
1

5

10

15

20

25

30

35

40

45

50

55
Copyright © 2007 by the Spirit Consortium.
1370 Trancas Street #184, Napa, CA 94558
All rights reserved.

All rights reserved.This document is an unapproved draft of a proposed IP-XACT Standard. As such, this document is
subject to change. USE AT YOUR OWN RISK!

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007

Draft Standard for the
IP-XACT meta-data and tool interfaces

Prepared by the

Schema Working Group
of
The SPIRIT Consortium

The SPIRIT Consortium.
1370 Trancas Street #184, Napa, CA 94558

Copyright © 2007 - 2008 by the SPIRIT Consortium.
All rights reserved. Published xx month 2008. Printed in the United States of America.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior
written permission of the publisher.

1

5

10

15

20

25

30

35

40

45

50

55

Abstract: The IP-XACT Standard forms the conformance checks for XML data designed to de-
scribe electronic systems. The meta data forms which are standardized include: components, sys-
tems, bus interfaces and connections, abstractions of those buses, and details of the components
including address maps, register and field descriptions, and file set descriptions for use in automat-
ing design, verification, documentation, and use flows for electronic systems. The standard includes
a set of XML schemas of the form described by the World Wide Web Consortium (W3C) and a set
of semantic consistency rules (SCRs). The standard also provides for a generator interface that is
portable across tool environments. The specified combination of methodology-independent meta-
data and the tool-independent mechanism for accessing that data provides for portability of design
data, design methodologies and environment implementations.
Keywords: Electronic Design Automation, EDA, XML Design Meta Data, IP-XACT, XML Schema,
Tight Generator Interface, TGI, Semantic Consistency Rules, SRCs, Design Environment, Use
Models, Tool And Data Interoperability, Implementation Constraints, Register Transfer Logic, RTL,
Electronic System Level, ESL, Bus Definitions, Abstraction Definitions, and Address Space Speci-
fication.

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
Introduction

The purpose of this standard is to provide the electronic design automation (EDA), semiconductor,
electronic intellectual property (IP) provider, and system design communities with a well-defined and
unified specification for the meta-data which represents the components and designs within an electronic
system. The goal of this specification is to enable delivery of compatible IP descriptions from multiple IP
vendors; better enable importing and exporting complex IP bundles to, from and between EDA tools for
SoC design (system on a chip design environments); better express configurable IP by using IP meta-data;
and better enable provision of EDA vendor-neutral IP creation and configuration scripts (generators). The
data and data access specification is designed to coexist and enhance the hardware description languages
(HDLs) presently used by designers while providing capabilities lacking in those languages.

The SPIRIT Consortium is a consortium of electronic system, IP provider, semiconductor, and EDA
companies. IP-XACT enables a productivity boost in design, transfer, validation, documentation, and use of
electronic IP and covers components, designs, interfaces, and details thereof. It is extensible in specified
locations.

IP-XACT enables the use of a unified structure for the meta specification of a design, the components that is
based on manual or automatic methodologies. IP-XACT specifies the tight generator interface (TGI) for
access to the data in a vendor-independent manner.

This standardization project provides electronic design engineers with a well-defined standard that meets
their requirements in structured design and validation and enables a step function increase in their
productivity. This standardization project will also provide the EDA industry with a standard to which they
can adhere and which they can support in order to deliver their solutions in this area.

The SPIRIT Consortium has prepared a set of bus and abstraction definitions for several common buses. It is
expected, over time, that those standards groups and manufacturers who define buses will include IP-XACT
XML bus and abstraction definitions in their set of deliverable. Until that time, and to cover existing useful
buses, a set of bus and abstraction definitions for common buses has been created.

A set of reference bus and abstraction definitions allows many vendors who define IP using these buses to
easily interconnect IP together. The SPIRIT Consortium posts these for use by its members, with no
warranty of suitability, but in the hope that these will be useful. The SPIRIT Consortium will, from time-to-
time, update these files and if a Standards body wishes to take over the work of definition, will transfer that
work to that body.

These reference bus and abstraction definition templates (with comments and examples) are available from
the public area of the http://www.spiritconsortium.org web site.

Notice to users

Errata

Errata, if any, for this and all other standards of The SPIRIT Consortium can be accessed at the following
URL: http://www.spiritconsortium.org/releases/errata/. Users are encouraged to check this URL for errata
periodically.

This introduction is not part of the Draft Standard for the IP-XACT meta-data and tool interfaces.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. iii
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

http://www.spiritconsortium.org/releases/errata/
http://www.spiritconsortium.org/releases/errata/

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
Interpretations

Current interpretations, users guides, examples, etc. can be accessed at the following URL: http://www.spir-
itconsortium.org/tech/docs/.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken with respect to the existence or
validity of any patent rights in connection therewith.
iv Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
Participants

The following members and observers took part in the IP-XACT Schema Working Group (SWG) and the
Electronic System Level (ESL) Working Group (EWG):

Greg Ehmann, NXP Semiconductors, Chair SWG
Jean-Michel Fernandez, Cadence, Chair EWG
Gary Delp, LSI Corporation, Technical Director

Joe Daniels, Technical Editor

ARM: Allan Cochrane, Christopher Lennard, Andrew Nightingale, Chulho Shin, Peter Grun,
Anthony Berent, Sheldon Woodhouse
Cadence: Jean-Michel Fernandez, Giles Hall, Saverio Fazzari, Victor Berman
CoWare: Cesar A. Quiroz, Kris Dekeyser
Denali: Gary Lippert
Infineon: Wolfgang Ecker, Thomas Steininger
LSI: Gary Delp, Wayne Nation, Gary Lippert, Dave Fechser
MatiTech: Aaron Baranoff
Mentor: John Wilson, Gary Dare, Mark Glasser, Matthew Ballance, Mike Andrews, Ajay Kumar
NXP Semiconductor: Geoff Mole, Ahmed Hemani, Roger Witlox, Greg Ehmann, Maurizio Vitale,
Erwin de Kock
Prosilog/Magillem: Stephane Guntz, Cyril Spasevski
Sonics: Kamil Synek
ST Microelectronics: Christophe Amerijckx, Serge Hustin, Anthony McIsaac, Stephane Guenot
Synopsys: Mark Noll, Bernard DeLay, John A. Swanson, Paul Wyborny
Texas Instruments: Bob T. Maaraoui, Bertrand Blanc

Special acknowledgment is given to:
Mentor: Contribution of initial schema upon which the work is based
Synopsys: Contribution of constraint structure

The Board of Directors of The SPIRIT Consortium active during the release of the IP-XACT Standard:

Ralph vonVignau, NXP, President
Christopher Lennard, ARM, Vice-President

Lynn Horobin, Executive Secretary

John Goodenough, ARM
 Stan Krolikoski, Cadence

 Luke Smithwick, Kathy Werner, Freescale
 Jean Bou-Farhat, Gary Delp, LSI

 Bill Chown, Mentor Graphics
 Bart de Loore, NXP Semiconductors
 Serge Hustin, ST Microelectronics

 Pierre Bricaud, Synopsys
 Loic Le-Toumelin, Texas Instruments
Copyright © 2007 The SPIRIT Consortium. All rights reserved. v
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
vi Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
Contents

1. Overview.. 1

1.1 Scope .. 1
1.2 Purpose ... 1
1.3 IP-XACT design environment ... 1

1.3.1 System design tool .. 2
1.3.2 Design intellectual property .. 3
1.3.3 Generators ... 3
1.3.4 IP-XACT interfaces .. 4

1.4 IP-XACT enabled implementations ... 4
1.4.1 Design environments .. 4
1.4.2 Point tools ... 5
1.4.3 IPs ... 5
1.4.4 Generators ... 5

1.5 Conventions used ... 5
1.5.1 Visual cues (meta-syntax) ... 5
1.5.2 Notational Conventions .. 5
1.5.3 Syntax examples ... 5
1.5.4 Graphics used to document the Schema ... 6

1.6 Use of color in this standard... 9
1.7 Contents of this standard .. 9

2. Normative references ... 11

3. Definitions, acronyms, and abbreviations.. 12

3.1 Definitions.. 12
3.2 Acronyms and abbreviations.. 18

4. Interoperability use model ... 21

4.1 Roles and responsibilities... 21
4.1.1 Component IP provider ... 21
4.1.2 SoC design IP provider ... 21
4.1.3 SoC design IP consumer ... 22
4.1.4 Design tool supplier .. 22

4.2 IP-XACT IP exchange flows.. 22
4.2.1 Component or SoC design IP provider use model .. 23
4.2.2 Generator provider use model ... 23
4.2.3 System design tool provider use model .. 23

5. IP-XACT schema... 25

5.1 Schema overview ... 25
5.1.1 Design schema .. 25
5.1.2 Design configuration schema .. 25
5.1.3 Component schema ... 25
5.1.4 Bus definition schema ... 25
5.1.5 Abstraction definition schema .. 25
5.1.6 Abstractor schema ... 25
5.1.7 Generator schema ... 26
Copyright © 2007 The SPIRIT Consortium. All rights reserved. vii
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
5.2 IP-XACT objects.. 26
5.2.1 Object interactions .. 26
5.2.2 VLNV ... 27
5.2.3 Version control ... 29

5.3 Design models .. 29
5.3.1 Design ... 30
5.3.2 Hierarchy represented by a design file ... 30
5.3.3 Design interconnections .. 32
5.3.4 Hierarchical connectivity .. 33

6. Interface definition descriptions .. 35

6.1 Definition descriptions ... 35
6.2 Bus definition ... 35

6.2.1 Schema .. 35
6.2.2 Description .. 36
6.2.3 Example .. 36

6.3 Abstraction definition... 37
6.3.1 Schema .. 37
6.3.2 Description .. 38
6.3.3 Example .. 39

6.4 Ports.. 40
6.4.1 Schema .. 40
6.4.2 Description .. 40
6.4.3 Example .. 41

6.5 Wire ports ... 41
6.5.1 Schema .. 41
6.5.2 Description .. 42
6.5.3 Example .. 42

6.6 Qualifiers .. 42
6.6.1 Schema .. 42
6.6.2 Description .. 43
6.6.3 Example .. 43

6.7 Wire port group .. 44
6.7.1 Schema .. 44
6.7.2 Description .. 44
6.7.3 Example .. 45

6.8 Wire port ‘mode’ constraints.. 45
6.8.1 Schema .. 45
6.8.2 Description .. 46
6.8.3 Example .. 46

6.9 Wire port mirrored-‘mode’ constraints .. 46
6.9.1 Schema .. 46
6.9.2 Description .. 47
6.9.3 Example .. 47

6.10 Transactional ports ... 48
6.10.1 Schema .. 48
6.10.2 Description .. 48
6.10.3 Example .. 49

6.11 Transactional port group .. 49
6.11.1 Schema .. 49
6.11.2 Description .. 50
6.11.3 Example .. 50
viii Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
6.12 Extending bus and abstraction definitions ... 51
6.12.1 Extending bus definitions ... 51
6.12.2 Extending abstraction definitions ... 52
6.12.3 Modifying definitions ... 52
6.12.4 Interface connections .. 53

6.13 Clock and reset handling .. 54

7. Component descriptions .. 55

7.1 Components.. 55
7.1.1 Schema .. 56
7.1.2 Description .. 57
7.1.3 Example .. 58

7.2 Interfaces .. 60
7.2.1 Direct interface modes .. 60
7.2.2 Mirrored interface modes .. 60
7.2.3 Monitor interface modes ... 60

7.3 Interface interconnections .. 60
7.3.1 Direct connection .. 61
7.3.2 Direct-mirrored connection ... 61
7.3.3 Monitor connection ... 61
7.3.4 Interface logical to physical port mapping ... 61

7.4 Complex interface interconnections... 62
7.4.1 Channel ... 63
7.4.2 Bridge .. 64
7.4.3 Combining channels and bridges .. 64

7.5 Bus interfaces ... 65
7.5.1 busInterface ... 65
7.5.2 Interface modes ... 67

7.6 Component channels .. 77
7.6.1 Schema .. 77
7.6.2 Description .. 78
7.6.3 Example .. 78

7.7 Address space... 79
7.7.1 addressSpaces ... 79
7.7.2 executableImage ... 80
7.7.3 languageTools ... 82
7.7.4 fileBuilder ... 84
7.7.5 linkerCommandFile .. 86
7.7.6 Local memory map ... 87

7.8 Memory maps... 90
7.8.1 Memory map ... 90
7.8.2 Address block ... 91
7.8.3 memoryBlockData group .. 93
7.8.4 Bank .. 94
7.8.5 Banked address block ... 96
7.8.6 Banked bank ... 97
7.8.7 Banked subspace ... 99
7.8.8 Subspace map ... 100

7.9 Remapping ... 102
7.9.1 Memory remap .. 102
7.9.2 Remap states ... 104
Copyright © 2007 The SPIRIT Consortium. All rights reserved. ix
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
7.10 Registers ... 106
7.10.1 Register ... 106
7.10.2 Register reset value ... 107
7.10.3 Register bit-fields .. 108

7.11 Models.. 111
7.11.1 Model .. 111
7.11.2 Views .. 112
7.11.3 Component ports ... 114
7.11.4 Component wire ports ... 116
7.11.5 Component wireTypeDef ... 119
7.11.6 Component driver ... 122
7.11.7 Component driver/clockDriver ... 123
7.11.8 Component driver/singleShotDriver ... 125
7.11.9 Implementation constraints ... 126
7.11.10 Component wire port constraints .. 126
7.11.11 Port drive constraints .. 128
7.11.12 Port load constraints .. 129
7.11.13 Port timing constraints .. 130
7.11.14 Load and drive constraint cell specification ... 131
7.11.15 Other clock drivers .. 132
7.11.16 Transactional ports .. 134
7.11.17 Phantom ports ... 138
7.11.18 modelParameters ... 139

7.12 Component generators.. 144
7.12.1 Schema .. 144
7.12.2 Description .. 144
7.12.3 Example .. 145

7.13 Files .. 146
7.13.1 filesets ... 146
7.13.2 file ... 147
7.13.3 buildCommand .. 150
7.13.4 define .. 151
7.13.5 function ... 152
7.13.6 argument ... 154
7.13.7 sourceFile .. 156

7.14 Choices ... 157
7.14.1 Schema .. 157
7.14.2 Description .. 157
7.14.3 Example .. 157

7.15 Whitebox elements... 159
7.15.1 Schema .. 159
7.15.2 Description .. 159
7.15.3 Example .. 160

7.16 Whitebox element reference... 160
7.16.1 Schema .. 160
7.16.2 Description .. 161
7.16.3 Example .. 161

7.17 CPUs... 162
7.17.1 Schema .. 162
7.17.2 Description .. 162
7.17.3 Example .. 162
x Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
8. Designs descriptions .. 165

8.1 Designs ... 165
8.1.1 Schema .. 165
8.1.2 Description .. 166
8.1.3 Example .. 166

8.2 Design component instances .. 167
8.2.1 Schema .. 167
8.2.2 Description .. 168
8.2.3 Example .. 169

8.3 Design interconnections ... 169
8.3.1 Schema .. 169
8.3.2 Description .. 170
8.3.3 Example .. 171

8.4 Design interconnection and monitor interconnection active interface................................... 171
8.4.1 Schema .. 171
8.4.2 Description .. 172
8.4.3 Example .. 172

8.5 Design ad-hoc connections... 172
8.5.1 Schema .. 173
8.5.2 Description .. 173
8.5.3 Example .. 174
8.5.4 Ad-hoc wire connection .. 174
8.5.5 Ad-hoc transactional connection .. 175

8.6 Design hierarchical connections... 176
8.6.1 Schema .. 176
8.6.2 Description .. 176
8.6.3 Example .. 176

9. Abstractor descriptions .. 177

9.1 Abstractors ... 177
9.1.1 Schema .. 177
9.1.2 Description .. 178
9.1.3 Example .. 179

9.2 Abstractor interfaces .. 179
9.2.1 Schema .. 179
9.2.2 Description .. 180
9.2.3 Example .. 180

9.3 Abstractor models .. 181
9.3.1 Schema .. 181
9.3.2 Description .. 181
9.3.3 Example .. 181

9.4 Abstractor views... 182
9.4.1 Schema .. 182
9.4.2 Description .. 183
9.4.3 Example .. 183

9.5 Abstractor ports .. 184
9.5.1 Schema .. 184
9.5.2 Description .. 185
9.5.3 Example .. 185
Copyright © 2007 The SPIRIT Consortium. All rights reserved. xi
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
9.6 Abstractor generators ... 186
9.6.1 Schema .. 186
9.6.2 Description .. 186
9.6.3 Example .. 186

10. Generators .. 189

10.1 Tight integration... 189
10.2 Generator chain .. 190
10.3 Phase numbers.. 190
10.4 Generator schema... 191

10.4.1 generatorChain .. 191
10.4.2 generatorChain selector .. 194
10.4.3 generatorChain component selector .. 195
10.4.4 generatorChain generator .. 196

11. Design configuration descriptions ... 199

11.1 Design configuration .. 199
11.2 designConfiguration ... 199

11.2.1 Schema .. 199
11.2.2 Description .. 200
11.2.3 Example .. 201

11.3 generatorChainConfiguration... 202
11.3.1 Schema .. 202
11.3.2 Description .. 202
11.3.3 Example .. 202

11.4 interconnectionConfiguration... 203
11.4.1 Schema .. 203
11.4.2 Description .. 204
11.4.3 Example .. 204

12. Addressing and addressing formulas ... 207

Annex A Bibliography... 209

Annex B Semantic consistency rules... 211

Annex C Types .. 231

Annex D Dependency XPATH.. 233

Annex E External bus vs. an internal/digital interface.. 237
xii Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

1

5

10

15

20

25

30

35

40

45

50

55
Draft Standard for the IP-XACT
meta-data and tool interfaces

1. Overview

This clause explains the scope and purpose of this standard; gives an overview of the basic concepts, major
semantic components, and conventions used in this standard; and summarizes its contents.

1.1 Scope

This standard describes an eXtensible Markup Language (XML) data format and structure, documented with
a schema1 for capturing the meta-data which documents design intellectual property (IP) used in the
development, implementation, and verification of electronic systems. The standard also includes a tight
generator interface (TGI) to provide consistent, tool-independent access to the meta-data. The XML
documents described and validated by the schema comprise a standard method to document IP that is
compatible with automated integration techniques. The TGI provides a standard method for linking
generation tools into a system development framework, enabling a more flexible, optimized development
environment. Tools compliant with this standard shall be able to interpret, configure, integrate, and
manipulate IP blocks that comply with the proposed IP meta-data description. This standard is independent
of any specific design process. It also does not cover the behavioral characteristics of the IP.

1.2 Purpose

This standard provides a well-defined XML schema for meta-data that documents the characteristics of IP
required for the automation of the configuration and integration of IP blocks; and also defines a TGI to make
this meta-data directly accessible to automation tools.

1.3 IP-XACT design environment

While the document formats are the core of this standard, describing the IP-XACT specification in the
context of its basic use-model, the design environment (DE) more readily depicts the extent and limitations
of the semantic intent of the data. The DE coordinates a set of tools and IP, or expressions of that IP (e.g.,
models), through the creation and maintenance of a meta-data description of the SoC such that its system-
design and implementation flows are efficiently enabled and re-use centric.

1IP-XACT uses the World Wide Web Consortium (W3C) standard for the eXtensible Markup Language (XML) data. The valid format
of that XML data is described in a schema by using the Schema description Language described therein.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 1
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
The IP-XACT specification can be viewed as a mechanism to express and exchange information about
design IP and its required configuration. For the IP provider, the IP configuration or generator script
provider, the point-tool provider, or the SoC design-tool provider to claim IP-XACT compliance, they shall
adhere to the completeness and IP-XACT semantic consistency rules (SCRs) as outlined in 1.4 and
Annex B.

The use of The SPIRIT Consortium specified formats and interfaces are shown in Figure 1 and described in
the following subsections. The IP-XACT specifications relate directly to those aspects of the DE indicated
in bold.

