in
a memoryMap clement. It is of type subspaceRefType.

[attributes
|,spirizmasterRef

| [ipexzhame
requren

Far subspaceMap slements, this attrbute
identifies the master that contains the ddress
space to be mapped.

spirtnamsGroup

aroup o clements Fo aree), : Jay purposes. Typically 2
iplayHame and deseription esiname) § e words providing & mere dersiled sndjar
: eruly narme than the st mame:

o | spirit-subspaceRetType T

Flaps in an address subspace from across 3 bus |
bridge. Tt masterReF attribute refers by name to \
the master bus interface on the other side of the

bridge. It must match the mazterReF amrbute of ‘

2 bridge element on the slave interface, and that
bridge element must be designated as apaque. P)
Full desarption string, typically For documentation

] atiribures
oo spiritdong.att
Use this stabuta group on long integer elements
—@3— for which the schema supplies 3 default prompt

e

h Iy ta the sub @ fsllimﬂ)“se-‘\('“'e“ -
a ters that o pirit: acic S - fe
finy paramatars that May pply to he subspace vpe [spirt: scaledNonhegativelnteger Spiritprompt

! Thiz group of elements describes an sbsalute or
| el ddrens of on address Clock i 3 memory Base of an address block, bank, subspace map or | itype

| map. address space. {default |Base Address: |

| Mote that this s group, not an slement, Tt doss Provides a stting used to prompt the usar far
| ot appearin the ML, bu its contents may. user-resolved property values.

| fny parameters that may apphy to the subspace
| refarence

Container For vandor specifc extensions.

7.8.8.2 Description

The subspaceMap element maps the address subspace of a master interface from an opaque bus bridge into
the memory map. It contains the following elements.

a) masterRef attribute contains the name of the master interface whose address space needs to be
mapped. This shall reference a bus interface name with a interface mode of master. The master inter-
face must also be referenced by a second interface through a slave/bridge/masterRef element, and
the bridge element shall also have the opaque attribute set to True.

b) nameGroup group includes the following. See X.Y.Z.
1) name identifies the subspace map.
2) displayName (optional) allows a short descriptive text to be associated with the subspace map.
3) description (optional) allows a textual description of the subspace map.

¢) addressSpecifier group includes the following.

1) baseAddress (mandatory) specifies the starting address of the block. The type of this element
is set to scaledNonNegativelnteger. The baseAddress element is configurable with attributes
from long.att, see X.Y.Z on configuration. The prompt attribute allow the setting of a string for
the configuration and has a default value of “Base Address:”.

d) parameters details any additional parameters that apply to the subspaceMap. See X.Y.Z.
e) vendorExtensions adds any extra vendor-specific data related to the subspaceMap.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 100

This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

7.8.8.3 Example

The following example shows an address block starting at address 0x1000 containing 64 addressable 32-
bit units.

<spirit:components..
<spirit:busInterfacess>
<spirit:busInterfaces
<spirit:name>Ml</spirit:names..
<spirit:masters>..</spirit:masters>
</spirit:busInterface>
<spirit:busInterfaces>
<spirit:name>M2</spirit:names>?
<spirit:masters..</spirit:masters>
</spirit:busInterface>
<spirit:busInterfaces>
<spirit:name>M3</spirit:name>?
<spirit:masters..</spirit:master>
</spirit:busInterfaces>
<spirit:busInterfaces
<spirit:name>S</spirit:names>?
<spirit:slave>
<spirit:memoryMapRef spirit:memoryMapRef="memMap"/>
<spirit:bridge spirit:masterRef="M1" spirit:opaque="true"/>
<spirit:bridge spirit:masterRef="M2" spirit:opaque="true"/>
<spirit:bridge spirit:masterRef="M3" spirit:opaque="true"/>
</spirit:slave>
</spirit:busInterface>
</spirit:busInterfacess>

<spirit:addressSpaces>

</spirit:addressSpaces>
<spirit:memoryMaps>
<spirit:memoryMap>
<spirit:name>memMap</spirit:name>
<spirit:subspaceMap spirit:masterRef="M1">
<spirit:name>submapl</spirit:name>
<spirit:baseAddr baseAddress>0x0000</spirit:baseAddress>
</spirit:subspaceMap>
<spirit:subspaceMap spirit:masterRef="M2">
<spirit:name>submap2</spirit:name>
<spirit:baseAddress>0x1000</spirit:baseAddress>
</spirit:subspaceMap>
<spirit:subspaceMap spirit:masterRef="M3">
<spirit:name>submap3</spirit:name>
<spirit:baseAddress>0x2000</spirit:baseAddress>
</spirit:subspaceMap>
</spirit:memoryMap>
</spirit:memoryMaps>

</spirit:component>

101 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

7.9 Remapping
7.9.1 Memory remap
7.9.1.1 Schema

The following schema details the information contained in the memoryRemap element, which can appear
in a memoryMap element. It is of type memoryRemap Type.

B gttributes

spirit:state

|
|
|— vpe | xs:string
| Lz | reuired
|
|

State of the camponent in which the memary
map is active,

=pirt nameGroup

A group of elements for name (xsiname),
dizplayMarne and description

_:t\;pe lspir'rt:memnryRemapType E:I |
hiptytp ety Ry yte pty St iyt St s, -

aspirit:a(ltlressBlock

an
bype | spirtt addressBlockType |

This is a single contiguaus black of memary inside
a Memory map,

N spirit:bank

H
bype | spiritaddressBankType

L'f\ﬂ_ﬁ_lfil‘tj‘l?—'_"‘l'{"_&"_“‘laf = Reprezents 2 bank of memory made up of

|
|
|
|
|
|
| L e Er address blocks or other banks, It has a
|
|
|
|
|
|
|

0w bankalignment attribute indicating whether its
blacks are aligned in ‘parallel’ (occupying adjacent
bit fizlds) or ‘serial' (occupying contiguous
addreszes). Itz child blacks da not contain
addresses or bit offzets,

A group elernents for a memoryMap

spirit:subspaceMap .

type |Spirﬂ:subspaceRBnype T

Mapz in an address subspace from across a bus
bridge. Itz masterRef attibute refers by narme to
the riaster bus interface on the other side of the
bridge, It must match the masterRef attribute of
2 bridge elernent on the slave interface, and that
bridge elernent rust be designated as opague.

7.9.1.2 Description

The memoryRemap element describes how the address space blocks need to be mapped on a slave bus
interface in a specific remap state. This element contains the following elements, attributes and groups.

a) state attribute (mandatory) identifies the remap state name for which the alternate memory map is
active. See 7.9.2.

b) nameGroup group includes the following. See X.Y.Z.
1) name (mandatory) identifies the memory remap.

2) displayName (optional) allows a short descriptive text to be associated with the memory
remap.

3) description (optional) allows a textual description of the memory remap.
c) memoryMap group (optional) is any number of the following.
1) addressBlock describes a single block. See 7.8.2.

2) bank represents a collections of address blocks, banks or subspace maps. See 7.8.4.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 102
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

3) subspaceMap maps the address subspaces of master interfaces into the slave’s memory map.
See 7.8.8.

memoryRemap describes remapping in regular components and opaque bridges. Remap states include the
name, associated remap port, and remap value). The memory map itself is partitioned in one or more
memory remaps, which describe the memory layout for a particular state.

The following semantic rules apply to the state attribute.

— If there are duplicate state attributes in different memoryRemap tags in the same memoryMap sec-
tion, only the first occurrence shall be recognized. In other words, the state attribute values of mem-
oryRemap shall be unique within a memoryMap section.

| — If a component has no remapStates tag specified, then the memoryMap is assumed to be in the
default state.

— If a component has remapStates specified, but no memoryRemap, the first state listed is synony-
| mous with the default state and shall match the memoryMap tag with no state attribute.

7.9.1.3 Example

This is an example of a memory that is normally read-write, but in state lock is remapped to be a read-only
memory.

<spirit:component>

<spirit:memoryMaps>
<spirit:memoryMap>
<spirit:name>mmapl</spirit:name>
<spirit:memoryMap>
<spirit:addressBlocks>
<spirit:name>abl</spirit:names>
<spirit:baseAddress>0x0000
</spirit:baseAddress>
<spirit:range>4096</spirit:range>
<spirit:usage>memory</spirit:usage>
<spirit:accesss>read-write</spirit:access>
</spirit:addressBlock>
</spirit:memoryRemap >
<spirit:memoryMap state="lock">
<spirit:addressBlock>
<spirit:name>ablreadonly</spirit:name>
<spirit:baseAddress>0x0000

</spirit:baseAddress>
| <spirit:range>4096</spirit:range>
<spirit:usage>memory</spirit:usage>
<spirit:access>read-only</spirit:access>
</spirit:addressBlock>
</spirit:memoryRemap >
</spirit:memoryMap>

</spirit:memoryMaps>
</spirit:component>

103 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
| Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

7.9.2 Remap states
7.9.2.1 Schema

The following schema details the information contained in the remapStates element, which may appear as
an element inside a component element. This element may contain one or more remapState elements.

Uniqu name

i spirit:displayllame |

(e e S T —

+ Element name For display purposes,
A qgroup of elements For narne (siname], | Topically a Feve words providing 3 more
displayMarne and description 1V detailed andjor user-friendly name than

the spititinarne,

1~ gpirit:description |

wbype [westring
B e — L Full description sting, typically Far
-8 D —==— [spiritremapState [4@— dacurnentation
Contains & list of remap state names and 1 —I—
: - - H sttriputes
R Contains a list of signals and walues which
tell the decoder to enter this remap state, —
The namne attribute identifies the narme of spirit:portameRef
the state bype [xsNMTOKEN
usg | reguired
E— Thiz attribute identifies a signal on the
J spirftremapPort] component which affects the component's
[tvpe [spirt: sealedronegativeirted . rrernary layout

1. 1 spiritportindex

Contains the name and walue of & port on N N r
2 | xgnonMegativelnteger |
the component, the value indicates the logic LRE [EEnanhe el EITMEger

walue which thiz port must take to effect the Index for a wectored type port, Must be 2
rernapping, The portMapRef attribute stores nurnber between left and right For the
the name of the signal which takes that port.

walue,

7.9.2.2 Description

A remapStates element describes a set of one or more remapState elements. Each remapState element
defines a conditional remap state where each state is conditioned by a remap port specified with a
remapPort eclement. A remapState element does not specify remapping addresses. The remapping
addresses are defined by the memoryRemap clement (of a memoryMap element) and its state attribute
refers to the remapState element’s name explained in this section.

remapState contains the following elements and attributes.
a) nameGroup group includes the following. See X.Y.Z.
1) name (mandatory) identifies the memory remap.

2) displayName (optional) allows a short descriptive text to be associated with the memory
remap

3) description (optional) allows a textual description of the memory remap.

b) remapPort specifies when the remap state gets effective. A collection of remapPort elements make
up the condition for this remap state. All elements must be true for the remap state to be enabled.
The type of this element is of scaledNonNegativelnteger. This element contains the logical value of
the single port bit specified by the follow two attributes.

1) portNameRef (mandatory) attribute is the name of the port for which this logic value compari-
sion is assigned.

2) portIndex (optional) attribute references the index of a port when the port being referenced is
vectored. The type of the attribute is nonNegativelnteger.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 104
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

7.9.2.3 Example

This is an example of the remapState element with the state name of boot. The example specifies a remap
state called boot will be in effect when the port named doRemap gets the logic value of 0x01, while
another remap state called normal will be in effect when the port gets the logic value of 0x00.

<spirit:component>
<spirit:remapStatess>
<spirit:remapStates
<spirit:name>boot</spirit:name>
<spirit:remapPort spirit:portNameRef="doRemap">0x01l
</spirit:remapPort>
</spirit:remapState>
<spirit:remapStates
<spirit:name>normal</spirit:name>
<spirit:remapPort spirit:portNameRef="doRemap">0x00
</spirit:remapPort>
</spirit:remapState>
</spirit:remapStates >
</spirit:component>

105 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces

7.10 Registers
7.10.1 Register

7.10.1.1 Schema

The following schema details the information contained in the register element, which may appear as an

IP-XACT Standard/D4, December 19, 2007

element inside the addressBlock element. This element describes a register.

=pirit:nameGroup =

A group of elerments For narne
(isinarne], displayMarne and
description

spirit:registerData [

This group of optional elerents
describes the memary mapped

registers of an address black

7.10.1.2 Description

the registerData group contains an unbounded list of register clements. A register element describes a

Unique narne

Elernent name for display purposes,
Typically a Fewy words providing a
rmore detailed andfor user-fiendly
name than the spiritiname,

Full description string, tpically Far
docurnentation

=pirit:nameGroup

A group of elernents For narne
(isinarne), displayMarne and
description

Diirnensions a register array, the
semantics for dim elemnents are
the same as the C language
standard For the layout of
memory in multidimensional
arrays,

stpiri‘t:a(l(lressoffset |
|type |Spir'rt:scaledNonNegaﬁvelmeger |

Cffset From the address block's
bazeAddress,

[attributes

" spirit:size

| orp spiritlong.prompt.att |

=
w2 postivelnteger

Size in bits, elements,

Lse this attribute group on lang integer

Indicates whether the data iz
wolatile, default to Falze when
nat prasant,

Indicates the accessibilivy of the
data in the address block,
Poszible walues are ‘read-werite,
‘read-only’ and "write-only',

Drescribes individual bit felds
within the register,

Container For wendar specific
ertensions,

register in an address block. This element contains the following elements.

a) nameGroup group includes the following. See X.Y.Z .

1) name (mandatory) identifies the register.

10

15

20

25

30

35

40

45

50

55

2) displayName (optional) allows a short descriptive text to be associated with the register.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 106
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

b)

¢)

d)

e)

f)

2)
h)

)

i)

3) description (optional) allows a textual description of the register.

dim (optional, unbounded) assigns a dimension to the register, so it is repeated as many times as the
value of the dim elements. For multi-dimensional register arrays, the memory layout is presumed to
follow the C language rules. The dim clement is of type nonNegativelnteger.

addressOffset describes the offset, in addressing units from the containing memoryMap/
addressUnitBits eclement. The offset is from the start of the addressBlock. The addressOffset cle-
ment is of type scaledNonNegativelnteger.

size (mandatory) is the width of the register, counting in bits. The type of this element is set to
scaledNonNegativelnteger. The size element is configurable with attributes from long.prompt.att,
see X.Y.Z on configuration.

volatile (optional) if frue indicates the data in the register is volatile; the default is false. The type of
this element is set to Boolean.

access (optional) indicates the accessibility of the register: read-write, read-only, or write-only.
reset (optional) indicates the value of the register’s contents when the device is reset. See 7.10.2.
field (optional) describes any bit-fields in a register. See 7.10.3.

parameters (optional) describes any parameter names and types when the register width can be
parameterized.

vendorExtensions (optional) adds any extra vendor-specific data related to this register.

See also: SCR 7.1, SCR 7.2, SCR 7.3, and SCR 7.4.

7.10.1.3 Example

The following example shows a register with its sub-elements.

<spirit:registers>

<spirit:name>status</spirit:name>
<spirit:description>Status register</spirit:description>
<spirit:addressOffset>0x4</spirit:addressOffset>
<spirit:size>32</spirit:size>
<spirit:volatiles>true</spirit:volatile>
<spirit:access>read-only</spirit:access>
<spirit:fields>
<spirit:name>dataReady</spirit:name>
<spirit:description>Indicates that new data is available in the receiver
holding register</spirit:descriptions>
<spirit:bitOffset>0</spirit:bitOffset>
<spirit:bitWidth>1l</spirit:bitWidth>
<spirit:access>read-only</spirit:access>
</spirit:field>
<spirit:field>
<l-- . -=->

</spirit:field>

</spirit:registers>

7.10.2 Register reset value

7.10.2.1 Schema

The following schema details the information contained in the reset element, which may appear as an
element inside the register element. This element describes the reset value of the register.

107

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

=] attvibotes

| S
spirit:value — | grp spiritlong.prompt.att
bype | spirt scaledhonMegativelrteger

Use this attribute group on long integer
The walue itself, elernents,

|
R ' attributes
Register walue at resat, . =
|
|
|

; spiritmask = | grp spiritdlong.prompt.att

------------------------------- L Use this attribute group on long integer
Mazk ta be anded with the walue before elements,
cornparing ko the reset walue,

7.10.2.2 Description

The reset element describes the value of a register at reset. It has two subelements.

a) value (mandatory) contains the actual reset value. The value element is of type scaledNonNega-
tivelnteger. The value element is configurable with attributes from long.prompt.att, see X.Y.Z on
configuration.

b) mask (optional) defines which bits of the register have a known reset value. The mask element is of
type scaledNonNegativelnteger. The mask element is configurable with attributes from
long.prompt.att, sce X.Y.Z on configuration.

A 1 bit in the mask means the corresponding bit of the register has a known reset value; a 0 bit
means that it does not. All bits of the value which correspond to 0 bits of the mask are ignored. The
absence of a mask element is equivalent to a mask of the same size as the register consisting of all 1
bits.

7.10.2.3 Example

The following example shows a reset value. A register with this reset value will have its bottom eight bits set
to O on reset.

<spirit:reset>
<spirit:value>0</spirit:value>
<spirit:mask>0xFF</spirit:mask>
</spirit:reset>

7.10.3 Register bit-fields
7.10.3.1 Schema

The following schema details the information contained in the field element, which may appear as an
element inside the register element. This element describes a bit field of a register.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 108
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007

=pirt:nameGroup [

displayMarne and description

& group of elements Far narne (xsname),

Espirit:hitl)‘l‘fset

|t\,fpe | & nonMegativelnteger

register,

Espniri‘t:hi‘t’#’\l‘i(lth =
g positivelnteger

Draft Standard for

~spiritname

Unique narne

dype [xsstring
Elernent narne for display purposes,
Typically a Few words providing a rmare
detailed andfor user-friendly name than the
Spititinane,

1= . N Tt
T spirit:description i

Full description string, typically Far
documentation

Cffset of this field's Ish from bit 0 of the

= sttribates

| gy spiritzlong.prompt.att |

Lize thiz attibute group on lang intzger

Crescribes individual bit fields within the
raqgister,

7.10.3.2 Description

Width of the Field in bits, elemnents,

e Spirﬂ:accessType‘:

Indicates the accessibility of the data in the
address block, Possible walues ars
‘read-werite’, ‘read-only’ and write-only',

Enurnerates specific walues that can be
assigned to the bit feld,

[[
r Iasplrrt.parameters

e e
U A collection o pararneters,
1

I CohoOooooooooooooononoo00 o

e -i,spirit:\ren(lorE)rtensi 153

Container for vendar specific extensions.

Espirit:walue
=pirit zcaledinteger

Enurnerated bit fild walue,

"~ spirittname

xtoken

The name of this enumerated value, This
may be used as a token in generating code.

Crescription of a bit field value,

A field element of a register describes a smaller bit-field of a register. This element contains the following

elements.

a) nameGroup group includes the following. See X.Y.Z.

1) name (mandatory) identifies the register.

2) displayName (optional) allows a short descriptive text to be associated with the register.

3) description (optional) allows a textual description of the register.

b) bitOffset (mandatory) describes the offset (from bit 0 of the register) where this bit-field starts. The
bitOffset element is of type nonNegativelnteger.

¢) bitWidth (mandatory) is the width of the field, counting in bits. The bitWidth element is of type
postivelnteger. The bitWidth clement is configurable with attributes from long.prompt.att, see

X.Y.Z on configuration.

109 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

d) access (optional) indicates the accessibility of the field: read-write, read-only, or write-only. If this
is not present, the access is inherited from the register.

e) values (optional) lists the set of legal values that may be written to the bit-field. This is an
unbounded list, each containing 3 subelements.

1) value (mandatory) is the value for the bit filed. The value element is of type scaledInteger.
2) name (mandatory) is a symbolic name for the value. The name element is of type token.

3) description (optional) is a textual description for the value. The description element is of type
string.

f) parameters (optional) details any additional parameters that describe the field for generator usage.
See X.Y.Z.

g) vendorExtensions (optional) adds any extra vendor-specific data related to this field.

See also: SCR 7.2 and SCR 7.4.

7.10.3.3 Example

The following example shows a bit field with its sub-elements.

<spirit:field>
<spirit:name>paritySelect</spirit:name>
<spirit:displayName>Parity Select</spirit:displayName>
<spirit:description>Selects parity polarity (0=odd parity, l=even
parity)</spirit:description>
<spirit:bitOffset>4</spirit:bitOffset>
<spirit:bitWidth>1</spirit:bitWidth>
<spirit:access>read-write</spirit:access>
<spirit:valuess
<spirit:value>0</spirit:value>
<spirit:name>oddParity</spirit:name>
<spirit:description>oddParity</spirit:description>
</spirit:values>
<spirit:valuess>
<spirit:value>l</spirit:value>
<spirit:name>evenParity</spirit:name>
<spirit:description>evenParity</spirit:description>
</spirit:values>
</spirit:field>

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 110
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007

111

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Draft Standard for

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

7.11 Models
7.11.1 Model
7.11.1.1 Schema

The following schema details the information contained in the model element, which may appear as an
element inside the component or abstractor element.

| r-4 spiritviews

Model infarmnation,

I
Gl]
=
o (B,
| =
E -
= =2
=

Tl e
g =3
2|2
o
=
-_i

-

(1)
u-iE-
mmmm .-
1
L
b
=,
=
=
&
-
@
£+

_________________________ e

| L -4 spiribtmodelParameters
1

Model parameter name walue pairs
container

7.11.1.2 Description

The model element describes the views, ports and model related parameters of a component or abstractor. A
An object may A model element may contain the following.

a) views (optional) contains a list of all the views for this object. An object may have many different
views. An RTL view may describe the source hardware module/entity with its pin interface; a SW
view may define the source device driver C file with its .h interface; a documentation view may
define the written specification of this IP. See 7.11.2.

b) ports (optional) contains the list of ports for this object. A ports is and external connection from the
object. An object may only have one set of ports that must be valid for all view. See 7.11.3.

c¢) modelParameters (optional) contains a list of parameters that are needed to configure a model
implementation specified in a view. An object may only have one set of model parameters that must
be valid for all views. See 7.11.18.

7.11.1.3 Example

This shows a model section for a Timer component describing the view of the IP in terms of compatibility,
language, file set reference, and model name.

<gspirit:model>
<spirit: portss>

</spirit: ports>
<spirit:modelParameterss>

</spirit:modelParameterss>
<spirit:views>
<spirit:views>
<spirit:name>VHDL</spirit:name>
<spirit:envIdentifier>:modelsim.mentor.com:</spirit:envIdentifiers>
<spirit:envIdentifier>:ncsim.cadence.com:</spirit:envIdentifiers
<spirit:language spirit:strict="true"s>vhdl</spirit:language>

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 111
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

<spirit:fileSetRef>fs-vhdlSource</spirit:fileSetRef>
<spirit:modelName>leon2 Timers (struct)</spirit:modelName>
<spirit:views
</spirit:views>

</spirit:model>
7.11.2 Views
7.11.2.1 Schema

The following schema details the information contained in the views element, which may appear as an
element inside a model element. This element may contain one or more view elements.

spirit: nameGrouphtTORKEN

A group of elements Far namefxs MMTOKEN), displsyMame
and description

Espirit:enwl(lemit'le.-r

1.0

Defines the hardware environment in which this wiew
applies, The Format of the string is
language:toolwendor_extension, with each piece being
optional, The language must be one of the types from
spiftfileType. The tool walues are defined by the SPIRTT
Consortium, and include generic walues "FSimulation” and
"*Synthesis” to imply any tool of the indicated type, Having
rmore than one envIdentifier indicates that the wiew applies
to multiple environments,

| spirithierarchyRef

spirttlibraryRet Type

References a SPIRIT design or configuration dacurent (by
WLMY) that provides a design For the corponent

=] attributes

| spi

P rit:strict
L = ibype | msboolean §
type |xstoken . wefaut | talse 1

A walue of trug' indicates that this walue muzt match the

hdl", IF the ateribute "strict™ iz "true', this value must language being generated For the design,

the language being generated For the design,

ey

1.0

0w

Default carnmand and Aags used to build derived files from
the sourceMame files in the referenced Fle et

i3

A reference to a fleSet,

7]

Container for vendor specific extensions,

7.11.2.2 Description

A views element describes an unbounded set of view elements. Each view element specifies a representation
level of a component. It contains the following elements.

a) nameGroupNMToken group includes the following. See X.Y.Z.
1) name (mandatory) identifies the view. The name element is of type NMTOKEN.

2) displayName (optional) allows a short descriptive text to be associated with the view. The dis-
playName clement is of type string.

112 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

3)

description (optional) allows a textual description of the view. The description element is of
type string.

b) envldentifier designates and qualifies information about how this model view is deployed in a par-
ticular tool environment. The format of the element is a string with three fields separated by two
colons [:] in the format of Language:Tool:VendorSpecific. The regular expression which is used to
check the string is [A-Za-z0-9 H*\]*:[A-Za-z0-9 +*\.]*:[A-Za-z0-9_+*\.]* The sections are:

1) Language indicates this view may be compatible with a particular tool, but only if that lan-
guage is supported in that tool, e.g., different versions of some simulators may support
two or more languages. In some cases, knowing the tool compatibility is not enough and
may be further qualified by language compatibility, e.g., a compiled HDL model may
work in a VHDL-enabled version of a simulator, but not in a SystemC-enabled version of
the same simulator.

i) Tool indicates this view contains information that is suitable for the named tool. This
might be used if this view references data that is tool-specific and would not work generi-
cally, e.g., HDL models that use simulator-specific extensions.

Vendors shall publish lists of approved tool identification strings. These strings shall con-
tain the tool name, as well as the company’s domain name, separated by dots. Some exam-
ples of well-formed tool entries are:

designcompiler.synopsys.com
ncsim.cadence.com
modelsim.mentor.com

This field can alternatively indicate generic tool family compatibility, such as *Simula-
tionor *Synthesis. To support transportability of created data files, it is important to
use the published, generally recognized, tool designation when referencing a tool. See also
www.The SPIRITconsortium.org.

iii) VendorSpecific can be used to further qualify tool and language compatibility. This can be
used to indicate additional processing information may be required to use this model in a
particular environment. For instance, if the model is a SWIFT simulation model, the
appropriate simulator interface may need to be enabled and activated.

Any or all of the envldentifier fields may be used. Where there are multiple environments for
which a particular view is applicable, multiple envIdentifier elements can be listed.

¢) The implementation details for this view can have two possibities. The first is a hierarchical view
which uses the hierarchyRef element.

1

hierarchyRef (mandatory) references a hierarchical design from a view of a component. This
element is required only if the view is used to reference a hierarchical design. The hierar-
chyRef element is of type libraryRefType (see X.Y.Z), it contains four attributes to specify a
unique VLNV. See 6.2 on bus definitions.

i) vendor attribute (mandatory) identifies the owner of referenced description.
ii) library attribute (mandatory) identifies a library of referenced description.
iii) name attribute (mandatory) identifies a name of referenced description.

iv) version attribute (mandatory) identifies a version of referenced description.addressSpeci-
fier group includes the following.

d) The second possibility of a view is to reference a file set.

)

2)

language (optional) specifies the hardware description language used for a specific view, for
example, verilog or vhdl. The language element is of type foken. This may have an
attribute strict (optional) of type Boolean; if true the language shall be strictly enforced. The
default is false.

modelName (optional) is a language-specific identifier of the model. In VHDL’s case, this
may hold the top-level entity name and the architecture name or the configuration name;

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 113
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

3)

4)
5)

6)

7)

whereas, in Verilog’s case, this may simply hold the name of the module. The modelName ele-
ment is of type string.

defaultFileBuilder (optional) is an unbounded list of default file builder options for the
fileSets referenced in this view. See 7.13.1.

fileSetRef (optional) is an unbounded list of references to fileSets used by this view.

constraintSetRef (optional) is an unbounded list of references to constraint sets, valid timing
constraints for a view. constraintsSets are defined for wire style ports.

whiteboxElementRefs (optional) contains references to whitebox elements of a component
that are vild for this view. If the view contains an implementation of any of the whitebox ele-
ments for the component, the view section shall include a reference to that whitebox element,
with a string providing a language-dependent path to enable the DE to access the whitebox ele-
ment. See 7.15.

parameters (optional) details any additional parameters that describe the view for generator
usage. See X.Y.Z.

e) vendorExtensions (optional) adds any extra vendor-specific data related to the view.

See also: SCR 12.3.

7.11.2.3 Example

The following is an example of the view element with the name of vhdlsource.

<spirit:views>

<spirit:views>

<spirit:name>vhdlsource</spirit:name>
<spirit:envIdentifier>:modelsim.mentor.com:</spirit:envIdentifiers>
<spirit:envIdentifier>:ncsim.cadence.com:</spirit:envIidentifiers
<spirit:envIdentifier>:vcs.synopsys.com:</spirit:envIidentifier>
<spirit:envIdentifiers>:designcompiler.synopsys.com:
</spirit:envIdentifiers>
<spirit:language>vhdl</spirit:language>
<spirit:modelName>leon2 Uart (struct)</spirit:modelName>
<spirit:fileSetRef>fs-vhdlSource</spirit:fileSetRef>

<spirit:constraintSetRef>normal</spirit:constraintSetRef>

</spirit:view>

</spirit:views>

7.11.3 Component ports

7.11.3.1 Schema

The following schema defines the information contained in the ports element, which may appear within a

component.

114

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

Espirit:name
3 NMTOREN

Unique narne

rit:displayllame |
e | xsstring

=pirit: nameGrouphTOKEN [

Elernent name for display
& group of elements For | purposes, Tpically a Few words
namelisHMTOKEN) + providing a rore detailed and/for

| dizplayMame and description us_e_r—FriendI\,r pamekhanihe
spintiname,

" spirit:description E

—(~—H bt

Full description string, bypically
For dacumentation

spirit:wire 4
by pe | spirit portireType

Drefines a port whaose bype
resolves ta simple bits,

Part container spirittransactional

B
type |spir'rt: portTransactionalType

[rescribes port characteristics,

Drefines a port that implements or uses a
| service that can be implerented with
Functions ar rethads,
|

Container for vendor specific
ertensions,

7.11.3.2 Description

The ports element defines an unbounded list of port elements. Each port element describe a single external
port on the ocmponent or abstractor.

a) nameGroupNMToken group includes the following. See X.Y.Z.

1) name (mandatory) identifies the port. Each port shall be uniquely identified. The name ele-
ment is of type NMTOKEN.

2) displayName (optional) allows a short descriptive text to be associated with the port. The dis-
playName clement is of type string.

3) description (optional) allows a textual description of the port. The description element is of
type string.
b) Each port shall be described as a wire or transactional port.

1) wire (mandatory) defines ports that transport purely binary values or vectors of binary values.
See 7.11.4.

2) transactional (mandatory) defines all other style ports, typically used for transactionl level
modeling (TLM). See 7.11.16.1.

c) vendorExtensions (optional) adds any extra vendor-specific data related to the port.
7.11.3.3 Example

This example shows a component with a wire port (c1k) and two transactional ports (initiator and
target).

<spirit:portss>
<spirit:port>
<spirit:name>clk</spirit:name>
<spirit:wire>
<spirit:direction>in</spirit:direction>
</spirit:wire>
</spirit:port>

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 115
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

<spirit:port>
<spirit:transactionals
<spirit:name>initiator</spirit:name>
<spirit:services
<spirit:initiativesrequires</spirit:initiatives
<spirit:serviceTypeDefs>
<spirit:serviceTypeDef>
<spirit:typeName>read write if</spirit:typeNames>
</spirit:serviceTypeDef>
/spirit:serviceTypeDefs>
</spirit:services>
</spirit:transactionals>
</spirit:port>
<spirit:ports>
<spirit:transactionals
spirit:name>target</spirit:name>
<spirit:service>
<spirit:initiativesprovides</spirit:initiatives
<spirit:serviceTypeDefs>
<spirit:serviceTypeDef>
<spirit:typeName>read write if
</spirit:typeName>
</spirit:serviceTypeDef>
</spirit:serviceTypeDefs>
</spirit:services>
</spirit:transactional>
</spirit:port>
</spirit:ports>

7.11.4 Component wire ports

7.11.4.1 Schema

The following schema details the information contained in the wire element, which may appear as an
element inside the top-level component/model/port element.

116

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces

tvpe

Drefines a port whose type
resolves to simple bits,

7.11.4.2 Description

spirit:wire

=
shirit: portvire Type

B attributes

ype | REboolesn !
use optional]
etadt[falss]

True if logical ports with different directions
Frarn the physical port direction may be

mapped

ports, which always allow logical parts with all
direction walue to be rmapped onto the physical
port, Also ignored For inout ports, since any

logical pott maybe mapped to a physical inout

pott,

onta this port, Forbidden For phantam

Espirit:(lirec‘ti-:m

|t5-'pe | Spirit: componertPortDirectionType

The direction of & wire style port, The basic
directions for a port are 'in' for input ports, 'out'
for output port and 'inout’ for bidirectional and
tristate pors,

A value of 'phantom’ is alzo allowed and
define a port that exist on the IP-E&CT
cornponent but not on the HOL model,

TiaS
Specific left and right wector
bounds, Signal width is
rnaxlleft right)-minleftright) +1
then the bounds are not
present, a scalar signal is
assumed,

v The group of wire type

v definitions, IF no match to a

U wiewMarne is Found then the

v default lanquage types are to be
t uzed. See the Lisar Guide For

' these default

List of constraintSet elerments For
a component part.

IP-XACT Standard/D4, December 19, 2007

Espirit:le'l’t

|type | s nonMegstivelrteger

%F

The optional elernents left and
right can be used ta select 2
bit-clice of a signal wectar to map
to the bus interface,

B attributes

| grp spirittlong.prompt.att |

Use this attribute group on long integer
elerments,

Espnirit:riglit

|type | x5 nonMegativelrteger

%H

The optional elerments laft and
tight can be uzed ko select 2
bit-slicz of 2 signal wectar ta rmap
ta the bus intarface,

B attributes

| grp spiritleng.prompt.att |

Use this attribute group on long integer
elerments,

The wire element describes the properties for ports that are of a wire style. A port can come in two different
styles, wire or transactional. A wire port applies for all scalar types (e.g., VHDL std logic and Verilog
wire) and vectors of scalars. A wire port transports purely binary values or vectors of binary values.

Scalar types in VHDL also include integer and enumeration values. Scalars in IP-XACT only
include binary values that relate to a single wire in an HW implementation.

Since wire ports allow only binary values, [IP-XACT does not support tri-state or multiple strength

values.

The wire element contains the following elements.

a)

allLogicalDirectionsAllowed (optional) attribute defines the possible legal combinations for the
direction of ports between the component and the abstraction definition. See 6.2.

Table 4 shows the possible legal mappings from a component or abstractor port to the abstraction
definition port through the bus interface port mappings when the attribute allLogicalDirectionsAl-
lowed equal false is set.

When the attribute is instead set to true, all mapping values are possible (legal).

Copyright © 2007 The SPIRIT Consortium. All rights reserved.

117

This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

b)

c)
d)

e)

Table 4—allLogicalDirectionsAllowed="false”

logical direction
Direction

in out inout
in legal - legal
t - legal legal

Physical ou
direction inout)) legal
phantom legal legal legal

direction (mandatory) specifies the direction of this port: in for input ports, out for output ports, and
inout for bidirectional and tri-state ports. phantom can also be used to define a port which only
exists on the IP-XACT component, but not on the implementation referenced from the view.

vector (optional) determines if this port is a scalar port or a vectored port. The left and right vector
bounds elements inside the vector element are those specified in the implementation source. The
port width is max(left,right) - min(left,right) +1. The left and right elements are of type nonNega-
tivelnteger. The left and right elements are configurable with attributes from long.prompt.att, see
X.Y.Z on configuration.

The left element means first boundary, the right element, the second boundary. left may be larger
than right and that left may be the MSB or LSB (right being the opposite). The left and right cle-
ments are the (bit) rank of the left-most and right-most bits of the port.

When the vector element is present and the left and right elements are not equal, the port is defined
as a multi-bit vector port. When the vector element is present and the left and right elements are
equal, the port is defined as a single-bit vector port. When the vector element and the left and right
elements are not present, the port is defined as a scalar port.

wireTypeDefs (optional) describes the ports type as defined by the implementation, see 7.11.5.

driver (optional) defines a driver which may be attached to this port if no other object is connected
to this port. This allows the IP to define the default state of unconnected inputs. A wire style port
may only define a driver element for a port if the direction of the port is in or inout. See also 7.11.6

constraintSets (optional) defines multiple set of constraints on a port used for synthesis or other
operations. See 7.11.11.

7.11.4.3 Example

The following examples show how the vector elements are used when mapping to an HDL language.
reset: in std _logic; -- VHDL
would be defined with no left or right elements under the vector element.
<spirit:wire>
<spirit:direction>in</spirit:direction>
</spirit:wire>

Whereas

data: out std logic_ vector (29 downto 3); -- VHDL

118 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

would be defined in [P-XACT as 1eft=29 and right=3 with all bits in descending order.

<spirit:wire>
<spirit:directionsout</spirit:direction>
<spirit:vectors
<spirit:left>29</spirit:left>
<spirit:right>3</spirit:right>
</spirit:vectors>
</spirit:wire>

7.11.5 Component wireTypeDef
7.11.5.1 Schema

The following schema details the information contained in the wireTypeDef element, which may appear as
an element inside the top-level wire style port element. These elements define the definition type name,
where the type is defined, and which views of a component or an abstractor use this type.

B sttributes

" spirittypelame J—. ype |xzhoolesn 4
bype | ks string H

Drefines that the bype For the
port has constrainted the nurnber
of bits in the wactor

The narme of the logic type,
Examples could be std_logic,
std_ulagic, std_logic_wector,
se_lagic, ..

—-E,spir' wireTypeDefs [=
The group of wire type
definitions, If no match to a
wiewarne is Found then the
default language types are to be
uzed, Ses the Uzer Guide For
these default typas,

7.11.5.2 Description

—(—

Drefinition af a single wire type
defintion that can relate to
multiple wiewws,

spirit:wire TypeDef £

q..0@

\here the definition of the type
is contained, For std_logic, this is
cantained in

IEEE std_logic_1164.all, For
sc_logic, this is contained in
systernc,h, For WHDL this is the
library and package as defined
bey the "used" staternent, Far
Systernis and Syternherilag it
is the include file required. For
wetlog this is not needed,

Espiri't:'wio.=:1|\.|'llamo.=:Ro.=:f
x5 NMTOKER

1.0

& reference to a wiew name in
the fila for which this type
applies,

The wireTypeDefs element describes the type properties for a port per view of a component or abstractor.
There can be an unbounded series of wireTypeDefs defined for each port, allowing the type properties to be
defined differently for each view. wireTypeDef contains the following elements.

a) typeName (mandatory) defines the name of the type for the port. For VHDL, some typical values
would be std logicand std ulogic.

1) constrained (optional) attribute indicates the type of definition that is used for the array port.
The constrained clement is of type Boolean. When set to true, this indicates that the port of
the type is constrained and the indices are not needed when the type is used. The default is
false, which indicates that the definition has not constrained the number of bits. See 7.11.5.2.1

and 7.11.5.2.2.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 119

This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

b) typeDefinition (optional) is defined by IP-XACT per language. Table 5 shows some examples.
There can be multiple typeDefinitions for each port. The typeDefinition element is of type string..

Table 5—typeDefinition examples

Language Meaning
VHDL “Use” statement text (IEEE.std_logic 1164.all).
Verilog Nothing needed, no meaning.
SystemC Include file name (systemc.h).
SystemVerilog Include file name (if the name does not contain a :); import package name (if the
name contains a :).

¢) viewNameRef (mandatory) maps the correct type properties to the correct view. Multiple views can
use the same set of type properties by specifying multiple viewNameRef eclements. The
viewNameRef must match a view/name in the containing object. The viewNameRef element is of
type NMTOKEN.

7.11.5.2.1 Constrained array type
A constrained array type is a type for which the indices of the array have been specified in the definition.

type BYTE is array (7 downto 0) of std logic;
entity example is
port (
A: out BYTE;
B: in BYTE
)i

end example;

Also, the definition of port A2 in an IP-XACT file contains the indices in XML to designate the width so
these types below can be mixed in the same component.

<spirit:ports>
<spirit:name>A</spirit:name>
<spirit:wire>
<spirit:vectors
<spirit:left>7</spirit:left>
<spirit:right>0</spirit:right>
</spirit:vectors>
<spirit:typeDefs>
<spirit:typeDef>
<spirit:typeName spirit:constrained="true">BYTE
</spirit:typeName>
<spirit:typeDefinition>MYLIB.MYPKG.all</spirit:typeDefinition>
<spirit:viewNameRef>VHDLsimView</spirit:viewNameRef >
</spirit:typeDef>
</spirit:typeDefs>
</spirit:wire>
<spirit:ports>

120 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

7.11.5.2.2 Unconstrained array type

An unconstrained array type is a type for which the indices of the array have not been specified in the
definition, e.g.,

type std logic vector is array (NATURAL RANGE <>) of std logic;

entity example is
port (
A: out std logic vector (7 downto 0);
B: in std logic vector (7 downto 0)
)

end example;
could be described in IP-XACT as

<spirit:ports>
<spirit:name>A</spirit:names>
<spirit:wire>
<spirit:vectors>
<spirit:left>7</spirit:left>
<spirit:right>0</spirit:right>
</spirit:vectors>
<spirit:typeDefs>
<spirit:typeDef>
<spirit:typeName spirit:constrained="false”>BYTE
</spirit:typeName>
<spirit:typeDefinition>MYLIB.MYPKG.all</spirit:typeDefinition>
<spirit:viewNameRef>VHDLsimView</spirit:viewNameRef >
</spirit:typeDef>
</spirit:wire>
<spirit:ports>

7.11.5.2.3 Defaults
wireTypeDefs do not need to be defined for every view of a port. IP-XACT provides for these defaults

based on the language of the view, as shown in Table 6. For those languages not shown here, no defaults can
be presumed.

Table 6—View defaults

Language Single bit Vectors
VHDL std logic std logic_vector
Verilog wire wire
SystemC sc_logic sc_1lv
SystenVerilog logic logic

7.11.5.2.4 Rules

— A view name may only appear once in all the ports viewNameRef elements.

— If the view name is not found in a viewNameRef, the default type properties apply (seeTable 6).

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 121
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

7.11.5.3 Example

See the examples in 7.11.5.2.2.

7.11.6 Component driver

7.11.6.1 Schema

The following schema details the information contained in the driver element, which may appear as an

element inside the top-level wire style port element. This element defines the type and value(s) to drive on
this port when it is not connected in a design.

= attributes

= | grp spirittlong.prompt.att

[R ! Use this attribute group on long integer
| v Deefault value For 3 wire por, elernents.
____________________ i
i
i

B3 B

|
|
Wire port driver elernent, i
|
|
I

| Drazcribes a driven ane-chat
| signal,

7.11.6.2 Description

The driver element shall contain one of three different types of drivers that can be applied to a wire port of
a component or abstractor.

a) defaultValue (optional) specifies a static logic value for this port. The defaultValue can specify a
simple 1-bit wire port or a vectored wire port. The defaultValue element is of type scaledNonNega-
tivelnteger. The defaultValue element is configurable with attributes from long.prompt.att, see
X.Y.Z on configuration.

b) clockDriver (optional) specifies a repeating high-low waveform of this port. See 7.11.7.

c) singleShotDriver (optional) specifies a non-repeating high-low waveform for this port. See 7.11.8.
A driver element shall not be defined for a wire style port with a direction element of out.
7.11.6.3 Example

This example shows a default value of 0xOF set for a vectored wire port named scaler.

<spirit:ports>
<spirit:name>scaler</spirit:name>
<spirit:wire>
<spirit:direction>in</spirit:direction>
<spirit:vectors
<spirit:left>7</spirit:left>
<spirit:right>0</spirit:right>
</spirit:vectors>
<spirit:drivers>
<spirit:defaultValue>0x0F</spirit:defaultvalue>
</spirit:driver>
</spirit:wire>

122 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

</spirit:port>
7.11.7 Component driver/clockDriver
7.11.7.1 Schema

The following schema details the information contained in the clockDriver element, which may appear as
an element inside the top-level wire style port/driver element. This element defines the properties of a
clock waveform or repeating high-low waveform.

H sttributes

| spiritunits

Espirit:clockPeriotl | bype Spirﬂ:delayValueUnﬂType]
type [sqirtt configurakleDoukle LH 152 Sption|
mirvimiszLen | 0 [1 | wefaltlne
| grp spiritfloat.prompt.att |
attribute, Default is nanoseconds, Uise this sttribute group on foat
elements,

[atiributes

 spirit:units

|
|
|
|
|
| Clack petiod in units defined by the units
|
|
|
|

Esl)irit:clockPulseOffset | iy Spiri‘t:delay\-"alueUnﬂType :
Mtype spirit; configurakleDouble £ E;Sfe ; Sption !
f e | minma=Len |0 [1 | L EIL L 1] N —
N :‘_splrrt:clucklllrwer D_l_L —] : B Time until first pulse, Units are defined by the | grp spiritfloat.prompt.att |
:_t')_"F_J'§J §pi_ri:t:_c_|0_c_:k_[2r_i\.:l=:r_T_'f_p_e_ y: uritz attribute, DeFault s nanoseconds. Ise thiz attribute group on Aoat
Crescribes a diven clock port, elements,
B attributes
spirit:clockPulseValue 4_]_ | orp spiritlong.prompt.att |
|Wpe |Splrrt:ScaledNonNegatwelrrteger Use thiz attribute group on long integer
“alue of port after Brst clock edge, elements,

| spiritunits

|
|
|
|
I e
|
|
|
|

Fspirit:clockPulseDuration | ibipe | spirttdelayalueUntType |
—type spirit: configurakleDouble T ::Sfe ; optional :
mindmarLen | 0 [1 | L CIL L]] |
Cruration of first state in cycle, Units are | orp spiritfloat.prompt.att
defined by the units attribute, Default iz Lze this attribute group on Aoat
nanaseconds, laments.

 spirit:clockHame

bype | s string

Indicates the narne of the dlack.
If nat specified the name iz
azzurned ta be the name of the
containing port,

7.11.7.2 Description

The clockDriver element contains four elements that describe the properties of a clock waveform. These are
also depicted in Figure 10.

a) clockPeriod (mandatory) specifies the overall length (in time) of one cycle of the waveform. The
clockPeriod clement is of type configurableDouble. The clockPeriod element is configurable with
attributes from float.prompt.att, see X.Y.Z on configuration. This element also contains a units
(optional) attribute for specifying the units of their time values: ns (the default) and ps. ns stands for
nanosecond and is equal to 107 seconds. ps stands for picosecond and is equal to 10712 seconds.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 123
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

b)

d)

e)

clockPulseOffset (mandatory) specifies the time delay from the start of the waveform to the first
transition. The clockPulseOffset clement is of type configurableDouble. The clockPulseOffset
element is configurable with attributes from float.prompt.att, see X.Y.Z on configuration. This ele-
ment also contains a units (optional) attribute for specifying the units of their time values: ns (the
default) and ps. ns stands for nanosecond and is equal to 10" seconds. ps stands for picosecond and
is equal to 10712 seconds.

clockPulseValue (mandatory) specifies the logic value to which the signal transitions. This value is
also the opposite of the value from which the waveform will start. The clockPulseValue element is
of type scaledNonNegativelnteger. The clockPulseValue element is configurable with attributes
from long.prompt.att, see X.Y.Z on configuration.

clockPulseDuration (mandatory) specifies how long the waveform remains at the value specified
by clockPulseValue. The clockPulseDuration element is of type configurableDouble. The clock-
PulseDuration element is configurable with attributes from float.prompt.att, see X.Y.Z on configu-
ration. This element also contains a units (optional) attribute for specifying the units of their time
values: ns (the default) and ps. ns stands for nanosecond and is equal to 107 seconds. ps stands for
picosecond and is equal to 10712 seconds.

clockName (optional) attribute specifies a name for the clock driver. If this is not defined, the name
of the port to which this clockDriver is applied shall be used.

clockPulseDuration

[
Ll

clockDuration R

clockPulseOffset

clockPulseValue

Figure 10—clockDriver elements

7.11.7.3 Example

This is an example of a clock driver set on the wire port named c1k. The clock starts off in the logic 0
state for 4 ns, then transitions to the 1logic 1 state for 4 ns. This cycle is the repeated forever.

124

<spirit:ports>

<spirit:name>clk</spirit:name>
<spirit:wire>
<spirit:directions>in</spirit:directions>
<spirit:drivers
<spirit:clockDriver spirit:clockName="clk">
<spirit:clockPeriod>8</spirit:clockPeriods>
<spirit:clockPulseOffset>4</spirit:clockPulseOffset>
<spirit:clockPulseValue>l</spirit:clockPulseValues>
<spirit:clockPulseDuration>4</spirit:clockPulseDurations>
</spirit:clockDrivers>

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

</spirit:drivers>
</spirit:wire>

</spirit:ports>

7.11.8 Component driver/singleShotDriver

7.11.8.1 Schema

The following schema details the information contained in the singleShotDriver element, which may
appear as an element inside the top-level wire style port/driver element. This element defines the properties
of a single-shot waveform or non-repeating high-low waveform.

1xSPirit:single ShotDriver E_E:E'_jspirit:singleShoWalue %]7 |grp spiritzlong.prompt.att |

= B atteibutes
" spirit:singleShotffset |

(tvpe Spirit: configuraklebouble LTJ_ | grp spiritfloat.prompt.att |

mindmaxLen |0 |1 | Ize this attribute group on Aaat
elermnents,

B attributes

Time in nanoseconds until start of ane-shat,

|l\,r'pe | zpirit: scaledronMegativelrteger

Dezciibes a diven one-thaot Lige this attibute group an lang integer
zignal, “alue of signal after first edge of one-shat, elernents,

=] alteibutes
~ spirit:singleShotDuration |

—type spirit:configurableDouble [=H | grp spiritfloat.prompt.att |
mindmaxLen [0 1 | Use this attribute group on Aoat
elernents.

Cruration in nanoseconds of the ane shat,

7.11.8.2 Description

The singleShotDriver element contains three elements that describe the properties of the waveform. These
are also depicted in Figure 11.

a)

b)

¢)

d)

singleShotOffset (mandatory) specifies the time delay from the start of the waveform to the transi-
tion. The singleShotOffset clement is of type configurableDouble. The singleShotOffset element
is configurable with attributes from float.prompt.att, see X.Y.Z on configuration. This element also
contains a units (optional) attribute for specifying the units of their time values: ns (the default) and
ps. ns stands for nanosecond and is equal to 10" seconds. ps stands for picosecond and is equal to
1072 seconds.

singleShotValue (mandatory) specifies the logic value to which the signal transitions. This value is
also the opposite of the value from which the waveform will start. This value is also the opposite of
the value from which the waveform will start. The singleShotValue element is of type scaledNon-
Negativelnteger. The singleShotValue element is configurable with attributes from
long.prompt.att, see X.Y.Z on configuration.

singleShotDuration (mandatory) specifies hog long the waveform remains at the value specified by
singleShotValue. The singleShotDuration element is of type configurableDouble. The single-
ShotDuration element is configurable with attributes from float.prompt.att, see X.Y.Z on configu-
ration. This element also contains a units (optional) attribute for specifying the units of their time
values: ns (the default) and ps. ns stands for nanosecond and is equal to 107 seconds. ps stands for
picosecond and is equal to 10712 seconds.

These elements all have a group of attributes named general.att applied to them. These attributes
are described in the general section of this document, they allow the user to change the values of
these defaults in the design file for each instantiation of a component or change the design configu-

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 125
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

ration file for each instantiation of an abstractor. The two elements related to time (singleShotDura-
tion and singleShotOffset) have a fixed time unit of nanoseconds (10'9 seconds).

singleShot Duration
singleShot Offset

singleShotValue

Figure 11—singleShotDriver elements
7.11.8.3 Example

This is an example of a single-shot driver set on the wire port named reset. The waveform starts off in the
logic O state for 100 ns and then transitions to the 1ogic 1 state.

<spirit:ports>
<spirit:name>reset</spirit:name>
<spirit:wire>
<spirit:direction>in</spirit:direction>
<spirit:drivers
<spirit:singleShotDrivers>
<spirit:singleShotOffset>0</spirit:singleShotOffset>
<spirit:singleShotValue>0</spirit:singleShotValue>
<spirit:singleShotDuration>100</spirit:singleShotDuration>
</spirit:singleShotDrivers
</spirit:drivers>
</spirit:wire>
</spirit:port>

7.11.9 Implementation constraints

Implementation constraints can be defined to document requirements that need to be met by an
implementation of the component. Constraints are defined in groups called constraint sets (in the IP-XACT
element port/wire/constraintSets/constraintSet) so different constraints can be associated with different
views of the component. A particular set of constraints is tied to a component view by the constraintSetId
attribute in the constraint set and the matching constraintSetRef element in the view.

7.11.10 Component wire port constraints
7.11.10.1 Schema

The following schema defines the information contained in the constraintSets element, which may appear
within a wire element within a component port element (component/model/ports/port/wire).

126 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces

List of constraintSet elements for 1.0

2 COMPOnEnt port, .
P P Drefines constraints that apply to

a cornpanent port, IF multiple

constraintSet elements are used,
each must have a unique walue
For the constraintSetId attibute,

7.11.10.2 Description

IP-XACT Standard/D4, December 19, 2007

[attributes

1, spirit:constraintSetld
[—
ype | xsNMTOKEN

ze optional
rdefaLlt | defautt

Indicates a name For thiz sat of
constraints, Constraints are tied
ta @ wiew using this nare in the

constraintSetRef element,

. SPirit:constraintSet El—
)

The optional elerent wectar
specify the bits of a wectar Far
wehich the canstraints apply, The
waules of left and right must be
within the range of the part, IF
the wector iz not specified then
the constraints apply to all the
bits of the port,

spiritnameGroupCptional

A group of elernents far name
(isinarne), displayMarne and
description where the name is
optional

Espiri‘t:left
xznonhlegativelrteger

The aptional elernents left and
tight can be used to select 2
bit-glice of a wector,

xznonhlegativelrteger

The aptional elernents left and
tight can be used to select 2
bit-glice of a wector,

Drefines a constraint indicating
hawe an input is ta be driven,
The preferred methodalagy is to
specify a library cell in
technology independent Fashion,

aszumne that the aszociated
signal is diven by the specified
cell, or that the drive strength of
the input signal is indicated by
the specified resistance walue,

v The implernention tool should

Drefines a constraint indicating
the type of load on an output
signal,

spirit:timingConstraint I

| spirit: delayPercentageTy.

Drefines a timing constraint For the associated
signal, The constraint is relative to the clack
specified by the clackMarne attribute, The
clockEdge indicates which clack edge the
constraint is associated with (default is Hsing

edge], The delayType attribute can be specified
to Further refine the constraint,

The constraintSets clement is used to define technology independent implementation constraints associated
with the containing wire port of the component. The constraintSets element contains one or more
constraintSet elements which define a set of constraints for the port. If more than one constraintSet
element is present, each shall have a unique value for the constraintSetld attribute so each constraintSet
can be uniquely referenced from a view. constraintSet also contains the following optional elements.

a) nameGroupOptional group includes the following. See X.Y.Z.

1) name (optional) identifies the constraint set.

2) displayName (optional) allows a short descriptive text to be associated with the constraint set.

3) description (optional) allows a textual description of the constraint set.

b) vector (optional) determines if this port is a scalar port or a vectored port. The left and right vector

bounds elements inside the vector element are those specified the bounds of the vector. The left and
right elements are of type nonNegativelnteger.

¢) driveConstraint (optional) defines a driving constraint for this port. See 7.11.11 for details.

d) loadConstraint (optional) defines a load constraint for this port. See 7.11.12 for details.

e) timingConstraint (optional) defines a timing constraint relitive to a clock for this port. See 7.11.13

for details.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 127
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

7.11.10.3 Example
This example shows a port containing a single timing constraint appearing in two different constraint sets.

<spirit:port>
<spirit:name>hgrant</spirit:name>
<spirit:wire>
<spirit:direction>in</spirit:direction>
<spirit:constraintSets>
<spirit:constraintSet spirit:constraintSetId="timing”>
<spirit:timingConstraint spirit:clockName="hclk”>40
</spirit:timingConstraint>
</spirit:constraintSets>
<spirit:constraintSet spirit:constraintSetId="area”>
<spirit:timingConstraint spirit:clockName="hclk”>50
</spirit:timingConstraints>
</spirit:constraintSets>
</spirit:constraintSets>
</spirit:wire>
</spirit:ports>

7.11.11 Port drive constraints
7.11.11.1 Schema
The following schema defines the information contained in the driveConstraint element, which may appear

within a modeConstraints or mirroredModeConstraints element within a wire type port in an abstraction
definition or within a constraintSet element within a wire type port in a component.

[refines a constraint indicating IJzed to provide a generic
hawe an input is to be driven, description of a technology
The preferred methodalogy is ta library call,

specify a library cell in
technalogy independent Fashion,
The implernention tool shauld
assurmne that the aszociated
signal is driven by the specified
cell, or that the dtve strength of
the input signal iz indicated by
the specified resistance walue,

7.11.11.2 Description

The driveConstraint element defines a technology-independent drive constraint associated with the
containing wire port of a component or the component port associated with the logical port within an
abstraction definition if the driveConstraint element is contained within an abstraction definition. The
actual constraint consists of a technology-independent specification of a library cell presumed to drive the
input port. The cellSpecification element defines the cell (see 7.11.14).

The driveConstraint element is not valid on output port.

See also: SCR 14.1, SCR 14.3, and SCR 14.6.

128 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

7.11.11.3 Example

This example shows two different drive constraints. The first represents a median-strength D flop and the
second a low-strength sequential cell.

<spirit:driveConstraints>
<spirit:cellSpecifications>
<spirit:cellFunction>dff</spirit:cellFunction>
</spirit:cellSpecifications>
</spirit:driveConstraints>

<spirit:driveConstraints>
<spirit:cellSpecifications>
<spirit:cellClass spirit:strength="low”>sequential
</spirit:cellClass>
</spirit:cellSpecifications>
</spirit:driveConstraints>

7.11.12 Port load constraints
7.11.12.1 Schema
The following schema element defines the information contained in the loadConstraint element, which

may appear within a modeConstraints or mirroredModeConstraints element within a wire type port in an
abstraction definition or within a constraintSet element within a wire type port in a component.

,spirit:{:eIISpe{:iﬁcation

Uzed to provide a genetic
"""""""""""" description of a technalogy

- - yspiritleadConstraint 1 library cell,
Drefines a constraint indicating T e
the type of load on an output N EREoeT]
signal, “oobvpe [xEpostivelnteger
efautt [3

Indicates how many loads of the
specified cell are connected, IF
not present, 3 is assumed,

7.11.12.2 Description

The loadConstraint element defines a technology-independent load constraint associated with the
containing wire port of a component or the component port associated with the logical port within an
abstraction definition if the loadConstraint element is contained within an abstraction definition. The actual
constraint consists of two parts, the technology-independent specification of a library cell and a count.
loadConstraint also contains the following elements.

a) cellSpecification (mandatory) defines the library cell (see 7.11.14).

b) count (optional) indicates how many loads of the indicated type are modeled as if attached to the
output port. The default is three loads. The count element is of type positivelnteger.

The loadConstraint element is not valid on input ports.

See also: SCR 14.2, SCR 14.4, and SCR 14.5.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 129
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

7.11.12.3 Example

This example shows two different load constraints. The first is load consisting of three D flops of median
strength and the second is a load consisting of four low-strength sequential cells.

<spirit:loadConstraints
<spirit:cellSpecification>
<spirit:cellFunction>dff</spirit:cellFunction>
</spirit:cellSpecifications>
</spirit:loadConstraints>
<gpirit:loadConstraints>
<spirit:cellSpecifications>
<spirit:cellClass spirit:strength="low” >sequential</spirit:cellClass>
</spirit:cellSpecification>
<spirit:count>4</spirit:count>
</spirit:loadConstraint>

7.11.13 Port timing constraints
7.11.13.1 Schema
The following schema defines the information contained in the timingConstraint element, which may

appear within a modeConstraints or mirroredModeConstraints element within a wire type port in an
abstraction definition or within a constraintSet element within a wire type port in a component.

=] attributes

tyvpe spir'rt:edge“-.-"alueTypei
wlefault |rize i

Indicates the clock edge that a
tirning consteaint is relative ta,

Efspirit:timingt:unstraint a | 1,spiritdelayType ;
“hype spirit delayPercentageTy... 1| iLvpe | spiritdelay'valueType |
minfmaxncl (00 Mooo N Indicates the type of delay in a
"""""""""""""""" st tirning constraint - rinirnurn or

0. rragirmun.
Crefines a timing constraint For the associatad =
signal, The constraint is relative to the clock spirit:clockHame

specified by the clackMarme attibute, The ;
clockEdge indicates which clock edge the type XS'N?mE
constraint is associated with (default is Fsing uze [required
edge), The delayType attibute can be specified
ta Further refine the constraint,

Indicates the narne of the clack
to which this constraint applies,

7.11.13.2 Description

The timingConstraint element defines a technology-independent timing constraint associated with the
containing wire port of a component or abstraction definition. Its of type delayPercentageType, the value is
a floating point number between 0 and 100 which represents the percentage of the cycle time to be allocated
to the timing constraint on the port. If the component port is an input (or the port in an abstraction definition
ends up mapping to a physical port with direction in), the timing constraint represents an input delay
constraint; otherwise, it represents an output delay constraint. timingConstraint also contains the following
attributes.

130 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

a) clockEdge (optional) specifies to which edge of the clock the constraint is relative. The default
behavior is the constraint is relative to the rising edge of the clock. The clockEdge attribute may
have two values rise (the default) or fall.

b) delayType (optional) restricts the constraint to applying to only best-case (minimum) or worst-case
(maximum) timing analysis. By default, the constraint is applied to both. The delayType attribute
may have two values min or max.

c¢) clockName (mandatory) specifies the delay constraint relative to the clock. The cycle time of the
referenced clock is what actually determines the actual magnitude of the delay constraint (<clock
cycle time> * 100 / <timing constraint element value>). The clockName element is of type Name.