Figure 1—IP-XACT design environment

1.3.1 System design tool

System design tools enable the designer to work with IP-XACT design IP through a coordinated front-end
and IP design database. These tools create and manage the top-level meta-description of system design and
provide two basic types of services: design capture, which is the expression of design configuration by the
IP provider and design intent by the IP user; and design build, which is the creation of a design (or design
model) to those intentions.

As part of design capture, a system design tool must recognize the structure and configuration options of
imported IP. In the case of structure, this implies both the structure of the design (e.g., how specific pin-outs
refer to lines in the HDL code) as well as the structure of the IP package (e.g., where design files and related
generators are provided in the packaged IP data-structure). In the case of configuration, this is the set of
options for handling the imported IP (e.g., setting the base address and offset, bus-width, etc.) that may be
expressed as configurable parameters in the IP-XACT meta-data.

As part of design build, generators are provided internally using a system design tool to achieve the required
IP integration or configuration, or provided externally (e.g., by an IP provider) and launched by the system
design-tool as appropriate.

The system design tool set defines a DE where the support for conceptual context and management of IP-
XACT meta-data resides. However, the IP-XACT specifications make no requirements upon system design

TGI

Design Build

Design Capture

protocol
buswidth

μ P
system_bus

Component
IP

UART GPIO

mem

IP-XACT

IP-XACT Compliant
Generators

IP-XACT Compliant
SoC Design Tool

address
interface
registers

IP-XACT IP
Import
Export

SoC
Design IP

SoC
XML Configure

IP

IP-XACT
Compliant IP

Component
IP

Compone
XML

generator

configurator

Point
Tool

IP-XACT
Meta - data

Design Build

Design Capture

protocol
buswidth

μ P
system_bus

Component
IP

UART GPIO

mem

μ P
system_bus

Component
IP

UART GPIO

mem

Generators SoC Design Tool

address
interface
registers

address
interface
registers

Import
Export

SoC
Design IP

SoC
XML Configured

IP

Compliant IP

Component
IP

Compone
XML

Point
Tool

Meta - data

generator
2 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
tool-architecture or a tool’s internal data structures. To be considered IP-XACT v1.4 enabled, a system
design-tool must support the import/export of IP expressed with valid IP-XACT v1.4 meta-data for both
component IP and systems, and it must support the Tight Generator Interface (TGI) for interfacing with
external generators (to the DE).

1.3.2 Design intellectual property

IP-XACT is structured around the concept of IP re-use. IP may be considered from the perspective of the
object itself, its supporting views, and meta-data description. In IP-XACT v1.4, the specifications need to be
comprehensive for all design objects required to support ESL and RTL design and integration. These
include the following:

a) Design objects

1) TLM descriptions: SystemC & SystemVerilog

2) Fixed HDL descriptions: Verilog, VHDL

3) Configurable HDL descriptions (e.g., bus-fabric generators)

4) Design models for RT and transactional simulation (e.g., compiled core models)

5) HDL-specified verification IP (e.g., basic stimulus generators and checkers)

b) IP views—This is a list of different views (levels of description and/or languages) to describe the IP
object. In IP-XACT v1.4, these views include:

1) Design view: RTL Verilog or VHDL, flat or hierarchical components

2) Simulation view: model views, targets, simulation directives, etc.

3) Documentation view: specification, User Guide, etc.

1.3.3 Generators

Generators are executable objects (e.g., scripts) that may be integrated within a SoC design tool (referred to
as ‘internal’), or provided separately as an executable that can be launched (referred to as ‘external’).
Generators may be provided as part of an IP package (e.g., for configurable IP, such as a bus-matrix
generator) or as a way of wrapping point tools for interaction with a SoC design tool (e.g., an external design
netlister, external design checker, etc.). In IP-XACT v1.4, external generators may only use the Tight
Generator Interface (TGI) (see 1.3.4). IP-XACT is neutral regarding the underlying language of a generator
(e.g., Tcl/Tk, Perl, Java, C, etc.).

Generators operate upon an IP or the system design based upon a configuration request. They are launched
during the build phase of a design environment, i.e., generators create the design to the specification
provided in the design capture phase. Generators may perform multiple tasks, such as IP creation,
configuration, post-generation checking, simulation set-up, etc. They may also be part of a configurable IP
package or a specific design-automation feature, such as an architecture-specific design-rule checker. Some
generation services are provided internally to SoC design tools and some specialized generation services
may need to be provided externally. For IP-XACT v1.4, external generators can only operate upon IP-
XACT compliant meta-data through the TGI.

Not all generators require the ability to modify the internal meta-data representation of the SoC, e.g., a
generator checking build correctness may just return a pass/fail result. However, many generators do need to
modify the meta-data description, even if only minor modifications occur, e.g., an IP generator will need to
communicate with the SoC design tool where the generated RTL is placed.

Finally, generators can be associated with phases in the design process that enable sequencing of chains of
generator chains. This is critical for providing script-based support of SoC creation and simulation.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 3
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
1.3.4 IP-XACT interfaces

There are two obvious interfaces expressed in Figure 1: from the SoC Design Tool to the external IP
libraries and from the SoC design Tool to the generators. In the former case, the IP-XACT specifications are
neutral regarding the use of design-tool interfaces to IP repositories. While being able to read and write IP
with IP-XACT meta-data is a requirement of the specification, the formal interaction between an external IP
repository and a SoC design-tool is not specified.

IP-XACT v1.4 supports a TGI that is Simple Object Access Protocol (SOAP) based and Web Services
Description Language (WSDL) specified. The TGI provides an efficient interface for external generators,
which is required due to the generally rapid nature of generator execution. Using the language-independent,
SOAP-based message passing interface, generators that are IP-XACT compliant are DE independent, i.e., a
generator running on a design shall produce the same results independent of the DE in which it is run.

1.4 IP-XACT enabled implementations

Complying with the rules outlined in this section allows the provider of tools, IP, or generators to class their
products as IP-XACT Enabled. Conversely, any violation of these rules removes that naming right. This
section first introduces the set of metrics for measuring the valid use of the specifications. It then specifies
when those validity checks are performed by the various classes of products and providers: DEs, point tools,
IPs, and generators.

a) Parse validity
1) Parsing correctness: Ability to read all IP-XACT files.
2) Parsing completeness: Cannot require information which could be expressed in an IP-XACT

format to be specified in a non- IP-XACT format. Processing of all information present in an
IPXACT document is not required.

b) Description validity
1) Schema correctness: IP is described using XML files that conform to the IP-XACT schema.
2) Usage completeness: Extensions to the IP-XACT schema shall only be used to express infor-

mation that cannot otherwise be described in IP-XACT.
c) Semantic validity

1) Semantic correctness: Adheres to the semantic interpretations of IP-XACT data described in
this standard.

2) Semantic completeness: Obeys all the semantic consistency rules described in Annex B.

These validity rules can be combined with the product class specific rules to cover the full IP-XACT enabled
space. The following subsections describe the rules a provider has to check to claim a product is IP-XACT
Enabled.

1.4.1 Design environments

An IP-XACT Enabled design environment:
a) Shall follow the Parse Validity Requirements shown in 1.4.
b) Shall only create IP which is IP-XACT Enabled.
c) When modifying any existing IP-XACT files, shall do so without losing any pre-existing informa-

tion. In particular, it shall preserve any vendor extension data included in the existing IP-XACT file.
d) Shall support the IP-XACT generator interfaces fully for interaction with underlying database.
e) Shall be able to invoke all IP-XACT Enabled generators.
4 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
1.4.2 Point tools

An IP-XACT Enabled point tool:

a) Shall follow the Parse Validity Requirements shown in 1.4.

b) Shall only create IP which is IP-XACT Enabled.

c) When modifying any existing IP-XACT files, shall do so without losing any pre-existing informa-
tion. In particular, it shall preserve any vendor extension data included in the existing IP-XACT file.

1.4.3 IPs

An IP-XACT Enabled IP shall have an IP-XACT description that follows the Description and Semantic
validity requirements. In addition, any generators associated with this IP shall be IP-XACT Enabled
generators.

1.4.4 Generators

An IP-XACT Enabled generator:

a) Shall only create IP which is IP-XACT Enabled.

b) When modifying any existing IP-XACT files, shall do so without losing any pre-existing informa-
tion. In particular, it shall preserve any vendor extension data included in the existing IP-XACT file.

c) Shall be callable though the IP-XACT generator interface.

d) Shall only communicate with the DE that invoked it through the IP-XACT generator interface.

1.5 Conventions used

Each clause which details any IP-XACT usage defines it own conventions and meta-syntax as needed. The
conventions used throughout the document are included here.

1.5.1 Visual cues (meta-syntax)

Bold: shows required keywords and/or special characters, e.g., addressSpace. For the initial use
(per element), keywords are shown in boldface-red text, e.g, bitsInLau (see also: 1.6).

Bold italics: shows group names, e.g., nameGroup. **Need to do so consistently**

Courier: shows examples, external command names, directories and files, etc.,
e.g., address 0x0 is on D[31:0].

Add any other document conventions here. See IEEE Std 1800-2005 for an example.

1.5.2 Notational Conventions

The keywords "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in the
IETF Best Practices Document 14, RFC-2119.

1.5.3 Syntax examples

Any syntax examples shown in this Standard are for information only and are only intended to illustrate the
use of such syntax.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 5
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
1.5.4 Graphics used to document the Schema

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/ specifies the XML schema language used to
define the IP-XACT XML schemas. Normative details for compliance to the IP-XACT standard is
contained in the schema files. Within this document, pictorial representations of the information in the
schema files illustrate the structure of the schema and define any constraints of the standard. With the
exception of scope and visibility issues, the information in the figures and schema files is intended to be
identical. Where the figures and schema are in conflict, the XML schema file shall take precedence.2

In the schema diagram figures, the various parts of the schema structure are represented graphically; the
elements used to make up these figures contain much of the information contained in the schema
specification. The graphics are organized into two broad categories: compositors (see 1.5.4.1) and elements
(see 1.5.4.2).

1.5.4.1 Compositors in the graphic representations

Compositors define the order in which child elements occur. There are two compositors: sequence and
choice.

1.5.4.1.1 Sequence collections

A sequence is represented in the schema diagrams using this graphic:

An example of using sequence:

and its accompanying xml file fragment:

<xs:element name="fileSets">
<xs:complexType>

<xs:sequence>
<xs:element ref="spirit:fileSet"

maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>

1.5.4.1.2 Choice collections

A choice is represented in the schema diagrams using this graphic:

2The graphics for this document have been generated by taking “screen-shots” of the various files as they are displayed in Altova’s
XML environment XMLSpyTM. The use of these illustrations is not an endorsement of this tool.
6 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
An example of using choice:

and its accompanying xml file fragment:

<xs:group name="fileType">

<xs:choice>

<xs:element name="fileType">

<xs:simpleType>

…

</xs:simpleType>

</xs:element>

<xs:element name="userFileType" type="xs:string">

</xs:choice>

</xs:group>

1.5.4.2 Elements of the graphic representations

The subsequent elements are composed in diagrams using the constructors in 1.5.4.1. The graphical
representation provides detailed information about the component's type and structural properties.

1.5.4.2.1 Mandatory single elements

The rectangle indicates an element and the solid border indicates the element is required. The absence of a
number range indicates a single element (i.e., minOcc=1 and maxOcc=1). **Define minOcc, maxOcc,
etc.**

1.5.4.2.2 Single optional elements

The rectangle indicates an element and the dashed border means the element is optional. The absence of a
number range indicates a single element (i.e., minOcc=0 and maxOcc=1).
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 7
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
1.5.4.2.3 Mandatory multiple elements

The rectangle indicates an element and the solid border indicates the element is required. The number 2
means minOcc=2 and maxOcc=2.

1.5.4.2.4 Optional multiple elements

The rectangle indicates an element and the dashed border means the element is optional. The number range
0..infinity means minOcc=1 and maxOcc=unbounded.

1.5.4.2.5 Mandatory multiple element containing child elements

The rectangle indicates an element and the solid border indicates the element is required. The number range
1..infinity means minOcc=1 and maxOcc=unbounded. The plus sign (+) indicates the element has
complex content (i.e., at least one element or attribute child).

1.5.4.2.6 Elements that reference a global element

The arrow in the bottom-left means the element references a global element. The rectangle indicates an
element and the dashed border indicates the element is optional. The plus sign (+) indicates the element has
complex content (i.e., at least one element or attribute child). The element name in this example is
spirit:vendorExtensions.

1.5.4.2.7 Complex types

The irregular hexagon with a plus sign (+) indicates an element of a complex type.
8 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
1.5.4.2.8 Macro groups

The irregular octagon with a plus sign (+) indicates a macro group. A macro group defines a reusable set of
element declarations which are then included in schema locations with the identical effect as including the
individual elements. While the diagram includes the element nameGroup, the actual XL documents do not
include a nameGroup element; they can include spirit:name and, optionally,
spirit:displayName and/or spirit:description.

1.5.4.2.9 Wildcards

The irregular octagon with any at the left indicates a wildcard. Wildcards are used as placeholders to allow
elements not specified in the schema or from other namespaces. ##any elements can belong to any
namespace; ##other elements can belong to any namespace other than the ones declared in the document.

1.5.4.2.10 Attributes of an element

A rectangle with the term attributes (in italics) in it indicates attributes are defined for this element. Each
attribute is shown in a rectangle with a dashed border.

1.6 Use of color in this standard

This standard uses a minimal amount of color to enhance readability. The coloring is not essential and does
not affect the accuracy of this standard when viewed in pure black and white. The places where color is used
are the following:

— Cross references that are hyperlinked to other portions of this standard are shown in underlined-blue
text (hyperlinking works when this standard is viewed interactively as a PDF file).

— Syntactic keywords and tokens in the formal language definitions are shown in boldface-red text.

1.7 Contents of this standard

The organization of the remainder of this standard is as follows:
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 9
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
— Clause 2 provides references to other applicable standards that are assumed or required for this
standard.

— Clause 3 defines terms and acronyms used throughout the different specifications contained in this
standard.

— Clause 4 defines the interoperability use model.
— Clause 5 previews the schema and their object definitions.
— Clause 6 defines the buses and interconnect models.
— Clause 7 defines the component models.
— Clause 8 defines the designs and their connections.
— Clause 9 defines the adapters between abstraction definitions.
— Clause 10 describes generators and their use in IP-XACT.
— Clause 11 defines the design models and their configuration.
— Clause 12 previews addressing and addressing formulas.
— Annexes. Following Clause 12 are a series of annexes.
10 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
2. Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments or corrigenda) applies.

IEC/IEEE 61691-1-1, Behavioral languages—Part 1: VHDL language reference manual.1, 2

IEEE Std 1364™, IEEE Standard for Verilog Hardware Description Language.3

ISO/IEC 8859-1, Information technology—8-bit single-byte coded graphic character sets—Part 1: Latin
Alphabet No. 1.4

ISO/IEC 8879, SGML **Get exact title and call numbers.**

The IP-XACT Schema v1.4 is available from the SPIRIT Consortium web site at:
http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4/index.xsd

The IP-XACT TGI API v1.4 format is available from the SPIRIT Consortium web site:
http://www.spiritconsortium.org/releases/tgi/TGI.wsdl

SOAP (Simple Object Access Protocol) Version 1.2 is a lightweight protocol intended for exchanging struc-
tured information in a decentralized, distributed environment. “Part 1: Messaging Framework” defines,
using XML technologies, an extensible messaging framework containing a message construct that can be
exchanged over a variety of underlying protocols:
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/

Web Services Description Language (WSDL) 1.1 is used to describe the Tight Generator interface. The
specification can be found at: http://www.w3.org/TR/wsdl

The XML version 1.0 is available from the W3C web site:
http://www.w3.org/TR/2000/REC-xml-20001006.

The XML Schema specification is available from the W3C web site:
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028;
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028;
http://www.w3.org/TR/2004/PER-xmlschema-2-20040318.

The XPath specification, version 1.0, is available from the W3C web site:
http://www.w3.org/TR/1999/REC-xpath-19991116.

The XPath version 2.0 is available from the W3C web site:
http://www.w3.org/TR/2005/CR-xpath20-20051103.

1IEC publications are available from the Sales Department of the International Electrotechnical Commission, Case Postale 131, 3, rue
de Varembé, CH-1211, Genève 20, Switzerland/Suisse (http://www.iec.ch/). IEC publications are also available in the United States
from the Sales Department, American National Standards Institute, 25 West 43rd Street, 4th Floor, New York, NY 10036, USA (http://
www.ansi.org/).
2IEEE publications are available from the Institute of Electrical and Electronics Engineers, Inc., 445 Hoes Lane, Piscataway, NJ 08854,
USA (http://standards.ieee.org/).
3The IEEE standards or products referred to in this clause are trademarks of the Institute of Electrical and Electronics Engineers, Inc.
4ISO/IEC publications are available from the ISO Central Secretariat, Case Postale 56, 1 rue de Varembé, CH-1211, Genève 20, Swit-
zerland/Suisse (http://www.iso.ch/). ISO/IEC publications are also available in the United States from Global Engineering Documents,
15 Inverness Way East, Englewood, CO 80112, USA (http://global.ihs.com/). Electronic copies are available in the United States from
the American National Standards Institute, 25 West 43rd Street, 4th Floor, New York, NY 10036, USA (http://www.ansi.org/).
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 11
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

http://www.spiritconsortium.org/releases/tgi/TGI.wsdl
http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4/index.xsd
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
The XSLT version 1.0 is available from the W3C web site:
http://www.w3.org/TR/1999/REC-xslt-19991116.

**Move this into DE compliance?? XSLT version 1.0 support is required for DE compliance, XSLT,
version 2.0 is optional. For maximum portability, IP and generators should make use of version 1.0.

3. Definitions, acronyms, and abbreviations

For the purposes of this document, the following terms and definitions apply. The Authoritative Dictionary
of IEEE Standards Terms [B2]5 should be referenced for terms not defined in this clause.

3.1 Definitions

3.1.1 abstraction definition: An object that describes a type of bus interface, including details of the ports
this type of bus interface may have and the constraints that apply to these ports.

3.1.2 ad-hoc connection: Directly connects two ports without the use of bus interfaces or
interconnections. Wire ad-hoc connections have a wire protocol and cable ad-hoc connections have a cable
connection.

3.1.3 abstractor: A top level IP-XACT element used to convert between two bus interfaces having
different abstraction types and sharing the same bus type.

3.1.4 active interface: An interface that participates in the transactions.

3.1.5 AMBA: An open specification on-chip backbone for interconnecting intellectual property (IP)
blocks.

**AMBA is a Registered Trade Mark owned by ARM, and needs to be acknowledged as such some-
where in this document. I am not sure if the specific AMBA bus types (AHB, APB, AXI etc.) are
also registered trade marks.**

3.1.6 application programmers interface (API): A method for accessing design and meta-data in a
procedural way.

3.1.7 architectural rules: Generic rules which define how subsystems relate to platforms that relate to
components of system design.

3.1.8 behavioral properties of a memory location: The behavioral properties of a bit in memory are
defined as

a) Its access rights.
b) Its volatility.
c) Whether it has a defined reset value and what this value is.
d) The width of the memory area containing it:

1) For bits within parallel banks, this is the width of the top-level parallel bank containing it.
2) For all other bits, this is the width of the containing address block.

e) The effective least addressable unit (i.e., the value of bitsInLau) of its containing memory map.
Bridges between the memory location and the bus interface from which it is observed may modify a
location’s effective least addressable unit from is the one defined in the memory map.

5The number in brackets correspond to those of the bibliography in Annex A.
12 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
f) The endianness of its containing address block.
g) The usage of its containing address block
h) Its dependencies:

Two bits have the same dependencies if they depend on the same values of the same bits at the same
address. Since different memory maps may vary in how they name registers and fields (and even in
how they split the address spaces into registers and fields), it is possible for two dependencies to
match even if they use different register and field names.

This should move to another chapter

3.1.9 bridge: A mechanism to model the internal relationship between master interfaces and slave
interfaces inside a component. Bridges explicitly describe the internal point-to-point connections between
the component interfaces. A bridge can have multiple address spaces, can be hierarchical, supports memory
mapping and re-mapping, and can only have direct interfaces. Syn: bus bridge.