See also: SCR 14.7 and SCR 14.9.

7.11.13.3 Example

This example shows three basic timing constraints. The first indicates a delay of 40% of the clock hclk,
relative to the rising edge of hclk, and applicable to both best and worst case timing analysis. The second
indicates a delay of 30% of the clock hc1k, relative to the falling edge of hc1k, and applicable to best case
timing. The third indicates a delay of 50% of the clock hclk, relative to the falling edge of hclk, and
applicable to worst case timing.

<spirit:timingConstraint
spirit:clockName="hclk”>40</spirit:timingConstraints>

<spirit:timingConstraint spirit:clockName="hclk”spirit:clockEdge="fall”
spirit:delayType="min”>30</spirit:timingConstraint>

<spirit:timingConstraint spirit:clockName="hclk” spirit:clockEdge="fall”

spirit:delayType="max” >50</spirit:timingConstraint>
7.11.14 Load and drive constraint cell specification
7.11.14.1 Schema

The following schema defines the information contained in the cellSpecification element, which may
appear within a loadConstraint or driveConstraint element indicating the type of cell to use in the
constraint.

3 aktributes

_Espir'rt:cellFunc‘tion L EJspir'rt:ceIlStrength :
ibype |Spir'rt:cellStrengihVaIueType]

bype | spirt: cellFunctionalueType

Defines a technology library czllin libeary Indic_ates the desired strength of the
independent Fashion, based on specified cell,
specification of a cell Function and

—Lspir'rt:cellﬁpec'rﬁcation = = strength,
Used to prowide a generic B sttributes
description of a technology

library cell, = PTTTITmmmeemmmmmmsmmsmmmsees &

Egpim:ce".;hss 1 SPiriteellStrength]

bype | spirt cellClazsvaluaType ilype | spirit.cellStrengthy/alusType |

Defines a technology libeary cell in Indic_ates the desired strength of the

libraty independant Fazhion, based on specified cell,

specification of a cell class and

strength,

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 131

This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

7.11.14.2 Description

The cellSpecification element defines a cell in a technology-independent fashion such that drive and load
constraints can be defined without referencing a specific technology library. The cell is defined so a design
environment can map it to an appropriate cell in a specific library when the actual constraint is generated.
The cellSpecification element ahsll contain one of the following two elements.

a)

b)

cellFunction (mandatory) specifies a cell function from the user defined library. The cellFunction
element shall be one of the following values: nd2, buf, inv, mux21, dff, latch or xor2. The cell-
Function element contains a cellStrength (optional) attribute that provides the cell strength specifi-
cation. The value shall be one of low, median (the default) or high. median implies the middle cell
of all the cells that match the desired function, sorted by drive or load strength (as appropriate for the
given constraint), is used.

cellClass (mandatory) specifies a cell class from the user defined library. The cellClass element
shall be one of the following values: combinational or sequential. The cellClass element contains a
cellStrength (optional) attribute that provides the cell strength specification. The value shall be one
of low, median (the default) or high. median implies the middle cell of all the cells that match the
desired class, sorted by drive or load strength (as appropriate for the given constraint), is used.

7.11.14.3 Example

This example shows two different variations of cell specifications. The first indicates a median-strength D
flop cell and the latter a low-strength sequential cell.

<spirit:cellSpecifications>
<spirit:cellFunction>dff</spirit:cellFunction>
</spirit:cellSpecification>
<spirit:cellSpecification>
<spirit:cellClass spirit:strength="low”>sequential</spirit:cellClass>
</spirit:cellSpecifications>

7.11.15 Other clock drivers

7.11.15.1 Schema

The following schema defines the information contained in the otherClockDrivers element, which may

appear within a component element.

132 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

B sttributes

| spiritunits

;spirit:clockPerio(l | Wby spirit: delay slueUnit Type

uze optional |

type [pirit: configurableDouble B b st :
mirvmaxLen [0 [1 | CE LTI N —
Clock period in units defined by the units | urp spiritfloat.prompt.att |

attribute, Default is nanoseconds, e this attribute group on Aoat

elements,

B sttributes

| spiritunits

Espirit:clockPulseOffSet | Whype spirﬂ:dTIayValueUnﬂType '
lvpe |Spiril.cuniigurableDUuble LTJ— 'zzfeault Egﬂona 4

minmazLen |0 [1 | LEIC CILIT 1S

Tirne until first pulse, Units are defined by the | orp spiritfloat.prompt.at |

units attribute, Default is nanoseconds,

Use this attribute group on Aoat
elements,

Drefines a set of clack drivers that 1,00
ate not directly associated with an

: : Crescribes a clock not directly
input signal of the companent, associated with an input part. The B attriputes
clockSource attribute can be used JE irit=.
spirit:clockPulseValue =
on these docks 1o indicate the ! = : = | arp spiritlong.prompt.att |
actual clock source (2.9, an output |type |splrrt.scaledNonNegaﬂvelrﬁeger Use this atribute gronp on long integer
port of a clock generator cell),
alue of port after first clock edge, elements,

B attritutes

spiritunits

| bvpe =pirit: delayyalueUnitType

" spirit:clockPulseDuration g
use optional k

—type [pirit: configurableDouble B RIS :
mirvmacLen [0 [1 | LEIC CILIT 1S
Curation of Arst state in cycle, Units are | orp spiritfloat.prompt.att
defined by the units attribute, DreFault is Use this stributs group on Aoat
nanozeconds,

elements,

[sttributes

spirit:clockHame
type [xa:Mame
use | required

Indicates the name of the dock,

wze | optional
Indicates the name of the actual
clock source (2.9, an output pin
of a clock generator cell],

7.11.15.2 Description

The otherClockDrivers element defines clocks within a component that are not directly associated with a
top-level port, e.g., virtual clocks and generated clocks. The otherClockDrivers element contains one or
more otherClockDriver elements, each of which represents a single clock. The otherClockDriver element
consists of a number of sub-elements which define the format of the clock waveform.

a) clockPeriod, clockPulseOffset, clockPulseValue and clockPulseDuration (all required) are all
detailed in the description of the element clockDriver. See 7.11.7.

b) clockName (mandatory) attribute indicating the name of the clock for reference by a constraint. The
clockName element is of type Name.

c) clockSource (optional) attribute defines the physical path and name to the clock generation cell.
7.11.15.3 Example

This example shows a virtual and a generated clock within the otherClockDrivers element.

<spirit:otherClockDriverss
<spirit:otherClockDriver spirit:clockName="virtClock”>
<spirit:clockPeriod>5</spirit:clockPeriods>
<spirit:clockPulsOffset>0</spirit:clockPulseOffset>

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 133
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

<spirit:clockPulseValue>l</spirit:clockPulsevValue>
<spirit:clockPulseDuration>2.5</spirit:clockPulseDuration>

</spirit:otherClockDrivers>

<spirit:otherClockDriver spirit:clockName="genClock”
spirit:clockSource="i_clkGen/clkl” >
<spirit:clockPeriod spirit:units="ps”>10</spirit:clockPeriod>
<spirit:clockPulsOffset spirit:units="ps”>2</spirit:clockPulseOffset>
<spirit:clockPulseValue>0</spirit:clockPulsevValue>
<spirit:clockPulseDuration spirit:units="ps”>5

</spirit:clockPulseDuration>
</spirit:otherClockDrivers
<spirit:otherClockDriverss>

7.11.16 Transactional ports
7.11.16.1 Component transactional port type

7.11.16.1.1 Schema

The following schema defines the information contained in the transactional element (in a component/
model/ports/port element).

134 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

3 attributes

1 spiritiallLogicalinitiativesAllowed

bype | xsthoolean :
uge aptional 1
clefault | false i

from the physical port initiative may be
mapped onto this port, Forbidden For phantorn
potts, which abways allow lagical parts with all
initiatives value to be mapped onta the
physical port, Alsa ignored For "both" ports,
since any logical port may be mapped to a
phyysical "both" part,

|
| True iF logical ports with different initiatives

bype | spirit: port Transactional Type

language for thiz port (j.e.
SysternC or Systermty],

[refines a port that implerments or uses a
service that can be implemented with
functions ar methods,

.
— = | E [refinition of the port type
— spirittransactional e_r‘,_lr ' expressed in the default

. Espirﬂ:portAccessTm)e]

ype xseting -
If present, indicates how a
netlister accesses a port or all the
ports of a busInteface

port access made

:spirit:portAccessHan(lle

If prezent, a netlizter should use
this string instead of the port name
to access the paort

EEspiri't:manConnections 3
hype |xs:nonNegativelmeger -
idefault [0 ;

i

\

! - .

' Indicates the maximum number of

+ connections this port supports, IF this
4 elerment iz not present or et to 0 it
\

|

.

|

\

\

1

irplies an unbounded nurmber of
Bounds nurmber of legal allowwed connections,

connections.

i spiritminConnections

ST byvpe | wsnontegstivelnteger |
idefault [1 ;

Indicates the minimurn number of

connactions this port supparts, IF this
elernent is not prezent, the minimurn
nurnber of allowed connections iz 1.

7.11.16.1.2 Description

A transactional element in a component model port enables to define a physical transactional port of the
component, which implements or uses a service. A service can be implemented with functions or methods. It
contains the following elements.

a)

b)

d)

allLogicalDirectionsAllowed (optional) attribute defines the possible legal combinations for the
initiative (defined in service/initiative, see 7.11.16.3) of ports between the component and the
abstraction definition. See 6.2 on bus interfaces. The allLogicalDirectionAllowed attribute is of
type Boolean. If true logical ports with different initiatives from the physical port initiative may be
mapped together. Forbidden for phantom ports, which always allow logical ports with all initiatives
value to be mapped onto the physical port. Also ignored for "both" ports, since any logical port may
be mapped to a physical "both" port.

transTypeDef (optional) defines the port type expressed in the default language for this port. See

service (mandatory) describes the interface protocol associated to the transactional port. See
7.11.16.3.

access (optional) defines the access for a port.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 135
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1) portAccessType (optional) indicates to a netlister how to access the port. The portAccessType
shall one of two possible values ref or ptr. If ref it should access theport directly and if ptr it
should access the port with a pointer.

2) portAccessHandle (optional) indicates to a netlister the string to use to access the port, instead
of the port name. The portAccessHandle is of type string.

e) connection (optional) defines the number of legal connections for a port.

1) maxConnections (optional) indicating the maximum number of connections that this port sup-
ports. Its default value is 0, which indicates an unbounded number of legal connections. The
maxConnections element is of type nonNegativelnteger.

2) minConnections (optional) indicating the minimum number of connections that this ports sup-
ports. Its default value is 1. The minConnections clement is of type nonNegativelnteger.

7.11.16.1.3 Example

The following example shows the transactional type definition of a custom specific t1m port, defined in
the include file t1m port.h.

<spirit:transTypeDef>
<spirit:typeName>tlm port</spirit:typeName>
<spirit:typeDefinition>tlm port.h</spirit:typeDefinition>
</spirit:transTypeDef>

7.11.16.2 Component transactional port type definition
7.11.16.2.1 Schema

The following schema defines the information contained in the transTypeDef element (in a component/
model/ports/port/transactional element).

= attributes

| spirit:constrained

= spirittypellame l Wype |xzboolean
bype | xsstring wefadlt |false :

The narne of the por type, Can Drafines that the twpe for the
Jm e be any predefined type such port has constrainted the number
--4_spirittransTypeDef Se_pott oF S_export in SystemC of bits in the wectar
AT aor any user-defined twpe such as
Deefinition of the port type tlrn_pott,

eppraszed in the defadk 1 .. el
language for thiz port (e, spirittypeDefinition |
SwystemC or Systarn's), -- 1

Where the definition of the type
is contained, For SysternC and
Systermierilog it is the include
fle containing the type
definition,

7.11.16.2.2 Description

A transTypeDef element defines the port type expressed in the default language for this port (e.g., SystemC
or SystemVerilog). It contains the following elements.

a) typeName (mandatory) defines the port type (such as sc_port/sc_export in SystemC or any
user-defined type, such as t 1m_port). The typeName element may be associated with an optional

136 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

Boolean constrained attribute (the default value is false). If true this indicates that the port type
definition has constrained the number of bits in the vector.

b) typeDefinition (optional) indicates a location where the type is defined,e.g., in SystemC and Sys-
temVerilog, this is the include file containing the type definition. The typeDefinition element is of
type string.

7.11.16.2.3 Example

The following example shows the transactional type definition of a custom specific t1m_port, defined in
the include file t1m port.h.

<spirit:transTypeDef>
<spirit:typeName>tlm port</spirit:typeName>
<spirit:typeDefinition>tlm port.h</spirit:typeDefinition>
</spirit:transTypeDef>
7.11.16.3 Component transactional port service

7.11.16.3.1 Schema

The following schema defines the information contained in the service element (in a component/model/
ports/port/transactional element).

&

Drefines how the port accesses
this service,

[attributes

| spirit:constrained .
xs-hoolean
rdefadlt | false

Drefines that the type Forthe
port has constrainted the nurnber
aF bi

in the wector

Fspirit:typetlame

bype | xsatring

ype | xsthoolesn |

The name of the service type,

Can be any predefined type defalt | false
such 23 booean or integer or ary | TOSSSSSASARSASASS
user-defined type such as Defines that the typeMame
addr_type or data_type. supplied For this service is implicit
= - - and a netister should not declare
this zervice in

a language specific top-level

Drescribes the interface protocal, J
nietlist

et sttt ol -

| spirit:typeDefinition

The group of service type 1.@ e [xs:string i

definitions, - . . B e
Ceefinition of a single service
type defintion

Where the definition of the type
is contained if the type if not
patt of the lanquage. Far
Systemic and Systernilerilag it
is the include Ale containing the
type definition,

list sarvice pararnaters (2.9,
paramneters Far a systamterilog
interface]

Container for endar specific
extensions.

7.11.16.3.2 Description

A service element describes the interface protocol associated to the transactional port. It contains the
following elements and attributes.

a) initiative (mandatory) defines the type of access: requires, provides, both, or phantom.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 137
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

b)

¢)

1))

2)
3)

For example, a SystemC sc_port should be defined with the requires initiative, since it
requires a SystemC interface. A SystemC sc_export should be defined with the provides
initiative, since it provides a SystemC interface.

A both value indicates the type of access is both requires and provides.
A phantom value indicates the type of access is a phantom port.

Phantom ports are additional ports in the component port list, which do not correspond to ports
of the implementation. As with real component ports, the mapping of a set of logical bus ports
to that phantom port implies any design using that component shall connect those logical ports
with no intervening logic. The difference is a real component port needs to have a correspond-
ing port in any RTL, TLM, or hierarchical IP-XACT implementation of the component;
whereas, for phantom ports there is no corresponding port in the implementation. See 7.11.17.

serviceTypeDefs (optional) contains one or more serviceTypeDef elements. This serviceTypeDef
element defines a single service type definition.

1)

2)

3)

typeName (mandatory) defines the name of the service type (can be any predefined type, such
as Boolean or any user-defined type, such as addr type). The typeName element may be
defined with two optional attributes: constrained (a Boolean indicating if the port type has
constrained the number of bits in the vector) and implicit (a Boolean indicating a netlister
should not declare this service in a language-specific, top-level netlist).

typeDefinition (optional) indicates a location where the type is defined,e.g., in SystemC and
SystemVerilog, this is the include file containing the type definition.

parameters (optional) specifies any service type parameters. See X.Y.Z.

vendorExtensions (optional) adds any extra vendor-specific data related to the service.

7.11.16.3.3 Example

The following example shows the definition of the service provided by a SystemC port.

sc_export< pvt 1f<ADDR, DATA> > pvt_port

<gpirit:services>

<spirit:initiativesprovides</spirit:initiatives
<spirit:serviceTypeDefs>

<spirit:serviceTypeDef>
<spirit:typeNamespvt if</spirit:typeNames>
<spirit:parameterss
<spirit:parameter name="addr” resolve="user” >ADDR
</spirit:parameters>
<spirit:parameter name="data” resolve="user”>DATA
</spirit:parameter>
</spirit:parameters>
</spirit:serviceTypeDef>

</spirit:serviceTypeDefs>

</spirit:services>

7.11.17 Phantom ports

In some components, the RTL or TLM implementation of the component does not fully implement the
functionality of the component described by IP-XACT. In RTL components, this is typically because the
component has to work in design flows that only allow a signal to be routed though an RTL component if
there is some logic within the RTL component associated with that signal. This is particularly a problem for
components containing channels.

138

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

An TP-XACT channel is supposed to represent the complete bus infrastructure between the master, slave,
and system bus interfaces connected to the bus. As such, the component containing the channel should
contain everything that is needed to create this infrastructure. In many buses, however, some signals are
directly connected between the components attached to the bus, with no intervening logic. This is most often
the case with clock and reset signals. If the component is to be usable in a wide range of design flows these
signals cannot be included in the RTL of the component.

To fully describe such a channel component and allow netlisters that have no special knowledge of that bus
type to netlist designs containing it, [IP-XACT describes these additional connections as phantom ports. Phan-
tom ports are additional ports included in the component’s port list, but marked as phantom. As with real
component ports, the mapping of a set of logical bus ports to that phantom port implies any design using that
component needs to connect those logical ports with no intervening logic. The difference is a real component
port needs to have a corresponding port in any RTL, TLM, or hierarchical IP-XACT implementation of the
component; whereas, for phantom ports there is no corresponding port in the implementation.

7.11.18 modelParameters

7.11.18.1 Schema

The following schema details the information contained in the modelParameters element, which may
appear as an element inside the top-level component/model or abstractor/model element.

[attributes

type | xsistring
The data type of the argument
as pettains to the language,

Example: "int", "double", "char

E spirit:usageType |

default | nortyped

Indicates the type of the model
parameter, Legal values are
defined in the attribute
enurneration list, Default value is
"montyped',

Model pararneter name value pairs
cantainer

|
|
|
|
|
|
|
|
|
|
|
|
3 -é _i_r-it-;ﬁl;;j;ail;s;a-lrr;ét;r-s- g [: spiritmodelParameter [%]_|
g e [tvpe [spirt namevalueTypeType |
|
|
|
|
|
|
|
|
|
|
|
|
|

1.

A rnodel parameter name walue pair,
The name iz given in an attribute, The
walue iz the element walue, The
dataType (applicable to high lewel
rodeling) is given in the dataType
attribute, For hardware bazed models,
the name should be identical to the RTL
WHEL generic or Verilog parameter),
The usageType attribute indicates how
the model parameter is to be used,

—(

[spiritvalue L
:

spirt: nameGroupString [

A group of elernents For
narmelysistring), displaytame
and description

Unique narne

T gpiritidisplaylHame |

thype | xsstring

Shart description string, typically
For uzer interface

_EEspirit:(Iescript
type |xsisting

Full description string, typically
For documnentation

[attributes

| orp spirit:string.prompt.att |

Lse this attribute graup on string

The walue of the parameter,

elements,

Container Far vendor specific
extensions,

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 139
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

7.11.18.2 Description

Model parameters are most often used in HDL languages to specify information that is passed to the model
to configure it for a process. The modelParameters element may contain any number modelParameter
elements. The modelParameter elements describe the properties for a single parameter that is applied to all
the models specified under the model/views element. It contains the following elements.

a) dataType (optional) attribute specifies the data type as it pertains to the language of the model. This
definition is used to define the type for component declaration and such and has no semantic mean-
ing. For example, systemC this could be int, double, char*, etc. For VHDL this could be
std_logic, std_logic_vector, integer, etc.

b) usageType (optional) attribute specifies how this parameter is used in different modeling languages:
nontyped (the default) and typed. See 7.11.18.2.1.

a) nameGroup group includes the following. See X.Y.Z .
1) name (mandatory) identifies the modelParameter.
2) displayName (optional) allows a short descriptive text to be associated with the register.
3) description (optional) allows a textual description of the register.
b) value (mandatory) contains the actual value of the parameter. The value element is of type string.

The value element is configurable with attributes from string.prompt.att, see X.Y.Z on configura-
tion.

¢) vendorExtensions (optional) adds any extra vendor-specific data related to the modelParamter.
See also: All SCRs that apply to the parameter element also apply to modelParameters, see Table BS.
7.11.18.2.1 Typed and non-typed parameters classification
There are two categories of parameters: type and non-typed.

The #ype parameters (or declaration parameters) appear in object-oriented (OO) languages such a C++/
SystemC or SystemVerilog.

In C++/SystemC, these are named Class template parameters. Templates can be used to develop a generic
class prototype (specification) which can be instantiated with different data types. This is very useful when
the same kind of class is used with different data types for individual members of the class. Parameterized
types are used as data types and then a class can be instantiated, i.e., constructed and used by providing
arguments for the parameters of the class template. A class template is a specification of how a class should
be built (i.e., instantiated) given the data type or values of its parameters.

Class template parameters can have default arguments, which are used during class template instantiation
when arguments are not provided. Because the provided arguments are used starting from the far left
parameter, default arguments should be provided for the right-most parameters.

Example 1

template <typename T>
class FIFO {

FIFO() ;

T pull () ;

void push(T &x) ;

Vi

In SystemVerilog, typed parameters are named type parameters. Type parameters can be used in
SystemVerilog classes, interfaces, or modules to provide the basic function of C++ templates.

140 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

Example 2

typedef bit[32] DataT;

interface FIFO #(type T);
Method T pull();
Method push (T x);

endinterface: FIFO

The generic non-typed parameters (or initialization parameters) appear in all languages (procedural or OO)
and in particular in VHDL, Verilog, SystemC, and SystemVerilog. A non-typed parameter is like an
ordinary (function-parameter) declaration. In SystemC, it represents a constant in a class template definition
or a parameter in a class constructor, i.e., this can be determined at compilation time. In VHDL, it is
represented by generics. In Verilog or SystemVerilog, it is represented by parameters.

Example 3

Here is an example of non-typed parameters usage on a simple GCD model expressed in various languages.

VHDL

entity GCD is
generic (Width: natural) ;

port (

Clock,Reset,Load: in std logic;
A,B: in unsigned (Width-1 downto 0);
Done: out std logic;
Y: out unsigned(Width-1 downto 0)) ;

end entity GCD;
(System)Verilog

module GCD (Clock, Reset, Load, A, B, Done, Y);
parameter Width = 8;

input Clock, Reset, Load;
input [Width-1:0] A, B;
output Done;
output [Width-1:01 Y;
endmodule
SystemC

template <unsigned int Width = 8>

SC_MODULE (GCD) {
sc_in<bool> Clock, Reset, Load;
sc_in<sc uint<Width> >a, b;
sc_out<bool> Done;
sc_out<sc_uint<Width> > y;

These two kinds of parameters (typed and non-typed) can be combined to model complex IP modules.
Example 4

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 141
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

In SystemC:

template <typename T> // type parameter
class testModule : public sc_module {
public:
testModule (sc_module name modnamemodname, string
portname)
// non type parameters
sc_module (modname) ,
testport (portname) {..}
sc_port<T> testport;

}i
In a top SC netlist design, such a class is instantiated as follows.
testModule<bool> test (“myModuleName”, “portl”) ;
In IP-XACT, the testModule parameters are represented as follows.

<spirit:modelParameters>
<!-- template parameter -->
<spirit:modelParameter spirit:usageType="typed">
<spirit:name>T</spirit:name>
<spirit:value
spirit:choiceRef="typenameChoice"
spirit:configGroups="requiredConfig"
spirit:id="Tid"
spirit:prompt="T:"
spirit:resolve="user">boolean</spirit:value>
</spirit:modelParameters>
<!-- constructor parameters -->
<spirit:modelParameter spirit:usageType="nontyped">
<spirit:name>modname</spirit:name>
<spirit:value
spirit:choiceRef="modulenameChoice"
spirit:configGroups="requiredConfig"
spirit:id="modnameId"
spirit:prompt="moduleName:"
spirit:resolve="user">myModuleName</spirit:value>
</spirit:modelParameters
<spirit:modelParameter spirit:usageType="nontyped">
<spirit:name>portname</spirit:name>
<spirit:value
spirit:choiceRef="portnameChoice"
spirit:configGroups="requiredConfig"
spirit:id="portnameid"
spirit:prompt="portName:"
spirit:resolve="user">portl</spirit:value>
</spirit:modelParameters
</spirit:modelParameterss>

7.11.18.2.2 Generic parameters mapping in different languages

Table 7 summarizes the two kind of parameters (initialization and declaration) expressed in the four most
commonly used HW languages.

142 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces

IP-XACT Standard/D4, December 19, 2007

Table 7—Parameter mappings

Language Nongzﬂ?:lil; 2::::::; ters Typed parameters (declaration)
VHDL generics N.A
Verilog parameter N.A
SystemC constructor Template (constant or variable type)
SystemVerilog parameter parameter

A declaration parameter (e.g., int) shall be used when declaring an IP instance in a top netlist (e.g,. myIP

int myIntIP;). An initialization parameter (e.g., myName) shall be used when initializing the instance

of that IP (e.g., myIntIP (“myName”) ;).

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

143

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007

144

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Draft Standard for

IP-XACT meta-data and tool interfaces

7.12 Component generators

7.12.1 Schema

The following schema details the information contained in the componentGenerators element, which may

IP-XACT Standard/D4, December 19, 2007

appear as an element inside the top-level component element.

[F]

Generator list is tools-specific,
1.
Specifies a set of companent generators, The
scope attribute applies to component generatars
snd specifies whether the generstar shauld be mun
For each instance of the entity (or module) or just
once For all instances of the entity,

7.12.2 Description

‘spiri‘(:componeanenem‘lor AL
-3 |tvpe [spirttinstanceGenerator Type

[sttributes

ype | xsthoolean
= optional }
rdefault | false

IF this attribute is true then the generator should
not be presented to the user, it ray be part of a
chain and has no useful meaning when invaked
] standalone,

ttyoe | xaiatring |
b [Prr—
wse | optional
rdefaull | instance |

The scope attribute applies to companent
generators and specifies whether the generatar
should be run For each instance of the entity (or

rmodule] ar just once For all instances of the entity,

Unique name

spirit:nameGroup [

A group of slements for name (isiname),
displsyMarne and description

Elernent namme For display purposes, Typically 3
Few words providing a more detailed andjor
user-friendly name than the spirit:name.

ihype | xastring '

Full description string, typically For decumentation

B sttributes

pirit:phase L :"5|)| 1
ibype | spirit:phaseScopeType |
sdefault | ghol

rit:scope

This is an non-negative Aoating paint number that
is used to sequence when a generator is run, The
generators are mun in order starting with zera,
Thera may be multiple generators with the same
phase numnber. In this case, the order should not
ratter with respect to other generators at the
same phase. IF no phase number is given the
generator will be considered in the "last" phaze
and these generators will be run in the order in
wchich they are encountersd while processing
generator elements,

Indicates the type of APT used by the generator,
“alid vwalue are TGI, and none. IF this element is
ot present, TGI is aszumed.,

irittransportMethod
Drefines a SOAP transpor protocel other than

HTTP which is supported by this generator, The
only other curvently supported protocel is 'fle',

Espirit:gellemtorlE)(e
spirit:spirtUR]

The pathname to the executable file that
implernents the generator

An identifier to specify the generator group. This
is uzad by generator chains For selecting which
generators to run,

The componentGenerators element contains an unbounded list of componentGenerator elements. Each
componentGenerator element defines a generator that are assigned and may be run on this component.
componentGenerator contains two attributes: hidden and scope. The hidden (optional) attribute specifies,
when True, this generator shall not be run as the initial generator and is required to be run as port of a chain.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 144
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

If False (the default), this generator may be run as an initial generator or in a generator chain. This attribute
is of type Boolean. The scope (optional) attribute is an enumerated list of instance and entity. instance
indicates this generator shall be run once for all instances of this component. entity indicates this generator
shall be run once for each instance of this component.

componentGenerator contains the following elements.

a)

b)

¢)
d)

e)

2

h)

nameGroup group includes the following.
1) name (mandatory) identifies the component generator. The name element is of type Name.

2) displayName (optional) allows a short descriptive text to be associated with the component
generator. The displayName element is of type string.

3) description (optional) allows a textual description of the component generator. The descrip-
tion clement is of type string.

phase (optional) determines the sequence in which a generators are run. Multiply selected genera-
tors are run in order starting with zero (0). If generators have the same phase numbers, the order
shall be interpreted as not important and the generators can be run in any order. If no phase number
is given the generator is considered in the “last” phase and these generators are run in the order they
are encountered while processing componentGenerator elements. The phase element is of type
float and shall also be a positive number.

phase can also contain a scope (optional) attribute specifying the scope of the phase number in this
generator as related to other generators. This is an enumerated list of global or local. global (the
default) indicates the phase number shall be used across all generators when determining the gener-
ator sequence. local indicates the phase number shall only be used in comparison with generators
defined within this component description.

parameters (optional) specifies any componentGenerator type parameters. See X.Y.Z.

apiType (optional) indicates the type of API used by the generator: an enumerated list of TGI or
none. TGI indicates the generator uses communication to the design environment compliant with
the TGI. none indicates the generator does not use any communication with the DE.

transportMethods (optional) defines alternate SOAP transport protocol that this generator can sup-
port. The default SOAP transport protocol is HTTP if this element is not present.

transportMethod specifies the alternate transport protocol. This element is an enumerated list
of only one element file. file indicates the SOAP transport protocol is transported to the DE
view of a file or file handle.

generatorExe (mandatory) contains an absolute or relative (to the location of the containing
description) path to the generator executable. The path may also contain environment variables from
the host system, which are used to abstract the location of the generator. The generatorExe element
is of type spiritURI.

vendorExtensions (optional) adds any extra vendor-specific data related to the componentGenera-
tor.

group (optional, unbounded) is a list of names used to assign this generator to a group with other
generators. These group names are then referenced by a generator chain selector to forming a chain
of generators. See X.Y.Z. The group element is of type Name.

7.12.3 Example

This example shows

145

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

7.13 Files

7.13.1 filesets

7.13.1.1 Schema

—

The following schema details the information contained in the fileSets element, which may appear in

component or an abstractor.

Unique name

R Ezspiri't:(lisplayﬂnme]
ibvpe | xestring

spirt:nameGroup [

& group o elements for name (i5name),
displayMame and description

Elernent narne For display purpeses, Typically
2 Fews words providing a meve detalled andjor
user-Riendly name than the spitinarne,

o pirit:description :
ihype | xsrstring

Full description string, rypically For
docurnent atian

Identifias this filleSet az balonging to 2
patticular group o hawing a particular
purpose, Examples might be "diagnostics”,
"boot", "application", “intermupt",
“dewiceDiriver”, etc,

e G
e
O.m

SPIRIT reference to a fle or divectory,

(DE‘ ’spiri't:ﬁleSet J]‘
type | spirit: fleSetType

1.0

, spirit:defaultFileBuilder
1 alvpe | spirt: fileBuilder Type

List of file sets associated with component,

This elernent specifies a list of unique
pathnarmes to Ales and directories, It may
alza include build instructions For the files, TF
cornpilation ordar iz impartant, 2.9, far WHDL
Fles, the fles have ta be provided in
cornpilation ordar,

0.