3.1.10 bus: A collection of ports used to connect blocks connected to it involving both hardware and
software protocols. Within IP-XACT, buses are components.

3.1.11 bus definition: An object that describes the high-level properties for a bus, such as the maximum
masters allowed or if one bus expands upon the definition of another.

3.1.12 bus interface: The interface of an IP to a bus. Components are connected together by linking the
bus interfaces together. There are three different classes of bus interfaces: master, slave, and system with
two flavors: direct and mirrored.

3.1.13 channel: A special object that can be used to describe multi-point connections between regular
components, which may require some interface adaptation.A channel connects component master, slave,
and system interfaces on the same bus. A channel can also represent a simple wiring interconnection or a
more complex structure, such as a bus. A channel can only have one address space. Channel interfaces are
always mirrored interfaces. A channel supports memory mapping and re-mapping.

3.1.14 component: The central place holder for object meta-data and its bus and generator interfaces.
Components are used to describe cores, peripherals, and buses. Components may reference designs to create
hierarchy. Syn: component description.

3.1.15 configurable component: A component which has some parameters the DE can configure; these
parameters are also configurable in the RTL or TLM model.

3.1.16 configurable IP: IP which has parameters and is customized by setting/configuring the parameters.
There may also be IP-specific generators capable of creating new components from the configured
component and updating the design with the new version of the component.

3.1.17 configuration manager: An object which creates and manages top-level meta-description of system
on a chip (SoC) design. It can annotate SoC schema with details of a specific SoC design including: IP
versions, IP views, IP configuration, IP connectivity, and IP constraints. It manages the launching of IP
generators and tool plug-ins, and any meta-data updates occurring as a consequence of a launch. It also
handles the updating and retrieval of relevant IP meta-data from the IP repository.

3.1.18 connection: Generally describes a communication mechanism between one or more components.

3.1.19 constraint: A constraint defines a limitation on a part of the system that needs to be satisfied for the
system to be correct. Timing constraints are often specified on ports, requiring that during a given clock
cycle the value of the signal become stable in a certain time period and remain stable for a certain time
period relative to a particular clock edge.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 13
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
3.1.20 constraint set: Constraints defined in groups to associate different constraints with different views
of the component.

3.1.21 design: An IP-XACT description of a system or subsystem listing its components, the connections
between these components, and the interfaces exported by the system or subsystem.

3.1.21.1 design configuration: This file contains non-essential ancillary information for generators, the
active or current view selected for instances in the design, and configurable information defined in vendor
extensions. It references a design file and can specify a view for the component instances and abstractors
for each interconnection, and configure generator chains. Syn: configuration.

3.1.22 design database: Working storage for both meta-data and component information that helps create
and verify systems and subsystems.

3.1.23 design environment (DE): The coordination of a set of tools and IP, or expressions of that IP (e.g.,
models) so the system-design and implementation flows of a SoC re-use centric development flow is
efficiently enabled. This is managed by creating and maintaining a meta-data description of the SoC.

3.1.24 endianness: big endian is the most significant byte at the lowest memory address and little endian is
the least significant byte at the lowest memory address.

3.1.25 electronic system level (ESL) A high level of design modeling typically done with, but not limited
to, SystemC or SystemVerilog design languages.

3.1.26 external components: Components that do not end up on the SoC, but are needed for total system
verification.

3.1.27 fixed IP: IP that has no parameters which are configured by the DE or set by industry de-facto tools.

3.1.28 generator: Combines component meta-data with architectural rules to provide a consistent
system description which uses a specified tight generator interface (TGI) to generate specific design
views or configurations for the purposes of supporting a number of design styles. The generator may add/
remove/replace components, add/remove/replace interconnections, add/remove/replace project settings, and
add/remove/replace persistent data.

3.1.29 generator API: This API provides a common interface for algorithmic code in a generator or tool
plug-in to the SOAP interface of the TGI.

3.1.30 generator TGI: This SOAP messaging interface connects the generators and tool plug-ins to the
design environment (DE), allowing the execution of these scripts and code-elements against the SoC meta-
description. The DE enables the registration of new generators or plug-ins, exporting SoC meta-data and
updating that data following generator or plug-in execution, and handling generator or plug-in error
conditions which relate to the meta-data description.

3.1.31 generator chain: A collection of hierarchical generators to be executed in a sequence containing
generators that call other generators. A design flow can be represented by a generator chain.

3.1.32 generator group: A named generator that contains a sequential list of generator invocations.

3.1.33 generator invocation: A method of running an application at a defined phase in the generator group
with a given number of parameters.

3.1.34 hierarchical child bus interface: A bus interface IC of component CC is a hierarchical child of bus
interface IP of component CP if and only if CP contains a hierarchical view, the design file of which con-
14 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
tains a hierarchical connection with interface name IP, component ref CC, and interface ref IC. A hierarchi-
cal child bus interface may be a hierarchical bus interface itself.

3.1.35 hierarchical component: A component that has one or more views which reference IP-XACT
design files.

3.1.36 hierarchical descendant bus interface: A bus interface DC is a hierarchical descendant of bus inter-
face AC if and only if DC is a hierarchical child of AC or a hierarchical child of a hierarchical descendant of
AC.

3.1.37 hierarchical family of bus interfaces: A hierarchical family of bus interfaces is a set of bus inter-
faces composed of a hierarchical bus interface and all its hierarchical descendants.

3.1.38 hierarchical child component: A hierarchical child of a component C is any component referenced
in a design of C.

3.1.39 hierarchical descendent component: A hierarchical descendent of a component is any hierarchical
child of that component or any hierarchical child of any hierarchical descendent of the component.

3.1.40 hierarchical family of components: A hierarchical family of components is a component and all its
hierarchical descendents.

**I’m not sure about having all these ‘hierarchical’ definitions here, especially the ‘bus interface’
ones; consider moving them into Chap 5 re: hierarchy and hierarchy connections**

3.1.41 initiative: An abstract description of port modes: requires, provides, or both. Used for transactional
level modeling.

3.1.42 interconnection: Defines the point-to-point connection between two bus interfaces.

3.1.43 interface: A way to connect a component to the outside world—either bus interfaces or ports.

3.1.44 interface connection: Component interfaces with bus definitions and abstraction definitions can
be listed in the design as connected to another compatible interface on another component. The listing of the
interconnection creates a connection to that interface.

3.1.45 intellectual property (IP): Property utilized in the context of a SoC design or design flow, including
specifications; design models; design implementation description; verification coordinators, stimulus
generators, checkers and assertion / constraint descriptions; soft design objects (such as embedded software
and real-time operating systems); design and verification flow information and scripts. IP-XACT
distinguishes between fixed IP, parameterized IP, and configurable IP.

3.1.46 IP generators: Tools which create specific IP based upon SoC meta-data details entered into the
configuration manager. IP generators serve as interfaces to IP repository for placing and retrieval of IP.
and can annotate completion details (e.g., generated IP or failure of generation of IP) back into the
configuration manager.

3.1.47 IP integrator: A party in the design process who receives configured IP and subsystems and
combines them into a larger system.

3.1.48 IP platform architect: Creator of platform-based architectures.

3.1.49 IP provider: Creator and supplier of IP.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 15
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
3.1.50 IP repository: Database of IP.

3.1.51 leaf component: Components that do not contain other IP-XACT IP.

3.1.52 legacy IP: IP that has no specific IP-XACT meta-data view.

3.1.53 master interface: The bus interface that initiates a transaction (like a read or write) on a bus.

3.1.54 memory map: Organization of memory elements as seen from a master interface when no memory
range transformations are made, e.g., in bus bridges. Within IP-XACT, three different methods are used: a
memory map at channels, at transparent bridges, or at opaque bridges.

3.1.55 meta-data: A tool-interpretable way of describing the design-history, locality, object association,
configuration options, constraints against, and integration requirements of an object.

3.1.56 meta IP: Meta-data description of an object.

3.1.57 mirror interface: Has the same (or similar) ports to its related direct bus interface, but the port
directions are reversed. So, a port that is an input on a direct bus interface would be an output in the
matching mirror interface.

3.1.58 monitor interface: An interface used in verification that is neither a master, slave, nor system
interface.

3.1.59 multi-layer buses: Buses that have to be modeled as component bridges with direct interfaces or as
a hierarchical component.

3.1.60 objects: Those XML document types listed in the schema index.xsd: components, designs, bus
definitions, abstraction definitions, abstractors, and generators. To be able to be uniquely referenced,
each object has an unique identifier called its Vendor Library Name Version (VLNV).

3.1.61 opaque bridge: A bus interconnect that may modify the address.

3.1.62 Open SystemC Initiative (OSCI): An independent non-profit organization composed of a broad
range of companies, universities and individuals dedicated to supporting and advancing SystemC as an open
source standard for system-level design (see [B7])

3.1.63 parameter: Used to statically characterize (or configure) the IP. Parameters can be configured by the
DE and are also configurable in the models.

3.1.64 parameterized IP: IP with parameters that can be handled by industry de-facto tools.

3.1.65 phantom port: A direction or initiative of a port which indicates this port does not have a true
connection to the implementation, e.g., the port does not appear on the VHDL entity.

3.1.66 phase number: Define the sequence in which generators should be fired.

3.1.67 platform: Architectural (sub)system framework.

3.1.68 platform consumer: User/group who builds a SoC based on a particular platform.

3.1.69 platform provider: User/group that develops and delivers platforms to platform consumers.

3.1.70 platform rules: Rules that define how components interface to a specific platform.
16 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
3.1.71 port: Specifies interface items of a component. These interface items allow dynamic exchange of
information. Connections between ports may be specified by using ad-hoc connections or by including
them in bus interfaces connected together by interconnections.

3.1.72 programmers view (PV): A level of ESL design.

3.1.73 programmers view with timing (PVT): A level of ESL design.

3.1.74 schema: A means for defining the structure, content, and semantics of Extensible Markup
Language (XML) documents.

3.1.75 schema API: This API allows the configuration manager to query the XML IP meta-data.
Queries may be for the existence of IP, the structure of IP, or features offered by that IP, such as
configurability and interface protocol support. This API is also used for the import and export of meta-data
when an IP block is extracted from, or imported back into, the IP management system

3.1.76 semantic rules: Additional rules applied to an XML description that cannot be expressed in the
schema. Typically, these are rules between elements in one of multiple XML files.

3.1.77 slave interface: The bus interface that terminates or consumes a transaction initiated by a master
interface. Slave interfaces often contain information about the registers accessible through the slave
interface.

3.1.78 system on chip (SoC): Also refers to a general system which may not be implemented on a chip,
such as a transaction-level modeling (TLM) design.

3.1.79 SoC platform: The top netlist containing all the instances and connections of the design.

3.1.80 style sheets: How documents are presented on screens and in print.

3.1.81 subsystem: A set of connected components that have dependencies on other IP.

3.1.82 system: A configured set of connected components.

3.1.83 system interface: An interface that is neither a master nor slave interface, and allows specialized
(or non-standard) connections to a bus (e.g. clock).

3.1.84 task-level interface (TLI): Used for streaming interfaces between software and hardware.

3.1.85 tight generator interface (TGI): Used to manipulate values of elements, attributes, and parameters
for IP-XACT compliant XML.

3.1.86 transaction-level modeling (TLM): An abstraction level higher than register transfer level (RTL),
used for specifying, simulating, verifying, implementing, and evaluating SoC designs.

3.1.87 tool plug-ins: Tools which integrate IP, based upon SoC meta-data details, and prep IP for
animation (e.g., simulation or emulation), optimization (e.g., synthesis) and verification (e.g., regression-
suite generation). They can also annotate completion details (e.g., integrated SoC IP or failure of integration)
back into the configuration manager.

3.1.88 transactional port: A port that has a service name (which can specify the data type of the port) and
a port initiative. Used for high-level modeling.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 17
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
3.1.89 transparent bridge: A bus interconnect that does not modify the address; it just decodes the address
(by default).

3.1.90 use model: A process method of working with a tool.

3.1.91 user interface: Methods of interacting between a tool and its user.

3.1.92 validation: Proving the correctness of construction of a set of components.

3.1.93 verification: Proving the behavior of a set of connected components.

3.1.94 view: An implementation of a component. A component may have multiple views, each with it's own
function in the design flow.

3.1.95 verification IP (VIP): Components included in a design for verification purposes.

3.1.96 Vendor Library Name Version (VLNV): Each IP-XACT object is assigned a unique identifier that
is defined in the header of each XML file.

3.1.97 wire port: A port that describes binary values or an array of binary values. Wire ports can have a
direction: in, out, or inout.

3.1.98 wire connections: Connections that connect wire ports.

3.1.99 white box interface (WBI): Internal points in the IP to be probed or driven by verification tools and/
or test benches.

3.1.100 Extensible Markup Language (XML): A simple, very flexible text format derived from SGML
(ISO/IEC 8879). **Reference this in Chap 2**

3.1.101 Xpath: An expression language used by XSLT to access or refer to parts of an XML document.

3.1.102 XSL: A language for expressing style-sheets and transforming XML data into HTML.

3.1.103 XSLT: A language for transforming XML documents into other types of documents.

3.1.104 3 levels of meta-data (3MD): This phrase refers to a hierarchy of meta-data used to support
platform-based SoC architectures. The lowest level defines IP parameters and constraints and is known as
the IP-level. The second level is known as the platform-level; it can be used to further constrain and capture
platform rules for all SoC derivatives. The third level is the chip-level, used for any system, production, and
verification tests needed to be captured for re-use and reproducibility.

3.2 Acronyms and abbreviations

AHB AMBA high speed bus

API application programmers interface

DE design environment

EDA electronic design automation

ESL electronic system level
18 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
HDL hardware description language

IP intellectual property

LAU least addressable unit (of memory)

OSCI Open SystemC Initiative

PV programmers view

PVT programmers view with timing

RTL register transfer level (design)

SCR semantic consistency rule

SoC system on chip

TGI tight generator interface

TLI task level interface

TLM transaction-level modeling

VIP verification IP

VLNV Vendor Library Name Version

WBI white box interface

XML Extensible Markup Language

3MD 3 levels of meta-data
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 19
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
20 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
4. Interoperability use model

To introduce the use-model for the IP-XACT specifications, it is first necessary to identify specific roles and
responsibilities within the model, and then relate these to how the IP-XACT specifications impact their
interactions(s). All or some of the roles can be mixed within a single organization,e.g., some EDA providers
are also providing IP, a component IP provider can also be a platform provider, and an IP system design
provider may also be a consumer.

4.1 Roles and responsibilities

For this User Guide, the roles and responsibilities are restricted to the scope of IP-XACT v1.4 HDL and
TLM system design.

4.1.1 Component IP provider

This is a person, group or company creating IP components or subsystems for integration into a SoC design.
These IPs can be hardware components (processors, memories, buses, etc.), verification components, and/or
hardware-dependent software elements. They may be provided as source files or in a compiled form (i.e.,
simulation model). An IP is usually provided with a functional description, a timing description, some
implementation or verification constraints, and some parameters to characterize (or configure) the IP. All
these types of characterization data may be described as meta-data compliant with the IP-XACT Schema.
Those elements not already provided in the base schema can be provided using name-space extensibility
mechanisms of the specification.

The IP provider can use one or more EDA tools to create/refine/debug IP. During this process, the IP
provider may export and re-import his design from one environment to another. The IP-XACT IP
descriptions need to enable this exchange for component IP.

At some point, this IP can be transferred to customers, partners and external EDA tool suppliers by using IP-
XACT compliant XML. IP can be characterized into different types.

— Fixed IP is IP that is straightforward to describe and exchange as there are no configurable parame-
ters. No generators need to be provided. An example of a fixed-IP is an APB GPIO block with a
fixed base address.

— Parameterized IP are those IP blocks that do not need IP specific generators, but have ‘standard’
customizations (where ‘standard’ is defined as industry de-facto tool support), i.e., no generators
need be provided for SoC design tools that support these parameterizations. An example of a param-
eterized IP is an AHB / APB bridge with configurable bus-widths.

— Configurable IP is IP created or modified as a direct result of running an IP-specific generator to
build the IP to the user’s specified configuration. This IP usually requires generators to be provided
with it. An example of a configurable IP is an AHB bus fabric component which has selectable num-
ber of masters and slaves, and automatic generation of decode functionality.

4.1.2 SoC design IP provider

This is a person, group or company that integrates and validates IP provided by one or more IP providers to
build system platforms, which are complete and validated systems or sub-systems. Like the IP provider, the
platform provider can use EDA tools to create/refine/debug its platform, but at some point the IP needs to be
exchanged with others (customers, partners, other EDA tools, etc.). To do so, the platform IP has to be
expressed in the IP-XACT specified format as a hierarchical component.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 21
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
4.1.3 SoC design IP consumer

This is a person, group or company that configures and generates system applications based on platforms
supplied by SoC Design IP providers. These platforms are complete system designs or sub-systems. Like the
platform provider, the platform consumer can use EDA tools to create/refine/debug its system application
and/or configure the design architecture. To do so, the EDA tool needs to support any platform IP expressed
in the IP-XACT specified format.

4.1.4 Design tool supplier

This is a group or company that provides tools to verify and/or implement an IP or platform IP. There are
three major tools (which could be combined) provided in a system flow:

— Platform builder (or System Design Environment) tools: these help to assemble a platform with some
automation (e.g., automatic generation of interconnect).

— Verification point-tools: these handle functional and timing Simulation, Verification, Analysis,
Debugging, Co-simulation, Co-verification, and acceleration.

— Implementation point-tools: these handle Synthesizing, Floorplaning, Place and routing, etc.

The EDA provider needs to be able to import IP-XACT component or system IP libraries from multiple
sources and export them in the same format.

Further, IP-XACT EDA tools need to recognize, associate and launch generators that may be provided by a
Generator or IP provider in support of configurable IP bundles. The imported IP might need to be created
and/or modified by the tool and then exported back (e.g., to be exchanged with other EDA vendor tools) to
satisfy the customer design flow.

To further support any generators supplied with IP bundles, the IP-XACT DE tools need to be able to
recognize and interface with generator-wrapped point-tools. These may be provided by another EDA
provider or by the IP designer/consumer as part of a company’s internal design and verification flow. In
general, these will support specialized design-automation features, such as architectural-rule checking.

4.2 IP-XACT IP exchange flows

This section describes a typical IP exchange flow that the IP-XACT specifications technically support
between the roles defined in 4.1. By way of example, the following specific exchange flow can benefit from
use of the IP-XACT specification.

The Component IP provider generates an IP-XACT XML package and sends it to a SoC design-tool
(EDA tool supplier) or directly to a Platform (i.e., SoC Design IP) provider. The EDA tool supplier
imports IP-XACT XML IP and generates platform IP and/or updates (configures) the IP compo-
nents. The Platform provider generates a configurable platform IP and exports it in IP-XACT XML
format, which the end-user imports to build system applications. The platform provider can also
generate its own platform IP into IP-XACT format and send it to the EDA provider.

Although many different possible IP exchange flows exist, from the user’s viewpoint, there are three main
use models:

— IP (Component or SoC Design) provider use model

— Generator (IP provider and Design tool provider) use model

— SoC design-tool provider use model
22 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
4.2.1 Component or SoC design IP provider use model

The IP provider (a hardware component IP designer or platform IP architect) can use IP-XACT to package
IP in a standard and reusable format. The first step consists in creating an IP-XACT XML package (XML
plus any IP views) to export the IP database in a valid format. To express this IP as an IP-XACT IP, the IP
provider needs to parse the entire design file tree (which is composed of files of different types: HDL source
files, data sheets, interfaces, parameters, etc.) and convert it into an IP-XACT XML format. This can be a
manual step (by directly editing IP-XACT compliant XML) or an automated one (using scripts to generate
Schema compliant IP-XACT XML).

Once the IP has been packaged in an IP-XACT format, the IP provider can use a SoC design-tool to write/
debug/simulate/implement the IP.

4.2.2 Generator provider use model

The author of a generator expects to interact with the SoC design tool through a fixed interface during well
defined times in the design life-cycle: when components are instantiated or modified or when a generator
chain is started.