Default cornmand and Aags used ra build
derived files from the sourceMame files in this
File set,

Specifies a lacation on which Fles or AleSats
rnay be dependent, Typically, this would be
a directory that would contain included files,

Generator information iF this file set describes
a function, For example, this file set may
describe diagnostics far which the DE can
generate a diagnostics driver.

Container for wendor specific extensions,

7.13.1.2 Description

The fileSets element contains may contain one or more fileSet elements. A fileSet contains a list of files
associated with a component. A Fileset can establish the (relative) path directory of files and elements
associated with a component and/or include any build instructions. If completion order is important (e.g., for
VHDL files), the files shall be listed in the order needed for completion. fileSet has the following mandatory
and optional elements.

a) nameGroup group includes the following. See X.Y.Z.
1) name (mandatory) identifies the file set. The name element is of type Name.

2) displayName (optional) allows a short descriptive text to be associated with the file set. The
displayName clement is of type string.

3) description (optional) allows a textual description of the file set. The description element is of
type string.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 146
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

b)

¢)

d)

e)

f)

2

group (optional, unbounded) describes the function or purpose of the file set with a single word
group name (e.g., diagnostics, interrupt, etc.). The group element is of type Name.

file (optional, unbounded) references a single file or directory associated with the file set (see
7.13.2).

defaultFileBuilder (optional, unbounded) specifies the default build commands for the files within
this file set.

dependency (optional, unbounded) is the path to a directory containing (include) files on which the
file set depends. The dependency element is of type spiritURI.

function (optional, unbounded) specifies the information about a function for a generator (see
7.13.5).

vendorExtensions (optional) provides a place for any vendor-specific extensions.

7.13.1.3 Example

The following is an example of a fileSet with two VHDL files.

<spirit:fileSets>
<spirit:fileSet spirit:fileSetId="fs-vhdlSource">
<spirit:name>fs-vhdlSource</spirit:name>
<spirit:file>
<spirit:name>hdlsrc/timers.vhd</spirit:name>
<spirit:fileType>vhdlSource</spirit:fileType>
<spirit:logicalName>leon2 timers</spirit:logicalNames>
</spirit:file>
<spirit:file>
<spirit:name>hdlsrc/leon2 Timers.vhd</spirit:namex>
<spirit:fileType>vhdlSource</spirit:fileType>
<spirit:logicalName>leon2 timers</spirit:logicalName>
</spirit:file>
</spirit:fileSet>
</spirit:fileSets>

7.13.2 file

7.13.2.1 Schema

The following schema details the information contained in the file element, which may appear as an element
inside the fileset element.

147

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

SPIRIT reference to a file or directary,

7.13.2.2 Description

B attributes

by | xsID

Unique I far this file, referenced in AleSet functionfileRef

_ [attributes
~ spiritname 1|
bype | spirit: spirtUR |

Path ta the Fle or directory, IF this path is a relative path, then it is
relative to the containing ML fle,

orp spirit:string.prompt.att |

Use this attribute group on string elements.

Espiri‘t.'ﬁleT).rpe

Enumnerated file types known by SPIRIT,

= spirituserFileType
The type of a file refenced by SPIRIT. [
Either: AleType - 3 known SEIRTT file type, or userFileType - 2 fle 9

type nat yet known by SPIRIT. IF rmultiple types are specified, the Free Farm file type, nat - wet - known by SPIRIT |
order is impartant, The first type is the primary type of the file and the

latter types are types that may be embedded in the fle, For example

a Werilag file containing PSL assertions.

B attributes

spirit: file Type

1.0

externalDeclarations

ibvpe |xs:boo|ean 1

= 0.

Defines exported names that can be accessed extemally, e.g. exported
Function names from a < source fle,

Zornmand and Aags used to build derived Ales fram the sourceMamme
files, IF this element is prezent, the command andjor Aags used to to
build the Fle will cweride or augrnent any deFault builders at 2 higher

Specifies a location on which Files or fileSets may be dependent,
Typically, this would be a directory that would contain included files,

Specifies define symbals that are used in the source file, The
spititinarne attibute gives the name to be defined and the text content
of the elernent halds the walue, This elernent supparts Full
configurability,

Relates the curvent file to a certain executable image type in the
design.

Container Far vendor specific extensions,

A file is a reference to a file or directory. It is an optional element of a fileset. If completion order is
important (e.g., for VHDL files), the files shall be listed in the order needed for completion. The file element

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 148
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

contains an attribute fileld (optional) which is used for references to this file from inside fileSet/function/
fileRef clement. The file element also allows for vendor attributes to be applied. file contains the following
elements.

a)

b)

d)

e)

2

h)
)
)
k)

name (mandatory) contains an absolute or relative (to the location of the containing description)
path to a file name or directory. The path may also contain environment variables from the host sys-
tem, used to abstract the location of files. The name element is of type spiritURI. The name element
is configurable with attributes from string.prompt.att, see X.Y.Z on configuration.

fileType (required, unbounded) group contains one of the following two elements.

1) fileType (mandatory) describes the type of file referenced from the this enumerated list of
industry standard files: unknown, cSource, cppSource, asmSource, vhdlSource, vhdl-
Source-87, vhdlSource-93, verilogSource, verilogSource-95, verilogSource-2001, swOb-
ject, swObjectLibrary, vhdlBinaryLibrary, verilogBinaryLibrary, unelaboratedHdl,
executableHdl, systemVerilogSource, systemVerilogSource-3.0, systemVerilogSource-3.1,
systemCSource, systemCSource-2.0, systemCSource-2.0.1, systemCSource-2.1, vera-
Source, eSource, perlSource, tclSource, OVASource, SVASource, pslSource, systemVer-
ilogSource-3.1a, and SDC.

2) userFileType (mandatory) describes any other file type that can not be described from the list
for fileType. The userFileType element is of type string.

includeFile (optional) when 7rue, declares the file as an include file. If this element is not present
the default value is False. includeFile is of type Boolean. includeFile has an attribute external-
Declarations (optional), when True, this indicates the include file is needed by users of any files in
this file set. The default is false.

logicalName (optional) is the logical name for the file or directory, such as a VHDL library. The
logicalName element is of type Name. logicalName includes an attribute default (optional) that
means something. The default attribute is of type Boolean and the default is false.

exportedName (optional, unbounded) defines any names that can be referenced externally. export-
edName is of type Name.

buildCommand (optional) contains flags or commands for building the containing source file.
These flags or commands override any flags or commands present in higher-level defaultFile-
Builder elements. See X.Y.Z.

dependency (optional, unbounded) is the path to a directory containing (include) files on which the
file depends. The dependency element is of type spiritURL.

define (optional, unbounded) specifies the define symbols to use in the source file. See 7.13.4.
imageType (optional, unbounded) relates the current file to an executable image type in the design.
description (optional) details the file for the user. The description element is of type string.

vendorExtensions (optional) provides a place for any vendor-specific extensions.

See also SCR 12.1.

7.13.2.3 Example

The following is an example of two file sets. One with a Verilog file with a dependency on a directory and
one with a VHDL file.

149

<spirit:fileSets>

<spirit:fileSet>
<spirit:name>fs-verilogSource</spirit:name>
<spirit:file>
<spirit:name>data/i2¢c/RTL/i2c.v</spirit:name>
<spirit:fileTypes>verilogSource</spirit:fileType>
<spirit:logicalName>i2c_ lib</spirit:logicalName>

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

</spirit:file>
<spirit:dependency>data/i2c/RTL</spirit:dependencys>
</spirit:fileSet>
<spirit:fileSet>
<spirit:name>fs-vhdlWrapper</spirit:name>
<spirit:file>
<spirit:name>data/i2¢c/RTL/i2c.vhd</spirit:name>
<spirit:fileType>vhdlSource</spirit:fileType>
<spirit:logicalName>i2c lib</spirit:logicalName>
</spirit:file>
</spirit:fileSet>
</spirit:fileSets>

7.13.3 buildCommand
7.13.3.1 Schema

The following schema details the information contained in the buildCommand element, which may appear
as an element inside the file element.

[attributes

| orp spiritstring.prompt.att |

Use this attribute group on string
Cornmand used to build this elernents,

file,
[attributes

Csp

\bype | xastring

spirit:append

bype | x5 hoolesn

"true" indicates that the Aags
shall be appended ta any
existing Aags, "false"indicates
these Aags will replace any

flacslsivenitolbelbuild existing default Aags,

carnrnand when building this
file. IF the optional attrbute
"append” iz "true", this string

| orp spirit:string.prompt.att |

will be appended to any Lse this attribute group on string
existing Aags, otherwise elernents.

these Aags will replace any
existing default Aags.

Command and Aags used ta
build derived files from the
sourceMame Files, IF this
element iz present, the
cornmand andfor Alags used ta
to build the File will override or
augrment amy default builders at
a higher lewvel,

[attributes

= | orp spiritbool.prompt.att |

-------------------------- L Use this attribute group on boolean
IF true, the walue of the sibling elemnents,

element "Aags" should replace any
default Aags specified at a more global
lewel, IF this iz true and the sibling
elernent "Aags" iz erpty or missing,
thiz has the effect of cleating any

default Aags,
[attributes

| orp spiritstring.prompt.att |
Use this attribute group on string
Pathnarme to the file that i elements,

derived (built) fram the
source file,

spiritreplaceDefaultFlags

spirit:targetHame

7.13.3.2 Description

A buildCommand contains flags or commands for building the containing source file. These flags or
commands override any flags or commands present in higher-level defaultFileBuilder elements.

a) command (optional) element defines a compiler or assembler tool that processes the software of
this type. The command clement is of type string. The command clement is configurable with
attributes from string.prompt.att, see X.Y.Z on configuration.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 150
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

b)

d)

flags (optional) documents any flags to be passed along with the software tool command. The flag
element is of type string. The flags element is configurable with attributes from string.prompt.att,
see X.Y.Z on configuration. The flags element contains an attribute append (optional), which, when
True indicates the flags shall be appended to the current flags. If false, the flags shall replace the
existing flags.

replaceDefaultFlags (optional) documents flags that replace any of the passed default flags. The
replaceDefaultFlags clement is of type Boolean. The replaceDefaultFlags clement is configurable
with attributes from bool. prompt.att, see X.Y.Z on configuration.

targetName (optional) defines the path to the file derived from the source file. The targetName cle-
ment is of type spiritURI. The targetName eclement is configurable with attributes from
string.prompt.att, see X.Y.Z on configuration.

7.13.3.3 Example

The

following is an example.

<spirit:fileSetss>
</spirit:fileSets>

7.13.4 define

7.13.4.1 Schema

The

following schema details the information contained in the define element, which may appear as an

element inside the file element.

[attributes

Unique narne

E spirit:define E']

= gpirit:displayHame |

spirt: nameGroupString [

ItypeJ spirit: name aluePairType

___ Sut v lypelxsisting
0. A group of _elements for E Shart description string,
Specifies define symbals that are used namelzistringl, o typically For user interface

in the source fle, The spititiname displayName and description

attribute gives the nare to be defined
and the text content of the elernent
holds the walue. This elerment
supports full configurability

y 1 ospirit:description E

- ibype | xsstring

Full description string,

|
|
|
|
| _E_ja_ typically For documentation
| [attributes
|
|
|
|
|

| orp spirit:string.prompt.att |
H Usa thiz attribute group on string
i+ The walue of the parameter, elernents,

Container Far vendor specific
extensions,

7.13.4.2 Description

The

define element specifies the define symbols to use in the source file. This define element allows for

vendor attributes to be applied.

a)

151

nameGroupString group includes the following. See X.Y.Z.

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1) name (mandatory) identifies the name of the define symbol used in the source file. The name
element is of type String.

2) displayName (optional) allows a short descriptive text to be associated with the define ele-
ment. The displayName element is of type string.

3) description (optional) allows a textual description of the define element. The description ele-
ment is of type string.

b) value (mandatory) contains the value of the define symbol. The value element is of type string. The
value element is configurable with attributes from string.prompt.att, see X.Y.Z on configuration.

¢) vendorExtensions (optional) provides a place for any vendor-specific extensions.
7.13.4.3 Example
The following is an example
<spirit:fileSetss>
</spirit:fileSetss>
7.13.5 function
7.13.5.1 Schema

The following schema details the information contained in the function element, which may appear as an
element inside the fileset element.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 152
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007

[attributes

rdefallt | false

I true directs the generator to cornpile
a separate object radule Far each
instance of the carnponent in the
design. IF Falze [deFault) the function
will be called with different arqurents
For each instance,

spirit:entryPoint |

pe | s MName

Optional name Far the function,

' " spiritfileRef
w5 IDREF

A reference to the file that contains the
entry paint function,

Generator information iF this fle set
describes a function, For example, this S ——
file set may describe diagnostics Far :=5|)irit:returnTy1)e v
wehich the DE can generate 2 -4
diagnostics driver,

Function retumn type, Possible walues
are woid and int.,

Arqurnents passed in when the function
is called, Arguments are passed in
order,

This iz an extension of the name-valus
pair which includes the data type in the
spititidataType atibute, The
apgurnent narne is in the spiritnarne
attribute and its walue is in the text
content of the element,

[attributes

|grp spirit:bool.prompt.att |

Lse this attribute group on boolean
Specifies if the SW Function is enabled, elernents,

IF not present the function is always
enabled,

Location information For the source fle
of this function,

7.13.5.2 Description

Draft Standard for

A function specifies information about a generator function. function contains an attribute replicate
(optional), when set to 7rue, the generator compiles a separate object module for each instance of the
component in the design. This allows the function to be called with different attributes for each instance
within the design (e.g., base address). The replicate attribute is of type Boolean and the default value is

False. function has the following elements.

a) entryPoint (optional) is the entry point name for the function or subroutine.

b) fileRef (mandatory) reference to the file that contains the entry point for the function. The value of

this element shall match an attribute in file/fileld.

c¢) returnType (optional) is an enumerated string type which indicates the return type for the function.

The two possible values are int and void.

d) argument (optional, unbounded) lists any arguments passed when this function is called. All argu-

ments shall be passed in the order presented in this description. See 7.13.6.

e) disabled (optional) disables the software function. The disabled element is of type Boolean and the
default is False. When True, the software function is not available for use. When False, the function
is available. The disabled element is configurable with attributes from bool.prompt.att, see X.Y.Z

on configuration.

153 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

f) sourceFile (optional, unbounded) references any source files. The order of the source files may be
important, as this could indicate a compile order.

7.13.5.3 Example

The following example includes a file with a fi1eId and a function referencing that file.

<spirit:fileSets>
<spirit:fileSet spirit:fileSetId="fs-systemcSource">
<spirit:names>sourceFiles</spirit:name>
<spirit:file spirit:fileId="source">
<spirit:name>src/source.cc</spirit:name>
<spirit:fileType>systemCSource-2.1l</spirit:fileType>
</spirit:file>
<spirit:functions>
<spirit:fileRef>source</spirit:fileRef>
<spirit:returnType>void</spirit:returnType>
<spirit:argument spirit:dataType="int">
<spirit:namesargument 1l</spirit:namex
<spirit:value>0</spirit:value>
</spirit:argument>
</spirit:functions>
</spirit:fileSet>
</spirit:fileSets>

7.13.6 argument
7.13.6.1 Schema

The following schema details the information contained in the argument element, which may appear as an
element inside the function element.

B attributes

Unique narne

| spirit:argument

pirit:displaylame |

) thype | xsstring

Arqurnents passed in when the function
is called, Arguments are passed in
order,

This iz an extension of the name-valus
pair which includes the data type in the
spititidataType atibute, The
apgurnent narne is in the spiritnarne
attribute and its walue is in the text
content of the element,

A group of elements Far
namelisistiing], displayMarne and
description

(=

Cspiritwalue L
:

The walue of the parareter,

Container For wendar specific
extensions,

[attributes

spirit:dataType

bype | spirt: dataTypeType
uzg | required

Shart description string, tpically Far
uzer interface

~ gpirit:description E

type |xsisting
Full description string, typically for
docurnentation

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 154
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

7.13.6.2 Description

The argument element specifies the arguments passed to the function when making a call. All arguments
shall be passed in the order presented in this description. The dataType (mandatory) attribute specifies the
type for this argument, e.g., an int or Boolean. The argument element also allows for vendor attributes
to be applied.

a) nameGroupString group includes the following. See X.Y.Z.

1) name (mandatory) identifies the name of the argument in the function. The name element is
of type String.

2) displayName (optional) allows a short descriptive text to be associated with the argument.
The displayName element is of type string.

3) description (optional) allows a textual description of the argument. The description element
is of type string.

b) value (mandatory) contains the value of the argument. The value element is of type string. The
value element is configurable with attributes from string.prompt.att, see X.Y.Z on configuration.

¢) vendorExtensions (optional) provides a place for any vendor-specific extensions.

sourceFile references any source files. Order is important in the source file. It has the following
mandatory subelements.

i) sourceName identifies the boot load file. Relative names are searched for in the project
directory and the source of the component directory.

ii) fileType references the SPIRIT file type. If multiple files are referenced, order is impor-
tant. There are two categories that can be referenced:

fileType includes file types and enumerated by SPIRIT and

userFileType encompasses all other file types.

7.13.6.3 Example

The following example includes a file with a £i1eId and a function referencing that file.

<spirit:fileSets>
<spirit:fileSet spirit:fileSetId="fs-systemcSource">
<spirit:name>sourceFiles</spirit:name>
<spirit:file spirit:fileId="source">
<spirit:name>src/source.cc</spirit:name>
<spirit:fileType>systemCSource-2.1l</spirit:fileType>
</spirit:file>
<spirit:functions>
<spirit:fileRef>source</spirit:fileRef>
<spirit:returnType>void</spirit:returnType>
<spirit:argument spirit:dataType="int">
<spirit:name>argument 1l</spirit:namex>
<spirit:value>0</spirit:value>
</spirit:argument>
</spirit:function>
</spirit:fileSet>
</spirit:fileSets>

155 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

7.13.7 sourceFile
7.13.7.1 Schema

The following schema details the information contained in the sourceFile element, which may appear as an
element inside the function element.

Es|)iri‘t:soun:eﬂame
spirit: spirtURI
Source file for the boot load, Relative
narnes are searched For in the project
directory and the source of the
carnponent directory,

Espirit:ﬁIeT).rpe

Enurnerated file types known by
SPIRIT.

Location information For the source fle
of this function,

=pirit: fileType [

The type of a file refenced by SPIRIT, — -
Either: fleType - a known SPIRIT fle spirituserFileType
type, or usetFileType - a fle type not
et known by SPIRIT, IF multiple x3:3tring

types are specified, the order is Free Farm file type, nat - yet - known
irnportant, The first type is the primary by SPIRIT .

type of the file and the latter types are

types that ray be erbedded in the

file. For example 2 Yerilag file

containing PSL aszertions,

7.13.7.2 Description

The sourceFile element specifies the location of the source files for this function. All source files shall be
processed in the order presented in this description.

a) sourceName (mandatory) contains an absolute or relative (to the location of the containing descrip-
tion) path to a file name or directory. The path may also contain environment variables from the host
system, used to abstract the location of files. Relative names are searched for in the project directory
and the source of the component directory. The sourceName element is of type spiritURI.

b) fileType (required) group contains one of the following two elements.

1) fileType (mandatory) describes the type of file referenced from the this enumerated list of
industry standard files: unknown, cSource, cppSource, asmSource, vhdlSource, vhdl-
Source-87, vhdlSource-93, verilogSource, verilogSource-95, verilogSource-2001, swOb-
ject, swObjectLibrary, vhdIBinaryLibrary, verilogBinaryLibrary, unelaboratedHdl,
executableHdl, systemVerilogSource, systemVerilogSource-3.0, systemVerilogSource-3.1,
systemCSource, systemCSource-2.0, systemCSource-2.0.1, systemCSource-2.1, vera-
Source, eSource, perlSource, tclSource, OVASource, SVASource, pslSource, systemVer-
ilogSource-3.1a, and SDC.

2) userFileType (mandatory) describes any other file type that can not be described from the list
for fileType. The userFileType element is of type string.

7.13.7.3 Example

The following example

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 156
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007

157

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Draft Standard for

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

7.14 Choices
7.14.1 Schema

The following schema details the information contained in the choices element, which may appear as an
element inside the top-level component or abstractor element.

= spirit:name

xzMame

Chaice ke, available For reference
by the spirit:choiceRef attribute of
uzer defined properties of type
spititFarrnat="chaice",

-|yspiritchoices [(=== spiritichoice E}—————(~—T+ [ttibates |

Choices used by user defined 1.0 fmmmmeeeaaey
! spirititext

proparties of spirit:Format="chaice’ Mon-empty set of lagal waluss For 2

uzer defined property of type thype | wssstring |
spiitfarmnat="chaice" . | | vsasassssds

When specified, displayed in place
of the spirt:enurneration value

.............

.
' gpirithelp |

itype | xsstring |

e possible walue of spitichoice

Text that riay be displayed if the
user requests help about the
meaning of an elerment

7.14.2 Description

The choices element contains an unbounded list of choice elements. Each choice element is a list of items
used by a modelParameter clement, parameter element, or any other configurable element with a
choiceRef attribute. These elements indicate they are using a choice eclement by setting the attribute
choiceRef. This choiceRef attribute shall reference a valid choice/name element in the containing XML
document.

The choice definition contains the following elements.

a) name (mandatory) specifies the name of this list and is used by other element for reference. The
name clement is of type Name.

b) enumeration (mandatory) is an unbounded list of of elements, where each holds a possible value
that the referencing element may contain.

1) text (optional) attribute causes optional text to be displayed when choosing the choice value.
The resulting value stored in the configurable element corresponds to the enumeration value for
the choice. If the text attribute is not present, the enumeration value may be displayed. The
text element is of type string.

2) help (optional) attribute gives any additional information about this enumeration element.. The
help element is of type string.

See also: SCR 5.12.

7.14.3 Example

This example shows the addressable size (width) and the word size (Dwidth) of a memory component.

<spirit:model>
<spirit:modelparameterss>

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 157
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

<spirit:modelparameter spirit:name="width"
spirit:choiceRef="widthOptions">1</spirit:modelparameter>
<spirit:modelparameter spirit:name="Dwidth"
spirit:choiceRef="DwidthOptions">4</spirit:modelparameter>
</spirit:modelparameterss
</spirit:models>

<spirit:choicess>
<spirit:choices
<spirit:name>widthOptions</spirit:name>
<spirit:enumeration spirit:text="8K">l</spirit:enumerations>
<spirit:enumeration spirit:text="64K">2</spirit:enumerations>
<spirit:enumeration spirit:text="256K">3</spirit:enumerations>
</spirit:choice>
<spirit:choices
<spirit:name>DwidthOptions</spirit:name>
<spirit:enumeration spirit:text="2Bytes">4</spirit:enumerations>
<spirit:enumeration spirit:text="4Bytes">5</spirit:enumerations>
<spirit:enumeration spirit:text="8Bytes">6</spirit:enumerations>
</spirit:choice>
</spirit:choices>

158 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

7.15 Whitebox elements

Verification IP, such as monitors, have pseudo-physical bus interfaces to connect with bus interface ports
under test, while not being an actual part of the design, but as part of a test bench instead. Other verification
tools may require access to component IP in a design, at a level deeper than the interfaces defined for the
component. A whitebox element provides such access. This can be used in situations where internal
registers, flags, or whole IP-XACT interfaces need to be monitored or on internal nodes or interfaces driven
by verification IP.

7.15.1 Schema

The following schema details the information contained in the whiteboxElements element, which may
appear as an element inside the top-level component element.

Unique narne

spirit nameGroup [== Elemnent name For display

purposes, Typically a Few words
prowiding a rore detailed andjior
user-friendly name than the
Spititinarne,

A group of elerments For narne
(isinarne), displayMarne and
description

~ spirit:description

Full description string, typically
For documnentation

Espirit:\n\rhi'teho)(T).rpe

Indicates the type of the
elernent, The pin and signal
types refer to elerments within
the HOL description, The register
type refers to a register in the
memory map, The intetface
type refers to a bus interface in
a loweer lewel companent

E'_EJE‘J spirit:whiteboxElement Al —LE—)E'—

|type | spirit: whiteboxElement Type i

& list of whiteboxElernants 1 | '
&

A whiteboxElernent iz a useful way to
identify elernents of a component that
can not be identified through ather
reans such as intemal signals and
non-software accessible registers,

+ IFtrue, indicates that the white
V' box element can be driven (2.,
! hawve a new walue Forced inta it],

Lo

Indicates the name of the
register assaciated with this
white box elerment, The name
should be a hull hierarchical path
Frorn the memary map ta the
register, using 'f' az a hierarchy
separator, When specified, the
whiteborType must be 'register’,

Container For wendar specific
extensions,

7.15.2 Description

The whiteboxElements element contains the a list of one or more whiteboxElement elements. Each
whiteboxElement element contains the following elements.

a) nameGroup group includes the following. See X.Y.Z.
1) name (mandatory) identifies the whitebox element.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 159

This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

2) displayName (optional) allows a short descriptive text to be associated with the whitebox ele-
ment.

3) description (optional) allows a textual description of the whitebox element.

b) whiteboxType (mandatory) documents this whitebox element’s referent: a register, pin, signal, or
interface within the component. register indicates that a register definition (referenced by the regis-
terRef element) in this component can be mapped to physical signal(s) by a reference from the
model/view. pin indicates a port on an internal instance in this component can be mapped to physi-
cal signal(s) by a reference from the model/view. signal indicates a signal between two internal
instances in this component can be mapped to physical signal(s) by a reference from the model/
view. interface indicates an IP-XACT interface can be mapped from a lower-level component on
this hierarchical component.

c) drivable (optional), when True, indicates the whitebox describes a point within the IP that can be
driven, i.e., forced to a new value. If False, (the default), the whitebox references a point that cannot
be driven. The drivable element is of type Boolean.

d) registerRef (optional) names the register indicated by this whitebox when the whiteboxType is reg-
ister. The registerRef is the full hierarchical path from the component’s top-level memory map to
the register, using / as a hierarchy separator. The registerRef element is of type string.

e) parameters (optional) specifies any parameter names and types for a whitebox that can be parame-
trized.

f) vendorExtensions (optional) provides a space for any vendor-specific extensions.

7.15.3 Example

The following example shows the definition of a status register that can be accessed within a component
during verification.

<spirit:whiteboxElements>
<spirit:whiteboxElements>
<spirit:name>Status</spirit:name>
<spirit:whiteboxType>register</spirit:whiteboxTypes>
<spirit:driveable>false</spirit:driveable>
<spirit:registerRef>stat</spirit:registerRef>
</spirit:whiteboxElement>

</spirit:whiteboxElements>

7.16 Whitebox element reference

7.16.1 Schema

The following schema details the information contained in the whiteboxElementRefs element, which may
appear as an element inside the component/model/views/view element.

160 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

B atteibutes

spirit:name
bype [xs:Mame
uze [required

Reference to a whiteboxElement
defined within this component.

Es|)irit:|mt|||lan|e

referances, 0.
Feeference to a white box element which is
wigible within this wiew.

The view specific name for 3
portion of the white box
element,

spirittwhiteboxPath [
—_— 7

Espirit:le:ﬂ
The whitebexPath lements (33 xs:nonNegativelnteger

a set) define the namels) needed Indicates the left bound walue

| 1m
: to define the entire white bor trie— For the assaciated path name.

Optional bound on the path
name, If not specified, the size

element in this wiew, ~ "asas =
| spiritright

of the elemnent referred to by xs nonhlegativeimeger
pathtame must be determined
From the referenced element. Indicates the tight bound walues

For the associated path name.

7.16.2 Description

The whiteboxElementRefs element contains a list of one or more whiteboxElementRef elements. The
whiteboxElementRef makes a reference to a whiteboxElement of the component and defines the view
specific path to the element. name (mandatory) attribute identifies the whiteboxElement in the containing
component for which the following whiteboxPath applies. The name element is of type Name.
whiteboxElement element contains the following elements.

whiteboxPath (mandatory, unbounded) contains elements to define the path in this view to the
above referenced whiteboxElement.

1) pathName (mandatory) is the language and view specific path to the location of the whitebox-
Element. The pathName is of type string.

2) left (optional, paired with right) sets the element bounds of the pathName if required by the
language. The left element is of type nonNegativelnteger.

3) right (optional, paired with left) sets the element bounds of the pathName if required by the
language. The right element is of type nonNegativelnteger.

7.16.3 Example
The following example shows the definition of a the whitebox path to the status register bits in a component.

<spirit:whiteboxElementRefs>
<spirit:whiteboxElementRef spirit:name=”Status”>
<spirit:whiteboxPath>ucontrol/ureg/status</spirit:whiteboxPath>
<spirit:left>7</spirit:left>
<spirit:right>0</spirit:right>
</spirit:whiteboxElementRef>
</spirit:whiteboxElementRefs>

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 161
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007

162

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Draft Standard for

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

7.17 CPUs
7.17.1 Schema

The following schema details the information contained in the CPUs element, which may appear as an
element inside the top-level component element.

Unique narne

spirt nameGroup [
The name of the cpu instance relative to the Eim::tr‘iarpnr:‘m;:;gl:‘grurp:?:;eilse'd-r;ﬂ;:yy 2
Eliorebes user-friendiy narns than the spiritimanne.
re T
| spirit:addrSpaceRefType |
______________ 1 | [sitributes |
cpu's in the component 1.5 J, spirit:addressSpaceRef | aSPirit:addressSpaceRer |
Drescribes a processor in this companent, i |type |spir'rt:addr8paceRenype | type I XS:N_am:
0 Lz | recuire
1.0 |
A refel b i dd 5
Indicates which address space maps inta this cpu, | [ETRIENCE b 2 uniuR e s |

Contziner For vendor specific extensions,

7.17.2 Description

The cpus element contains an unbounded list of epu elements for the containing component. The cpu
element describes a containing component with a programmable core that has some sized address space.
That same address space may also be referenced by a master interface and used to create a link for the
programmable core to know from which interface transaction the software will depart.

a) nameGroup group includes the following. See X.Y.Z.
1) name (mandatory) identifies the component generator. The name element is of type Name.

2) displayName (optional) allows a short descriptive text to be associated with the component
generator. The displayName element is of type string.

3) description (optional) allows a textual description of the component generator. The descrip-
tion element is of type string.

b) addressSpaceRef (required, unbounded) contains an attribute to describe information about the
range of addresses with which the master interface related to this cpu can generate transactions.

addressSpaceRef (mandatory) attribute references a name of an address space defined in the
same component. The address space will define the range and width for transaction on this
interface. See 7.7.1.

c) parameters (optional) specifies any cpu-type parameters. See X.Y.Z.

d) vendorExtensions (optional) adds any extra vendor-specific data related to the cpu.

7.17.3 Example

This example shows a simple cpu with a single addressMap reference.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 162
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007

163

<spirit:cpuss>
<spirit:cpus>
<spirit:name>processor</spirit:name>
<spirit:addressSpaceRef spirit:addressSpaceRef="main"/>
</spirit:cpus>
</spirit:cpus>

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Draft Standard for

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

8. Designs descriptions

8.1 Designs

An IP-XACT design is the central placeholder for the collection of the assymbly of component objects meta-
data. A design describes the a list of components referenced by this description, their configuration and their
interconnections to each other. The interconnections may be between interfaces or between ports on a
component. A design file is anologus to a schematic of components.