Generators are used within the SoC design-tool to extend its capabilities: wrapping a point tool, e.g. a
simulator; wiring up IP within the design; or checking the design is correct or maybe modifying the design.
Many of these features may be supplied by the IP author and handled by generators embedded in the IP
itself.

Consequently, there are at least two groups of generator providers: the IP vendor, who supplies generators
that are written specifically to support their IP and generic generator authors who wish to extend the features
available within the SoC design-tool. This latter group will be mainly SoC-design tool vendors at first, but
will also come to include third-party generator vendors.

4.2.3 System design tool provider use model

This is the chunk of the use model which needs the most expansion, TBD later.

The system design-tool takes an IP-XACT component or SoC design as input, configures it, and loads it into
its own database format. Then it can automate some tasks, such as creating the platform, generating the
component interconnect the bus fabric, and generating or updating the IP-XACT IP as an output (by
providing new or updated XML with the attached information: new source files, parameters, documentation,
etc.).

Customer design flows are usually composed of a chain of different tools from the same or different EDA
vendors (e.g., when an EDA provider is not providing the entire tool chain to cover all the user flow or the
customer is selecting the best-in-class point tools). To address this requirement, the EDA vendor providing
an IP-XACT enabled tool needs to read and produce the IP-XACT specified format, and utilize and
implement the interfaces defined by The SPIRIT Consortium. In this use model, each SoC design-tool uses
its own generators (utilizing the IP-XACT TGI) to build and update its internal meta-data state in an IP-
XACT format. Then the IP-XACT file can be imported by another IP-XACT enabled EDA tool.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 23
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
24 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
5. IP-XACT schema

In addition to the in-line documentation for the IP-XACT Schema [B5], this chapter explains how the
different schema files link to each other and when to use them.

5.1 Schema overview

The IP-XACT schema is composed of a set of main files representing the top elements (the root objects
defined in 5.2) and sub files included from the main files.

NOTE—All these schema files are included by reference in the top-level schema file, index.xsd. IP-XACT files and
DEs should reference index.xsd as the schema, rather than referencing the individual schema files described here.

5.1.1 Design schema

This schema defines the way in which designs can be described. A design includes instances of IP
components and the interconnections between these components. The IP-XACT design schema file is called
design.xsd.

5.1.2 Design configuration schema

This schema defines the way in which a specific configuration of a design can be described. A design
includes instances of IP components and the interconnections between these components. The IP-XACT
design schema file is called design.xsd.

5.1.3 Component schema

The component schema defines the description of an IP component. Typically, an IP component defines bus
interfaces, memory maps, sub-instances, configuration information, file sets, port lists, and generators. The
IP-XACT component schema file is called component.xsd.

5.1.4 Bus definition schema

A bus definition describes those elements of a bus that are true for all levels of abstraction. This definition
also serves as a point of reference for the abstraction definitions. The IP-XACT bus definition schema file is
called busDefinition.xsd.

5.1.5 Abstraction definition schema

An abstraction definition describes the ports that make up a bus and some expected values for port widths
and usage (e.g., the ADDR pins can be defined as carrying address information and 16 bits wide). There is
also information on expected port directions when the port is on a master, slave, or system interface. The IP-
XACT abstraction definition schema file is called abstractionDefinition.xsd.

5.1.6 Abstractor schema

This schema defines the way that an abstractor is defined. An abstractor is a meta-design element which
provides for interconnection between two abstraction definitions of the same bus definition. The abstractor
can be chosen by the DE if not specified, or it can be specified in the design configuration document. The IP-
XACT abstractor schema file is called abstractor.xsd.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 25
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
5.1.7 Generator schema

These schema files define how generators are described and interact with the design environment. The IP-
XACT generator schema files is called generator.xsd.

5.2 IP-XACT objects

The IP-XACT schema is the core of the IP-XACT specification. An IP-XACT IP appears as two distinct
objects: the top-design SoC object and the Component object instantiated in the top design.

--> missing abstractor and designConfig schema

5.2.1 Object interactions

The following types of objects are those listed in the schema index.xsd file. See also Clause 3.
— meta-data
— bus definitions
— abstraction definitions
— components
— designs
— abstractors
— generator chains
— design configurations

The links (reference calls) between these objects is illustrated in Figure 2. The arrows (A B) illustrate a
reference of object B from object A.
26 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
Figure 2—IP-XACT object interactions

--> Figure 2 is not correct w.r.t. its definition. If it is intended to show the VLNV relationship, the generator
(generatorChain to be exact) should only be referenced from designConfig.

To be uniquely referencable, each of these objects has a unique identifier in IP-XACT terms, called a
Vendor Library Name Version (VLNV).

5.2.2 VLNV

Each object is assigned a VLNV that is defined in the header of each XML file, e.g.,

<spirit:vendor>spiritconsortium.org</spirit:vendor>

<spirit:library>Leon2</spirit:library>

<spirit:name>simple_design</spirit:name>

<spirit:version>1.0</spirit:version>

The VLNV is used as a unique identifier in an design environment. Only one object with a given VLNV
may be present in a design environment at any given time. The timing and way to change the VLNV of an
object is completely up to the user or developer.

AbstractorComponent

Design

Component

Generator

Bus
Definition

Abstraction
Definition

Component

Design
Configuration

Abstractor
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 27
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
The vendor (first V of VLNV) element shall be the domain name of the organization responsible for the
object (e.g., spiritconsortium.org). This need not be the owner or creator of the IP described by the
object. If company XYZ creates a object, the vendor element shall be set to their domain name, which could
be xyz.com.

The version number (last V of the VLNV) assigned to any object may be more complex than an integer
number. The version number may appear as an alphanumeric string and contain a set of substrings, with
non-alphanumeric delimiters in-between. Each IP supplier shall have their own cataloguing system for
setting version numbers.

5.2.2.1 Sorting and comparing

Sorting and comparing a VLNV string determines whether:
— an IP is a component that has been previously imported;
— multiple versions of the same IP can exist in a design.

To sort and compare the VLNV, subdivide the version number into major fields and subfields. Major fields
may be separated by a non-alphanumeric delimiter such as /, ., -, _, etc. Each major field can be compared
to determine equivalence and broken down further into subfields if necessary.

5.2.2.2 Comparison rules

a) Each version number is broken into its major fields, which are separated using the appropriate
delimiter (e.g., / or .)

b) Major fields are compared against each other from left-to-right.
c) Subfields, within each major field, need to be examined if the major fields are alphanumeric. Each

major field shall have alphabetical and numerical subfields that are separated from right-to-left.
d) To summarize the rules for the comparison of each subfield in a major field:

1) Numeric—compare the integer values of numeric subfields.
2) Alphabetic:

i) String—perform a simple string comparison.
ii) Case—ignore alphabetic case (e.g., a-A are the same).

There are a few cases where the version numbers are considered as equal, but this may not be obvious to the
user. For example, under these rules, A1 and A01 are equal, since numerical subfields are compared
numerically, and A.B equals A_B, since delimiters are not compared.

5.2.2.3 Examples

The following examples illustrate the sorting and comparing of a VLNV.

Example 1

The first case uses: 205/75WR16 and 215/50HR15.
a) Each of these version numbers break down into the following two major fields, separated by the /

delimiter: 205 75WR16 and 215 50HR15.
b) Major fields are compared against each other from left-to-right. In this example, the first major

fields (205 and 215) differ between the VLNV strings and the comparison ends there. This case is
also simplified since the first major field is an integer (i.e., numeric).

c) Subfields, within each major field, need to be examined if the major fields are alphanumeric. Each
major field shall have alphabetical and numerical subfields that are separated from right-to-left.
28 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
Example 2

In the next example, two VLNV have the same first major field, their second major subfields need to be
compared: e.g., 205/45R16 and 205/55R15.

a) The first major field (205) is equal between these two VLNV so the second major field is checked.
These second major fields are broken down into the following alphabetic and numeric subfields: 45
R 16 and 55 R 15.

b) The subfields are compared from left-to-right. The first (and in this case only) comparison is 45
versus 55, so these subfields are not equal. The major fields are not equivalent.

5.2.3 Version control

Each file conforming to the top-level schema has a set of VLNV elements which, when considered together,
form a unique identifier (a version control number) for the information contained in that XML document.
The VLNV of any IP-XACT information is not the same as the version of the file which might contain that
information.

NOTE—A XML file might be revised in a way that does not materially affect the IP-XACT information content. For
example, copyright notices are updated, comments are added, and environment variable names used as part of the filena-
mes might be changed (but still point to the same files). These changes do not necessitate changing the VLNV.

Many developers of IP libraries use a version control system to track updates and changes to the various files
that contribute to the overall design and IP package information. At any time, individual files may be
modified and updated as development of that design or IP progresses. At appropriate junctures, releases are
made, each consisting of a particular combination of files at different levels of version.

An IP-XACT file is one of the files that can be very usefully tracked in this way and updated in-line with
other design modifications. There is no direct link between the version number of the file and the VLNV
identifier contained in that file. In many, but by no means all cases however, the VLNV will be coordinated
with the overall release package version.

5.3 Design models

An IP-XACT design is a description that contains all instances and connections of the design. The following
sections have to be defined in the design:

— the VLNV of this IP
— the component instances (e.g., core, peripherals, and buses)
— the connections between the component instances.

Figure 3 illustrates a simple IP-XACT platform design.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 29
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
Figure 3—Simple SoC design example

The equivalent XML file for this simple design is described in the remainder of this chapter. The rest of this
Standard defines the IP-XACT elements and attributes used in building this design and its sections.

5.3.1 Design

The design starts with the standard XML headers and includes the design’s VLNV, there’s then a list of
components, followed by a list of interconnections, as shown in the following XML fragment.

<?xml version="1.0" encoding="UTF-8" ?>

<spirit:design

xmlns:spirit="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4"
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xsi:schemaLocation="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4
http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4/index.xsd">

 <spirit:vendor>spiritconsortium.org</spirit:vendor>

 <spirit:library>simple_lib</spirit:library>

 <spirit:name>simple_design</spirit:name>

 <spirit:version>1.0</spirit:version>

 <spirit:componentInstances>

<spirit:interconnections>

</spirit:design>

5.3.2 Hierarchy represented by a design file

Hierarchical designs can be described in IP-XACT. In any IP-XACT design, the design file references
components files. In a hierarchical design, some or all of these component files have views which reference
further design files or design configuration files describing the design of those components, as depicted in
Figure 4. This linking allows for unlimited levels of hierarchy in a design. All referencing of designs and
configurations of designs and components in IP-XACT are done through the VLNV (see 5.2.2). Four
elements (vendor, library, name, and version) uniquely identify a design, a configuration of a
design or a component.

master_1
(processor)

bus_1 (APB_bus)

slave_1
(timer)

slave_2
(irqctrl)

slave_3
(uart)

ambaAPB_if masterAPB_if

ambaAPB_if

slaveAPB_if_1 slaveAPB_if_2 slaveAPB_if_3

uart_verifier
(uart_tester)

uart_interface

uart_if
30 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
Figure 4—Hierarchy example

This is an example of the highest Design file in a hierarchical design.

<spirit:design>
 <spirit:vendor>spiritconsortium.org</spirit:vendor>
 <spirit:library>Example</spirit:library>
 <spirit:name>Top</spirit:name>
 <spirit:version>1.00</spirit:version>
…
 <spirit:componentInstance>
 <spirit:instanceName>APB</spirit:instanceName>
 <spirit:componentRef

 spirit:vendor="spiritconsortium.org"
 spirit:library="Example"
 spirit:name="APB_top"
 spirit:version="1.00" />
 </spirit:componentInstance>

This is an example of a Component file in a hierarchical design.

<spirit:component>
 <spirit:vendor>spiritconsortium.org</spirit:vendor>
 <spirit:library>Example</spirit:library>
 <spirit:name>APB_top</spirit:name>
 <spirit:version>1.00</spirit:version>
…
 <spirit:model>
 <spirit:views>

design = top

APB_top

component = APB_top

APBSubSystem

design = APBSubSystem
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 31
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
 <spirit:view>
 <spirit:name>Hierarchical</spirit:name>
 <spirit:envIdentifier>::</spirit:envIdentifier>
 <spirit:hierarchyRef
 spirit:vendor="spiritconsortium.org"
 spirit:library="Example"
 spirit:name="APBSubSystem"
 spirit:version="1.2"/>
 </spirit:view>

This is an example of the lower Design file in a hierarchical design, showing the hierarchical connection of
a bus interface.

<spirit:design>
 <spirit:vendor>spiritconsortium.org</spirit:vendor>
 <spirit:library>Example</spirit:library>
 <spirit:name>APBSubSystem</spirit:name>
 <spirit:version>1.2</spirit:version>
…
 <spirit:hierConnections>
 <spirit:hierConnection spirit:interfaceRef="UartIF1">
 <spirit:activeInterface spirit:componentRef=”slave_3”

 spirit:busRef=”uart_if”></spirit:activeInterface>
 </spirit:hierConnections>

 </spirit:hierConnections>

5.3.3 Design interconnections

Design interconnections (interConnections between active interfaces and monitorInterconnections
between active and monitor interfaces) can be given a name, as illustrated in Figure 5.

Figure 5—Connectivity name example

These interconnections could be built using the following XML fragment.

<spirit:interConnections>
 <spirit:interConnection>
 <spirit:name>conn_12</spirit:name>
 <spirit:activeInterface

spirit:componentRef="component_1"
spirit:busRef="master_if"/>

 <spirit:activeInterface
spirit:componentRef="component_2"
spirit:busRef="slave_if"/>

 </spirit:interConnection>
</spirit:interConnections>

component_1

master_if slave_if

component_2
conn_12
32 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
This fragment illustrates the connectivity between the bus interface master_if (on component_1) and
the bus interface slave_if (on component_2) in the design shown in Figure 5. The DE (or the user)
can name this connection (e.g., conn_12). This name is optional, but if defined, it shall be unique for all
interConnections elements inside the design.

**This last sentence shows semantics; add a xref here or move this to interConnections??

5.3.4 Hierarchical connectivity

In IP-XACT, hierarchical connectivity can also be expressed in the design file, as shown in Figure 6.

Figure 6—Hierarchical connectivity example

These hierarchical connections could be built using the following XML fragment.

<spirit:hierConnections>
 <spirit:hierConnection spirit:interfaceRef="UartIF1">
 <spirit:activeInterface spirit:componentRef=”slave_3”

 spirit:busRef=”uart_if”/>
 </ spirit:hierConnection>

</spirit:hierConnections>

This fragment illustrates the connectivity between the bus interface UartIF1 (on the component that is
being described by this design) and the bus interface uart_if on the UART instance slave_3 in the
design shown in Figure 6. The DE needs to ensure the interface UartIF1 exists on the component when
referencing a design file from a component.

**This last sentence and the following Note show semantics; add a xref here or move these to
hierConnections??

NOTE—A bus cannot be hierarchically connected, this would require splitting the bus component. However, it is possi-
ble to connect an interface of a bus via hierarchical connection to a bus on a higher level. In most cases, this is done via
an additional bus bridge.

master_1
(processor)

bus_1 (APB_bus)

slave_1
(timer)

slave_2
(irqctrl)

slave_3
(uart)

ambaAPB_if masterAPB_if

ambaAPB_if

slaveAPB_if_1 slaveAPB_if_2 slaveAPB_if_3

UartIF1uart_if
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 33
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
34 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
6. Interface definition descriptions

6.1 Definition descriptions

In IP-XACT, a group of ports that together perform a function are described by a set of elements and
attributes split across two definitions, an bus definition and an abstraction definition. These two descriptions
are referenced by components or abstractors in their bus interfaces.

The bus definition description contains the high-level attributes of the interface, including items such as the
connection method and indication of addressing. 7.5 describes bus interfaces.

The abstraction definition contains the low-level attributes of the interface, including items such as the
name, direction, and width of the ports. This is a list of logical ports that may appear on a bus interface for
that bus type.

6.2 Bus definition

6.2.1 Schema

The following schema details the information contained in the busDefinition element, which is one of the
seven top-level elements in the IP-XACT specification used to describe the high-level aspects of a bus.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 35
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
6.2.2 Description

The top-level busdefinition element describes the high-level aspects of a bus or interconnect. It contains the
following elements and attributes.

a) The versionedIdentifier group provides a unique identifier; it consists of four subelements for a top-
level IP-XACT element.
1) vendor (mandatory) identifies the owner of this description. The recommended format of the

vendor element is the company internet domain name.
2) library (mandatory) identifies a library of this description. This allows one vendor to group

descriptions.
3) name (mandatory) identifies a name of this description.
4) version (mandatory) identifies a version of this description. This allows one vendor to provide

many descriptions which all have the same name, but are still uniquely identified.
b) directConnection (mandatory) specifies what connections are allowed. The directConnection ele-

ment is of type Boolean. A value of True specifies these interfaces may be connected in a direct
master to slave fashion. A value of False indicates only non-mirror to mirror type connections are
allowed (master—mirroredMaster, slave—mirroredSlave, or system—mirroredSystem).

c) isAddressable (mandatory) specifies the bus has addressing information. The isAddressable ele-
ment is of type Boolean. A value of True specifies these interfaces contain addressing information
and a memory map can be traced through this interface. A value of False indicates these interfaces
do not contain any traceable addressing information.

d) extends (optional) specifies if this definition is an extension from another bus definition. The
extends element is of type libraryRefType (see X.Y.Z), it contains four attributes to specify a unique
VLNV. See 6.12 on extending bus definitions.
1) vendor attribute (mandatory) identifies the owner of the referenced description.
2) library attribute (mandatory) identifies a library of referenced description.
3) name attribute (mandatory) identifies a name of referenced description.
4) version attribute (mandatory) identifies a version of referenced description.

e) maxMasters specifies the maximum number of masters that may appear on a bus. If the maxMas-
ters element is not present, the numbers of masters is unbounded. The maxMasters elements is of
type nonNegativeInteger.

f) maxSlaves specifies the maximum number of slaves that may appear on a bus. If the maxSlaves
element is not present, the numbers of slaves is unbounded. The maxSlaves elements is of type non-
NegativeInteger.

g) systemGroupNames (optional) defines an unbounded list of systemGroupNames elements, which
in tern, define the possible group names to be used under an onSystem element in an abstraction
definition. The definition of the group names in the bus definition allows multiple abstraction defini-
tions to indicate which system interfaces match each other. The systemGroupNames element is of
type Name.

h) description (optional) allows a textual description of the interface. The type of this element is
string.

i) vendorExtensions (optional) contains any extra vendor-specific data related to the interface.

See also: SCR 9.1 and SCR 9.2.

6.2.3 Example

This is an example of an AHB busDefinition.

<?xml version="1.0" encoding="UTF-8" ?>
36 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
<spirit:busDefinition
xmlns:spirit= http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xsi:schemaLocation="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4
http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4/index.xsd">

<spirit:vendor>amba.com</spirit:vendor>
<spirit:library>AMBA</spirit:library>
<spirit:name>AHB</spirit:name>
<spirit:version>v1.0</spirit:version>
<spirit:directConnection>false</spirit:directConnection>
<spirit:isAddressable>true</spirit:isAddressable>
<spirit:extends spirit:vendor="amba.com"

spirit:library="AMBA"
spirit:name="AHBlite"
spirit:name=”v1.0” />

<spirit:maxMasters>16</spirit:maxMasters>
<spirit:maxSlaves>16</spirit:maxSlaves>
<spirit:systemGroupNames>

<spirit:systemGroupName>ahb_clk</spirit:systemGroupName>
<spirit:systemGroupName>ahb_reset</spirit:systemGroupName>

</spirit:systemGroupNames>
</spirit:busDefinition>

6.3 Abstraction definition

6.3.1 Schema

The following schema details the information contained in the abstractionDefinition element, which is one
of the seven top-level elements in the IP-XACT specification used to describe the low-level aspects of a bus.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 37
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
6.3.2 Description

The abstractionDefinition element describe the low-level aspects of a bus or interconnect. It contains the
following elements and attributes.

a) The versionedIdentifier group provides a unique identifier; it consists of four subelements for a top-
level IP-XACT element.
1) vendor (mandatory) identifies the owner of this description. The recommended format of the

vendor element is the company internet domain name.
2) library (mandatory) identifies a library of this description. This allows one vendor to group

descriptions.
3) name (mandatory) identifies a name of this description.
4) version (mandatory) identifies a version of this description. This allows one vendor to provide

many descriptions which all have the same name, but are still uniquely identified.
b) busType (optional) specifies if this definition is an extension from another abstraction definition.

The busType element is of type libraryRefType (see X.Y.Z), it contains four attributes to specify a
unique VLNV. See 6.12 on extending bus definitions.
1) vendor attribute (mandatory) identifies the owner of the referenced description.
2) library attribute (mandatory) identifies a library of referenced description.
3) name attribute (mandatory) identifies a name of referenced description.
4) version attribute (mandatory) identifies a version of referenced description.
38 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
c) extends (optional) specifies if this definition is an extension from another abstraction definition. The
extends element is of type libraryRefType (see X.Y.Z), it contains four attributes to specify a unique
VLNV. See 6.12 on extending bus definitions.

1) vendor attribute (mandatory) identifies the owner of the referenced description.

2) library attribute (mandatory) identifies a library of referenced description.

3) name attribute (mandatory) identifies a name of referenced description.

4) version attribute (mandatory) identifies a version of referenced description.

d) ports (mandatory) is a list of logical ports, see 6.4.

e) description (optional) allows a textual description of the interface. The type of this element is
string.

f) vendorExtensions (optional) contains any extra vendor-specific data related to the interface.

The abstractionDefinition element contains a list of logical ports that define a representation of the bus
type to which it refers. A port can be a wire port (see 6.7) or a transactional port (see 6.10). A wire port
carries logic information or an array of logic information. A transactional port carries information that is
represented on a higher level of abstraction.

An abstractionDefinition can extend another abstractionDefinition if and only if the bus type of the
abstraction definition extends the bus type of the extending abstraction definition. The extending abstraction
definition may change the definition of logical ports, add new ports, or mark existing logical ports illegal (to
disallow their use).

See also: SCR 3.1, SCR 3.23, and SCR 3.24.

6.3.3 Example

The following example shows an abstraction definition for the interrupt bus in the Leon2 TLM example.

<spirit:vendor>spiritconsortium.org</spirit:vendor>

<spirit:library>Leon</spirit:library>

<spirit:name>INT_PV</spirit:name>

<spirit:version>1.4</spirit:version>

<spirit:busType spirit:vendor="spiritconsortium.org"
spirit:library="Leon" spirit:name="Int" spirit:version="v1.0"/>

<spirit:ports>

<spirit:port>

<spirit:logicalName>INT_TRANSACTION</spirit:logicalName>

<spirit:wire>

<spirit:onMaster>

<spirit:presence>required</spirit:presence>

<spirit:direction>out</spirit:direction>

</spirit:onMaster>

<spirit:onSlave>

<spirit:presence>required</spirit:presence>

<spirit:direction>in</spirit:direction>

</spirit:onSlave>

</spirit:wire>

</spirit:port>

</spirit:ports>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 39
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
6.4 Ports

6.4.1 Schema

The following schema details the information contained in the ports element, which appears part of the
abstractionDefinition element within an abstraction definition.

6.4.2 Description

The ports element is an unbounded list of port elements. Each port element defines the logical port
information for the containing abstraction definition. It contains the following elements.

a) logicalName (mandatory) gives a name to the logical port that can be used later in component
description when the mapping is done from a logical abstraction definition port to the components
physical port. The type of this element is Name.

b) displayName (optional) allows a short descriptive text to be associated with the port. The type of
this element is string.

c) description (optional) allows a textual description of the port. The type of this element is string.

d) Each port also requires a wire element or a transactional element to further describe the details
about this port. See 6.5 or 6.10, respectively. A wire style port is a port that carries logic values or an
array of logic values. A transactional style port is a port that carries any other type of information,
typically used for TLM.

e) vendorExtensions (optional) contains any extra vendor-specific data related to the port.
40 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
6.4.3 Example

See 6.3.3 for an example.

6.5 Wire ports

6.5.1 Schema

The following schema details the information contained in the wire element, which may appear as part of
the port element within an abstraction definition (abstractionDefinition/ports/port).
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 41
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
6.5.2 Description

A wire element represents a port that carries logic values or an array of logic values. This logical wire port
may provide optional constraints for a wire port, to which it is mapped inside a component or abstractor’s
busInterface. It contains the following elements and attributes.

a) qualifier (optional) indicates which type of information this wire port carries. See 6.6.

b) onSystem (optional) defines constraints, e.g., timing constraints, for this wire port if it is present in a
system bus interface with a matching group name.

1) The group (mandatory) attribute indicates the group name for the wire port. It distinguishes
between different sets of system interfaces. Usually, all the arbiter ports are processed together,
or all the clock or reset ports are processed together. So, this is really a mechanism to specify
any sort of non-standard bus interface capabilities for the interconnect. The group name shall
match the one specified in the bus definition. The type of this element is Name.

2) The group wirePort specifies what elements are used in this port. See 6.7.

c) onMaster (optional) defines constraints for this wire port when present in a master bus interface.
The group wirePort specifies what elements are used in this port. See 6.7.

d) onSlave (optional) defines constraints for this wire port when present in a slave bus interface. The
group wirePort specifies what elements are used in this port. See 6.7.

e) Either of the follow two element are allowed, but not both.

1) defaultValue (optional) contains the default logic value for this wire port. This value is applied
when the port is left unconnected. The type of this element is scaledNonNegativeInteger.

2) requiresDriver (optional) specifies whether the port requires a driver when used in a com-
pleted design. The type of this element is Boolean. Its default value is False, indicating this
does not require a driver. When set to True, the attribute driverType further qualifies what
driver type is required: any (the default, meaning any logic signal or value), clock (meaning a
repeating type waveform), or singleshot (a non-repeating type waveform).

NOTE—The onMaster, onSlave, and onSystem elements associated with each logical port provide optional con-
straints. So, if none of these constraints are specified, that port is unconstrained in how it appears in any interface. The
abstraction definition author has the choice of how far to constrain the definitions. Generally speaking, more constraints
in the definitions reduce implementation flexibility for whoever is creating bus IP that conforms to the abstraction defi-
nition.

6.5.3 Example

See 6.3.3 for an example.

6.6 Qualifiers

6.6.1 Schema

The following schema details the information contained in the qualifier element, which may appear as part
of the wire element within an abstraction definition (abstractionDefinition/ports/port/wire).
42 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
6.6.2 Description

The qualifier element indicates which type of information a wire port carries. It contains the following
elements.

a) isAddress (optional), when True, specifies the port contains address information. This qualifier
may be paired with the isData element (useful for serial protocols). The type of this element is Bool-
ean.

b) isData (optional), when True, specifies the port contains data information. This data resides in reg-
isters defined in the memory map referenced by the interface. The width defined by the port on each
side of the two connected bus interfaces can be used to determine which portions of the data may be
lost or gained (tied off to defaults) during transfers if the two widths do not match. This qualifier
may be paired with the isAddress element (useful for serial protocols). The type of this element is
Boolean.

c) isClock (optional), when True, specifies this signal is a clock for this bus interface, i.e., it provides a
repeating signal which the interface uses to implement the protocol. No method of processing is
implied with this tag. This tag shall only be applied to pure clock signals. This qualifier may not be
combined with other qualifiers. The type of this element is Boolean.

d) isReset (optional), when True, specifies this signal is a reset for this bus interface., i.e., it provides
the necessary input to put the interface into a known state. No method of processing is implied with
this tag. This tag should only be applied to pure reset signals. This qualifier may not be combined
with other qualifiers. The type of this element is Boolean.

See also: SCR 9.1 and SCR 9.2.

6.6.3 Example

See 6.3.3 for an example.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 43
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
6.7 Wire port group

6.7.1 Schema

The following schema details the information contained in the wirePort group, which may appear as part of
the onSystem, onMaster, or onSlave element within a wire element within an abstraction definition
(abstractionDefinition/ports/port/wire/onmode).

6.7.2 Description

The group wirePort specifies what elements are used in a wire port. It contains the following elements.
a) presence (optional) provides the capability to require or forbid a port from appearing in a busInter-

face. The three possible values are illegal, required, or optional (the default).
b) width (optional) represents the number of logical bits that are required to represent this signal.

When mapping to this logical port in a busInterface/portmap, the numbering shall start from 0 to
width-1. If width is not specified, the component shall define the number of bits in this signal, but
44 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
the logical portmap numbering shall still start at 0. If necessary, logical bit 0 shall be the least sig-
nificant bit. The width element is of type positveInteger.

c) direction (optional) restricts the direction of the port relative to the non-mirrored interface. The
three possible values are in, out (the default), or inout.

d) Each wirePort group can also have a sequence of modeConstraints and mirroredModeCon-
straints specifying the default constraints of this interface during synthesis. The modeConstraints
apply to this port if it appears in a non-mirrored ‘mode’ bus interface (see 6.8). Any mirroredMo-
deConstraints apply to this port if it appears in a mirrored-‘mode’ bus interface (see 6.9).

If mirroredModeConstraints are not specified, the modeConstraints also apply to this port in a
mirrored-‘mode’ bus interface.

6.7.3 Example

See 6.3.3 for an example.

6.8 Wire port ‘mode’ constraints

6.8.1 Schema

The following schema defines the information contained in the modeConstraints element, which may
appear within an onMaster, onSlave, or onSystem element within an abstraction definition
(abstractionDefinition/ports/port/wire/onmode).
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 45
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
6.8.2 Description

The modeConstraints element defines any default implementation constraints associated with the
containing wire port of the abstraction definition. It contains the following elements.

a) timingConstraint (optional) element defines a technology-independent timing constraint associated
with the containing wire port. See 7.11.13.

b) driveConstraint (optional) element defines a technology-independent drive constraint associated
with the containing wire port. See 7.11.12.

c) loadConstraint (optional) element defines a technology-independent load constraint associated
with the containing wire port. See 7.11.11.

The constraints contained within the modeConstraints element are only applied to the corresponding
physical port in a component when the physical port does not have any constraints defined within its own
port element and there is no SDC file associated with the component. For example, if it appears inside an
onMaster element, the constraints apply when the port appears in a master interface. If the
modeConstraints element is immediately followed by a mirroredModeConstraints element (see 6.9), the
constraints defined in the modeConstraints element apply only when the port is used in a non-mirrored
mode interface. Otherwise, the constraints apply when the port appears in a mode interface or a mirrored-
mode interface.

6.8.3 Example

The following example shows a port within an abstraction definition, containing a single timing constraint.
Since there is no mirroredModeConstraint element, this timing constraint applies when the HRDATA
port appears in either a master interface or a mirrored-master interface.

<spirit:port>

<spirit:logicalName>HRDATA</spirit:logicalName>

<spirit:wire>

<spirit:onMaster>

<spirit:modeConstraints>

<spirit:timingConstraint spirit:clockName=”HCLK”>40

</spirit:timingConstraint>

</spirit:modeConstraints>

</spirit:onMaster>

</spirit:wire>

</spirit:port>

6.9 Wire port mirrored-‘mode’ constraints

6.9.1 Schema

The following schema defines the information contained in the mirroredModeConstraints element, which
may appear within an onMaster, onSlave, or onSystem element within an abstraction definition
(abstractionDefinition/ports/port/wire/onmode).
46 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
6.9.2 Description

The mirroredModeConstraints element also defines any default implementation constraints associated
with the containing wire port of the abstraction definition. It contains the following (optional) elements.

a) timingConstraint (optional) element defines a technology-independent timing constraint associated
with the containing wire port. See 7.11.13.

b) driveConstraint (optional) element defines a technology-independent drive constraint associated
with the containing wire port. See 7.11.12.

c) loadConstraint (optional) element defines a technology-independent load constraint associated
with the containing wire port. See 7.11.11.

The constraints contained within the mirroredModeConstraints element are only applied to the
corresponding physical port in a component when the physical port does not have any constraints defined
within its own port element and there is no SDC file associated with the component. For example, if it
appears inside an onMaster element, the constraints only apply when the port appears in a mirrored-master
interface.

6.9.3 Example

The following example shows a port within an abstraction definition, containing a single timing constraint.
On a master interface the port gets 40% of the cycle time and on a mirrored master interface it gets 60% of
the cycle time.

<spirit:port>
<spirit:logicalName>HRDATA</spirit:logicalName>
<spirit:wire>

<spirit:onMaster>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 47
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
<spirit:modeConstraints>
<spirit:timingConstraint spirit:clockName=”HCLK”>40

</spirit:timingConstraint>
</spirit:modeConstraints>
<spirit:mirroredModeConstraints>

<spirit:timingConstraint spirit:clockName=”HCLK”>60
</spirit:timingConstraint>

</spirit:mirroredModeConstraints>
</spirit:onMaster>

/spirit:wire>
</spirit:port>

6.10 Transactional ports

6.10.1 Schema

The following schema defines the information contained in the transactional element, which may appear
within a port within an abstraction definition (abstractionDefinition/ports/port).

6.10.2 Description

The transactional element defines a logical transactional port of the abstraction definition. This logical
transactional port may provide optional constraints for a transactional port, to which it is mapped inside a
component or abstractor’s busInterface. The transactional element also contains the following elements
and attributes.

a) The qualifier (optional) element indicates which type of information this transactional port carries.
It contains either or both of the following elements.
1) isAddress (optional) specifies the port contains address information.
2) isData (optional) specifies the port contains data information.
48 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
b) onSystem defines constraints for this transactional port if it is present in a system bus interface with
a matching group name.

1) The group attribute indicates the group name for the transactional port. It distinguishes
between different sets of system interfaces. Usually, all the arbiter ports are processed together,
or all the clock or reset ports are processed together. So, this is really a mechanism to specify
any sort of non-standard bus interface capabilities for the interconnect. The group name shall
match the one specified in the bus definition.

2) The group transactionalPort specifies what elements are used in this port. See 6.11.

c) onMaster defines constraints for this transactional port when present in a master bus interface. The
group transactionalPort specifies what elements are used in this port. See 6.11.

d) onSlave defines constraints for this transactional port when present in a slave bus interface. The
group transactionalPort specifies what elements are used in this port. See 6.11.

See also: SCR 6.14 and SCR 6.17.

6.10.3 Example

The following example shows a transactional port within an abstraction definition, carrying data
information.

<spirit:port>

<spirit:logicalName>pv_data</spirit:logicalName>

<spirit:transactional>

<spirit:qualifier>

<spirit:isData>true</spirit:isData>

</spirit:qualifier>

<spirit:onMaster>

<spirit:presence>required</spirit:presence>

<spirit:service>

spirit:initiative>requires</spirit:initiative>

<spirit:typeName>pv_basic_type</spirit:typeName>

</spirit:service>

</spirit:onMaster>

</spirit:transactional>

</spirit:port>

6.11 Transactional port group

6.11.1 Schema

The following schema defines the information contained in the transactionalPort group, which may appear
within an onMaster, onSlave, or onSystem element within an abstraction definition (abstractionDefinition/
ports/port/transactional/onmode).
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 49
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
6.11.2 Description

A transactionalPort group contains elements defining constraints associated with a transactional logical
port within an abstractionDefinition. It contains the following elements.

a) presence (optional) provides the capability to require or forbid a port to appear in a busInterface.
Its three possible values are illegal, required, or optional (the default).

b) service (mandatory) defines constraints on the service type, which the component transactional port
can provide or require. It also contains the following elements or attributes.
1) initiative (mandatory) defines the type of access: requires (the default), provides, or both. For

example, a SystemC sc_port is defined using requires, since it requires a SystemC inter-
face.

2) typeName (mandatory) is and unbounded list that defines the names of the transactional inter-
face types. The typeName element is of type anyURI. The implicit (optional) attribute may be
be used here to indicate this element is implicit and a netlister shall not declare this service in a
language-specific top-level netlist.

3) vendorExtensions contains any extra vendor-specific data related to the interface.

See also: SCR 6.5.1, SCR 6.5.2, SCR 6.5.3, and SCR 6.7.

6.11.3 Example

The following example shows a custom transactional port within an abstraction definition. Constraints are
defined for transactional port used in master or slave interfaces.

<spirit:port>
<spirit:logicalName>custom_tlm_port</spirit:logicalName>
<spirit:transactional>
50 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
<spirit:onMaster>
<spirit:service>

<spirit:initiative>provides</spirit:initiative>
<spirit:typeName implicit=”true”>TLM

</spirit:typeName>
</spirit:service>

</spirit:onMaster>
<spirit:onSlave>

<spirit:service>
<spirit:initiative>requires</spirit:initiative>
<spirit:typeName implicit=”true”>TLM

</spirit:typeName>
</spirit:service>

</spirit:onSlave>
</spirit:transactional>

</spirit:port>

6.12 Extending bus and abstraction definitions

6.12.1 Extending bus definitions

Bus definitions may use the extends element to create a family of compatible inter-connectable bus
definitions. A bus definition (B) extends another existing bus definition (A) by specifying the extends
element in the B bus definition’s element list. Bus definition B is referred to as the extending bus definition
and bus definition A is referred to as the extended bus definition. For two bus definitions related by the
extends relation to be inter-connectable, they need to be in a direct line of descent in the hierarchical
extension tree, as illustrated in Figure 7.

Figure 7—Extends relation hierarchy tree

In Figure 7, bus definition B extends bus definition A. Bus interfaces of bus definition E shall only be
connected with bus interfaces of bus definitions E, B, and A. By the same token, bus interfaces of bus
definition F shall only be connected with bus interfaces of bus definitions F, B, and A.

A

B DC

E F
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 51
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
6.12.2 Extending abstraction definitions

The abstractionDefinition that references the extended busDefinition via the busType element is referred
to as the extended abstractionDefinition. The bus definition writer shall supply an abstractionDefinition
that references the extending busDefinition and it is referred to as the extending abstractionDefinition. The
extending abstractionDefinition shall reference the extended abstractionDefinition via its extends
element. An example of extending is shown in Figure 8.

Figure 8—Example of extending

The extending bus definition and abstraction definition pair shall be able to stand on its own independent of
the extended bus definition and abstraction definition pair; therefore, all the elements and attributes of the
extended bus definition and abstraction definition pair shall be specified in the extending bus definition and
abstraction definition pair. Also, all the ports in the extended abstraction definition shall be explicitly
defined in the extending abstraction definition. Some of the elements and attributes of the extending bus
definition and abstraction definition pair may be modified from the extended bus definition and abstraction
definition pair, while others may not.

6.12.3 Modifying definitions

Table 1 specifies which elements and attributes may be modified in a bus definition and Table 2 specifies
which elements and attributes may be modified in an abstraction definition.

Table 1—Elements of extending bus definition

Item Modified Comment

directConnection No

isAddressable No

maxMasters Yes Smaller number applies

maxSlaves Yes Smaller number applies

systemGroupNames Yes New group names may be added

description Yes

vendorExtensions Yes

busDef
AHBLite

absDef
AHBLite_rtl

extends

extends

busType

absDef
AHB_rtl

busType

busDef
AHB
52 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
The extending abstraction definition may add new ports and the extending abstraction definition may mark
certain ports as illegal to disallow their use. Table 3 specifies which port elements may be modified when
extending bus definitions.

6.12.4 Interface connections

When a bus interface of the extended bus definition and abstraction definition pair is connected with a bus
interface of the extending bus definition and abstraction definition pair, it is possible either interface may
have unconnected ports due to the previous extensions of the port list (i.e., port additions or disownment).