While a design description, with referenced components and interconnection, describes most of the
information for a design, some information is missing. Such as the exact port names used by a bus interface.
To resolve this a component description (refered to as a hierachical component), which contains this missing
information, may contain a view with a reference to the design description to form a complete single level
hierarchical description. From this point it is simple to create hierarchical descriptions by including
hierachical component description in design descriptions.

8.1.1 Schema

The following schema details the information contained in the design element, which is one of the seven
top-level elements of the schema.

— - — Marmne of the lagical library this element belongs
spirit: versionedidentifier [— == ta,
This group of elements identifies a top lewel itern
(2.9, a component or a bus definition) with m
wendor, library, name and a wersion number, ez MMTOKERN

The narne of the abject,

spirit:version

w5 NMTOKEN

Indicates the version of the named element,

T spiitaesion &3 (s
t]

Ta define all elernents and attibutes supparted *

when defining a design and its configured

COMponEnts

Drefines the set of ad-hoc connections in a design,
An ad-hoc connection represents a connection
between two cornpanent pins which were nat
connected az a result of interface connections
fje.the pin to pin connection was made explicithy
and is represented explicithy),

A list of hierarchy connections between bus
intetfaces on component instances and the bus
interfaces on the encompassing companent,

Container For wendor specific extensions,

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 165
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

8.1.2 Description

The design element describes the a list of referenced components, their configuration and interconnections
to each other. Each element of a design is detailed in the rest of this clause; the main sections of a design

are:

a) versionedldentifier group provides a unique identifier, made up of 4 subelements for a top level IP-
XACT element. See X.Y.Z for more details.

1) vendor (mandatory) identifies the owner of this description. The reccomended format of the
vendor element is the company internet domain name.

2) library (mandatory) identifies a library of this description. This allows one vendor to group
descriptions.

3) name (mandatory) identifies a name of this description.

4) version (mandatory) identifies a version of this description. This allows one vendor to provide
many descriptions which all have the same name but are still uniquely identified.

b) componentlnstances (optional) contains the list of components that are instantiated (referenced)
inside the design (see 8.2).

c) interconnections (optional) contains the list of connections between bus interfaces of components
listed inside the design(see 8.3).

d) adHocConnections (optional) contains a list of connections between component ports listed inside
this design (see 8.5).

e) hierConnections (optional) contains a list of connections between a component instance’s bus
interface and a bus interface inside the encompassing component (see 8.6). See section on compo-
nent view to see how the encompassing component can refer a design.

This element only allows making hierarchical reference between bus interfaces. Hierarchical refer-
ence between ports is made inside the adHocConnections element.

f) description (optional) allows a textual description of the design., the description element is of type
string.

g) vendorExtensions (optional) adds any extra vendor-specific data related to the design.

8.1.3 Example

The following example shows as sample design with 3 components.

166

<spirit:design xmlns:spirit="http://www.spiritconsortium.org/XMLSchema/

SPIRIT/1.4" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xXsi:schemalocation="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4
http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4/index.xsd">
<spirit:vendors>spiritconsortium.org</spirit:vendors>
<spirit:name>design MCS</spirit:names>
<spirit:version>1.0</spirit:version>
<spirit:componentInstancess
<spirit:componentInstances>
<spirit:instanceName>i ahbMaster</spirit:instanceNamex>
<spirit:componentRef spirit:vendor="spiritconsortium.org"
spirit:library="Addressing" spirit:name="ahbMaster" spirit:version="1.0"/
>
<spirit:configurableElementValuess>
<spirit:configurableElementValue
spirit:referenceld="asBase">0</spirit:configurableElementValue>
</spirit:configurableElementValues>
</spirit:componentInstances>
<spirit:componentInstances

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces

IP-XACT Standard/D4, December 19, 2007

<spirit:instanceName>i ahbChannell2</spirit:instanceName>
<spirit:componentRef spirit:vendor="spiritconsortium.org"
spirit:library="Addressing" spirit:name="ahbChannell2"

spirit:version="1.0"/>

</spirit:componentInstances
<spirit:componentInstances

<spirit:instanceName>i ahbSlave</spirit:instanceName>
<spirit:componentRef spirit:vendor="spiritconsortium.org"
spirit:library="Addressing" spirit:name="ahbSlave" spirit:version="1.0"/>

</spirit:componentInstances>
</spirit:componentInstancess>
<spirit:interconnections>
<spirit:interconnection>
<spirit:name>m2c</spirit:name>

<spirit:activeInterface spirit:

spirit:busRef="AHBMaster"/>

<spirit:activeInterface spirit:

spirit:busRef="MirroredMasterO"/>
</spirit:interconnections>
<spirit:interconnection>
<spirit:name>c2s</spirit:name>

<spirit:activeInterface spirit:

spirit:busRef="AHBSlave"/>

<spirit:activeInterface spirit:

spirit:busRef="MirroredSlaveO"/>
</spirit:interconnections>
</spirit:interconnections>

componentRef="1 ahbMaster"

componentRef="1i_ahbChannell2"

componentRef="1 ahbSlave"

componentRef="i ahbChannell2"

<spirit:description>Addressing example, master-channel-slave</

spirit:description>

</spirit:design>

8.2 Desigh component instances

8.2.1 Schema

The following schema details the information contained in the componentInstances element, which may

appear as an element inside the top-level design element.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 167
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

Sub instances o ntarmal componsnts. 1o spiritcomponentRel

Zspiritinstancelame:

A instance name sssigned to subcernpanent
instanees and contained channels, that s unique
within the parent component.,

mpanent instance,

String for deseribing this component instande ta

aryRefTy
B

spiritvendor

3 Mame

;
)

; (—

o2 [s NMTOHEN

piritiversion

pe [NMTOKEN
e

Lt S T S | Refersnces 3 campanent to be Found in an
' © smamal by The four annbutes deine the
VLN of the efesenca elarment,

==
=
3

@

i

=

=————————""EN

\
\
\
\
\
\
|
Compannt instance slement. The instance name [Lvoe [spirtibraryReiType T |
\
\
\
\
[

O aitrivetes

@J‘!S'"‘r A [
i o Lype |sistring uze |reguired
! Al configuration information for containe: A

| companent, generator, generator chain or 1.0 Rafers 1o the 1D attnbute of the cerfigurable
i abztractor instance, Describes the content of 3 configursble element. elerment,
The required referenceld attribute refers to the 10
attrbute o the confiqurable slemert.

Container for wendor specific erensions.

8.2.2 Description

The componentInstances element contains an unbounded list of component instances that are described
inside the componentInstance element. This element contains the following subelements.

a)

b)

¢)

d)

e)

168

instanceName (mandatroy) assigns a unique name for this instance of the component in this design.
The value of this element shall be unique inside a design element. The instanceName clement is of
type Name.

displayName (optional) allows a short descriptive text to be associated with the instance. The dis-
playName is of type string.

description (optional) allows a textual description of the instance. The displayName is of type
string.

componentRef (mandatory) is a reference to a component description for this component instance.
The componentRef element is of type libraryRefType (see X.Y.Z), it contains four attributes to spec-
ify a unique VLNV.

1) vendor attribute (mandatory) identifies the owner of the referenced description.
2) library attribute (mandatory) identifies a library of referenced description.

3) name attribute (mandatory) identifies a name of referenced description.

4) version attribute (mandatory) identifies a version of referenced description.

configurableElementValues (optional) specifies the configuration for a specific component
instance by providing the value of a specific component parameter. The configurableElementsVal-
ues is an unbounded list of configurableElementsValue.

1) configurableElementValue (required) specifies the value to apply to a parameter, in this
instance, pointed to by the referenceld attribute. The configurableElementValue is of type
string. The contained referenceld (required) is a reference to the id attribute of an element in
the component instance. The referenceld attribute is of type Name.

vendorExtensions (optional) adds any extra vendor-specific data related to the design.

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

See also: SCR 1.11.
8.2.3 Example

The following example shows two component instances of a design. The first one, 1 timers, has a
configurable element attach to it while the second one, i irgctrl, was not configurable.

<spirit:componentInstancess
<spirit:componentInstances
<spirit:instanceName>i timers</spirit:instanceName>
<spirit:componentRef spirit:vendor="spiritconsortium.org"
spirit:library="Leon2" spirit:name="timers"
spirit:version="1.4"/>
<spirit:configurableElementValuess>
<spirit:configurableElementValue spirit:referencelId="TPRESC">22
</spirit:configurableElement>
</spirit:configurableElementValues>
</spirit:componentInstances>
<spirit:componentInstances
<spirit:instanceName>i irqgctrl</spirit:instanceNames>
<spirit:componentRef spirit:vendor="spiritconsortium.org"
spirit:library="Leon2" spirit:name="irqgctrl"
spirit:version="1.4"/>
</spirit:componentInstances>
</spirit:componentInstancess>

8.3 Design interconnections
8.3.1 Schema

The following schema details the information contained in the interconnections element, which may appear
as an element inside the top-level design element.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 169
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007

Describes a connection between two active (pot
moniter) busInterfaces,

Connections between intemal sub corponents,

Describes a connection from the interface of one
compenent to any number of monitor interfaces in
the design,

An active interface can be connected to unlimited
number of monitor interfaces.

Draft Standard for

Unique name

= spirit:d

displaylame |

ibype | xeistring

spitit: nameGroup [

graup oF elernents for namne s marns), .
displayMarne and descrption :

Elernent name for display purposes. Typically 3
Few words providing a more detailed andfor
user-Friendly narme than the spirit:name.

pirit:description ¥
ihype | xastring

Full description string, typically for docurentation

spiritactivelnterface I
spititintertace
2

DCrescribes one interface of the interconnection,

q

The cormponentRef and busInterfaceRef attributes
indicate the instance name and bus interface
name of one end of the connection.

Unique name

spirit:nameGroup [

A qroup o elemnents for name (rsmanns,
displayame and description

Elernent name for display purposes., Typically a
Few weords providing ot detiled andfor
user-friendly name than the spiritiname.

spirit:activelnterface
spiritinterface

Describes an active interface of the design that all
the monitors will be connected to,

The componentRef and busInterfaceRef attributes
indicate the instance name and bus interface
namne,

spiritmoenitorinterface
spiritinterface |

1.0
Describes a list of monitor interfaces that are
connected ta the single active interface,

8.3.2 Description

The interconnections element contains an unbounded list of interconnection and monitorInterconnection
elements. For further description on interface connections see interface connections, X.Y.Z.

a) interconnection (optional, unbounded) specifies a connection between one bus interface of a com-
ponent and another bus interface of a component. Each interconnection contain the following ele-

ments.

1) nameGroup group includes the following. See X.Y.Z .

i) name (mandatory) identifies a unique name for the interconnection.

ii) displayName (optional) allows a short descriptive text to be associated with the connec-

tion.

iii) description (mandatory, 2 elements) allows a textual description of the connection.

4) activelnterface (optional) element specifies the two bus interfaces that are part of the intercon-
nection. Only connections between two bus interfaces are allowed; broadcasting of intercon-
nections is not allowed. The activelnterface element is of type interface, see X.Y.Z.

b) monitorInterconnections specifies the connection between an activelnterface on a component and

a list of monitorInterfaces that are part of design component instances.

1) activelnterface (mandatroy) specifies the component bus interface to monitor; only one inter-
face is allowed. The list of monitorInterfaces specifies the component monitor interfaces con-
nected to the single active interface. The activelnterface clement is of type interface, sce

X.Y.Z.

170

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

2) monitorInterface (mandatory, unbounded) specifies the connection between an activelnter-
face on a component and a list of monitorInterfaces that are part of design component
instances. There may be one or more monitorInterconnections specified. The monitorInter-
face element is of type interface, see X.Y.Z.

See also: SCR 2.2, SCR 2.3, SCR 2.4, SCR 2.5, SCR 2.6, SCR 2.7, SCR 2.8, SCR 2.9, SCR 2.10, SCR 2.11,
SCR 2.12, SCR 2.13, SCR 2.14, SCR 4.1, SCR 4.2, SCR 4.3, SCR 4.4, SCR 4.5, SCR 4.6, SCR 6.15, and
SCR 6.16.

8.3.3 Example

The following example shows two interconnections between three components: the interconnection
intercol connects the interface ambaAPB on i timers to the interface MirroredSlave0O on
i apbbus while interco2 connects the interface ambaAPB on i irqgctrl to the interface
MirroredSlavel oni apbbus.

<spirit:interconnectionss>
<spirit:interconnection>
<spirit:name>intercol</spirit:name>
<spirit:activelInterface spirit:componentRef="i timers"
spirit:busRef="ambaAPB"/>
<spirit:activelnterface spirit:componentRef="i apbbus"
spirit:busRef="MirroredSlaveO"/>
</spirit:interconnections>
<spirit:interconnections>
<spirit:name>interco2</spirit:name>
<spirit:activelInterface spirit:componentRef="i irgctrl"
spirit:busRef="ambaAPB"/>
<spirit:activelInterface spirit:componentRef="1i apbbus"
spirit:busRef="MirroredSlavel"/>
</spirit:interconnections>
</spirit:interconnections>

8.4 Design interconnection and monitor interconnection active interface
8.4.1 Schema

The following schema details the information contained in the activeInterface element, which may appear
as an element inside the interconnection or monitorInterconnection element within interconnections.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 171
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

iritinterface _|
[attributes

spirit:componentRef

bype | xsMame
uzg | required

spirit:activelnterface =
spiritinterface

Drescribes an active interface of the design that all
the monitors will be connected to,

spirit:busRef

| bype | xsMame
| uze | required
|

The componentRef and busInterfaceRef atibutes
indicate the instance name and bus interface
name,

Reference to a component instance narme, |
Reference to the components bus interface |

S |
[spiritinterface
| [attributes I
| spirit:componentRef |
bype | xsMame
— = | uzg |required |
spiritmonitorinterface |l
— = 4'— Reeferenca to a companent instance name., |
bype | spirtinterface
| spirithusRef |
1.0
Crescribes a list of monitor interfaces that are | type [xs:Name
connected to the single active interface, use |required |
The componentRef and busInterfaceRef attributes | Reference to the components bus interface |
indicate the instance name and bus interface L)

narne, —_—

8.4.2 Description

The activelnterface or monitorInterface element specifies the bus interface of a design component
instance that is part of an interconnection or a monitor interconnection. They both have the following
attributes.

a) componentRef (mandatory) references the instance name of a component present in the design.
This component instance name needs to exist in the design.

b) busRef (mandatory) references one of the component bus interfaces. This specific bus interface
needs to exist on the specified component instance.

8.4.3 Example

The following example shows an active interface referring the ambaAPB bus interface on the component
instance 1 timers and a monitor.

<spirit:activelInterface spirit:componentRef="i timers"
spirit:busRef="ambaAPB"/>

<spirit:monitorInterface spirit:componentRef="i monitor"
spirit:busRef="ambaAPBMonitor"/>

8.5 Design ad-hoc connections

The name ad-hoc is used for connections that are made on a port-by-port basis and not done through the
higher-level bus interface. The same ports which make up a busInterface can be used in ad-hoc
connections.

IP-XACT supports two cases of ad-hoc connections: the wire connection (between ports having a wire style)
and the transactional connection (between ports having a transactional style). The direct connection between
a wire-style port and a transactional-style port is not allowed; a specific adapter component needs to be
inserted in between them.

172 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

8.5.1 Schema

The following schema details the information contained in the adHocConnections element, which may
appear as an element inside the top-level design element.

B attributzs

The lgic value of this connection, Only walid For pors of style wire.

e | xaMame

Urique name

—{spiric =t

A groug of slements for name (rsiname], displayName and
deseription

ment name for display purposes, Typically a Few words
providing a raore detailed andor user-fndly name than the
spiimarms.

Def

ections in 2 desian, An ad-hee 1.0
<onnection raprasents 3 cennection between twa campenent pins o b b ihype
sshich were not connected as a result of intetface connections SN P el TN L F 2D

ti.zthe pin to pin connestion veas made explctly and is represented Fulldescripton string, typically for documentation

axplicidy).
B attritutes

spirit:componentRef

 reference to the instanceMame element of a compnent in this
design

spiritportRef

ettt ovee B T o o e o e st o cponanat

1m0

Defines 3 reference ko 2 port on a compenent contained within the
esian.

Right index of wector.

O atributes

spiritportRef

pon o the top level componen,

! spiriteft 1
il | xsnonhegativelnteger |
Left i

0.0
Difines a teference 10 4 pot on the corponent conesining this I
design. The pankef ttibute indicates the name of the portin the | 1 spiriright

cantaining cormponznt.

{fype [xsnenhegetivelnteger |

Right index of & vector,

8.5.2 Description

The adHocConnections element contains an unbounded list of adHocConnection eclements. An
adHocConnection specifies connections between component instance ports or between component instance
ports and ports of the encompassing component (in the case of a hierarchical component). Each
adHocConnection element has a tiedValue (optional) attribute that specifies a fixed logic (1 and 0) value
for this connection. The tiedValue attribute is of type scaledNonNegativelnteger. The adHocConnection
element contains the following subelements.

a) nameGroup group includes the following. See X.Y.Z.
1) name (mandatory) identifies a unique name for the interconnection.
2) displayName (optional) allows a short descriptive text to be associated with the connection.
3) description (mandatory, 2 elements) allows a textual description of the connection.

b) internalPortReference (mandatory, unbounded) references the port of a component instance. This
element has four attributes.

1) componentRef (mandatory) references the component instance name for the port. The compo-
nentRef attribute is of type Name.

2) portRef (mandatory) references the port name on the specific component instance. The por-
tRef attribute is of type Name.

3) left and right (optional) specify a portion of the port range. The left and right attribute is of
type nonNegativelnteger.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 173
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

c) externalPortReference (optional, unbounded) references a port of the encompassing component
where this design is referred (for hierarchical ad-hoc connections). This element has three attributes.

1) portRef (mandatory) references the port name on the encompassing component. The portRef
attribute is of type Name.

2) left and right (optional) specify a portion of the port range. The left and right attribute is of
type nonNegativelnteger.

See also: SCR 6.15 and SCR 6.16.

8.5.3 Example

The following example shows two ad-hoc connections. The first one, d1e1074, is done between port
irlin on component instance i irgctrl and port irgvec on component instance i leon2Proc.
The second one, 1 leon2Proc_mresult, is made between port mresult on component instance
i leon2Procandporti leon2Proc mresult of the encompassing component.

<spirit:adHocConnections>
<spirit:adHocConnections>
<spirit:name>dlel074</spirit:name>
<spirit:internalPortReference spirit:componentRef="i irgctrl"
spirit:portRef="irlin" spirit:left="3"
spirit:right="0"/>
<spirit:internalPortReference spirit:componentRef="i leon2Proc"
spirit:portRef="irqgvec"
spirit:left="3" gpirit:right="0"/>
</spirit:adHocConnections>
<gpirit:adHocConnection>
<spirit:name>i leon2Proc_mresult</spirit:name>
<spirit:internalPortReference spirit:componentRef="i leon2Proc"
spirit:portRef="mresult"
spirit:left="31" spirit:right="0"/>
<spirit:externalPortReference spirit:portRef="1i leon2Proc_mresult"/

</spirit:adHocConnections>
</spirit:adHocConnectionss>

8.5.4 Ad-hoc wire connection

For ad-hoc connections between wire-style ports, [IP-XACT requires:
— The style of each port be the same style (i.e., wire).
— The directions match as described in Table 8.

— The sizes of each port (max (left,right) - min(left,right) + 1) are exactly the
same and their bits are connected from left-to-right with no exceptions. In the internalPortRefer-
ence clement, left and right only define the size of the portion of the port that is connected.

Table 8—Direction requirements

Direction in out | inout
in yes | yes | yes
out yes no yes
inout yes | yes | yes
174 Copyright © 2007 The SPIRIT Consortium. All rights reserved.

This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces

Example

This is an example of these rules being applied.

<spirit:adHocConnection>

IP-XACT Standard/D4, December 19, 2007

</spirit:internalPortReference componentRef="Ul" portRef="A"

left="8" right="1">

</spirit:internalPortReferencenal componentRef="U2" portRef="B"

left="7" right="0">

</spirit:adHocConnections>

Implies these connections:

Ul/A[8] = U2/B[7]
Ul/A[7] = U2/BI[6]
Ul/A[6] = U2/BI[5]
Ul/A[5] = U2/B[4]
Ul/A[4] = U2/BI[3]
U1/A[3] = U2/B[2]
Ul/A[2] = U2/BI[1]
Ul/A[1] = U2/B[0]

NOTE—The typeNames do not have to match between the two ports, it is up to the DE or simulator to potentially

resolve unmatching types, e.g., it is possible to connect a VHDL std_logic portto a SystemC sc_in bool port.

8.5.5 Ad-hoc transactional connection

For ad-hoc transactional connections, IP-XACT requires:

— The style of each port be the same style (i.e., transactional).

— The transTypeDef/typeName name of each port are the same (e.g., sc_port).

— The initiatives match as described in Table 9.

Table 9—Initiative requirements

Initiative requires provides | both
requires yes yes yes
provides yes no yes
both yes yes yes

— The service/serviceTypeDef/typeNames match.

Furthermore, two ports with a requires initiative can be connected. This means they would both connect to

a mediated link (e.g., a wire, buffer, FIFO, or any complex link) in a top SystemC or SystemVerilog netlist.

This mediated link provides the protocol interfaces required by each port. The name, type, and parameters of

this mediated link are not defined by IP-XACT, but could be given as input to a netlister generator.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 175
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

8.6 Design hierarchical connections
8.6.1 Schema

The following schema details the information contained in the hierConnections element, which may appear
as an element inside the top-level design element.

E sitributes
spirit:interfaceRef
[bype | xsMame
Thiz iz the name of the bus interface on
the upper lewel component,
spiritinterface |
| [attributes |
-+ spirit:hierConnections [} spirithierConnection [=]— |
= ——————1] spirit:componentRef |
A list of hierarchy connections between 1.0 | N
bus interfaces on component instances Reprasents 2 hisrsrchy connection bype | xehame |
and the bus interfaces on the - 5 i
: Reference to a component instance
T T spirit:activelnterface = e P |
bype | spirtinterface |
Cornponent and bus reference to expart spirit:busRef |
ta the upper level component | bype | xs:Mame |
| Reference ta the cornponents bus
interface |
—_

Container For wendor specific extensions,

8.6.2 Description

The hierConnections element contains an unbounded list of hierConnection elements. hierConnection
represents a hierarchical interface connection between a bus interface on the encompassing component and a
bus interface on a component instance of the design. hierConnection contains an interfaceRef (mandatory)
attribute that provides one end of the interconnection; it is the name of the bus interface on the encompassing
component. The interfaceRef attribute is of type Name. The hierConnection element contains the
following elements and attributes.

a) activelnterface (mandatroy) specifies the component instance bus interface for connection to the
encompassing component, only one activelnterface is allowed. The activeInterface element is of
type interface, see X.Y.Z.

b) vendorExtensions (optional) adds any extra vendor-specific data related to the hierarchical inter-
face connection.

See also: SCR 10.1, SCR 10.2, SCR 10.3, SCR 10.4, SCR 10.5, SCR 10.6, SCR 10.7, SCR 10.8, SCR 10.9,
SCR 10.11, SCR 10.12, SCR 10.13, and SCR 10.14.

8.6.3 Example

The following example shows a hierarchical interconnection between the AHBReset 1 bus interface on
the encompassing component and the AHBReset bus interface on the 1 ahbbus component instance.

<spirit:hierConnectionss>
<spirit:hierConnection spirit:interfaceRef="AHBReset 1">
<spirit:activelnterface spirit:componentRef="i ahbbus"
spirit:busRef="AHBReset"/>
</spirit:hierConnection>
</spirit:hierConnections>

176 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

9. Abstractor descriptions

Designs that incorporate IP models using different modeling styles (e.g., TLM and RTL modeling styles)
may contain interconnections between such components using different abstractions of the same bus type. A
DE may describe how such interconnections are to be made using an abstractor. Unlike a component, an
abstractor is not referenced from a design file, but instead is referenced from a design configuration file. See
the design configuration file section 4.4 for more information on referencing abstractors. IP-XACT can:

— Model different level of abstraction for the same bus type through the use of abstraction definitions.

— Model special-purpose components called “abstractors” to bridge between two different abstraction
of the same bus type.

— Extend the design configuration file to allow DEs to generate designs that include these abstractors
where needed.

This chapter defines abstractors and describes how to model them as IP-XACT objects.

9.1 Abstractors
9.1.1 Schema

The following schema details the information contained in the abstractor element, which is one of the
seven top-level elements in the [IP-XACT specification used to describe an abstractor.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 177
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

irit:
=
spirit:abstractorType

Thiz iz the root element For abstractors

spirit: versionedidentifier

This group of elements identifies a top lewel itern (e.q. 2
carnponent or a bus definition) with wendar, library, narme and
a werzion nurnber,

Jsspirit:ahstractorl\l'lode .
|type | spirt: ahstractorModeType

[attributes

Crefine the mode for the interfaces on this abstractar, Drefine the systern group if the mode is set to system

For master the first interface connects to the master, the
second connects to the mirrorediaster

second connects to the slave

For direct the first interface connects to the master, the second
connects to the slave

Far systern the first intetface connects to the system, the
second connects to the miroredSystern, Far systern the group
attribute iz required

spirittbusType
spirit: ibraryRefType

The bus type of bath intetrfaces, Refers to bus definition using

| For slave the first interface connects to the miroredSlave the
| wendar, library, narme, wersion attributes,

—| spirit:abstractorinterfaces

The intetfaces supparted by this abstractor

! Choices used by user defined properties of
t spiritiformat="choice"

Container For wendor specific extensions,

9.1.2 Description

The abstractor element has two (mandatory) interfaces, called abstractorInterfaces. An abstractor also
contains the following elements.

a)

178

Mandatory elements

1)

2)
3)

abstractorInterfaces are interfaces having the same bus type, but differing abstraction types
(see 9.2).

versionedIdentifier is a unique VLNV identifier.
abstractorMode determines the interface mode of these interfaces.

i) master specifies the first interface connects to the master, the second connects to the mir-
rored-master.

ii) slave specifies the first interface connects to the mirrored-slave, the second connects to the
slave.

iii) direct specifies the first interface connects to the master, the second connects to the slave.

iv) system specifies the first interface connects to the system, the second connects to the mir-
rored-system; in this case, the group attribute is also required.

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

3) busType defines the VLNV of the busDefinition of the two abstractorInterfaces.
b) Optional elements

1) model defines the abstractor views, its ports, and its model parameters (see 9.3).

2) abstractorGenerators defines any generators applying to the abstractor (see 9.6).

3) The remaining elements: choices, fileSets, description, parameters, and vendorExtensions
are the same as those defined for the component. **Add xref OR copy that material here??

See also: SCR 1.13 and SCR 3.23.

9.1.3 Example

The following example shows a simple slave abstractor having AHB PV and AHB PVT interfaces.

<spirit:abstractors

<spirit:vendor>spiritconsortium.org</spirit:vendors>

<spirit:library>Leon2</spirit:library>
<spirit:name>pv2rtl</spirit:name>

<spirit:version>l.4</spirit:version>

<spirit:abstractorModes>slave</spirit:abstractorMode>

<spirit:abstractorInterfaces>
<spirit:abstractorInterfaces>
<spirit:name>PVinterface</spirit:name>
<spirit:abstractionType
spirit:vendor="spiritconsortium.org"
spirit:library="Leon2"
spirit:name="AHB PV"
spirit:version="1.0"/>
</spirit:abstractorInterface>
<spirit:abstractorInterfaces>
<spirit:name>PVTinterface</spirit:name>
<spirit:abstractionType
spirit:vendor="spiritconsortium.org"
spirit:library="Leon2"
spirit:name="AHB PVT"
spirit:version="1.0"/>
</spirit:abstractorInterface>
</spirit:abstractorInterfaces>
<spirit:abstractorModel>
<spirit:abstractorGeneratorss>

</spirit:abstractors>

9.2 Abstractor interfaces

9.2.1 Schema

The following schema defines the information contained in the abstractorInterfaces element, which

appears within an abstractor object.

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

B aitributes

spirit:nameGroup [== .

group af elements for name (rsmamel,
displayHame and description

Unique name

Elernent name For display purposes. Typically a few
wwartds providing a rore detsiled andjor user-fiendhy
name than the spirit:name.

|ly'ps \ spirt; abstractorBusinter faceTy..

The interfaces supported by this abstractor S

An abstractor must have exactly 2 Interfaces,

spirit:vendor

|
Eja spirit:abstractionType l |
Vo |bype | spiritlibraryRefType .
| o shsvsctintypetivd o oz muace pufene || | SPUTMEMAmE]
sbstraction definition using wendor, library, name, | x5:HMTOKEN
wversion attibutes, Bus definition can be found through
& reference in this file. | spirit:version
| 5 NWTOKEN

|
\
\
\
\
\
\
\
_ \
= == spirit:abstractorinterface [.%]+
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\

Container For vendor specific extensions.

9.2.2 Description

The abstractorInterfaces element defines the two abstraction interfaces of the abstractor. Each
abstractorInterface contains the following elements.

a) Mandatory elements

1) name (included in nameGroup) identifies the abstraction interface. nameGroup can also have
two additional (optional) subelements: displayName, which allows a short descriptive text to
be associated with the abstraction interface, and description which allows a textual description
of the abstraction interface.

2) abstractionType is the VLNV of an abstraction definition.
b) Optional elements

1) portMap defines the mapping between the abstractor ports and the logical ports defined in the
referenced abstractionDefinition. This schema is the same as the portMap schema defined in
a component.**Add xref OR copy that material here??

2) The elements parameters and vendorExtensions and the vendor attributes (xs:any) are the
same as those defined for the component. **Add xref OR copy that material here??

9.2.3 Example

This example shows a port within an abstraction definition containing a single timing constraint. On a
master interface, the port gets 40% of the cycle time and on a mirrored master interface, it gets 60% of the
cycle time.

<spirit:ports>
<spirit:logicalName>HRDATA</spirit:logicalNames>

180 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

<spirit:wire>
<spirit:onMasters>
<spirit:modeConstraintss>
<spirit:timingConstraint
spirit:clockName="HCLK"” >40
</spirit:timingConstraints>
</spirit:modeConstraintss>
<spirit:mirroredModeConstraintss>
<spirit:timingConstraint
spirit:clockName="HCLK"” >60
</spirit:timingConstraints>
</spirit:mirroredModeConstraints>
</spirit:onMaster>
</spirit:wire>
</spirit:port>

9.3 Abstractor models
9.3.1 Schema

The following schema defines the information contained in the abstractor model element, which may appear
within an abstractor object.

Model inofmnation.

9.3.2 Description

The abstractor model element defines the abstractor views (see 9.4), ports (see 9.5), and modelParameters.
Each of which is described in the following sections. **Where (chapter 7); let’s add this xref [for
modelParameters]?? Is all the ports material covered in 9.57?

9.3.3 Example

The following example shows an abstractor model with a single SystemC view, two transactional ports, and
a constructor model parameter.

<spirit:model>
<spirit:viewss>
<spirit:views
<spirit:name>systemCView</spirit:name>
<spirit:envIdentifier>:*Simulation:</
spirit:envIdentifiers>
<spirit:language>systemc2.1l</spirit:language>
<spirit:modelName>pv2pvt</spirit:modelName>
<spirit:fileSetRef>abstractorFileSetRef</
spirit:fileSetRef>
</spirit:view>

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 181
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

</spirit:views>
<spirit:portss>
<spirit:ports>
<spirit:name>pv_slave</spirit:namex>
<gpirit:transactionals>
<spirit:services>
<spirit:initiativesprovides</
spirit:initiatives>

<spirit:serviceTypeDefs><spirit:serviceTypeDef>
<spirit:typeName>trans if</
spirit:typeName>
</spirit:serviceTypeDef></
spirit:serviceTypeDefs>
</spirit:service>
</spirit:transactionals>
</spirit:ports>
<spirit:ports>
<spirit:name>pvt master</spirit:names>
<spirit:transactionals
<spirit:service>
<spirit:initiativesrequires</
spirit:initiatives>

<spirit:serviceTypeDefs><spirit:serviceTypeDef>
<spirit:typeName>req rsp if</
spirit:typeName>
</spirit:serviceTypeDef></
spirit:serviceTypeDefs>
</spirit:service>
</spirit:transactionals>
</spirit:port>
</spirit:ports>
<spirit:modelParameterss>
<spirit:modelParameter spirit:usageType="nontyped">
<spirit:name>moduleName</spirit:name>
<spirit:value

spirit:id="moduleNameId" spirit:resolve="user">ABSTRACTOR_ PV2PVT

</spirit:value>
</spirit:modelParameters
</spirit:modelParameterss>

</spirit:model>

9.4 Abstractor views

9.4.1 Schema

The following schema defines the information contained in the view element, which appears within the
views element of an abstractor.

This schema is almost identical to the component view (see xref), except:

182

Abstractors have no hierarchyRef element.
Abstractors have no constraintSetRef element.

Abstractors have no whiteboxElementRefs element.

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

x5 MMTOKEN

Unique narme

spirit: nameGroupMMTOKEN [

A qgroup of elements For namels MMTOKEM),
displaytarne and description

Element name for display purposes, Typicalty a Few
wiards prowiding 2 more detailed andior user-friendly
narne than the spittnarne,

Full description string, typically For documentation

~ spirit:envidentifier

1.

Deefines the hardware envitonment in which this wiew
applies, The Formnar of the string is

language woolivendor_sitension, with each piece being
optional, The language rust be one of the types from
spititifileType, The wal values are defined by the
SPIRIT Consortium, and include generic values

" Simulation” and "*Synthesis" to imply any tool of
the indicated type, Hawing more than one
envIdentifier indicates that the wizw applies to
rultiple environments,

[E sttributes
i T G L o e s]
abstractorviewType 1 tiype[xstoken } :

- P e b M 220 | - ibype [xshoclean ;
Wiew container > The hardware description language used such as
"werlog” o "whdl', IF the attrbute “strct” is "true”,
this walue rmust match the language being generated
For the design.,

Single wiew of an abstractor

= spiritmodelllame |

0.

A reference to a fileSet,

Zontainer For vendar specific extensions,

9.4.2 Description

The view element defines the different abstractor views. See the component view description for the
definition of each element and attributes. **Add xref OR copy that material here??

The following restrictions apply to abstractor view elements.
a) The envldentifier shall only define simulation tools.

b) The language needs to support a mix of the two abstraction definitions described in the abstractor
(e.g., a TLM to RTL abstractor would need a language, such as SystemC, supporting both a transac-
tional abstract level description and an RTL description).

9.4.3 Example

This example shows two abstractor views: a SystemC view and a SystemVerilog view. Such a configuration
assumes the abstractor ports can be expressed with a generic typeDef that is supported in both languages.

<spirit:views>
<spirit:view>
<spirit:name>systemCView</spirit:name>

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 183
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

<spirit:envIdentifier>:*Simulation:</
spirit:envIdentifiers
<spirit:languages>systemc2.l</spirit:language>
<spirit:modelName>pv2pvt</spirit:modelName>
<spirit:fileSetRef>scFileSetRef</spirit:fileSetRef>
</spirit:view>
<gpirit:views
<spirit:name>systemVView</spirit:name>
<spirit:envIdentifiers:*Simulation:</
spirit:envIdentifiers>
<spirit:language>systemVerilog</spirit:language>
<spirit:modelName>pv2pvt</spirit:modelName>
<spirit:fileSetRef>svFileSetRef</spirit:fileSetRef>
</spirit:view>
</spirit:views>

9.5 Abstractor ports

abstractor ports are almost identical to component ports; the abstractor transactional ports are exactly the
same as the component transactional ports. The abstractor wire ports defined here only differ from
component wire ports by the absence of the constraintSet element, because implementation constraints
are not needed for abstractors.

9.5.1 Schema

The following schema element defines the information contained in the wire element, which appears within
an abstractor port.

184 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces

IP-XACT Standard/D4, December 19, 2007

[aitribates

+ spirit:allLogicalDirectionsAllowed

type |z hoolean :
rdefault [false]

| True if lagical parts with different directions Frarn the

| phrysical part direction may be mapped onta this port,
Fatbidden far phantarn ports, which always allow

| logical ports with all direction walue ta be mapped onto
the physical port, Also ignored For inout ports, since

| amy logical port maybe mapped to 3 physical inout

pott.
b —————————————————————— | | Es|)ir'rt:(Iir-et'.‘tion
| Spuitwire | |type | spirt componentPortDirectionType
= type spiritabstractorPortireType 0006y |
i (=pirit: portireType) | | - ‘:,Sllif vector
L _______________________ 1 1 ===y Trs
IR

Sperific left and right wector bounds, Signal width is
railleft, dghtl-rninleft right] +1 When the bounds are
not present, a scalar signal is assurmed.

=
' The group of wire type definitions. If no match to a
wigwrMarne is found then the default lanquage types
ate to be used, See the User Guide For theze default

i
|
| bypes,
i
|
|
|

Wire port driver elarnent,

List of constraintSet elements For 2 component part,

| a+.1z

9.5.2 Description

The wire element is used to define wire ports described in the abstractor. See the component wire port
description for the definition of each element and attributes.**Add xref OR copy that material here??

9.5.3 Example

The following example shows a simple address port of 32 bits.

<spirit:ports>
<spirit:name>paddr</spirit:name>
<spirit:wire>
<spirit:direction>in</spirit:direction>
<spirit:vectors>
<spirit:left>31</spirit:left>
<spirit:right>0</spirit:right>
</spirit:vectors>
</spirit:wire>
</spirit:port>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 185

This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

9.6 Abstractor generators
9.6.1 Schema

The following schema defines the information contained in the abstractorGenerators element, which may
appear within an abstractor object.

[stiributes

x5 hoolean |
rdetaut | false

TF this attrbute s true then the genaratar should not be presented to
the user, It may be part of 3 chain and has no useRul mearing when
invoked standalonz.

! spirit:scope |

idefaut [instance 1

The scope attribute applies ta component generators and specifies
wrhether the generator should be run for each instance of the entity
[or module) or just once for all instances of the entity,

spirt nameGroup

& group of elements for name (ismame), displayMame and
description

B sttributes

Uspiritiseope
spitttpheseScopeType |

This is an non-negativ Roating point number that is used 1o default jglobal .
sequence wihen a generator s un, The generstars are run in order
starting with 221, There may be roultiplz qeneratars with the same
phase number, Tn this case, the arder should not matter with respect
o other generatars at the same phase. IFno phase numberis given
the generator will be considered in the "last” phase and these
generators will be mun in the order in which they are encountered
or o

"""""""""" irit:abstractorGenerator 1

= 4‘>
nﬁanceGeneraturTyp
1

Generator lst is tools-specifc.

Specifies 3 set of sbsteactor generators, The scope attrbute applies
to abstwactor generstors snd specifies whether the generstor should
b un fior each instance of the entity for moduls) o just once For all
instances of the entity,

Indicates the type of ART used by the generator. talid value are
T&, and none. IF this element is not present, Tl is assumed.

Espiri(:(ralnsportMe'tho(l

type | xstoken

Defines a SOAP transpart protocal other than HTTP vehich is
supported by this generator, The only other cunently supperted
protocal & 'le',

0.

An identifier to specify the generator group. This is used by
generator chains for selecting which generators to un,

9.6.2 Description

The abstractorGenerators element defines any generators applying to an abstractor. The abstractor
Generator has exactly the same schema definition as a componentGenerator.

See the component generator description for the definition of each element and attributes. **Add xref OR
copy that material here??

9.6.3 Example

The following example shows a document generator attached to an abstractor. This generator is a TCL script
that can be executed as tclsh generatorExe parameter. In this example, the parameter is a
configurable parameter named useDefaultValues. This generator uses the TGI API with a SOAP
transport protocol based on file.

<spirit:abstractorGenerator>
<spirit:name>genAbstractorDoc</spirit:name>
<spirit:parameterss
<spirit:parameters>

186 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

<spirit:name>useDefaultValues</spirit:name>
<spirit:value spirit:id="sdvId"
spirit:resolve="user">true
</spirit:value>
</spirit:parameters>
</spirit:parameters>
<spirit:apiType>TGI</spirit:apiType>
<spirit:transportMethodss>
<spirit:transportMethod>file</
spirit:transportMethods>
</spirit:transportMethods>
<spirit:generatorExes>../bin/absDocGen.tcl</
spirit:generatorExe>
<spirit:group>genDocs</spirit:group>
</spirit:abstractorGenerators

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

187

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007

188

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Draft Standard for

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

10. Generators

IP-XACT defines a tool integration schema that provides a standard method for linking applications
(external generators and tool plug-ins) into a DE, enabling a more flexible, optimized development
environment. IP-XACT enabled tools can interpret, configure, integrate, and manipulate IP blocks which
comply with the IP meta-data description by using the IP-XACT generator interface.

This genarator interface allows the querying of XML IP meta-data which has been imported into the design-
environment, including inquires about the existence of IP, the structure of IP, or features offered by that IP,
such as configurability and interface protocol support. The generator interface can also be used by a
generator to import or export meta-data when an IP block is extracted from or imported back into the DE.

This interface also serves as an interface to generators and tool plug-ins, allowing the execution of these
scripts and code-elements against the SoC meta-description. Plus, it enables the registration of new
generators or plug-ins, exporting SoC meta-data and updating that data following generator or plug-in
execution, and handling of generator or plug-in error conditions which relate to the meta-data description.

10.1 Tight integration

In IP-XACT, a tight integration of an interface means the direct interfacing to generators and XML meta-
data within the DE, as shown in Figure 12. A Tight Genarator Interface (TGI) can manipulate values of
elements, attributes, and parameters for [IP-XACT compliant XML.

SPIRIT
Flow
XML

SPIRIT
Design
XML

Generator

Chain
SPIRIT *
XML
Generators
> —
Design
Views

Figure 12—Example of tight integration flow
--> Replace API by TGI in the preceding figure

The DE reads the XML input files and the internal database representation is accessed via a TGI, which is a
means of accessing and modifying the IP-XACT data from within an external program invoked via a
generator. The results of these generators can be used to update the database until the design and all its
configurable parameters are finally saved to an XML file. For more information on using the TGI, see the
following document: http://www.spiritconsortium.org/releases/tgi/index.html.

For 1.4, this will be shown as an to the draft Standard

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 189
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

10.2 Generator chain

In IP-XACT, a design flow can be represented as a generator chain that links an ordered sequence of named
tasks. Each named task can be represented as a single generator or as a generator chain. This way, design
flow hierarchies can be constructed and executed from within a given DE. The DE itself is responsible for
understanding the semantics of the specified chain described in the XML schema.

The generator group and its elements are defined in the generator . xsd file. In addition:
— A generator group is a named generator containing a sequential list of generator invocations.
— A generator chain is a sequential list of ordered generator groups.

— A generator invocation is a method of running an application at a defined phase in the generator
group using a given number of parameters.

— A phase is a number that defines when a generator invocation occurs in a sequential ascending order.
— The behavior of the generator invocation can also be influenced.

— While the generator group names are generic (and use string values), the names of generators should
reflect what they are trying to achieve.

10.3 Phase numbers

Phase numbers are intended to define the sequence in which generators are fired. A phase number is a non-
negative floating-point number that is used to sequence when a generator is run. A series of generators and
phase number-specific sequences of named task invocations can be built to influence when a DE fires a
specific generator. Generators can be attached to high-level chains or specific components.

Multiple generators can contain the same phase number, as shown in Figure 13.

SPIRITGEN_SIM_HS_INIT
(Generator Group)

initNgtlistGenerator

Phase Number

Figure 13—Generator example with phase number

In this case, the order does not matter with respect to other generators at the same phase. If no phase number
is given, then the DE can decide the generator’s position.

190 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

Generators can be attached to both components by using the same generator group name. In this case, the
sequence for invoking each generator depends on the associated phase number. It is up to the DE to process
the generator chains, groups, and phase numbers to construct the sequence of generator invocations.

The following XML file specifies a call to such a generator.

<?xml version="1.0" encoding="UTF-8"?>

<spirit:generatorChain xmlns:spirit=http://www.spiritconsortium.org/
XMLSchema/SPIRIT/1.4 xmlns:xsi=http://www.w3.0rg/2001/XMLSchema-instance
Xsi:schemalLocation="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4
http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4/index.xsd">

<spirit:vendors>spiritconsortium.org</spirit:vendor>
<spirit:library>buildChain</spirit:library>
<spirit:name>commonInit</spirit:names>
<spirit:versions>rl.0O</spirit:versions>
<spirit:generators
<spirit:name>initNetlistGenerator</spirit:name>
<spirit:phase>100</spirit:phase>
<spirit:accessType>
<spirit:readOnly>true</spirit:readOnly>
<spirit:hierarchical>true</spirit:hierarchicals>
<spirit:instanceRequired>true</spirit:instanceRequireds>
</spirit:accessType>
<spirit::generatorExe>/user/spirit/generators/setupNetlist
</spirit::generatorExe>
</spirit:generators>
<spirit:componentGeneratorSelector>
<spirit:groupSelectors
<spirit:name>SPIRITGEN SIM HS INIT</spirit:namex>
</spirit:groupSelector>
</spirit:componentGeneratorSelectors>
<spirit :busGeneratorSelectors
<spirit:groupSelectors
<spirit:name>SPIRITGEN SIM HS INIT</spirit:namex>
</spirit:groupSelector>
</spirit:busGeneratorSelectors
<spirit:chainGroup>SPIRITGEN SIM HS INIT</spirit:chainGroup>

</spirit:generatorChain>

10.4 Generator schema
10.4.1 generatorChain
10.4.1.1 Schema

The following schema defines the information contained in the generatorChain top object.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 191
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

B attvibutes

xz:boolean
R =
optional
falze I

IF this ateribute iz true then the generator should not be presented to the user, it rmay be part
of a chain and has no usefl rneaning when invoked standalane,

spirit: versionedidertifier

Thiz group of elernents identifies a top lewel itern (2.9, 2 companent or a bus definition] with
wendor, library, name and a version number,

—| spirit:generatorChainSelector

Select other generator chain files For inclusion into this chain, The boolean attibute "unique”
[default False) specifies that only a single generator is valid in this contest, IF more that one

— - generatar is selcted based on the selection criteria, DE will prompt the user to resalve to a
—Lsplrrt.generator(:haln single generator,

To define all elerments and attibutes supported For defining generator chains, —
J ST I Tt atorSelect: [#

[tvpe [spirt generatorSelectorType

Selects generators declared in components of the current design For inclusion into this generator
chain,

’spirit:generator

by | spirt: generatorType H
derivedBy | extension

Specifies a et of generators,

Identifies this generator chain as belonging to the named group, This i used by ather
generator chains to select this chain for prograrnmatic inclusion.

10.4.1.2 Description

In IP-XACT, a design flow can be represented as a generator chain that links an ordered sequence of named
tasks. Each named task can be represented as a single generator or as a generator chain. This way, design
flow hierarchies can be constructed and executed from within a given DE. The DE itself is responsible for
understanding the semantics of the specified chain described in the generatorChain XML.

General comment -- It would be nice if there was an indication of each entry as an element or an attribute.

The generatorChain element contains the following elements and attributes.
a) Mandatory elements
1) versionedIdentifier is a unique VLNV identifier.
2) At least one selector used to invoke a generator. A generator can be one of the following.
i) generatorChainSelector is a reference to another generatorChain (see 10.4.2).

i) componentGeneratorSelector is a reference to a (list of) component generators (see
10.4.3).

iii) generator defines the generator (see 10.4.4).

192 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

b)

Optional elements and attributes

1))

2)

3)

hidden indicates (when set to 7rue) this generatorChain object shall not be presented to the
user (the default is False). For example, this may be part of a chain and have no useful meaning
when invoked standalone.

chainGroup defines the list of ordered generator group names. This can be viewed as the list of
events to which this generatorChain is sensitive.

In addition, a generatorChain can be further configured by specifying parameters and a set of
choices. Lastly, its description can be enhanced by adding a displayName and description or
extended using vendorExtensions. These generic elements can be found in other top IP-XACT

objects, such as the component, and will therefore not be described here.
**Add xref OR copy that material here??
Let’s as much as possible (and minimize this type of cross-reference

10.4.1.3 Example

The following example defines a generator chain called GEN_COSIM CHAIN, which is intended to specify
a sequence of four simulation tasks (INIT, CONFIG, BUILD, and COMPILE) for both HW and SW

compilation.

<?xml version="1.0" encoding="UTF-8"?>

<spirit:generatorChain

xmlns:xs=http://www.w3.0rg/2001/XMLSchema
xmlns:spirit=http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4

xsi:schemalocation="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4
http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4/index.xsd">

<spirit:vendorsspiritconsortium.org</spirit:vendors>
<spirit:librarysbuildChain</spirit:library>
<spirit:name>CompleteBuild</spirit:name>
<spirit:version>1.0</spirit:versions>
<spirit:generatorChainSelector>
<spirit:groupSelectors
<spirit:name>GEN_COSIM_INIT</spirit:name>
</spirit:groupSelectors>
</spirit:generatorChainSelectors>
<spirit:generatorChainSelector>
<spirit:groupSelectors
<spirit:name>GEN_COSIM CONFIG</spirit:namex>
</spirit:groupSelectors>
</spirit:generatorChainSelectors>
<spirit:generatorChainSelectors>
<spirit:groupSelectors
<spirit:name>GEN_COSIM BUILD</spirit:names>
</spirit:groupSelectors>
</spirit:generatorChainSelectors>
<spirit:generatorChainSelectors>
<spirit:groupSelectors
<spirit:name>GEN_COSIM COMPILE</spirit:namex>
</spirit:groupSelectors>
</spirit:generatorChainSelectors>
<spirit:chainGroup>GEN COSIM CHAIN</spirit:chainGroups>

</spirit:generatorChain>

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 193

This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

10.4.2 generatorChain selector

10.4.2.1 Schema

The following schema defines the information contained in the generatorChainSelector element, which
may appear within a generatorChain.

B attributes

e optional
dlefault | false

]
T
s hoolearn §
| 5 hoolean |
:
]
:
!

Specifies that anly 2 single genarator iz
valid in this context, IF maore that one
generator iz zelcted bazed on the
selection criteria, DE will prompt the
uzer to rezolve to 3 single generator,

B attributes

% spirit:generatorChainSelector El_ spiricmubltipleGroupSelectionOperator

Select ather generatar chain files For
inclusion inta this chain, The boolean
attribute "unique" [default Falze) specifies
that anly a single generator is wvalid in this

context, IF rnore that one generator is —| spirit:groupSelector [} Spec'ﬁﬁs the OR or AN selection operator iF thers is
selcked based on the selection critera, DE 2 fnore than one group name,

will prarmpt the uzer ta rezohve to 2 single Specifies a zet of group narmes uzed to

generatar, select subsequent generators, The

use optional
defautt [or

wvpe [z Mame i

attribute "multipleGroupOperator”
specifies the OR ar AMD selection
operatar iF thers iz rnove than one —
group name [default=F), 1=

i
I.I.I
i

Marne used to zelect 3 generatar or
generator chain,

spirit:generator ChainRef N

type |spirﬂ:libraryRenype

Salect anather generator chain using
the unique identifier of this generatar
chain,

10.4.2.2 Description

The generatorChainSelector element defines which generator(s) to invoke. This element contains the
following mandatory elements and attributes.

a)

b)

194

unique specifies (when set to 7rue) only a single generator can be selected (the defaults is False). If
more that one generator is selected based on the selection criteria, the DE shall prompt the user to
resolve to a single generator.

The selected generator(s) can be a generatorChain (referenced by its VLNV through the genera-
torChainRef element) or a list of group names (referenced by the groupSelector/name element)
which identifies a list of generators (whose name match the given groupSelector names).

The matching generators are the generatorChain generators whose chainGroup element values
match one (or all if the multipleGroupSelector is set to AND) of the given groupSelector names.

The groupSelector can be a single name or a list of names. When a list of names is specified, the
multipleGroupSelectorOperator attribute can specify if the selection applies when one of the gen-
erator names matches (Boolean OR) or all the generator names match (Boolean AND).

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

10.4.2.3 Example

Assume three generatorChains X, Y, and Z have been created with the chainGroup names {A, B}, {3,
C},and {B, C}, respectively. This example shows how a new generatorChain object can select Y.

<spirit:generatorChainSelectors>
<spirit:groupSelector
spirit:multipleGroupSelectionOperation="and">
<spirit:name>A</spirit:name>
<spirit:name>C</spirit:name>
</spirit:groupSelectors>
</spirit:ports>

10.4.3 generatorChain component selector
10.4.3.1 Schema

The following schema defines the information contained in the componentGeneratorSelector element,
which may appear within a generatorChain.

spirit:generatorselectorType

I 1 spiritmultipleGroupSelectionOperator

Wype | xziName !
use optional]

ydefault |or

more than one group name.

spirit:componentGeneratorSelector —
— —] 'splrlt.grotlpselector [
bype | spitit:generatorSelector Type |

Specifies a zat of group narnes uzed to
| select subsequent generators, The
attribute "multipleGroupCperator
| spacifies the OR ar AMD selection

Selects generators declaved in commponents of the
current design for inclusion inta thiz generator chain.

operatar if thers is mare than one —
group narne [default=0F), 1.m

Mame used to select a generator or

|
|
|
|
_ : —
Specifies the OR or AMD selection operator if there is |
|
|
|
I generatar chain. |

10.4.3.2 Description

Similar to the generatorChainSelector, componentGeneratorSelector selects a component generator or a
list of component generators from a group selector. The following also apply.

a) The groupSelector can be a single name or a list of names. When a list of names is specified, the
multipleGroupSelectorOperator attribute can specify if the selection applies when one of the gen-
erator names matches (Boolean OR) or all the generator names match (Boolean AND).

b) The matching generators are the component generators whose groupName element values match
one (or all if the multipleGroupSelector is set to AND) of the generatorChain/groupSelector
names.

10.4.3.3 Example

The following example shows a generatorChain selecting all the component generators whose
groupName matches the name docGen.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 195
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007

<spirit:componentGeneratorSelectors>
<spirit:groupSelectors>
<spirit:name>docGen</spirit:name>
</spirit:groupSelectors>
</spirit:componentGeneratorSelectors>

10.4.4 generatorChain generator

10.4.4.1 Schema

Draft Standard for

The following schema defines the information contained in the generator element, which may appear
within a generatorChain or component.

196

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces

,spir'rt:generﬂtnr

ype spirit: generatar Ty

bl

cerivedBy | extension

Specifies a set of generators,

10.4.4.2 Description

spiritzgenerator Type (extension)

e
wuse

' P N
v spirit:hidden
[

f
:
TR T—
wE:hoalean «
ettt
optional !

falze :

IF this attribute is true then the generator
should nat be presented to the user, it
may be part of a chain and haz no
usehul meaning when invoked
standalone,

B attriputes

_Espirit:generatorExe

spirt:nameGroup

& group of elements For name
(rsiname], displayMarne and description

Cspiritphase |
“ibype g float
rilerivedBy | extension

Thiz iz an non-negative Aoating paint
numnber that is used to sequence when a
genarator is run. The generatars are mun
in ordar starting with 2ero, There may
be multiple generatars with the same
phase number, In this case, the order
should nat matter with respect to ather
generators at the same phase, IF no
phase number is given the generator will
be considered in the "last" phase and
these generators will be run in the order
in which they are encountered while
processing genaratar elerments,

EEspirit:apiTm)e

':t_.rpe xstoken :
rolerivedBy | restriction |

Indicates the type of &PT used by the
generator, Valid walue are TGIL and
none, IF this element is not present, TSI
iz azsurnad.

4 spirittransportMethods EH —~=—=Hi e

bype | spirit: spirtl R

The pathnarne to the exacutable file that
irnplernents the generator

_________________________ =

Lo gpiritvendorExtensions

Container For vendor specific extensions,

IP-XACT Standard/D4, December 19, 2007

B attributes

| spiritscope

ibype

shirt: phazeScopeType

'default

global

Es|Jirit:transpcrrtI'\l'l-e:tho(l

wataken
derivedBy | restriction

Defines a SOAP transport protocal other
than HTTP which is supported by this
genetator, The anly other curenthy
supported protocal is 'file',

The generator element describes a specific generator executable. This element contains the following

elements and attributes.

Copyright © 2007 The SPIRIT Consortium. All rights reserved.

This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

197

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

a) Mandatory elements

1) name (included in nameGroup) identifies the generator. nameGroup can also have two addi-
tional (optional) subelements: displayName, which allows a short descriptive text to be associ-
ated with the generator, and description which allows a textual description of the generator.

2) generatorExe defines an executable path, which shall include the command to launch this gen-
erator.

b) Optional information

1) hidden indicates (when set to True) this generator object shall not be presented to the user (the
default is False). For example, this may be part of a chain and have no useful meaning when
invoked standalone.

2) phase defines the sequence in which generators should be fired. In addition, the scope attribute
can be used to attach a generator phase: local or global (default).

3) parameters defines the generator parameters described as a list of name and value pairs, which
can be extended with specific vendorAttributes or vendorExtensions.

4) apiType is the API used by the generator: TGI (the default) or None (to designate there is no
communication between the DE and the generator).

5) transportMethods defines the list of transport protocols (other than http) supported by this
generator. The only supported protocol is file.

6) vendorExtensions adds any extra vendor-specific data related to the generator.

10.4.4.3 Example

The following example shows a netlist generator.

<spirit:generators>
<spirit:name>generateNetlist<spirit:name>
<spirit:phase>100.0</spirit:phase>
<spirit:parameterss
<spirit:parameters>
<spirit:name>language<spirit:name>
<spirit:value
spirit:id=netlistGenLangId
spirit:resolve=user
spirit:choiceRef= netlistGenLangChoicesId>vhdl
</spirit:value>
</spirit:parameter>
</spirit:parameters>
<spirit:apiType>TGI</spirit:apiType>

<spirit:generatorExe>tclsh ../generic netlister.tcl</
spirit:generatorExe>

</spirit:generator>

198 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

11. Design configuration descriptions

11.1 Design configuration

IP-XACT includes a schema for documents that store design configuration information—all the
configurable information that is not recorded in the design file. The design configuration information is
useful when transporting designs between design environments; it contains information that would
otherwise have to be re-entered by the designer; while the design itself contains all information regarding
configuration of the design, e.g., instance base addresses.

The design configuration file contains the following configuration information.

— configurable information defined in generators within generator chains; this information is not refer-
enced via the design file;

— the active, or current, view selected for instances in the design;

— the configuration information for interconnections between the same bus types with differing
abstraction types (i.e., abstractor reference, parameter configuration, and view selection). See also:
the abstractor section 4.9.2.

Finally, a design configuration applies to a single design, but a design may have multiple design
configuration files.

11.2 designConfiguration
11.2.1 Schema

The following schema defines the information contained in the designConfiguration root element.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 199
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007

Draft Standard for

—(spirit:versionedlderﬂifier

This graup of elerents identifies a tap
lewel itern (2.g. a cormponent or a bus
definitior) with vendor, library, narne
and a warsion numnber,

spirit:designRef

type | spirtlbraryRefType |

The design to which this configuration
applies

[- Spiri: ueneratn:rrChalnCmTrguratmn i

Contains the configurable information associated
with a generatorChain and its generators, Mate
that configurable information For generators
associated with cornponents is stared in the design
file,

— - - D..m
—Lsplrrt.desngn(:unﬁguratmn E]_Ejz‘_n Contains the information about the abstrackors

Top lewel elerent far describing the
current configuration of a design, Coes
not describe instance parameterization

11.2.2 Description

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
[
'

required to cross between two interfaces at with
differant abstractionCiefs,

,splrrt:ms‘tancellame

bype | xEMame

A instance narne assigned ta
subcarnponant instances and contained
channels, that iz unique within the
parent companent,

E spirit: ewCom'guratlon E

= .. .
spirit:viewHlame

tyvpe |3 NMTOKEN

The narne of the active wiew Far this
instance

Caontains the active view For each
instance in the design

Zting Far dezeribing this dasign
configuration to users

Cantainer For wendar specific
exkensions,

The designConfiguration clement details the configuration for a design. It contains the following

mandatory and options elements.

a) Mandatory elements

1) versionedIdentifier is a group containing the vendor, library, name, and version elements.

2) designRef specifies the design VLNV to which the configuration applies. It has the vendor,
library, name, and version attributes.

b) Optional elements

1) generatorChainConfiguration contains the configurable information associated with a gener-
ator defined within a generatorChain. See 11.3.

2) interconnectionConfiguration contains information about the abstractors required for the
connection of two interfaces with different abstractionDefinition types. See 11.4.

3) viewConfiguration lists the active view for each instance of the design. It has the following

subelements.

200 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distributi

on beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

i) instanceName specifies the component instance name for which the view is being
selected. This instance name shall be unique with other instance names inside the refer-
enced design file.

ii) viewName defines the current valid view for the selected component instance.
4) description allows a textual description of the design configuration.

5) vendorExtensions adds any extra vendor-specific data related to the design configuration.
See also: SCR 1.5.

11.2.3 Example

The following example shows a designConfiguration containing a generator chain configuration: one
abstractor configuration in an interconnectionConfiguration and one instance view configuration.