Table 2—Elements of extending abstraction definition

Item Modified Comment

ports Yes See Table 3

description Yes

vendorExtensions Yes

Table 3—Elements of a port in an extending abstraction definition

Item Modified Comment

logicalName No Changing this name implies a port that is different
than the one in the extended abstractionDefini-
tion.

requiresDriver Yes

isAddress No

isData No

isClock No

isReset No

onSystem/group Yes

presence Yes

width Yes

direction No

modeConstraints Yes

mirroredModeConstraints Yes

defaultValue Yes

service/initiative No

service/typeName No

service/vendorExtensions Yes

vendorExtensions Yes
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 53
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
The bus definition writer needs to be aware of these scenarios and specify defaultValues where necessary.
Here is a sample of the possible connections between two extended interfaces (A and B).

master(A) connecting to slave(B) (if directConnection = True)
master(A) connecting to mirror-master(B)
slave(A) connecting to mirror-slave(B)
master(B) connecting to slave(A) (if directConnection = True)
master(B) connecting to mirror-master(A)
slave(B) connecting to mirror-slave(A)

6.13 Clock and reset handling

GEE--This needs a new home

Abstraction definitions shall include all the logical ports that can participate in the protocol of the bus and
bus interfaces need to map to the component all the logical ports that participate in the protocol of that bus at
that interface. For example, on an AXI bus, the ports of the write channel can participate in the protocol of
the bus, so they shall be included in the AXI abstraction definition. These ports will participate in the
protocol at any AXI bus interface that supports writes, so they need to be included in all such bus interfaces,
but not included in any AXI bus interfaces that only support reads.

This requirement applies to clock and ports signals as much as it does to other ports. If the protocol of a bus
is dependent on a clock or reset port, the bus definition for that bus shall include that clock or reset port.
Similarly if the bus protocol at a bus interface is dependent on a particular clock or reset port, the port map
of that bus interface shall include that port. The clock or reset port, however, do not need to exist as a port of
the component implementation, since it may be mapped to a phantom port of the component (see
7.11.16.3.2). Also, since multiple bus ports may be mapped to a single component port (and component
ports may also participate in ad-hoc connections), the clock routing is not required to match or be defined by
the bus infrastructure.

In some cases, a component may have clock or reset ports that are not associated with and do not participate
in the protocol of any bus interface, but do provide a clock or reset signal to the internal logic of the
component instead, e.g., a processor clock. In such cases, the clock port should be included in a special
purpose clock or reset bus interface, with an appropriate special purpose bus type, or not be mapped into any
interface and connected using ad-hoc connections instead.
54 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
7. Component descriptions

7.1 Components

An IP-XACT component is the central placeholder for the objects meta-data. Components are used to
describe cores (processors, co-processors, DSPs, etc.), peripherals (memories, DMA controllers, timers,
UART, etc.), and buses (simple buses, multi-layer buses, cross bars, network on chip, etc.). An IP-XACT
component can be of two kinds: static or configurable. A DE cannot change a static component. A
configurable component has configurable elements (such as parameters) that can be configured by the DE
and these elements may also configure the RTL or TLM model.

An IP-XACT component can be a hierarchical object or a leaf object. Leaf components do not contain other
IP-XACT components, while hierarchical components contain other IP-XACT sub-components. This can
be recursive by having hierarchical components that contain hierarchical components, etc.—leading to the
concept of hierarchy depth. The IP being described may have a completely different hierarchical
arrangement in terms of its implementation in RTL or TLM to that of its IP-XACT description. So, a
description of a large IP component may be made up of many levels of hierarchy, but its IP-XACT
description need only be a leaf object as that completely describes the IP. On the other hand, some IP can
only be described in terms of a hierarchical IP-XACT description, no matter what the arrangement of the
implementation hierarchy.

An IP-XACT component may contain a channel or a bridge. A channel is a special IP-XACT object that can
be used to describe multi-point connections between regular components that may require some interface
adaptation. A bridge is a point-to-point reference of slave to master interfaces. Both of these concepts are
used to describe the interconnect between components.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 55
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
7.1.1 Schema

The following schema details the information contained in the component element, which is one of the
seven top-level elements in the IP-XACT specification used to describe a component.
56 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

1

5

10

15

20

25

30

35

40

45

50
IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

7.1.2 Description

Each element of a component is detailed in the rest of this clause; the main sections of a component are:

a) versionedIdentifier group provides a unique identifier; it consists of four subelements for a top-level
IP-XACT element.

1) vendor (mandatory) identifies the owner of this description. The recommended format of the
vendor element is the company internet domain name.

2) library (mandatory) identifies a library of this description. This allows one vendor to group
descriptions.

3) name (mandatory) identifies a name of this description.

4) version (mandatory) identifies a version of this description. This allows one vendor to provide
many descriptions which all have the same name, but are still uniquely identified.

b) busInterfaces (optional) specifies all the interfaces for this component. A busInterface is a group-
ing of ports related to a function, typically a bus, defined by a bus definition and abstraction defini-
tion. See 7.5.

c) channels (optional) specifies the interconnection between interfaces inside of the component. See
7.6.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 57
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

55

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
d) remapStates (optional) specifies the combination of logic states on the component ports and trans-
lates them into a logical name for use by logic that controls the defined address map. See 7.9.2.

e) addressSpaces (optional) specifies the addressable area as seen from a busInterface with an inter-
face mode of master. See 7.7.

f) memoryMaps (optional) specifies the addressable area as seen from a busInterface with an inter-
face mode of slave. See 7.8.

g) model (optional) specifies all the different views, ports, and model configuration parameters of the
component. See 7.11.

h) componentGenerators (optional) specifies a list of generator programs attached to this component.
See 7.12.

i) choices (optional) specifies multiple enumerated lists. These lists are referenced by other sections of
this component description. See 7.14.

j) fileSets (optional) specifies groups of files and possibly their function for reference by other sec-
tions of this component description. See 7.13.

k) whiteboxElements (optional) specifies all the different locations in the component that can be
accessed for verification purposes. See 7.15.

l) cpus (optional) indicates this component contains programmable processors. See 7.17.
m) otherClockDrivers (optional) specifies any clock signals, which are not external ports on the com-

ponent, where implementation constraints are associated. See 7.11.15.
n) description (optional) allows a textual description of the component. The description element is of

type string.
o) parameters (optional) describes any parameter that can be used to configure or hold information

related to this component. See X.Y.Z.
p) vendorExtensions (optional) contains any extra vendor-specific data related to the component. See

X.Y.Z.

7.1.3 Example

GEE--This example needs to be filled out more. Maybe just reference a large example at the end

This is an example of a component (a Leon Timer peripheral).

<?xml version="1.0" encoding="UTF-8" ?>

<spirit:component
xmlns:spirit="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4
http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4/index.xsd">
<spirit:vendor>spiritconsortium.org</spirit:vendor>
<spirit:library>Leon2</spirit:library>
<spirit:name>timers</spirit:name>
<spirit:version>1.00</spirit:version>
<spirit:busInterfaces>
...

 <spirit:memoryMaps>

 <spirit:model>
...

 <spirit:choices>
...

 <spirit:fileSets>
...
58 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
</spirit:component>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 59
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
60 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
7.2 Interfaces

Each IP component normally identifies one or more bus interfaces. Bus interfaces are groups of ports that
belong to an identified bus type (i.e., a reference to a busDefinition (see 6.2)) and an abstraction type (i.e., a
reference to an abstractionDefinition (see 6.3)). The purpose of the bus interface is to map the physical
signals of the component to the logical ports of the abstraction definition. This mapping provides more
information about the interface.

There are seven possible modes for a bus interface: master, slave, and system; each with two flavors: direct
and mirrored. Additionally, a monitor interface can be used to connect IP into the design for verification.

7.2.1 Direct interface modes

A master interface is the interface mode that initiates a transaction (like a read or write) on a bus. Master
interfaces tend to have associated address spaces (address spaces with programmers view).

A slave interface is the interface mode that terminates or consumes a transaction initiated by a master
interface. Slave interfaces often contain information about the registers that are accessible through the slave
interface.

A system interface is neither a master nor slave interface; this interface mode allows specialized (or non-
standard) connections to a bus, such as external arbiters. System interfaces can be used to handle situations
not covered by the bus specification or deviations from the bus specification standard.

The following guidelines also apply to the direct interface modes.
— If a port’s functionality is documented in the bus’s documentation, then it shall be included in master

and slave interfaces; only those ports that do not have documented functionality should be included
in system interfaces.

— Some buses have specialized sideband ports. If these are tied or related to the standard ports in the
bus (as opposed to being completely standalone), these ports should have some sort of system ele-
ment designator in the bus definition.

7.2.2 Mirrored interface modes

As the name suggests, a mirrored interface has the same (or similar) ports to its related direct bus interface,
but each port’s direction or initiative is reversed. So a port that is an input on a direct bus interface would be
an output in the matching mirrored interface. A mirrored bus interface (like its non-mirrored counterpart)
supports the master, slave, and system classes.

7.2.3 Monitor interface modes

A monitor interface connects verification IP used to a master, slave, system, mirrored-master, mirrored-
slave, or mirrored-system for observation. The connection shall not modify the connected interfaces. A
monitor interface is identified by using the monitor element in the interface definition and specifying the
type of active interface being monitored (master, slave, etc.).

7.3 Interface interconnections

IP-XACT provide for three different types of connections between interfaces. A direct connection is a
connection between a master interface and a slave interface. A direct-mirrored connection is a connection
between a direct interface and its corresponding mirrored interface (i.e. slave and mirrored-slave). A monitor
connection is a connection between any interface type (other than monitor) and a monitor interface. It is not
possible to connect two mirrored interfaces.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 60
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
All interconnections are described in a top-level design object. See X.Y.Z.

7.3.1 Direct connection

A direct connection is a connection between a master interface and a slave interface. This connection is a
single point-to-point connection. More complex connection schemes with direct connections are possible
with the use of a bridge component. The direct connection shall meet the following conditions and rules.

a) The bus definition permits a direct connection, as specified in the bus definition. See 6.2.
b) The two interfaces shall be of the same or extended bus definitions and/or extended abstraction def-

initions.
c) For addressable buses:

1) The value of bitsInLau at the master and the slave shall match.
2) The value of endianness at the master and the slave shall match.
3) The value of bitSteering at the master and the slave shall match.
4) The address range defined on the slave interface shall be less than or equal to the address range

defined on the master interface.

7.3.2 Direct-mirrored connection

A direct-mirrored connection is a connection between a master interface and a mirrored-master interface, a
slave interface and a mirrored-slave interface, or a system interface and a mirrored-system interface. These
connections are all single point-to-point connections. More complex connection schemes with direct-
mirrored connections are possible with the use of a channel component. The direct-mirrored connection
shall meet the following rules.

a) The two interfaces shall be of the same or extended bus definitions and/or extended abstraction def-
initions.

b) For addressable buses:
1) The value of bitsInLau at the master and the slave shall match.
2) The value of endianness at the master and the slave shall match.
3) The value of bitSteering at the master and the slave shall match.

7.3.3 Monitor connection

A monitor connection is a connection between a monitor interface and any other interface mode, master,
mirrored-master, slave, mirrored-slave, system, or mirrored-system interface. The monitor interface is
defined for only one mode and can only be used with that specific mode. Monitor connections are purely for
non-intrusive observation of an interface. These connections are single-point to multi-point connections: the
single point being the interface to be monitored and the multi-point being the monitor interface. More than
one monitor may be attached to the same interface. The monitor connection shall meet the following rules.

a) The monitor interface mode shall match the monitored interface mode.
b) The two interfaces shall be of the same or extended bus definitions and/or extended abstraction def-

initions.
c) The connection of a monitor interface shall not count as a connected interface in the determination

of the maximum master or maximum slave calculations.

7.3.4 Interface logical to physical port mapping

An interface on a component contains a port map to associate the physical ports on the component with the
logical ports in the abstraction definition. This mapping is what provides the extra information needed to
enable higher level of design.
61 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
A physical port defined in a component is assigned a physical port name and optionally can be assigned a
left and a right element to represent a vector. The left element indicates the first boundary, the right
element, the second boundary. left may be larger than right and that left may be the MSB or LSB (the right
being the opposite). The left and right elements are the (bit) rank of the left-most and right-most bits of the
port.

A logical port defined in an abstraction definition is assigned a logical port name and, optionally, a width.
The logical port is assigned a numbering from 0 to the width-1 if the width is present. If the width is not
present, the logical port number shall start at 0 and not have an upper bound.

7.3.4.1 Mapping rules

These rules describe the assignment of logical bit numbers to a physical port.
a) If both ports have a vector defined, the logical port width=max(logical.left,logical.right) - min(logi-

cal.left,logical.right) +1 shall be equal to the physical port width=max(physical.left,physical.right) -
min(physical.left,physical.right) +1. The mapping is such that logical.left-> physical.left down to
logical.right-> physical.right.

b) If only the physical port has a vector defined, the logical port width=(width from abstraction defini-
tion, if defined) shall be equal to the physical port width=max(physical.left,physical.right) -
min(physical.left,physical.right) +1. The mapping is such that logical.width-1-> physical.left down
to logical.0-> physical.right.

c) If only the logical port has a vector defined, then logical port width=max(logical.left,logical.right) -
min(logical.left,logical.right) +1 shall be equal to the physical port width=max(port.left,port.right) -
min(port.left,port.right) +1. The mapping is such that logical.left-> port.left down to logical.right->
port.right.

d) If neither vector is defined, the logical port width=(width from abstraction definition, if defined)
shall be equal to the physical port width=max(port.left,port.right) - min(port.left,port.right) +1. The
mapping is such that logical.width-1-> port.left down to logical.0-> port.right.

7.3.4.2 Physical interconnections

With all logical bits having been assigned from the abstraction definition to physical port, it is a simple
matter to describe the physical connections that result from an interface connection. All connections are
made purely based on the logical bit assignment. Like logical bit numbers from each interface are connected.
The alignment is always such that logical bit 0 from interface A connects to logical bit 0 from interface B,
logical bit 1 from interface A connects to logical bit 1 from interface B, and so on.

7.4 Complex interface interconnections

There are two constructs used to connect interfaces of standard components together (traditional
components, usually with ‘masters’ and ‘slave’ interfaces), a channel and a bridge. These constructs are also
encapsulated into components. Not only does the channel or bridge component provide a connection
between the standard components, but it also provides information on the addressing and data flow. With
this information, it is possible to construct things such as a memory map for the system.

A channel connects component master, slave, and system interfaces on the same bus. All masters connected
to a channel see all slaves at the same physical address and only one transaction can be active in a channel at
a time. This does not preclude bus protocols that utilize pipelining.

A bridge is an interface between one bus and another (often a peripheral bus to the main system bus). Such a
component has at least one master interface (onto the peripheral bus) and one slave interface (onto the main
system bus). Crossbar bus infrastructure (e.g., an ARM Multilayer AMBA) is also treated as a bus bridge—
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 62
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
such examples might have multiple master and multiple slave interfaces. A bridge can support multiple
simultaneous transactions and the slaves existing in the master interface address spaces may appear at
different address to any masters connected (by a channel) to each of the bus bridge’s slave ports.

7.4.1 Channel

The channel is a general name which denotes the collection of connections between multiple internal bus
interfaces. The memory map between these connections is restricted so that, for example, a generator can be
called to automatically compute all the address maps for the complete design. A channel can represent a
simple wiring interconnect or a more complex structure such as a bus.

A channel also encapsulates the connection between master and slave components. A channel is the
construct, which represents the bus infrastructure and allows transactions initiated by a master interface to
be completed by a slave interface.

The following rules apply for using channels.
a) A channel can only have one address space (i.e., transmission/transformation matrix). In other

words, a slave connected to a channel has the same address as seen from all masters connected to
this channel. This guarantees the slave addresses (as seen by each master) are consistent for the sys-
tem. As a consequence, all slave interfaces connected to a channel see the same address (if they do
not, they are connected to different channels); and if more than one master/slave interface pair is
active or selected simultaneously, there is more than one channel present.

b) A channel can only relate mirrored interfaces because some buses can have asymmetric interfaces
(e.g., AHB). To cover all type of buses, the channel interfaces are always mirrored interfaces. As a
consequence, a channel can only connect to a direct interface (it can not connect directly to another
channel). However, not all mirrored interfaces of a channel need to be connected.

c) A channel cannot be hierarchical.
d) A channel supports memory mapping and re-mapping (see 7.8 and 7.9).

Simple wire connections (e.g., a clock port connecting to all components of the system) may be modeled as
an IP-XACT channel or as IP-XACT port object.

The following is a sample of the XML code describing the channel and its mirrored interfaces for a simple
AHB-like bus component.

<spirit:component>
 …
 <spirit:busInterfaces>
 <spirit:busInterface spirit:id="AHB_MS">
 <spirit:name>AHB_mirror_slave</spirit:name>
 <spirit:busType spirit:library="AMBA" spirit:name="simpleAHB"

spirit:vendor="spiritconsortium.org" />
 <spirit:mirroredSlave/>
 <spirit:connection>required</spirit:connection>
 <spirit:busInterface spirit:id="AHB_MM">
 <spirit:name>AHB_mirror_master</spirit:name>
 <spirit:busType spirit:library="AMBA" spirit:name="simpleAHB"

spirit:vendor="spiritconsortium.org" />
 <spirit:mirroredMaster/>
 </spirit:busInterface>
 </spirit:busInterfaces>

 <spirit:channels>
 <spirit:channel>
63 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
 <spirit:name>channelAHB1</spirit:name>

 <spirit:busInterfaceRef>AHB_mirror_slave</spirit:busInterfaceRef>

 <spirit:busInterfaceRef>AHB_mirror_master</spirit:busInterfaceRef>

 </spirit:channel>

 </spirit:channels>

</spirit:component>

7.4.2 Bridge

Some buses can be modeled using component bridges. The bridge is a mechanism to model the internal
relationship between slave interfaces and master interfaces inside a component. The slave interface in a
bridge is the interface where a transaction arrives and the master interface is the interface where the
transaction exits. There two different types of bridges defined in IP-XACT, a transparent bridge
(opaque=”false”) and an opaque bridge (opaque=”true”).

The following rules apply for using bridges.

a) A bridge can have multiple address spaces. Specifically, a bridge shall have one or more master
interfaces and each master interface may have a local address space associated with that interface.

b) A bridge can only have direct interfaces. As a consequence, a bridge can directly connect to another
component (master interface to slave interface connection) under the conditions defined in section
4.8.3.2. Or it can connect to a channel (e.g., master interface to mirrored-master interface).

c) A bridge can be hierarchical.

d) A bridge supports memory mapping and re-mapping (see 7.8 and 7.9).

In a bridge, multiple transactions can occur simultaneously, e.g., if two slave interfaces receive a transaction
addressing two distinct master interfaces who want to access the bus at the same time, both can be granted as
long as a ‘bridge path’ has been defined in IP-XACT.

7.4.2.1 Transparent bridge

Needs to be written

7.4.2.2 Opaque bridge

Needs to be written

7.4.3 Combining channels and bridges

It is possible to combine channels and bridges together each in separate components to form a new
hierarchical component for the purpose of modeling more complex interconnects. A multi-layer bus is a
more complex interconnect which may have multiple transactions active and support multiple memory
maps. As such, it cannot be modeled as a channel and if the interfaces are asymmetric (they do not allow
direct connections), then the bus also cannot be modeled as a bridge.

The solution is to use a combination of channel and bridge components. The bridge component in the center
forms the main cross-bar for the communications between components. It decides which interfaces may
bridge to other interfaces. The smaller channels then come in to convert the direct interface of the bridge
(which could not connect to the master’s or slave’s because of the asymmetric bus) into a mirrored interface
that can now connect with a direct-mirrored connection to the master or slave. An example of this is shown
in Figure 9.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 64
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
Figure 9—Asymmetric multi-layer bus connection using channels

7.5 Bus interfaces

7.5.1 busInterface

7.5.1.1 Schema

The following schema details the information contained in the busInterfaces element, which may appear as
an element inside the top-level component element.

7.5.1.2 Description

Bus interfaces enable individual ports that appear on the component to be grouped together into a
meaningful, known protocol. When the protocol is known, a lot of additional information can be written
down about the characteristics of that interface.

Processor

Multi Layer

bus

channel

Memory

channel
65 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
The busInterfaces element contains an unbounded list of busInterface elements; therefore, a component
may have multiple bus interfaces of the same or different types. Each busInterface element defines
properties of this specific interface in a component. It contains the following elements and attributes.

a) nameGroup group includes the following. See X.Y.Z.

1) name (mandatory) identifies a name for the bus interface.

2) displayName (optional) allows a short descriptive text to be associated with the bus interface.