<spirit:designConfiguration xmlns:spirit="http://www.spiritconsortium.org/
XMLSchema/SPIRIT/1.4" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" xsi:schemalLocation="http://www.spiritconsortium.org/XMLSchema/
SPIRIT/1.4/index.xsd">
<spirit:vendor>spiritconsortium.org</spirit:vendors>
<spirit:librarys>Library</spirit:library>
<spirit:name>Configs</spirit:name>
<spirit:version>1.0</spirit:versions>
<spirit:designRef spirit:vendor="spiritconsortium.org"
spirit:library="DesignLibrary" spirit:name="Designl"
spirit:version="1.0"/>
<spirit:generatorChainConfigurations>
<spirit:generatorChainRef spirit:vendor="spiritconsortium.org"
spirit:library="generatorLibrary" spirit:name="generatorl"
spirit:version="1.0"/>
<spirit:generatorss
<spirit:generatorName>genl</spirit:generatorName>
<spirit:configurableElementValues>
<spirit:configurableElementValue
spirit:referenceId="tmpDir"> my temp dir</
spirit:configurableElementValue>
</spirit:configurableElementValues>
</spirit:generatorss>
</spirit:generatorChainConfiguration>
<spirit:interconnectionConfigurations
<spirit:interconnectionRef>
connectionl
</spirit:interconnectionRef>
<spirit:abstractorss>
<spirit:abstractors>
<spirit:instanceName>al</spirit:instanceName>
<spirit:abstractorRef
spirit:vendor="spiritconsortium.org"
spirit:library="AbstractorLibrary"
spirit:name="AHBPvTORt1l"
spirit:version="1.0"/>
<spirit:viewName>verilog</spirit:viewName>
</spirit:abstractor>
</spirit:abstractors>
</spirit:interconnectionConfiguration>
<spirit:viewConfigurations>
<spirit:instanceName>instance 1l</spirit:instanceNamex>
<spirit:viewNames>verilog</spirit:viewName>

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 201
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

</spirit:viewConfigurations>
</spirit:designConfigurations>

11.3 generatorChainConfiguration
11.3.1 Schema

The following schema defines information contained in generatorChainConfiguration, which may appear
as an element inside the designConfiguration root element.

spirit:generator ChainRef e
Ivpe |spir'rt:libraryRefTvpe

References a generatorizhain,

All configuration infarmnation for 2 contained
cornpanent, generatar, generator chain or

e At ;
abstractor instance,

F

- . ! . F spirit:generatorlame
associated with a generatorChain and its 1 g

generators, Mate that configurable infarmation
Far generators aszociated with campanents iz
stared in the design fle,

|t\,r'pe |xs:string

)
H
Contains the configurable inFomnation !
H
H
H

Thiz identifies the generatar in
the chain,

t- -C, spirrt:|:onﬁuurahleEIemen‘tUalues

Stores canfigurable
inFotrnation for generators
referenced in the chain

All configuratian infarmnation for 2 contained
comnpaonent, generatar, generator chain or
abstractor instance,

11.3.2 Description

The generatorChainConfiguration element contains the configurable information associated with a
generatorChain and its generators. Configurable information for any generators associated with
components is stored in the design file (in the configuration of an instance associated with a
componentGenerator) . The generatorChainConfiguration element contains the following mandatory
and options elements.

a) Mandatory elements

generatorChainRef points to the VLNV of a generatorChain through the vendor, library, name,
and version attributes.

b) Optional elements

generators specify any configurable information for the generators referenced in a chain. It has the
following subelements.

i) generatorName (mandatory) identifies the generator in the referenced chain.

ii) configurableElementValues (optional) specifies any configurableElementValue ele-
ments, which contain values for the generator configurable elements, referenced via the
mandatory referenceld attribute.

See also: SCR 1.7.
11.3.3 Example

The following example shows the configurable information for a generatorChain. Here two generators
inside the referenced generatorChain are configured.

202 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

<spirit:generatorChainConfigurations>
<spirit:generatorChainRef spirit:vendor="spiritconsortium.org"
spirit:library="generatorLibrary" spirit:name="generatorl"
spirit:version="1.0"/>
<spirit:generatorss
<spirit:generatorName>genl</spirit:generatorNames>
<spirit:configurableElementValues>
<spirit:configurableElementValue
spirit:referenceld="tmpDir"> my temp dir</
spirit:configurableElementValue>
</spirit:generators>
<gpirit:generators>
<spirit:generatorName>gen2</spirit:generatorName>
<spirit:configurableElementValuess>
<spirit:configurableElementValue
spirit:referenceld="verbose level"> 1</
spirit:configurableElementValue>
<spirit:configurableElementValue
spirit:referencelId="dump log"> true</
spirit:configurableElementValues>
</spirit:configurableElementValues>
</spirit:generators>
</spirit:generatorChainConfiguration>

11.4 interconnectionConfiguration
11.4.1 Schema

The following schema defines information contained in interconnectionConfiguration element, which
may appear as an element inside the designConfiguration root element.

JEspirit:interconnecﬁonRef |
|type |xs:Name |

Reference to the interconnection
narne or possibly an hierConnection
intetfaceMame in a design file,

= spiritinstancelame

Instance name For the
abstractor

Containg the information about the abstractors
required to cross between two interfaces at

with different abstractionDefs, Display name For the
abstractor instance,

—E—jﬂ— String for describing this
abstractor instance to users

spirit:abstractorRef
i e spiritlbraryReTType

wigwMarne. IF rultiple Abstractor reference
elements are present then
the order iz the order in
which the abstractors should
be chained together,

spirit:abstractors [spiri‘t:ahstractor

List of abstractors For this 1.0
interconnection

Elemnent to hold a the

All configuration infarrnation For a contained
COMpanent, generatar, generator chain or
abstractor instance,

~ spiritviewHame

w5 NMTOKEN

The name of the active
wigws For thiz abstractor
instance,

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 203
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

11.4.2 Description

The interconnectionConfiguration element contains information about the abstractors used to connect two
interfaces having the same busDefinition types and different abstractionDefinition types. The
interconnectonConfiguration element contains the following mandatory elements and attributes.

a) interconnectionRef contains a reference to a design interconnection name or a hierConnection
interfaceRef name.

b) abstractors contains the abstractor elements, this list of elements specify the order in which the
abstractors shall be chained together to bridge from one abstraction to another. An abstractor has
the following subelements.

1) instanceName (mandatory) defines the name of the abstractor instance.

2) abstractorRef (mandatory) points to the VLNV of the abstractor through the vendor,
library, name, and version attributes.

3) viewName (mandatory) defines the name of the active view for this abstractor instance.
4) displayName (optional) defines the display name for the abstractor instance.
5) description (optional) provides a textual description of the abstractor instance.

6) configurableElementValues (optional) has configurableElementValue elements, which
describe the values of configurable elements of the referenced generatorChain. The manda-
tory referenceld attribute in a configurableElementValue specifies the id of the configurable
element to reconfigure.

General comment -- section 11.4.2 includes all sub-elements in a single list and then indicates within each
list entry whether or not the entry is optional. This is inconsistent with the way chapter 10 was done where
the mandatory and optional elements are separated into different lists. I like the chapter 11 approach better
because it allows for closer alignment with the schema pictures, but the important thing is to be consistent.

See also: SCR 3.13, SCR 3.14, SCR 3.15, SCR 3.16, SCR 3.17, SCR 3.18, SCR 3.19, SCR 3.20, SCR 3.21,
and SCR 3.22.

11.4.3 Example

The following example shows the configuration of the connectionl interconnection, with the definition
of a chain of two abstractors to insert to bridge the two abstractions. The abstractor instances are
abstractionl and abstraction2. The active views of these abstractor instances are verilog and
verilog view. The abstractor VLNVs are defined in the abstractorRef eclements.

<spirit:interconnectionConfigurations>
<spirit:interconnectionRef>
connectionl
</spirit:interconnectionRef>
<spirit:abstractorss>
<spirit:abstractors>
<spirit:instanceName>abstractorl</spirit:instanceName>
<spirit:abstractorRef
spirit:vendor="spiritconsortium.org"
spirit:library="AbstractorLibrary"
spirit:name="AHBPvToOAHBPvt"
spirit:version="1.0" />
<spirit:viewNames>verilog</spirit:viewName>
</spirit:abstractors>
<spirit:abstractors>
<spirit:instanceName>abstractor2</spirit:instanceName>
<spirit:abstractorRef
spirit:vendor="spiritconsortium.org"

204 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

spirit:library="AbstractorLibrary"
spirit:name="AHBPvtToRt1"
spirit:version="1.0" />
<spirit:viewName>verilog views</spirit:viewNames>
</spirit:abstractors>
</spirit:abstractorss>
</spirit:interconnectionConfigurations>

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

205

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007

206

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Draft Standard for

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

12. Addressing and addressing formulas

**Once the WG approves the technical content of Anthony’s IPXACTaddressing.doc write-up, I’11

incorporate it into this clause. In the meantime, this merely serves as a placeholder.**

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

207

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007

208

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Draft Standard for

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

Annex A
(informative)
Bibliography

** this list as relevant™*

[B1] Bradner, S., IETF RFC 2119 “Key words for use in RFCs to Indicate Requirement Levels.” Best Cur-
rent Practice: 14 (See http://www.ietf.org/rfc/rfc2119.txt.)

[B2] IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition. New York: Insti-
tute of Electrical and Electronics Engineers, Inc.

[B3] IP-XACT Leon Register Transfer Examples, v1.4, see http://www.spiritconsortium.org/
doc_downloads/???. **add the actual reference**

[B4] IP-XACT Leon Transaction Level Examples, v1.4, see http://www.spiritconsortium.org/
doc_downloads/???. **add the actual reference**

[B5] IP-XACT Schema on-line documentation, v1.4, see http://www.spiritconsortium.org/doc_downloads/
777, **add the actual reference®*

[B6] IP-XACT Tight Generator Interface Overview, vl1.4, see http://www.spiritconsortium.org/
doc_downloads/???. **add the actual reference**

[B7] The Transaction Level Model of SystemC. This model is in the process of standardization by the Open
SystemC Initiative (OSCI) (http://www.systemc.org)

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 209
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

www.ietf.org/rfc/rfc2119.txt
http://www.systemc.org

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007

210

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Draft Standard for

IP-XACT meta-data and tool interfaces

Annex B

(normative)

Semantic consistency rules

IP-XACT Standard/D4, December 19, 2007

**Generally, any “i.e.” additions should be in the Rules column, not the Notes column,;

let’s confirm all these before rearranging their placement in each table**

For an IP-XACT document or a set of IP-XACT documents, to be valid they shall, in addition to conforming
to the IP-XACT schema, obey certain semantic rules. While many of these are described informally in other
sections of this document, this chapter defines them formally. Tools generating IP-XACT documents must
ensure these rules are obeyed. Tools reading IP-XACT documents shall report any breaches of these rules to

the user.

Most of the semantic rules listed here can be checked purely by manually examining a set of IP-XACT
documents. A few, listed at the end of this annex, need some external knowledge, so they cannot be checked
this way. In Table Bl — Table B14, Single doc check indicates a rule can be checked purely by manually

examining a single IP-XACT document. Rules for which Single doc check is No require the examination of

the relationships between IP-XACT documents.

Table B1—Cross-references and VLNVs

Single
Rule V1.2rule Rule dogc Notes
number number
check
SCR 1.1 1 Every IP-XACT document visible to a tool No Only applies only to
shall have a unique VLNV. those documents visi-
ble to a particular tool
or DE at one time. In
particular, users are
likely to store multi-
ple versions of the
same documents,
with the same
VLNVs, in source
control systems.
SCR 1.2 2 Any VLNV in an [P-XACT document used | No In the schema, such
to reference another IP-XACT document references always use
shall precisely match the identifying VLNV the attribute group
of an existing [IP-XACT document. versionedIdentifier.
SCR 1.3 3 The VLNV in an extends element in a bus No
definition shall be a reference to a bus defi-
nition.
SCR 1.4 4 The VLNV in a busType element in a bus No
interface or abstraction definition shall be a
reference to a bus definition.
SCR 1.5 5 The VLNV in a designRef element in a No
design configuration shall be a reference to
a design.

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

211

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007

Draft Standard for

Table B1—Cross-references and VLNVs (Continued)

Rule
number

V1.2rule
number

Rule

Single
doc
check

Notes

SCR 1.7

The VLNV in a generatorChainRef cle-
ment in a design configuration shall be a ref-
erence to a generator chain.

No

SCR 1.9

The VLNV in a generatorChainRef sub-
element of the element generatorChainSe-
lector in a generator chain shall be a refer-
ence to a generator chain.

SCR 1.11

11

The VLNV in a componentRef element in a
design shall be a reference to a component.

SCR 1.12

The XML document element of a an IP-
XACT document shall be an abstractor,
abstractionDefinition, busDefinition,
component, design, designConfiguration
or generatorChain element.

SCR 1.13

The VLNV in an abstractionType element
in a component or abstractor shall reference
an abstractionDefiniton.

SCR 1.14

If a bus definition contains an abstraction-
Type sub-element, the abstraction defini-
tion’s busType element and the bus
interface’s busType element shall reference
the same bus definition.

I.e., the abstraction
referenced shall be an
abstraction of the ref-
erenced bus.

SCR 1.15

The VLNV in an abstractorRef in a
designConfiguration shall reference an
abstractor.

SCR 1.16

The VLNV in an extends clement in an
abstraction definition shall be a reference to
an abstraction definition.

Table B2—Interconnections

Rule
number

V1.2rule
number

Rule

Single
doc
check

Notes

SCR 2.1

12.

In the attributes of an activelnterface or
monitorInterface element, the value of the
busRef attribute shall be the name of a bus-
Interface in the component description ref-
erenced by the VLNV of the component
instance named in componentRef attribute.

No

212

SCR 2.2

13.

In the sub-elements of an interconnection
element, the bus interfaces referenced by the
two activelnterface sub-elements shall be
compatible, i.e., the VLNVs of the busType
elements within the two busInterface cle-
ments shall reference compatible busDefi-
nitions.

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces

IP-XACT Standard/D4, December 19, 2007

Table B2—Interconnections (Continued)

Rule
number

V1.2rule
number

Rule

Single
doc
check

Notes

SCR 2.3

14.

A particular component/bus interface com-
bination shall appear in only one intercon-
nection element in a design.

Yes

SCR 2.4

15.

An interconnection clement shall only con-
nect a master interface to a slave interface or
a mirrored-master interface.

SCR 2.5

16.

An interconnection clement shall only con-
nect a mirrored-master interface to a master
interface.

SCR 2.6

17.

An interconnection clement shall only con-
nect a slave interface to a master interface or
a mirrored-slave interface.

SCR 2.7

18.

An interconnection clement shall only con-
nect a mirrored-slave interface to a slave
interface.

SCR 2.8

19.

An interconnection clement shall only con-
nect a direct system interface to a mirrored-
system interface.

SCR 2.9

20.

An interconnection clement shall only con-
nect a mirrored-system interface to a direct
system interface.

SCR 2.10

21.

In a direct master to slave connection, the
value of bitsInLAU in the master's address
space shall match the value of bitsInLAU in
the slave's memory map.

SCR 2.11

22.

In a direct master to slave connection, the
range of the master's address space shall be
greater or equal to the range of the slave's
memory map.

When the slave's
memory map is
defined in terms of
memory banks or
subspace maps, cal-
culating its range
may be complex.

SCR 2.12

23.

In a direct master to slave connection, the
busDefinitions referenced by the busInter-
faces shall have a directConnection ele-
ment with the value True.

SCR 2.13

24.

In a connection between a system interface
and a mirrored-system interface, the values
of the group elements of the two bus inter-
faces shall be identical.

SCR 2.14

If the same logical port is in the port map of
both ends of a direct master to slave connec-
tion, the vector elements of that logical port
shall be identical in the two port maps.

Logical ports can
only be identified
with one another if
the two bus interfaces
reference the same

abstraction definition.

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

213

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007

Draft Standard for

**Delete these definitions and/or move them into the appropriate Schema section®*

B.0.1 Compatibility of busDefinitions

a) A busDefinition A is an extension of busDefinition B if A contains an extension element that refer-

ences B or an extension of B.

b) A busDefinition is compatible with itself.

¢) IfAis an extension of B, then A and B are compatible.

d) No other pairs of busDefinitions are compatible.

e) A sect of busDefinitions {A, B, C,
fromtheset({ A, B },{ &, C },{ B,

B.0.2 Interface mode of a bus interface

Specifies whether the bus interface is a master, slave, system, mirroredMaster, mirroredSlave,

mirroredSystem, or monitor interface.

Table B3—Channels, bridges, and abstractors

. } is compatible if every possible pair of busDefinitions
C } ...)is compatible.

214

Single
Rule V1.2rule Rule dogc Notes
number number
check

SCR 3.1 25. Within a channel element, all the busInter- | No Compatibility of the
faceRef elements shall refer to compatible abstraction defini-
abstraction definitions, i.e., the VLNVs of tions implies compat-
the abstractionType elements within the ibility of their
busInterface elements shall reference com- associated bus defini-
patible abstractionDefinitions. tions.

SCR 3.2 26. All bus interfaces referenced by a channel Yes
shall be mirrored interfaces.

SCR 3.3 27. A channel can be connected to no more mir- | No A channel may con-
rored-master busInterfaces than the least nect ports with differ-
value of maxMasters in the busDefinitions ent bus definitions,
referenced by the connected busInterfaces and hence different
(whether these interfaces are mirrored-mas- values of maxMas-
ter or mirrored-slave interfaces). ters, as long as the

bus definitions are
compatible.

SCR 3.4 28. A channel can be connected to no more mir- | No A channel may con-
rored-slave bus interfaces than the least nect ports with differ-
value of maxSlaves in the bus definitions ent bus definitions,
referenced by the connected bus interfaces and hence different
(whether these interfaces are mirrored-mas- values of max-
ter or mirrored-slave interfaces). Slaves, as long as the

bus definitions are
compatible.

SCR 3.5 29. Each bus interface on a component shall Yes
connect to only one channel of that channel
component.

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces

IP-XACT Standard/D4, December 19, 2007

Table B3—Channels, bridges, and abstractors (Continued)

Rule
number

V1.2rule
number

Rule

Single
doc
check

Notes

SCR 3.6

30.

The interface referenced by masterRef sub-
clement of a bridge clement shall be a mas-
ter.

Yes

SCR 3.13

The value of the interconnectionRef sub-
element of an interconnectionConfigura-
tion element shall precisely match the name
of an interconnection described in the
design referenced by the containing design
configuration.

SCR 3.14

An interconnectionConfiguration clement
of a design configuration document that ref-
erences a master to mirrored-master inter-
connection in the corresponding design shall
only reference abstractors with an abstrac-
torMode of master.

SCR 3.15

An interconnectionConfiguration element
of a design configuration document that ref-
erences a slave to mirrored-slave intercon-
nection in the corresponding design shall
only reference abstractors with an abstrac-
torMode of slave.

SCR 3.16

An interconnectionConfiguration element
of a design configuration document that ref-
erences a system to mirrored-system inter-
connection in the corresponding design shall
only reference abstractors with an abstrac-
torMode of system.

SCR 3.17

An interconnectionConfiguration clement
of a design configuration document that ref-
erences a master to slave interconnection in
the corresponding design shall only refer-
ence abstractors with an abstractorMode of
direct.

SCR 3.18

An interconnectionConfiguration element
shall not reference an interconnection in
which the abstraction types referenced by
the two endpoints are identical.

SCR 3.19

In the list of abstractors referenced by an
interconnectionConfiguration clement,
the first abstractionType element of the
first referenced abstractor shall be compati-
ble with the abstractionType element of the
master, system, or mirrored-slave endpoint
of the interconnection.

Rules 3.19 —3.22
mean the abstractors
associated with an
interconnection need
to form a non-looping
chain between the
two ends.

SCR 3.20

In the list of abstractors referenced by an
interconnectionConfiguration element,
the second abstractionType element of the
last referenced abstractor shall be compati-
ble with the abstractionType element of the
mirrored-master, mirrored-system, or slave
endpoint of the interconnection.

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

215

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007

Draft Standard for

Table B3—Channels, bridges, and abstractors (Continued)

Rule
number

V1.2rule
number

Rule

Single
doc
check

Notes

SCR 3.21

In the list of abstractors referenced by an
interconnectionConfiguration clement,
the first abstractionType element of every
referenced abstractor, except the first, shall
be compatible with the second abstraction-
Type element of the previous abstractor in
the interconnectionConfiguration list.

No

SCR 3.22

In the list of abstractors referenced by an

interconnectionConfiguration element, no
two abstractionType elements in the refer-
enced abstractors shall have the same value.

SCR 3.23

The VLNVs in the busType elements of
both abstraction definitions referenced by an
abstractor shall exactly match the VLNV in
the busType element of the abstractor.

SCR 3.24

If abstraction definition AA is an abstraction
of bus definition A and abstraction defini-
tion AB is an abstraction of bus definition B,
then abstraction definition AA shall only
contain an extension element referencing
abstraction definition AB if bus definition A
contains an extension element referencing
bus definition B.

If abstraction defini-
tion AA extends
abstraction definition
AB, AA and AB need
to be abstractions of
different buses.

Delete these definitions and/or move them into the appropriate Schema section

B.0.3 Compatibility of abstractionDefinitions

a)

b)

¢)
d)

216

An abstractionDefinition A is an extension of abstractionDefinition B if A contains an extension
element that references B or an extension of B.

An abstractionDefinition is compatible with itself.

If & is an extension of B, then A and B are compatible.

No other pairs of abstractionDefinitions are compatible.

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces

IP-XACT Standard/D4, December 19, 2007

Table B4—Monitor interfaces and interconnections

Single
Rule Vl.2rule Rule dogc Notes
number number
check

SCR 4.1 31. An interconnection element cannot refer- No
ence a monitor interface.

SCR 4.2 32. The activelnterface sub-element of a moni- | No
torInterconnection element shall reference
a master, slave, system, mirroredMaster,
mirroredSlave, or mirroredSystem inter-
face.

SCR 4.3 33. The monitorInterface sub-elements of a No
monitorInterconnection element shall ref-
erence a monitor bus interface.

SCR 4.4 34. In a monitorInterconnection element, the No This means all the
value of the interfaceModeMode of the active interfaces shall
monitor interfaces shall match the inter- have the same inter-
faceModeMode of the active interface. face mode.

SCR 4.5 35. A monitor interface shall only be connected | No
to a system or mirroredSystem interface if
it has a group sub-element and the value of
this element matches the value of the group
sub-element of the system or mirroredSys-
tem interface.

SCR 4.6 36. A particular component/busInterface- No This applies to both
Name combination shall only appear in one monitor and active
monitorInterconnection element. interfaces; however, a

single monitorInter-
connection element
can connect an active
interface to many
monitor interfaces.
The same active
interface can also
appear in at most one
interconnection cle-
ment.

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

217

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007

Table B5—Configurable elements

Draft Standard for

Rule
number

V1.2rule
number

Rule

Single
doc
check

Notes

SCR 5.1

37.

A configurable element shall have a depen-
dency attribute if and only if it has a resolve
attribute with the value dependent.

Yes

SCR 5.2

38.

The value of a dependency attribute shall
be an XPATH expression. This XPATH
expression shall only reference the contain-
ing document.

Yes

SCR 5.3

39.

The XPATH expression in a dependency
attribute shall not reference configurable
elements having a resolve attribute value of
dependent or generated.

Yes

SCR 5.4

40.

Any parameters used within all dependent
parameter's XPATH 1id () calls shall exist.

Yes

SCR 5.5

41.

All references to elements in dependency
XPATH expressions shall be by id. Depen-
dency XPATH expressions shall not use
document navigation to reference other ele-
ments.

Yes

This rule allows
XPATH expressions
to remain valid
through schema or
design changes. DEs
reading IP-XACT
documents should
treat breaches of this
rule as minor errors,
and attempt to inter-
pret any XPATH
expressions in the
document.

SCR 5.6

42.

An id attribute is required in any element
with a resolve attribute value of user or
generated.

Yes

SCR 5.7

43.

configurableElement elements within
componentInstance elements shall only
reference configurable elements that exist in
the component referenced by the enclosing
componentInstance element; the value of
the referenceld attribute of the config-
urableElement element shall match the
value of the id attribute of some config-
urable element of the component.

The schema guaran-
tees uniqueness of id
values in a compo-
nent.

SCR 5.8

44.

configurableElement elements shall only
reference configurable elements with a
resolve attribute value of user or gener-
ated.

218

SCR 5.9

45.

If a configurableElement clement refer-
ences an element with a formatType
attribute value of float or long and contain-
ing a minimum attribute, the value of the
configurableElementValue element shall
be greater or equal to the specified value of
the minimum attribute.

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces

IP-XACT Standard/D4, December 19, 2007

Table B5—Configurable elements (Continued)

Rule
number

V1.2rule
number

Rule

Single
doc
check

Notes

SCR 5.10

46.

If a configurableElement element refer-
ences an element with a format attribute
value of float or long and containing a max-
imum attribute, the value of the config-
urableElementValue sub-element shall be
less than or equal to the specified value of
the maximum attribute.

No

| SCR 5.11

47.

If an element has a format attribute with a
value of choice, it also needs a choiceRef
attribute.

Yes

SCR 5.12

48.

If a configurableElement element refer-
ences an element with a choiceRef attribute,
the value for configurableElementValue
sub-element shall be one of the values listed
in the choice element referenced by the
choiceRef attribute.

SCR 5.13

configurableElement elements within gen-
eratorChain elements in design configura-
tion documents shall only reference
configurable elements that exist in the gen-
erator chain referenced by the enclosing
generatorChain element; the value of the
referenceld attribute of the config-
urableElement element shall match the
value of the id attribute of some config-
urable element of the generator chain.

The schema guaran-

tees uniqueness of id
values in a generator
chain.

SCR 5.14

configurableElement elements within gen-
erator elements in design configuration
documents elements shall only reference
configurable elements that exist in the gen-
erator referenced by the enclosing genera-
tor element (within the generator chain
referenced by the enclosing generator-
Chain element); the value of the referen-
celd attribute of the configurableElement
element shall match the value of the id
attribute of some configurable element of
the generator.

The schema guaran-

tees uniqueness of id
values in a generator
chain.

SCR 5.15

configurableElement elements within
abstractor elements in design configuration
documents elements shall only reference
configurable elements that exist in the
abstractor referenced by the enclosing
abstractor element; the value of the refer-
enceld attribute of the configurableEle-
ment element shall match the value of the id
attribute of some configurable element of
the abstractor.

The schema guaran-

tees uniqueness of id
values in an abstrac-
tor.

| **Delete these definitions and/or move them into the appropriate Schema section®*

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

219

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

B.0.4 Configurable element
This is an element that uses the common.att attribute group. The definition of such elements can define that
its value is derived by calculation from other elements, or set by the user or a generator.

Note—This is different from a configurableElement element, which is an element that references and sets the
value of a configurable element.

B.0.5 Element referenced by configurableElement element

Every configurableElement clement references a component document and is contained within a
componentInstance element. The element referenced by a configurableElement element is the configurable
element in that component document with an id attribute matching the referenceld of the
configurableElement element.

Table B6—Ports

Single
Rule doc Notes
check

Rule V1.2rule
number number

SCR 6.1 49. The value of any busPortName sub-ele- No
ment in a busInterface element shall match
the value of a logicalName clement of the
abstraction definition referenced by the bus-
Interface clement.

SCR 6.5.1 If the abstraction definition referenced by a | No
bus interface specifies an initiative value for
a logical port of requires for that interface
mode of bus interface, the port map shall
only map that logical port to a component
port with an initiative value of requires,
both, or phantom, or to a component port
with an allLogicallnitiativesAllowed
attribute with the value True.

For system interfaces, the port initiative val-
ues shall be looked up from the onSystem
element with the group name matching that
of the bus interfaces.

For mirrored interfaces, the bus port initia-
tive values needs to be reversed before
doing the comparison.

220 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces

Table B6—Ports (Continued)

IP-XACT Standard/D4, December 19, 2007

Rule
number

V1.2rule
number

Rule

Single
doc
check

Notes

SCR 6.5.2

If the abstraction bus definition referenced
by a bus interface specifies an initiative
value for a logical port of provides for that
interface mode of bus interface, the port
map shall only map that logical port to a
component port with an initiative value of
provides, both, or phantom, or to a compo-
nent port with an allLegicallnitiativesAl-
lowed attribute with the value True.

For system interfaces, the port initiative val-
ues shall be looked up from the onSystem
element with the group name matching that
of the bus interfaces.

For mirrored interfaces, the bus port initia-
tive values shall be reversed before doing
the comparison. Mirrored bus interfaces
shall be looked up as if they were not mir-
rored.

SCR 6.5.3

If the abstraction bus definition referenced
by a bus interface specifies an initiative
value for a logical port of both for that inter-
face mode of bus interface, and the bus
interface has a port map, the port map shall
only map that logical port to a component
port with an initiative value of both or
phantom, or to a component port with an
allLogicallnitiativesAllowed attribute with
the value True.

For system interfaces, the port initiative val-
ues shall be looked up from the onSystem
element with the group name matching that
of the bus interfaces.

For mirrored interfaces, the bus port initia-
tive values shall be reversed before doing
the comparison. Mirrored bus interfaces
shall be looked up as if they were not mir-
rored.

SCR 6.6.1

If the abstraction definition referenced by a
bus interface specifies a direction for a logi-
cal port of in for that interface mode of bus
interface, the port map shall only map that
logical port to a component port with a
direction of in, inout, or phantom, or to a
component port with an allLogicalDirec-
tionsAllowed attribute with the value True.
For system interfaces, the port directions
shall be looked up from the onSystem ele-
ment with the group name matching that of
the bus interfaces.

For mirrored interfaces, the bus port direc-
tions shall be reversed before doing the
comparison.

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

221

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007

Table B6—Ports (Continued)

Draft Standard for

Rule
number

V1.2rule
number

Rule

Single
doc
check

Notes

SCR 6.6.2

If the abstraction definition referenced by a
bus interface specifies a direction for a logi-
cal port of out for that interface mode of bus
interface, the port map shall only map that
logical port to a component port with a
direction of out, inout, or phantom, or to a
component port with an allLogicalDirec-
tionsAllowed attribute with the value True.
For system interfaces, the port directions
shall be looked up from the onSystem ele-
ment with the group name matching that of
the bus interfaces.

For mirrored interfaces, the bus port direc-
tions shall be reversed before doing the
comparison.

SCR 6.6.3

If the abstraction definition referenced by a
bus interface specifies a direction for a logi-
cal port of inout for that interface mode of
bus interface, the port map shall only map
that logical port to a component port with a
direction of inout or phantom, or to a com-
ponent port with an allLogicalDirection-
sAllowed attribute with the value True.

For system interfaces, the port directions
shall be looked up from the onSystem ele-
ment with the group name matching that of
the bus interfaces.

For mirrored interfaces, the bus port direc-
tions shall be reversed before doing the
comparison.

SCR 6.7

If the abstraction definition referenced by a
bus interface specifies, for a port, a presence
value of required for that interface mode of
bus interface, and the bus interface has a
port map, the port shall be in that port map.
For system interfaces, the port presence
shall be looked up from the onSystem cle-
ment with the group name matching that of
the bus interfaces.

Mirrored bus interfaces shall be looked up
as if they were not mirrored.

Port maps are
optional, even on
buses with required
ports. See also 6.20.
The third possible
presence value
(optional) neither
forces nor forbids the
inclusion of the sig-
nal in the port map.

SCR 6.9

Only one component port in a port connec-
tion equivalence class may have the direc-
tion out.

SCR 6.11

Only one component port in a port connec-
tion equivalence class may have the initia-
tive provides.

SCR 6.12

222

If abstraction definition A extends abstrac-
tion definition B, then abstraction definition
A needs to have port elements for every port
declared in abstraction definition B.

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces

Table B6—Ports (Continued)

IP-XACT Standard/D4, December 19, 2007

Rule
number

V1.2rule
number

Rule

Single
doc
check

Notes

SCR 6.13

If the abstraction definition referenced by a
bus interface specifies a port is a wire port

(i.e., the port element contains a wire sub-
element), the port map shall only map that

logical port to a wire component port.