3) description (optional) allows a textual description of the bus interface.

b) busType (mandatory) specifies the bus definition that this bus interface is referenced. A bus defini-
tion (see 6.2) describes the high-level attributes of a bus description. The busType element is of type
libraryRefType (see X.Y.Z); it contains four attributes to specify a unique VLNV.

1) The vendor attribute (mandatory) identifies the owner of the referenced description.

2) The library attribute (mandatory) identifies a library of the referenced description.

3) The name attribute (mandatory) identifies a name of the referenced description.

4) The version attribute (mandatory) identifies a version of the referenced description.

c) abstractionType (mandatory) specifies the abstraction definition where this bus interface is refer-
enced. An abstraction definition describes the low-level attributes of a bus description (see 6.3). The
abstractionType element is of type libraryRefType (see X.Y.Z); it contains four attributes to spec-
ify a unique VLNV.

1) The vendor attribute (mandatory) identifies the owner of the referenced description.

2) The library attribute (mandatory) identifies a library of the referenced description.

3) The name attribute (mandatory) identifies a name of the referenced description.

4) The version attribute (mandatory) identifies a version of the referenced description.

d) interfaceMode group describes further information on the mode for this interface. There are seven
possible modes for an interface: master, slave, mirroredMaster, mirroredSlave, system, mirrored-
System and monitor. See X.Y.Z for details on the interfaceMode group.

e) connectionRequired (optional), if True, specifies when this component is integrated; this interface
must be connected to another interface for the integration to be valid. If False (the default) this inter-
face may be left unconnected. The connectionRequired element is of type Boolean.

f) portMaps (optional) describes the mapping between the abstraction definition’s logical ports and
the component’s physical ports. See 7.5.2.7.

g) bitsInLau (optional) describes the number of data bits that are addressable by the least significant
address bit in the bus interface. It is only appropriate to specify this element for interfaces that are
addressable. The bitsInLau element is of type positiveInteger. The default value is 8.

h) bitSteering (optional) designates if this interface has the ability to dynamically align data on differ-
ent byte channels on a data bus. This element shall only be specified for interfaces that are address-
able. The bitSteering element is a choice of two values, on indicating this interface uses data
steering logic and off that this interface does not use data steering logic. The bitSteering element is
configurable, using attributes from string.prompt.att, see X.Y.Z on configuration.

i) endianness (optional) indicates the endianness of the bus interface. The two choices are big for big-
endian and little for little-endian. For further information on endianness, see 7.5.1.2.1. This element
shall only be specified for interfaces that are addressable.

j) parameters (optional) specifies any parameter data value(s) for this bus interface.

k) vendorExtensions (optional) holds any vendor-specific data from other name spaces which is appli-
cable to this bus interface.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 66
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
7.5.1.2.1 Endianness

Endianness is defined under the busInterface element of the component. There are (only) two legal values
(big and little) to specify the endianness.

— Big endian (big) means the most significant byte of any multi-byte data field is stored at the lowest
memory address, which is also the address of the larger field.

— Little endian (little) means the least significant byte of any multi-byte data field is stored at the low-
est memory address, which is also the address of the larger field.

7.5.1.2.2 Big-endianness

There are at least two ways for big-endianness to manifest itself, byte-invariant and word-invariant (also
known as middle-endian); the difference being if data is stored as word-invariant, the data is stored
differently for transfers larger than a byte, e.g.,

a) Byte invariant: A word access to address 0x0 is on D[31:0]. The MSB is D[7:0], the LSB is
D[31:24].

b) Word invariant: A word access to address 0x0 is on D[31:0]. The MSB is D[31:24], the LSB
byte is D[7:0].

c) In IP-XACT, the interpretation of big-endian is the byte-invariant style.

7.5.1.3 Example

The example below shows a simple bus interface for a clock signal. The interface reference a bus definition
and an abstraction definition.

<spirit:busInterface>

<spirit:name>APBClk</spirit:name>

<spirit:busType spirit:vendor="spiritconsortium.org"
spirit:library="busdef.clock" spirit:name="clock" spirit:version="1.0"/>

<spirit:abstractionType spirit:vendor="spiritconsortium.org"
spirit:library="busdef.clock" spirit:name="clock_rtl"
spirit:version="1.0"/>

<spirit:slave/>

<spirit:portMaps>

<spirit:portMap>

<spirit:logicalPort>

<spirit:name>CLK</spirit:name>

</spirit:logicalPort>

<spirit:physicalPort>

<spirit:name>clk</spirit:name>

</spirit:physicalPort>

</spirit:portMap>

</spirit:portMaps>

</spirit:busInterface>

7.5.2 Interface modes

The following schema details the information contained in the interfaceMode group, which appears as a
group inside the busInterface element.
67 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
7.5.2.1 Schema

7.5.2.2 Description

The busInterface’s mode designates the purpose of the busInterface on this component. There are seven
possible modes: three pairs of standard functional interfaces and their mirrored counterparts, and a monitor
interface for VIP.

The interfaceMode group shall contain one of the following seven elements.

a) A master interface mode (sometimes also known as an initiator) is one that initiates transactions.
See 7.5.2.4.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 68
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
b) A slave interface mode (sometimes also known as a target) is one that responds to transactions.

c) A system interface mode is used for some classes of interface that are standard on different bus
types, but do fit into the master or slave category.

The group (mandatory) attribute for the system element defines the name of the group to
which this system interface belongs. The type of the group attribute is Name. The specified
value of group needs to be a group defined in the referenced abstraction definition. A connec-
tion between a system and mirroredSystem interfaces shall have matching group names.

d) A mirroredSlave interface mode is the mirrored version of a slave interface and can provide addi-
tion address offsets to the connected slave interface. See 7.5.2.6

e) A mirroredMaster interface mode is the mirrored version of a master interface.

f) A mirroredSystem interface mode is the mirrored version of a system interface.

The group (mandatory) attribute for the mirroredSystem element defines the name of the
group to which this mirroredSystem interface belongs. The type of the group attribute is
Name. The specified value of group needs to be a group defined in the referenced abstraction
definition. A connection between a system and mirroredSystem interfaces shall have match-
ing group names.

g) A monitor interface mode is a special interface that can be used for verification. This monitor inter-
face mode is used to gather data from other interfaces. A monitor may only connect to interfaces that
match its set interfaceMode. See 7.3.3.

1) The interfaceMode (mandatory) attribute defines the interface mode for which this monitor
interface can be connected.: master, slave, system, mirroredMaster, mirroredSlave, or mir-
roredSystem.

2) The group (optional) element is required if the interfaceMode attribute is set to system or mir-
roredSystem. This element defines the name of the system group for this monitor interface. The
type of the group element is Name. The specified value of group shall be a group defined in
the referenced abstraction definition.

7.5.2.3 Example

The example below shows a portion of a bus interface for an AHB bus interface. The interface mode is
defined as monitor for a slave.

<spirit:busInterface>

<spirit:name>ambaAHBSlaveMonitor</spirit:name>

<spirit:busType spirit:vendor="amba.com" spirit:library="AMBA2"
spirit:name="AHB" spirit:version="r2p0_5"/>

<spirit:abstractionType spirit:vendor="amba.com" spirit:library="AMBA2"
spirit:name="AHB_rtl" spirit:version="r2p0_5"/>

<spirit:monitor spirit:interfaceMode="slave"/>

<spirit:portMaps>

<spirit:portMap>

<spirit:logicalPort>

<spirit:name>HRESP</spirit:name>

</spirit:logicalPort>

<spirit:physicalPort>

<spirit:name>hresp</spirit:name>

</spirit:physicalPort>

</spirit:portMap>

...

</spirit:busInterface>
69 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
7.5.2.4 Master interface

The following schema details the information contained in the master element, which appears as an element
inside the interfaceMode group inside busInterface element.

7.5.2.4.1 Schema

7.5.2.4.2 Description

A master interface (sometimes also known as an initiator) is one that initiates transactions. The master
element contains the following elements and attributes.

a) addressSpaceRef (optional) element contains attributes and subelements to describe information
about the range of addresses with which this master interface can generate transactions. If the inter-
face is a bus definition that is addressable, an address space reference shall be included.
1) addressSpaceRef (mandatory) attribute references a name of an address space defined in the

same component. The address space shall define the range and width for transaction on this
interface. See 7.7.

2) baseAddress (optional) specifies the starting address of the address space. The address space
numbering normally starts at 0. Some address spaces may use offset addressing (starting at a
number other than 0) so the base address element can be used to designate this information.
The type of this element is set to scaledNonNegativeInteger, see C.10. The baseAddress ele-
ment is configurable, with attributes from long.att, see X.Y.Z on configuration. The prompt
(optional) attribute allows the setting of a string for the configuration and has a default value of
“Base Address:”.

7.5.2.4.3 Example

The example below shows a portion of a bus interface for an AHB master bus interface. The interface
contains a reference to an address space called main, that has its base address starting at 0.

<spirit:busInterface>
<spirit:name>AHBmaster</spirit:name>
<spirit:busType spirit:vendor="amba.com" spirit:library="AMBA2"
spirit:name="AHB" spirit:version="r2p0_5"/>
<spirit:abstractionType spirit:vendor="amba.com" spirit:library="AMBA2"
spirit:name="AHB_rtl" spirit:version="r2p0_5"/>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 70
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
<spirit:master>
<spirit:addressSpaceRef spirit:addressSpaceRef="main"/>
</spirit:master>
<spirit:connectionRequired>true</spirit:connectionRequired>
<spirit:portMaps>

<spirit:portMap>
<spirit:logicalPort>

<spirit:name>HRDATA</spirit:name>
</spirit:logicalPort>
<spirit:physicalPort>

<spirit:name>hrdata</spirit:name>
</spirit:physicalPort>

</spirit:portMap>
...
</spirit:busInterface>

7.5.2.5 Slave interface

The following schema details the information contained in the slave element, which appears as an element
inside the interfaceMode group inside busInterface element.
71 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
7.5.2.5.1 Schema

7.5.2.5.2 Description

A slave interface (sometimes also known as a target) is one that responds to transactions. The memory map
reference points to information about the range of registers, memory, or other address blocks accessible
through this slave interface. This slave interface can also be used in a bridge application to “bridge” a
transaction from a slave interface to a master interface.

a) memoryMapRef (optional) element contains an attribute that references an memory map. If the
interface is a bus definition that is addressable, a memoryMapRef element shall be included, unless
the slave interface is part of a bridge with opaque=False.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 72
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
The memoryMapRef (mandatory) attribute references a name of a memory map defined in the
same component. The memory map contains information about the range of registers, memory,
or other address blocks. See 7.8.

b) bridge (optional) element is an unbounded list of references to master interfaces. If the interface is
of a bus definition that is addressable, a bridge element may be included.
1) The masterRef (mandatory) attribute shall reference a master interface in the containing com-

ponent. Under some conditions, transactions from the slave interface may be bridged to the ref-
erenced master interface, as defined by opaque (see also 7.4.2).

2) The opaque (mandatory) attribute defines the type of bridging. The opaque attribute is of type
Boolean. True means the addressing entering into the slave interface shall have the subspace
maps baseAddress subtracted and, if non-negative, the result shall exit on the subspace maps’
referenced master interface’s referenced address space. False means all addressing entering the
slave interface shall exit the above referenced master interface without any modifications, this
type of bridge is sometimes called transparent.

c) fileSetRefGroup (optional) element is an unbounded list of the references to file sets contained in
this component. These file set references are associated with this slave interface. This element may
seem out of place, but it allows each slave port to reference a unique fileSet element (see 7.13). This
element can further be used to reference a software driver, which can be made different for each
slave port.
1) group (optional) element allows the definition of a group name for the fileSetRefGroup. The

group element is of type Name.
2) fileSetRef (optional) element is an unbounded list of references to a fileSet element contained

in this component. The fileSetRef element is of type Name. See 7.13.

7.5.2.5.3 Example

The example below shows a portion of an opaque bridge from and AHB slave bus interface to an APB
master bus interface.

<spirit:busInterface>
<spirit:name>ambaAPB</spirit:name>
<spirit:busType spirit:vendor="amba.com" spirit:library="AMBA2"
spirit:name="APB" spirit:version="r2p0_3"/>
<spirit:abstractionType spirit:vendor="amba.com" spirit:library="AMBA2"
spirit:name="APB_rtl" spirit:version="r2p0_3"/>
<spirit:master>

<spirit:addressSpaceRef spirit:addressSpaceRef="apb"/>
</spirit:master>

...
<spirit:busInterface>

<spirit:name>ambaAHB</spirit:name>
<spirit:busType spirit:vendor="amba.com" spirit:library="AMBA2"
spirit:name="AHB" spirit:version="r2p0_5"/>
<spirit:abstractionType spirit:vendor="amba.com" spirit:library="AMBA2"
spirit:name="AHB_rtl" spirit:version="r2p0_5"/>
<spirit:slave>

<spirit:memoryMapRef spirit:memoryMapRef="ambaAHB"/>
<spirit:bridge spirit:masterRef="ambaAPB" spirit:opaque="true"/>

</spirit:slave>
...
<spirit:addressSpaces>

<spirit:addressSpace>
<spirit:name>apb</spirit:name>
73 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
<spirit:range spirit:choiceRef="addressWidthChoice"
spirit:format="choice" spirit:id="masterRange" spirit:prompt="Master Port
Size :" spirit:resolve="user">1M</spirit:range>

<spirit:width spirit:format="long">32</spirit:width>
</spirit:addressSpace>

</spirit:addressSpaces>

<spirit:memoryMaps>
<spirit:memoryMap>

<spirit:name>ambaAHB</spirit:name>
<spirit:subspaceMap spirit:masterRef="ambaAPB">

<spirit:name>bridgemap</spirit:name>
<spirit:baseAddress>0x10000000</spirit:baseAddress>

</spirit:subspaceMap>
</spirit:memoryMap>

</spirit:memoryMaps>

7.5.2.6 Mirrored slave interface

The following schema details the information contained in the mirroredSlave element, which appears as an
element inside the interfaceMode group inside busInterface element.

7.5.2.6.1 Schema

7.5.2.6.2 Description

A mirroredSlave interface is used to connect to a slave interface. The mirroredSlave interface may contain
additional address information in the baseAddresses (optional) element.

a) remapAddress (mandatory) element is an unbounded list that specifies the address offset to apply
to the connected slave interface. The type of this element is set to scaledNonNegativeInteger, see
C.10. The remapAddress element is configurable with attributes from long.att, see X.Y.Z on con-
figuration. The prompt (optional) attribute allows the setting of a string for the configuration and
has a default value of “Base Address:”. The state (optional) attribute references a defined state in
the component and identifies the remap state name for which the remapAddress and range apply.
See 7.9.2.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 74
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
b) range (mandatory) specifies the address range to apply to the connected slave interface. The range
is expressed as the number of addressable units based on the size of an addressable unit is defined
inside the containing busInterface/bitsInLau element. See 7.5.1. The type of this element is set to
scaledPositiveInteger. The range element is configurable with attributes from long.prompt.att, see
X.Y.Z on configuration.

7.5.2.6.3 Example

This example shows a portion of a bus interface for an AHB mirroredSlave bus interface. The interface
contains two remap addresses. The first does not have a state attribute and is always active unless a named
state is active, in this case, the base address of the connected slave is offset by 0x00000000. The second
remap address is active when state equal reampped is selected, in this case the base address of the slave is
offset by 0x10000000.

<spirit:busInterface>
<spirit:name>MirroredSlave0</spirit:name>
<spirit:busType spirit:vendor="amba.com" spirit:library="AMBA2"
spirit:name="AHB" spirit:version="r2p0_5"/>
<spirit:abstractionType spirit:vendor="amba.com" spirit:library="AMBA2"
spirit:name="AHB_rtl" spirit:version="r2p0_5"/>
<spirit:mirroredSlave>

<spirit:baseAddresses>
<spirit:remapAddress spirit:resolve="user"

spirit:id="start_addr_slv0_mirror" spirit:choiceRef="BaseAddressChoices"
spirit:format="choice" spirit:prompt="Slave 0 Starting
Address:">0x00000000</spirit:remapAddress>

<spirit:remapAddress spirit:resolve="user"
spirit:id="restart_addr_slv0_mirror"
spirit:choiceRef="BaseAddressChoices" spirit:format="choice"
spirit:prompt="Remap Slave 0 Starting Address:"
spirit:state="remapped">0x10000000</spirit:remapAddress>

<spirit:range spirit:resolve="user" spirit:id="range_slv0_mirror"
spirit:prompt="Slave 0 Range:">0x00010000</spirit:range>

</spirit:baseAddresses>
</spirit:mirroredSlave>

...
</spirit:busInterface>

7.5.2.7 Port mapping

The following schema details the information contained in the portMaps element, which appears as an
element inside busInterface element.
75 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
7.5.2.7.1 Schema

7.5.2.7.2 Description

The portMaps (optional) element contains an unbounded list of portMap elements. Each portMap
element describes the mapping between the logical ports, defined in the referenced abstraction definition, to
the physical ports, defined in the containing component description.

a) logicalPort (mandatory) contains the information on the logical port from the abstraction definition.

1) name (mandatory) specifies the logical port name. The name shall be a name of a logical port
in the referenced abstraction definition that is defined as legal for this interface mode. The
name element is of type Name.

2) vector (optional) is used for a vectored logical port to specify the indices of the logical port
mapping. The vector element contains two subelements: left and right. The values of left and
right shall be less than the width if specified for the logical port from the abstraction defini-
tion. The left and right elements are both of type nonNegativeInteger. The left and right ele-
ments are configurable with attributes from long.prompt.att, see X.Y.Z on configuration.

b) physicalPort (mandatory) contains information on the physical port contained in the component.

1) name (mandatory) specifies the physical port name. The name shall be a name of a port in the
containing component. The name element is of type Name.

2) vector (optional) is used for a vectored physical port to specify the indices of the physical port
mapping. The vector element contains two subelements: left and right. The values of left and
right shall be within the left and right values specified for the physical port. The left and right
elements are both of type nonNegativeInteger. The left and right elements are configurable
with attributes from long.prompt.att, see X.Y.Z on configuration.

The same physical port may be mapped to a number of different logical ports on the same or different bus
interfaces, and the same logical port may be mapped to a number of different physical ports. For port
mapping rules, see 7.3.4.1.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 76
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
7.5.2.7.3 Example

The example below shows a portion of a bus interface for an APB bus interface. A mapping from the logical
port PADDR to the lower 12 bits of the physical port paddr. A mapping from the logical port PWRITE to
the physical port pwrite.

<spirit:portMap>

<spirit:logicalPort>

<spirit:name>PADDR</spirit:name>

</spirit:logicalPort>

<spirit:physicalPort>

<spirit:name>paddr</spirit:name>

<spirit:vector>

<spirit:left>11</spirit:left>

<spirit:right>11</spirit:right>

</spirit:vector>

</spirit:physicalPort>

</spirit:portMap>

<spirit:portMap>

<spirit:logicalPort>

<spirit:name>PWRITE</spirit:name>

</spirit:logicalPort>

<spirit:physicalPort>

<spirit:name>pwrite</spirit:name>

</spirit:physicalPort>

</spirit:portMap>

7.6 Component channels

7.6.1 Schema

The following schema details the information contained in the channels element, which may appear as an
element inside the top-level component element.
77 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
7.6.2 Description

The channels element contains an unbounded list of channel elements. Each channel element contains a
list of all the mirrored bus interfaces in the containing component that belong to the same channel.

a) nameGroup group includes the following. See X.Y.Z.

1) name (mandatory) identifies the channel.

2) displayName (optional) allows a short descriptive text to be associated with the channel.

3) description (optional) allows a textual description of the channel.

b) busInterfaceRef (mandatory) is an unbound list of references (a minimum of two) to mirrored bus
interfaces in the containing component. Each mirrored bus interface in a component may be refer-
enced in any channel at most once. The order of this list may be used by the design environment in
some way and shall be maintained. The busInterfaceRef element is of type Name.

The referenced busInterfaces need to be compatible, which implies the underlying busDefinitions
(referenced by VLNV) need to be compatible as well. The maximum number of mirrored-master interfaces
that can be connected to a channel is determined by the smallest value of maxMasters in the busDefinitions
of the referenced busInterfaces. The maximum number of mirrored-slave interfaces is likewise determined
by the corresponding maxSlaves values.