SCR 6.14

If the abstraction definition referenced by a
bus interface specifies a port is a transac-
tional port (i.e., the port element contains a
transactional sub-clement), the port map
shall only map that logical port to a transac-
tional component port.

SCR 6.15

For any port connection equivalence class
containing at least one physical in port, only
one logical port of that port connection
equivalence class shall be a port of a bus
interface that has an interconnection to a bus
interface using a different abstraction.

This rule prevents
shared signals from
crossing abstractions
boundaries, since
abstractors cannot
describe the handling
of such signals.

SCR 6.16

For any port connection equivalence class
containing at least one physical requires
port, only one logical port of that port con-
nection equivalence class shall be a port of a
bus interface that has an interconnection to a
bus interface using a different abstraction.

This is the equivalent
of rule 6.15 for trans-
actional ports.

SCR 6.17

The value of the group sub-element of an
onSystem element shall match the value of
one of the system group names referenced in
the bus definition referenced by the abstrac-
tion definition containing the onSystem ele-
ment.

SCR 6.18

The value of the group sub-element of a
system element shall match the value of one
of the system group names referenced in the
bus definition referenced by the bus inter-
face containing the onSystem element.

SCR 6.19

If an abstraction definition’s busType ele-
ment references an addressable bus, the
abstraction definition shall contain at least
one port isAddress sub-clement.

No

SCR 6.20

If the abstraction definition referenced by a
bus interface specifies, for a port, a presence
value of illegal for that interface mode of
bus interface, and the bus interface has a
port map, the port shall not be in that port
map.

For system interfaces, the port presence
shall be looked up from the onSystem ele-
ment with the group name matching that of
the bus interfaces.

Mirrored bus interfaces shall be looked up
as if they were not mirrored.

No

Port maps are
optional, even on
buses with required
ports. See also 620
The third possible
presence value
(optional) neither
forces nor forbids the
inclusion of the port
in the port map.

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

223

10

15

20

25

30

35

40

45

50

55

gdelp
Cross-Out

gdelp
Replacement Text
Needs a different link

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

**Delete these definitions and/or move them into the appropriate Schema section®*

B.0.6 Port connection equivalence class

The port connection equivalence class of a (logical or component) port is the set of model and logical ports
that can be reached from that port through any sequence of:

a) Bus interfaces' logical to physical port maps.

b) Interconnections between logical ports implied by interconnections between bus interfaces using the
same abstraction of the bus.

¢) Ad-hoc connections.

B.0.7 Addressable bus interface

A bus interface shall be addressable if its isAddressable element has the value True.

Table B7—Registers

Single
Rule doc Notes
check

Rule V1.2rule
number number

SCR 7.1 50. No register shall have an addressOffset that | Yes Le., registers shall not
falls within the address range of another reg- overlap.

ister in the same address block. The address
range of a register is the half open range
[addressOffset, addressOff-
set + (size +bitsInLau -1) =+
bitsInLau).

SCR 7.2 51. No bit field shall have a bitOffset value that | Yes Le., bit fields shall
falls within the bit range of another bit field. not overlap.

The range of a bit field is the half open
range [bitOffset, bitOff-
set+width).

SCR 7.3 52. Any register in an address block shall fall Yes
entirely within that address block. L.e., for
every register 0 addressOffset
addressBlockRange - register-
Size; where addressBlockRange is the
range of the address block and registerSize
is the size of the register in least addressable
units ((size +bitsInLau -1) =+
bitsInLau).

SCR 7.4 53. Any bit field in a register shall fall entirely Yes
within that register. I.e., for every bit field 0
bitOffset RegisterSize - bit-
FieldwWidth; where RegisterSize is the
size (in bits) of the register, and bitField-
Width is the width of bit field.

224 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces

Table B8—Memory maps

IP-XACT Standard/D4, December 19, 2007

10

15

20

25

30

35

40

45

50

55

Single
Rule Vl.2rule Rule dogc Notes
number number
check
SCR 8.1 54. The width of an address block included ina | Yes
memory map shall be a multiple of the
memory map's bitsInLau.
SCR 8.2 55. Neither a parallel bank, nor banks within a Yes
parallel bank, shall contain subspace maps.
SCR 8.3 56. If a parallel bank contains a serial bank, the Yes I.e., the serial bank
widths of all address blocks and sub-banks has a fixed, well-
of that serial bank shall have identical defined width. This is
widths. required for sensible
addressing of the
locations in a parallel
bank.
Table B9—Addressing
Single
Rule Vl.2rule Rule dogc Notes
number number
check
SCR 9.1 57. A non-hierarchical addressable master bus No Since there are poten-
interface shall have an addressSpaceRef tially useful applica-
sub-element. tions of IP-XACT
that do not require
addressing informa-
tion, failure to obey
this rule should be
treated as a warning
rather than an error.
SCR 9.2 58. A non-hierarchical addressable slave bus No Since there are poten-
interface shall have a memoryMapRef sub- tially useful applica-
element or one or more bridge sub-elements tions of IP-XACT
referencing addressable master bus inter- that do not require
faces. addressing informa-
tion, failure to obey
this rule should be
treated as a warning
rather than an error.
SCR 9.3 Only an address space referenced by the
addressSpaceRef sub-element of a cpu ele-
ment may contain an exectutableImage
sub-element.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 225

This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007

Table B10—Hierarchy

Draft Standard for

Rule
number

V1.2rule
number

Rule

Single
doc
check

Notes

SCR 10.1

59.

All members of a hierarchical family of bus
interfaces shall reference the same busDefi-
nition in their busType sub-elements

SCR 10.2

60.

All members of a hierarchical family of bus
interfaces shall have the same interface
mode (master, slave, system, ctc.)

SCR 10.3

61

If any member of a hierarchical family of
bus interfaces has a connection sub-element
with a value other than explicit (the default),
then all the sub-element values need to be
identical.

SCR 10.4

62

If any member of a hierarchical family of
bus interfaces has an index sub-element,
they all shall have identical index sub-ele-
ments.

SCR 10.5

63.

If any member of a hierarchical family of
bus interfaces has a bitSteering sub-cle-
ment, they all shall have identical bitSteer-
ing sub-elements.

SCR 10.6

64.

If any member of a hierarchical family of
bus interfaces has a portMap sub-element,
they all shall.

SCR 10.7

65.

All the portMaps of a hierarchical family of
bus interfaces reference the same set of bus
ports, i.e., if one contains a port with the
busPortName element and the value s, they
all shall.

An effect of this,
together with 9.1 and
9.2, is when a hierar-
chical bus interface is
addressable, its non-
hierarchical descen-
dents (i.c., the leaves
of the tree) also are,
and, hence, they con-
tain addressing infor-
mation.

SCR 10.8

66.

In a hierarchical family of bus interfaces, all
ports in the portMaps referencing the same
bus port shall have the same left and right
values.

SCR 10.9

67.

In a hierarchical family of bus interfaces, the
componentPortName of all ports in the
portMap referencing the same bus port
shall reference ports with the same direc-
tion.

SCR 10.11

226

68.

In a hierarchical family of bus interfaces, if
the component ports referenced by the com-
ponentPortName of all ports in the port
maps referencing the same bus port have
default values, they shall have identical
default values.

Le., it is legal for any
descriptions of a port
to have default val-
ues, but those that
have default values
shall have identical
default values.

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces

IP-XACT Standard/D4, December 19, 2007

Table B10—Hierarchy (Continued)

slave or mirrored-master bus interfaces, if
an address resolves to reference a location
outside the containing hierarchical family of
components, that address shall reference the
same location (i.e., the same address on the
same bus) in every member of the hierarchi-
cal family that defines addressing informa-
tion.

Single
Rule Vl.2rule Rule dogc Notes
number number
check
SCR 10.12 | 69. In a hierarchical family of bus interfaces, the | No
componentPortName of all ports in the
portMap referencing the same bus port
shall reference ports with identical clock-
Driver sub-elements.
SCR 10.13 | 70. In a hierarchical family of bus interfaces, the | No
componentPortName of all ports in the
portMap referencing the same bus port
shall reference ports with identical single-
ShotDriver sub-elements.
SCR 10.14 | 71. In a hierarchical family of bus interfaces, the | No
componentPortName of all ports in the
portMap referencing the same bus port
shall reference ports with identical port-
ConstraintSets sub-elements.
Table B11—Hierarchy and memory maps
Single
Rule Vl.2rule Rule dogc Notes
number number
check
SCR 11.1 72. In a hierarchical family of slave or mirrored- | No I.e., if one member of
master bus interfaces, all bus interfaces that the family defines an
define addressing information shall define address as a valid
the same set of addresses to be visible. address accessible
through that bus
interface, all mem-
bers of the family that
define addressing
information shall
define that same
address as a valid
address accessible
through that bus
interface.
SCR 11.2 73. For any member of a hierarchical family of | No Le., if C is a hierar-

chical component and
the IP-XACT
description of C itself
or some design of C
specifies accessing
address a of C on bus
interface T results in
an access to address
b of some other bus
interface J of C, all
designs of C that
specify addressing on
T shall the
same about this
address.

Copyright © 2007 The SPIRIT Consortium. All rights reserved.

This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

227

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007

Draft Standard for

Table B11—Hierarchy and memory maps (Continued)

228

Single
Rule Vl.2rule Rule doc Notes
number number
check
SCR 11.3 74. If any bit address (i.e., address plus bit off- No If an address resolves
set) is resolved to a bit within an address to a location within
block by any member of a hierarchical fam- the hierarchical fam-
ily of slave bus interfaces, all members of ily of components, its
that family with addressing information only observable fea-
shall resolve that bit address to a bit with tures from outside the
identical behavioral properties. hierarchical family
are its behavioral
properties (except as
defined in rule 11.4)
SCR 11.4 75. When any two addresses resolve to the same | No Le., aliasing of
location in the addressing information of addresses shall be
any member of a hierarchical family of bus preserved. Aliasing is
interfaces, this shall be true for all members observable from out-
of the hierarchical family of bus interfaces side the hierarchical
that have addressing information. family.
Table B12—Constraints
Single
Rule Vl.2rule Rule doc Notes
number number
check
SCR 14.1 A component wire port with direction out Yes
shall not have a drive constraint.
SCR 14.2 A component wire port with a direction in Yes
shall not have a load constraint.
SCR 14.3 An onMaster, onSlave, or onSystem cle- Yes
ment of a wire port with direction out shall
not contain a drive constraint within its
modeConstraint element.
SCR 14.4 An onMaster, onSlave, or onSystem cle- Yes
ment of a wire port with direction in shall
not contain a load constraint within its
modeConstraint element.
SCR 14.5 An onMaster, onSlave, or onSystem cle- Yes
ment of a wire port with direction out shall
not contain a load constraint within its mir-
roredModeConstraint element.
SCR 14.6 An onMaster, onSlave, or onSystem ele- Yes

ment of a wire port with direction in shall
not contain a drive constraint with its mir-
roredModeConstraint clement.

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces

IP-XACT Standard/D4, December 19, 2007

Table B12—Constraints (Continued)

Rule
number

V1.2rule
number

Rule

Single
doc
check

Notes

SCR 14.7

The clockName in a timing constraint of a
component port shall be the name of another
component port of the component or an oth-
erClockDriver of the component.

Yes

SCR 14.9

The clockName in a timing constraint of a
port within an abstraction definition shall be
the name of another port of the abstraction
definition; that referenced port shall have an
isClock sub-element.

Table B13—Design configurations

Rule
number

V1.2rule
number

Rule

Single
doc
check

Notes

SCR 15.1

The value of any generatorName element
shall match the value of a name sub-ele-
ment of a generator element in the genera-
tor chain referenced by the generatorChain
element enclosing the generatorName ele-
ment.

No

SCR 15.2

The value of an instanceName within a
viewConfiguration shall match the value of
the instanceName element of a compo-
nentInstance of the design document refer-
enced by the design configuration document
containing the viewConfiguration element.

SCR 15.3

The value of an viewName within a view-
Configuration shall match the value of the
name element of a view within the compo-
nent referenced by the component instance
that is itself referenced by the instance-
Name sub-element of the viewConfigura-
tion element.

Copyright © 2007 The SPIRIT Consortium. All rights reserved.

This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

229

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007

Table B14—Rules requiring external knowledge

Draft Standard for

Rule
number

V1.2rule
number

Rule

Single
doc
check

Notes

SCR 12.1

76.

The name sub-element of a file element can
contain environment variables in the form of
${ENV_VAR} which are meaningful to the
host operating system and, when expanded,
shall result in a string which is a valid URIL

Yes

SCR 12.2

71.

In VLNVs, the vendor name shall be speci-
fied as the top-level internet domain name
for that organization. The domain shall be
ordered with the top-level domain name at
the end (as in HTTP URLs), e.g., men-
tor.com, arm. com, etc.

Yes

This is to guarantee
uniqueness of vendor
names.

SCR 12.3

78.

The envldentifier of a view shall be a text
string consisting of three fields delimited by
colons (:). The first two fields shall be a
language name, which shall be one of the
languages available for fileTypes, and a tool
name. The tool name may be generic (e.g.,
*Simulationor *Synthesis)ora
specific tool name, such as DesignCom-
piler or VCS. The third field shall be an
arbitrary vendor-specific text string.

Yes

Tool vendors need to
publish a list of valid
tool names in the
SPIRIT web site.

230

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

Annex C

(normative)

Types

Many elements and attributes defined in the standard have associated types. These types define the legal
values and ranges for input into these element and attributes.

C.1 boolean

The boolean type defines two possible value, True and False.

C.2 configurableDouble

The configurableDouble type defines a decimal floating point number of IEEE### precision, containing
the numbers 0-9.

C.3 float

The float type defines a decimal floating point number of IEEE### precision, containing the numbers 0-9.

C.4 integer

The integer type defines a decimal integer number of infinite precision, containing the numbers 0-9.

C.5 Name

The Name type defines a series of any characters, excluding whitespace characters.

C.6 NMTOKEN

The NMTOKEN type defines a series of any characters, excluding whitespace characters.

C.7 nonNegativelnteger

The nonNegativelnteger type is a subtype of integer; it follows all the same rules, except its value shall be
greater than or equal to 0.

C.8 positivelnteger

The positivelnteger type is a subtype of integer; it follows all the same rules, except its value shall be
greater than 0.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 231
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

C.9 scaledinteger

The scaledInteger type defines an integer of infinite precision. The number may be in any of the follow
formats with or without a leading +/- indication.

a) Decimal containing numbers 0-9.

b) Hexadecimal representation starting with Ox or #, and containing the numbers 0-9 and letters A-F
(case-insensitive).

c) Optionally, the number may end with the following case-insensitive suffixes. Each suffix is a multi-
plier of the resulting value.

1) K is a multiplier of 1024.

2) Mis a multiplier of 1024*1024.

3) Gisamultiplier of 1024*1024*1024.

4) T is a multiplier of 1024*1024*1024*1024.

Example: 4K evaluates to 4096. 0x1000 evaluates to 4096.

C.10 scaledNonNegativelnteger

The scaledNonNegativelnteger type is a subtype of scaledInteger; it follows all the same rules, except its
value shall be greater than or equal to 0.

C.11 scaledPositivelnteger

The scaledPositivelnteger type is a subtype of scaledInteger; it follows all the same rules, except its value
shall be greater than 0.

C.12 SpiritURI

The SpiritURI type defines a path to a file, directory, or executable in URI format. **Any additional
constraints??

C.13 string

The string type defines a series of any characters and may include spaces.

232 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

Annex D

(normative)

Dependency XPATH

This version of the standard utilizes XPATH 1.0 as a means to specify an equation for the contents of a
resolvable element. This is done by setting the resolve attribute to resolve="dependent”. When the
resolve attribute is set to dependent the dependency attribute is required.

The accuracy of the XPATH functions if numeric shall be of infinite precision and not limited to any fixed
number of bits. This is necessary to ensure that all systems are interoperable and that the large calculations
required by configuration of IP-XACT components is successful.

In addition to the standard XPATH 1.0 functions (add xref), IP-XACT defines the following four extra
functions to aid expressions calculations.

D.1 spirit:containsToken
spirit:containsToken (string, string)

The containsToken function (Boolean) returns 7rue if the first argument string contains the second
argument string as a token and otherwise returns False. To be interpreted as a token, the second string needs
to be found within the first string and be separated by white space from any other characters in the first string
that are not white space characters.

Purpose: Some attributes in [IP-XACT are a list of tokens separated by white space. This function allows
XPATH selection based on whether the attribute contains a specific token.

Example: spirit:containsToken ('default spine driver', 'pin') evaluates to False,
whereas the standard XPATH function contains would evaluate to True with the same arguments.

D.2 spirit:decode
spirit:decode (string)

The decode function (number) decodes the string argument to a number and returns the number or NaN (if
the string cannot be decoded). If the argument is omitted, it defaults to the context node converted to a
string. If the string argument is a decimal formatted number, it is returned unchanged. If it is a hexadecimal
representation starting with Ox or #, it is converted to a decimal number and returned. If it is in engineering
notation ending in a k, m, g, or t suffix (case-insensitive), the numeric part is multiplied by the appropriate
power of two. K is a multiplier of 1024. G is a multiplier of 1024*1024. G is a multiplier of
1024*1024*1024. T would equal a multiplier of 1024*1024*1024*1024.

Purpose: IP-XACT allows numbers to be expressed in hexadecimal format and engineering format. When
setting up dependencies on configurable values, it is sometimes necessary to perform some arithmetic in the
dependency XPATH expression. However, XPATH only supports arithmetic on numbers and it only
recognizes decimal strings as numbers. This function allows the alternate formats to be converted to
numbers recognizable by XPATH.

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 233
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

Example: spirit:decode ('0x4000") evaluates to 16384. spirit:decode ('4G') evaluates to
4294967296.

D.3 spirit:pow
spirit:pow (number, number)

The pow function (number) returns a number, which is the first argument raised to the power of the second
argument.

Purpose: It is common for a component to have a configurable number of address bits. When this happens,
the size of the address range it occupies on a memory map varies exponentially with the number of address
bits. This function gives XPATH the mathematical capabilities needed to describe this relationship in a
dependency expression.

Example: spirit:pow (2, 10) evaluates to 1024.

D.4 spirit:log
spirit:log (number, number)

The log function (number) returns a number that is the log of the second argument in the base of the first
argument.

Purpose: This is the inverse of pow function. It is intended to express the reverse of the dependency
described for the pow function. In this case, the range of an address block might be configurable and the
number of address bits might be expressed as a dependency of the address range using the log function.

Example: spirit:1og (2, 1024) evaluatesto 10.

D.5 Example

<spirit:memoryMaps>
<spirit:memoryMap>
<spirit:name>mmap</spirit:name>
<spirit:addressBlocks>
<spirit:name>abl</spirit:names>
<spirit:baseAddress spirit:resolve="user" spirit:id="baseAddress">0</
spirit:baseAddress>
<spirit:bitOffset>0</spirit:bitOffset>
<spirit:range spirit:id="range">786432</spirit:range>
<spirit:width>32</spirit:width>
<spirit:usage>memory</spirit:usage>
<spirit:access>read-write</spirit:access>
</spirit:addressBlock>
</spirit:memoryMap>

<spirit:memoryMap>
<spirit:name>dependent mmap</spirit:names>
<spirit:addressBlock>

234 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

<!-- The baseAddress in this memoryMap is dependent on the previous memory map
and the formula to compute the baseAddress from the baseAddress of previous
map is expressed as an XPATH expression -->
<spirit:baseAddress spirit:resolve="dependent"

spirit:dependency="spirit:pow(2,floor(spirit:log(2,
spirit:decode (id('baseAddress'))+ spirit:decode(id('range')))+1))"
spirit:id="dependentBaseAddress">0</spirit:baseAddress>

<spirit

<spirit
<spirit

:bitOffset>0</spirit:bitOffset>
<spirit:
:width>32</spirit:width>

:usage>register</spirit:usage>
<spirit:

range>4096</spirit:range>

access>read-write</spirit:access>

</spirit:addressBlock>
</spirit:memoryMap>

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 235
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007

236

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Draft Standard for

IP-XACT meta-data and tool interfaces

Annex E

(informative)

IP-XACT Standard/D4, December 19, 2007

External bus vs. an internal/digital interface

While the current use of IP-XACT schema may be viewed as describing single chip implementations, the
schemas works equally well at the package- and board-level. Often a PHY component exists which intercon-

nects the internal and external bus. Some standards define both of these interfaces, some define only the

internal, and some define only the external. A common point of confusion is to use an external bus standard
as an interface on an internal component. This is legal if the component caries the full PHY implementation,
but this often makes the component very technology- or implementation-dependant.

E.1 Example: ethernet interfaces

An Ethernet bus might be described as more than a single wire and in a system that includes Ethernet buses,
it might also include all the interfaces shown in Figure E.1.

MAC Control

Media Access Control

Reconciliation

T‘f

Physical Coding
Sublayer

Physical Media
Attachment

Physical Media
Dependant

.

<

MIl: Media Independent
Interface

GMII, XGMiIl, RMIl, SSMII,
or SMII,

XAUI: 10-gigabit
Attachment Unit Interface

Figure E.1—Ethernet interface examples

XAUI: 10-gigabit Attachment Unit Interface
MII: Media Independent Interface
GMII: Gigabit Media Independent Interface

Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

237

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

XGMII: 10-gigabit media-independent interface

RMII: Reduced MII, 7-pin interface

SSMII: Source Synchronous MII

SMII: Serial Media Independent Interface, this provides an interface to Ethernet MAC. The SMII
provides the same interface as the MII, but with a reduced pinout. The reduction in ports is achieved
by multiplexing data and control information to a port transmit port and a single receive port.

E.2 Example: 12C bus

The 12C eye-squared-see bus is a two-wire bus with a clock and data line. The standard described bus is the
two-wire bus. IP-XACT has defined an additional, related bus that is the internal digital interface. The refer-
ence BusSpec shown in Figure E.2 contains three pins for each external pin: for SDA (the data line), the
internal pins are defined as input, output, and enable as SDA_ I, SDA O, and SDA_E; in a similar manner,
for the clock bus SCL, the internal pins are defined again for the functions of input, output, and enable as
SCL_T,SCL_0,and SCIL_E.

— O w
Standard Described I°C 3 3 3
(%] (2] (2]
VDD . . . o
T T TN
12C 12C 12C scL
Device Device Device
SDA Py
SCL
SPIRIT defined (non-standard)
Internal digital reference 1°C bus
Figure E.2—I2C interface example
238 Copyright © 2007 The SPIRIT Consortium. All rights reserved.

This is an unapproved IP-XACT Standards Draft, subject to change.
Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

	1. Overview
	1.1 Scope
	1.2 Purpose
	1.3 IP-XACT design environment
	1.3.1 System design tool
	1.3.2 Design intellectual property
	1.3.3 Generators
	1.3.4 IP-XACT interfaces

	1.4 IP-XACT enabled implementations
	1.4.1 Design environments
	1.4.2 Point tools
	1.4.3 IPs
	1.4.4 Generators

	1.5 Conventions used
	1.5.1 Visual cues (meta-syntax)
	1.5.2 Notational Conventions
	1.5.3 Syntax examples
	1.5.4 Graphics used to document the Schema

	1.6 Use of color in this standard
	1.7 Contents of this standard

	2. Normative references
	3. Definitions, acronyms, and abbreviations
	3.1 Definitions
	3.2 Acronyms and abbreviations

	4. Interoperability use model
	4.1 Roles and responsibilities
	4.1.1 Component IP provider
	4.1.2 SoC design IP provider
	4.1.3 SoC design IP consumer
	4.1.4 Design tool supplier

	4.2 IP-XACT IP exchange flows
	4.2.1 Component or SoC design IP provider use model
	4.2.2 Generator provider use model
	4.2.3 System design tool provider use model

	5. IP-XACT schema
	5.1 Schema overview
	5.1.1 Design schema
	5.1.2 Design configuration schema
	5.1.3 Component schema
	5.1.4 Bus definition schema
	5.1.5 Abstraction definition schema
	5.1.6 Abstractor schema
	5.1.7 Generator schema

	5.2 IP-XACT objects
	5.2.1 Object interactions
	5.2.2 VLNV
	5.2.3 Version control

	5.3 Design models
	5.3.1 Design
	5.3.2 Hierarchy represented by a design file
	5.3.3 Design interconnections
	5.3.4 Hierarchical connectivity

	6. Interface definition descriptions
	6.1 Definition descriptions
	6.2 Bus definition
	6.2.1 Schema
	6.2.2 Description
	6.2.3 Example

	6.3 Abstraction definition
	6.3.1 Schema
	6.3.2 Description
	6.3.3 Example

	6.4 Ports
	6.4.1 Schema
	6.4.2 Description
	6.4.3 Example

	6.5 Wire ports
	6.5.1 Schema
	6.5.2 Description
	6.5.3 Example

	6.6 Qualifiers
	6.6.1 Schema
	6.6.2 Description
	6.6.3 Example

	6.7 Wire port group
	6.7.1 Schema
	6.7.2 Description
	6.7.3 Example

	6.8 Wire port ‘mode’ constraints
	6.8.1 Schema
	6.8.2 Description
	6.8.3 Example

	6.9 Wire port mirrored-‘mode’ constraints
	6.9.1 Schema
	6.9.2 Description
	6.9.3 Example

	6.10 Transactional ports
	6.10.1 Schema
	6.10.2 Description
	6.10.3 Example

	6.11 Transactional port group
	6.11.1 Schema
	6.11.2 Description
	6.11.3 Example

	6.12 Extending bus and abstraction definitions
	6.12.1 Extending bus definitions
	6.12.2 Extending abstraction definitions
	6.12.3 Modifying definitions
	6.12.4 Interface connections

	6.13 Clock and reset handling

	7. Component descriptions
	7.1 Components
	7.1.1 Schema
	7.1.2 Description
	7.1.3 Example

	7.2 Interfaces
	7.2.1 Direct interface modes
	7.2.2 Mirrored interface modes
	7.2.3 Monitor interface modes

	7.3 Interface interconnections
	7.3.1 Direct connection
	7.3.2 Direct-mirrored connection
	7.3.3 Monitor connection
	7.3.4 Interface logical to physical port mapping

	7.4 Complex interface interconnections
	7.4.1 Channel
	7.4.2 Bridge
	7.4.3 Combining channels and bridges

	7.5 Bus interfaces
	7.5.1 busInterface
	7.5.2 Interface modes

	7.6 Component channels
	7.6.1 Schema
	7.6.2 Description
	7.6.3 Example

	7.7 Address space
	7.7.1 addressSpaces
	7.7.2 executableImage
	7.7.3 languageTools
	7.7.4 fileBuilder
	7.7.5 linkerCommandFile
	7.7.6 Local memory map

	7.8 Memory maps
	7.8.1 Memory map
	7.8.2 Address block
	7.8.3 memoryBlockData group
	7.8.4 Bank
	7.8.5 Banked address block
	7.8.6 Banked bank
	7.8.7 Banked subspace
	7.8.8 Subspace map

	7.9 Remapping
	7.9.1 Memory remap
	7.9.2 Remap states

	7.10 Registers
	7.10.1 Register
	7.10.2 Register reset value
	7.10.3 Register bit-fields

	7.11 Models
	7.11.1 Model
	7.11.2 Views
	7.11.3 Component ports
	7.11.4 Component wire ports
	7.11.5 Component wireTypeDef
	7.11.6 Component driver
	7.11.7 Component driver/clockDriver
	7.11.8 Component driver/singleShotDriver
	7.11.9 Implementation constraints
	7.11.10 Component wire port constraints
	7.11.11 Port drive constraints
	7.11.12 Port load constraints
	7.11.13 Port timing constraints
	7.11.14 Load and drive constraint cell specification
	7.11.15 Other clock drivers
	7.11.16 Transactional ports
	7.11.17 Phantom ports
	7.11.18 modelParameters

	7.12 Component generators
	7.12.1 Schema
	7.12.2 Description
	7.12.3 Example

	7.13 Files
	7.13.1 filesets
	7.13.2 file
	7.13.3 buildCommand
	7.13.4 define
	7.13.5 function
	7.13.6 argument
	7.13.7 sourceFile

	7.14 Choices
	7.14.1 Schema
	7.14.2 Description
	7.14.3 Example

	7.15 Whitebox elements
	7.15.1 Schema
	7.15.2 Description
	7.15.3 Example

	7.16 Whitebox element reference
	7.16.1 Schema
	7.16.2 Description
	7.16.3 Example

	7.17 CPUs
	7.17.1 Schema
	7.17.2 Description
	7.17.3 Example

	8. Designs descriptions
	8.1 Designs
	8.1.1 Schema
	8.1.2 Description
	8.1.3 Example

	8.2 Design component instances
	8.2.1 Schema
	8.2.2 Description
	8.2.3 Example

	8.3 Design interconnections
	8.3.1 Schema
	8.3.2 Description
	8.3.3 Example

	8.4 Design interconnection and monitor interconnection active interface
	8.4.1 Schema
	8.4.2 Description
	8.4.3 Example

	8.5 Design ad-hoc connections
	8.5.1 Schema
	8.5.2 Description
	8.5.3 Example
	8.5.4 Ad-hoc wire connection
	8.5.5 Ad-hoc transactional connection

	8.6 Design hierarchical connections
	8.6.1 Schema
	8.6.2 Description
	8.6.3 Example

	9. Abstractor descriptions
	9.1 Abstractors
	9.1.1 Schema
	9.1.2 Description
	9.1.3 Example

	9.2 Abstractor interfaces
	9.2.1 Schema
	9.2.2 Description
	9.2.3 Example

	9.3 Abstractor models
	9.3.1 Schema
	9.3.2 Description
	9.3.3 Example

	9.4 Abstractor views
	9.4.1 Schema
	9.4.2 Description
	9.4.3 Example

	9.5 Abstractor ports
	9.5.1 Schema
	9.5.2 Description
	9.5.3 Example

	9.6 Abstractor generators
	9.6.1 Schema
	9.6.2 Description
	9.6.3 Example

	10. Generators
	10.1 Tight integration
	10.2 Generator chain
	10.3 Phase numbers
	10.4 Generator schema
	10.4.1 generatorChain
	10.4.2 generatorChain selector
	10.4.3 generatorChain component selector
	10.4.4 generatorChain generator

	11. Design configuration descriptions
	11.1 Design configuration
	11.2 designConfiguration
	11.2.1 Schema
	11.2.2 Description
	11.2.3 Example

	11.3 generatorChainConfiguration
	11.3.1 Schema
	11.3.2 Description
	11.3.3 Example

	11.4 interconnectionConfiguration
	11.4.1 Schema
	11.4.2 Description
	11.4.3 Example

	12. Addressing and addressing formulas
	Annex A
	Annex B
	Annex C
	C.1 boolean
	C.2 configurableDouble
	C.3 float
	C.4 integer
	C.5 Name
	C.6 NMTOKEN
	C.7 nonNegativeInteger
	C.8 positiveInteger
	C.9 scaledInteger
	C.10 scaledNonNegativeInteger
	C.11 scaledPositiveInteger
	C.12 SpiritURI
	C.13 string

	Annex D
	D.1 spirit:containsToken
	D.2 spirit:decode
	D.3 spirit:pow
	D.4 spirit:log
	D.5 Example

	Annex E
	E.1 Example: ethernet interfaces
	E.2 Example: I2C bus

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