See also: SCR 3.1, SCR 3.2, SCR 3.3, SCR 3.4, and SCR 3.5.

7.6.3 Example

The following example shows a channel with two connected busInterfaces.

<spirit:busInterfaces>

 <spirit:busInterface>

 <spirit:name>InterfaceA</spirit:name>

 <spirit:busType>...</spirit:busType>

 <spirit:master>...</spirit:master>

 </spirit:busInterface>

 <spirit:busInterface>

 <spirit:name>InterfaceB</spirit:name>

 <spirit:busType>...</spirit:busType>

 <spirit:slave>...</spirit:slave>

 </spirit:busInterface>

</spirit:busInterfaces>

<spirit:channels>

 <spirit:channel>

 <spirit:name>masterChannel</spirit:name>

 <spirit:displayName>Channel for Master communication</spirit:displayName>

 <spirit:description>This channel includes all transaction calls used by
the master component of the system</spirit:description>

 <spirit:busInterfaceRef>InterfaceA</spirit:busInterfaceRef>

 <spirit:busInterfaceRef>InterfaceB</spirit:busInterfaceRef>

 </spirit:channel>

</spirit:channels>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 78
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
79 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
7.7 Address space

An address space is defined as a logical addressable space of memory. Each master interface can be assigned
a logical address space. Address spaces are effectively the programmer's view looking out from a master
port. Some components may have address spaces associated with more than one master interface (for
instance, a processor that has a system bus and a fast memory bus. Other components (for instance, Harvard
architecture processors) may have multiple address spaces - one for instruction and the other for data.

7.7.1 addressSpaces

7.7.1.1 Schema

The following schema details the information contained in the addressSpaces element, which may appear
as an element inside the top-level component element.

7.7.1.2 Description

The addressSpaces element contains an unbouded list of addressSpace elements. Each addressSpace
element defines a logical address space seen by a master bus interface. It contains the following elements.

a) nameGroup group includes the following. See X.Y.Z.
1) name (mandatory) identifies the address space.
2) displayName (optional) allows a short descriptive text to be associated with the address space.
3) description (optional) allows a textual description of the address space.

b) blockSize group includes the following.
4) range (mandatory) gives the address range of an address space. This is expressed as the num-

ber of addressable units of the address space. The size of an addressable unit is defined inside
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 79
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
the addressUnitBits element. The type of the range element is set to scaledPositiveInteger.
The range element is configurable with attributes from long.prompt.att, see X.Y.Z on configu-
ration.

5) width (mandatory) is the bit width of a row in the address space. The type of this element is set
to nonNegativeInteger. The width element is configurable with attributes from
long.prompt.att, see X.Y.Z on configuration.

c) The optional addressUnitBits elements defines the number of data bits in each address increment of
the address space.

d) executableImage (optional) describes the details of an executable image that can be loaded and exe-
cuted in this address space on the processor to which this master bus interface belongs.

e) localMemoryMap (optional) describes a local memory map that is seen exclusively by this master
bus interface viewing this address space. See 7.7.6.

f) parameters (optional) specifies any parameter data value(s) for this address space.
g) vendorExtensions (optional) holds any vendor-specific data from other name spaces which is appli-

cable to this address space.

7.7.1.3 Example

The following example shows the definition of an address space with a range (length) of 4 giga-bytes and a
width of 32 bits.

<spirit:addressSpaces>
<spirit:addressSpace>

<spirit:name>main</spirit:name>
<spirit:range>4G</spirit:range>
<spirit:width>32</spirit:width>
<spirit:addressUnitBits>8</spirit:addressUnitBits>

</spirit:addressSpace>
</spirit:addressSpaces>

7.7.2 executableImage

7.7.2.1 Schema

The following schema details the information contained in the executableImage element, which may appear
inside an addressSpace element.
80 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
7.7.2.2 Description

The executableImage element contains a list of further elements.

a) id (mandatory) attribute uniquely identifies the executableImage for reference else where in this
description, reference location unknown.

b) imageType (optional) attribute can describe the binary executable format (e.g., ELF, raw binary,
etc.). The list of possible values is user defined.

c) name (reqired) identifies the location of the executable object. The type is spiritURI.

d) description (optional) allows a textual description of the address space.

e) parameters (optional) specifies any parameter data value(s) for this executable object.

f) languageTools (optional) contains further elements to describe the information need to build the
execuable image. See 7.7.3.

g) fileSetRefGroup (optional) element contains a list of fileSetRef subelements, each one containing
the name of a file set associated with this executableImage.

h) vendorExtensions (optional) holds any vendor-specific data from other name spaces which is appli-
cable to this address space.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 81
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
7.7.2.3 Example

The following example shows the definition of a binary executable produced using the Gnu C Compiler
(GCC) software tools.

<spirit:executableImage spirit:id="gnu" spirit:imageType="bin">

<spirit:name>calculator.x</spirit:name>

<spirit:description>Calculator function</spirit:name>

<spirit:languageTools>

<spirit:fileBuilder>

<spirit:fileType>cSource</spirit:fileType>

<spirit:command spirit:id="gccCompilerDefault"> gcc</
spirit:command>

<spirit:flags spirit:id="gccCFlags">-c -g -I${INCLUDES_LOCATION}/
software/include -I${GCC_LIBRARY}/common/include</spirit:flags>

</spirit:fileBuilder>

<spirit:fileBuilder>

<spirit:fileType>asmSource</spirit:fileType>

<spirit:command spirit:id="gccAssemblerDefault">gcc</
spirit:command>

<spirit:flags spirit:id="gccAsmFlags">-c -Wa,--gdwarf2 -
I${INCLUDES_LOCATION}/software/include -I${GCC _LIBRARY}/common/include</
spirit:flags>

</spirit:fileBuilder>

<spirit:linker spirit:id="gccLinker">gcc</spirit:linker>

<spirit:linkerFlags spirit:id="gccLnkFlags">-g -nostdlib -static -
mcpu=arm9</spirit:linkerFlags>

<spirit:linkerCommandFile>

<spirit:name spirit:id="lnkCmdFile">linker.ld</spirit:name>

<spirit:commandLineSwitch spirit:id="lnkCmSwitch">-T</
spirit:commandLineSwitch>

<spirit:enable spirit:id="lnkCmdEnable">true</spirit:enable>

<spirit:generatorRef>org.spiritconsortium.tool</spirit:generatorRef>

</spirit:linkerCommandFile>

</spirit:languageTools>

<spirit:fileSetRefGroup>

<spirit:fileSetRef>calculatorAppC</spirit:fileSetRef>

<spirit:fileSetRef>mathFunctions</spirit:fileSetRef>

<spirit:fileSetRef>coreLib-gnu</spirit:fileSetRef>

</spirit:fileSetRefGroup>

</spirit:executableImage>

7.7.3 languageTools

7.7.3.1 Schema

The following schema details the information contained in the languageTools element, which may appear as
an element inside the executableImage element.
82 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
7.7.3.2 Description

The languageTools element contains the following list of optional elements to document a set of software
tools used to create an executable binary documented by the parent executableImage element. Multiple
languageTools information can be created to reflect various software tool sets that can create this executable
binary file.

a) fileBuilder (optional) contains the information details of a compiler or assembler for software
source code. See 7.7.4.

b) linker (optional) documents the link editor associated with the software tools described in file-
Builder. The linker element is of type string. The linker element is configurable with attributes
from string.prompt.att, see X.Y.Z on configuration.

c) linkerFlags (optional) can also be associated with any linker information. The linkerFlags element
is of type string. The linkerFlags element is configurable with attributes from string.prompt.att, see
X.Y.Z on configuration.

d) linkerCommandFile (optional) documents a file containing commands the linker follows. See
7.7.5.

7.7.3.3 Example

The following example shows the definition of GCC software tools used together to produce an executable
binary code file.

<spirit:languageTools>
<spirit:fileBuilder>

<spirit:fileType>cSource</spirit:fileType>
<spirit:command spirit:id="gccCompilerDefault"> gcc</spirit:command>
<spirit:flags spirit:id="gccCFlags">-c -g -I${INCLUDES_LOCATION}/

software/include -I${GCC_LIBRARY}/common/include</spirit:flags>
</spirit:fileBuilder>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 83
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
<spirit:fileBuilder>
<spirit:fileType>asmSource</spirit:fileType>
<spirit:command spirit:id="gccAssemblerDefault">gcc</spirit:command>
<spirit:flags spirit:id="gccAsmFlags">-c -Wa,--gdwarf2 -

I${INCLUDES_LOCATION}/software/include -I${GCC _LIBRARY}/common/include</
spirit:flags>
</spirit:fileBuilder>
<spirit:linker spirit:id="gccLinker">gcc</spirit:linker>
<spirit:linkerFlags spirit:id="gccLnkFlags">-g -nostdlib -static -
mcpu=arm9</spirit:linkerFlags>
<spirit:linkerCommandFile>

<spirit:name spirit:id="lnkCmdFile">linker.ld</spirit:name>
<spirit:commandLineSwitch spirit:id="lnkCmSwitch">-T</

spirit:commandLineSwitch>
<spirit:enable spirit:id="lnkCmdEnable">true</spirit:enable>
spirit:generatorRef>org.spiritconsortium.tool</spirit:generatorRef>

</spirit:linkerCommandFile>
</spirit:languageTools>

7.7.4 fileBuilder

7.7.4.1 Schema

The following schema details the information contained in the fileBuilder element, which may appear as an
element inside a languageTools element within the executableImage element.
84 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
7.7.4.2 Description

The fileBuilder element contains the following mandatory and optional elements.
a) fileType group includes the following, of which one is required.

fileType (required) describes a file containing software source code in a language type recog-
nized by IP-XACT, see XXX for a list of valid choices; otherwise, userFileType (required) can
be used to specify any user-defined language type.

b) command (optional) element defines a compiler or assembler tool that processes the software of
this type. The command element is of type string. The command element is configurable with
attributes from string.prompt.att, see X.Y.Z on configuration.

c) flags (optional) documents any flags to be passed along with the software tool command. The flags
element is of type string. The flags element is configurable with attributes from string.prompt.att,
X.Y.Z on configuration.

d) replaceDefaultFlags (optional) documents flags that replace any of the passed default flags. The
replaceDefaultFlags element is of type Boolean. The replaceDefaultFlags element is configurable
with attributes from bool.prompt.att, see X.Y.Z on configuration.

e) vendorExtensions (optional) holds vendor-specific data from other name spaces applicable to
building this software source code file into an executable object file.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 85
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
7.7.4.3 Example

The following example shows the specification for compiling a C language file using GCC.

<spirit:fileBuilder>
<spirit:fileType>cSource</spirit:fileType>
<spirit:command spirit:id="gccCompilerDefault"> gcc</spirit:command>
<spirit:flags spirit:id="gccCFlags">-c -g -I${INCLUDES_LOCATION}/software/
include -I${GCC_LIBRARY}/common/include</spirit:flags>

</spirit:fileBuilder>

7.7.5 linkerCommandFile

7.7.5.1 Schema

The following schema details the information contained in the linkerCommandFile element, which may
appear as an element inside a languageTools element within the executableImage element.

7.7.5.2 Description

The linkerCommandFile element contains information related to contents of the linker and linkerFlags
elements, specifically about a file containing linker commands. It contains the following mandatory and
optional elements.

a) name (mandatory) documents the location and name of the file containing commands for the linker.
The name element is of type spiritURI. The name element is configurable with attributes from
string.prompt.att, see X.Y.Z on configuration.
86 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
b) commandLineSwitch (mandatory) documents the flag on the command line calling the linker. The
commandLineSwitch element is of type spiritURI. The commandLineSwitch element is config-
urable with attributes from string.prompt.att, see X.Y.Z on configuration.

c) enable (mandatory) indicates whether to use this linker command file in the default scenario. The
enable element is of type Boolean. The enable element is configurable with attributes from
bool.prompt.att, see X.Y.Z on configuration.

d) generatorRef (optional) documents the generator that creates and launches the linker command.
There may be any number of these elements present.

e) vendorExtensions (optional) holds any vendor-specific data from other name spaces applicable to
using this linker.

7.7.5.3 Example

The following example shows the definition of a status register which can be accessed within a component
during verification.

<spirit:linkerCommandFile>
<spirit:name spirit:id="linkerCommandFileName2">linker.ld</spirit:name>
<spirit:commandLineSwitch spirit:id="lnkCmSwitch">-T</
spirit:commandLineSwitch>
<spirit:enable spirit:id="lnkCmdEnable">true</spirit:enable>
<spirit:generatorRef>org.spiritconsortium.tool.gccLinkerLauncher</
spirit:generatorRef>

</spirit:linkerCommandFile>

7.7.6 Local memory map

7.7.6.1 Schema

The following schema details the information contained in the localMemoryMap element, which may
appear inside an addressSpace element.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 87
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
7.7.6.2 Description

Some processor components require specifying a memory map that is local to the component. Local memory
maps (the localMemoryMap element in the addressSpace element of the component) are blocks of
memory within a component that can only be accessed by the master interfaces of that component.

a) nameGroup group includes the following. See X.Y.Z.
1) name (mandatory) identifies the address space.
2) displayName (optional) allows a short descriptive text to be associated with the address space.
3) description (optional) allows a textual description of the address space.

b) memoryMap group (optional) is any number of the following.
1) addressBlock describes a single block. See 7.8.2.
2) bank represents a collections of address blocks, banks or subspace maps. See 7.8.4.
3) subspaceMap maps the address subspaces of master interfaces into the slave’s memory map.

See 7.8.8.

7.7.6.3 Example

The following example shows a secure register space with limited access to the master bus interface as the
definition of a local memory map for an address space.

<spirit:localMemoryMap>
<spirit:name>secureRegs</spirit:name>
88 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
<spirit:displayName>Secure Registers</spirit:displayName>
<spirit:description>Secure registers area</spirit: description>
<spirit:addressBlock>

<spirit:baseAddress spirit:id="secureRegs">0x50000000</
spirit:baseAddress>

<spirit:range>64</spirit:range>
<spirit:width>32</spirit:width>
<spirit:usage>register</spirit:usage>
<spirit:access>read-write</spirit:access>

</spirit:addressBlock>
</spirit:localMemoryMap>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 89
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
90 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
7.8 Memory maps

7.8.1 Memory map

7.8.1.1 Schema

The following schema details the information contained in the memoryMap element, which may appear as
an element inside the component element. It is of type memoryMapType.

7.8.1.2 Description

A memory map can be defined for each slave interface of a component. The memoryMap element is
defined at the top of the component and then referenced in a component slave interface. It contains the
following mandatory and optional elements.

a) nameGroup group includes the following. See X.Y.Z .

1) name (mandatory) identifies the memory map.

2) displayName (optional) allows a short descriptive text to be associated with the memory map.

3) description (optional) allows a textual description of the memory map.

b) memoryMap group (optional) is any number of the following.

1) addressBlock describes a single block. See 7.8.2.

2) bank represents a collections of address blocks, banks or subspace maps. See 7.8.4.

3) subspaceMap maps the address subspaces of master interfaces into the slave’s memory map.
See 7.8.8.

c) The optional memoryRemap element describes how the address spaces, banks and subspace maps
are to be mapped differently on a slave bus interface in a specific remap state.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 90
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
d) The optional addressUnitBits elements defines the number of data bits in each address increment of
the memory map. This is required to allow the elements in the memory map to define items such as
register offsets.

7.8.2 Address block

7.8.2.1 Schema

The following schema details the information contained in the addressBlock element, which may appear in
a memoryMap element. It is of type addressBlockType.

7.8.2.2 Description

The addressBlock element describes a single, contiguous block of memory that is part of a memory map. It
contains the following mandatory and optional elements.

a) nameGroup group includes the following. See X.Y.Z.

1) name (mandatory) identifies the address block.

2) displayName (optional) allows a short descriptive text to be associated with the address block.

3) description (optional) allows a textual description of the address block.

b) addressSpecifier group includes the following.

1) baseAddress (mandatory) specifies the starting address of the block. The baseAddress ele-
ment is of type scaledNonNegativeInteger. The baseAddress element is configurable with
91 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
attributes from long.att, see X.Y.Z on configuration. The prompt (optional) attribute allow the
setting of a string for the configuration and has a default value of “Base Address:”.

c) blockSize group includes the following.

2) range (mandatory) gives the address range of an address block. This is expressed as the num-
ber of addressable units of the memory map. The size of an addressable unit is defined inside
the containing memoryMap/addressUnitBits element. The range element is of type scaled-
PositiveInteger. The range element is configurable with attributes from long.prompt.att, see
X.Y.Z on configuration.

3) width (mandatory) is the bit width of a row in the address block. A row in an address block sets
the maximum single transfer size into the memory map allowed by the referencing bus inter-
face and also defines the maximum size that a single register can be defined across an intercon-
nection. The width element is of type nonNegativeInteger. The width element is configurable
with attributes from long.prompt.att, see X.Y.Z on configuration.

d) memoryBlockData group contains information about usage, access, volatility and other parameters.
See 7.8.3.

e) registerData group contains information about the grouping of bits into registers and fields. See
7.10.1.

f) vendorExtensions (optional) adds any extra vendor-specific data related to the address block.

The range and width elements are related by the following formulas

number_of_bits_in_block = addressUnitBits * range

number_of_rows_in_block = number_of_bits_in_block / width

See also: SCR 8.1.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 92
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
7.8.2.3 Example

The following example shows an address block starting at address 0x1000 containing 64 addressable 8 -bit
units, organized into larger 32-bit units.

<spirit:memoryMap>

<spirit:addressBlock>

 <spirit:name>AB1</spirit:name>

 <spirit:baseAddress>0x1000</spirit:baseAddress>

 <spirit:range>64</spirit:range>

 <spirit:width>32</spirit:width>

</spirit:addressBlock>

<spirit:addressUnitBits>8</spirit:addressUnitBits>

</spirit:memoryMap>

7.8.3 memoryBlockData group

7.8.3.1 Schema

The following schema details the information contained in the memoryBlockData group, an optional part of
both addressBlock and bank.

7.8.3.2 Description

The memoryBlockData group is a collection of elements that contains further specification of addressBlock
or bank elements. It contains the following optional elements. (needs data from Gary added)

a) usage (optional) specifies the type of usage for the block or bank to which it belongs: memory, reg-
ister, or reserved.

b) volatile (optional) is of type Boolean and indicates the data is volatile when set to True. The default
is False.

c) access (optional) specifies the accessibility of the data in the address block: read-write, read-only,
or write-only.

d) parameters (optional) details any additional parameters that describe the address block for genera-
tor usage. See X.Y.Z.
93 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
7.8.3.3 Example

The following example shows an address block starting at address 0x0 containing 64 addressable memory
locations of 8 bits, organized into larger 32-bit units.

<spirit:memoryMap>

<spirit:addressBlock>

 <spirit:name>AB1</spirit:name>

 <spirit:baseAddress>0</spirit:baseAddress>

 <spirit:range>64</spirit:range>

 <spirit:width>32</spirit:width>

 <spirit:usage>memory</spirit:width>

<spirit:volatile>false</spirit:volatile>

<spirit:access>read-write</spirit:access>

</spirit:addressBlock>

<spirit:addressUnitBits>8</spirit:addressUnitBits>

</spirit:memoryMap>

7.8.4 Bank

7.8.4.1 Schema

The following schema details the information contained in the bank element, which can appear in a
memoryMap element. It is of type addressBankType.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 94
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
7.8.4.2 Description

The bank element allows multiple address blocks, banks or subspaceMaps to be concatenated together
horizontily or veritically a single entity. It contains the following attributes and elements.

a) bankAlignment (mandatory) attribute organizes the bank:
1) parallel specifies each item is located at the same base address with different bit offsets. The bit

offset of the first item in the bank always starts at 0, the offset of the next items in the bank is
equal to the widths of all the previous items.

2) serial specifies the first item is located at the bank’s base address. Each subsequent item is
located at the previous item’s address, plus the range of that item(adjusted for LAU and bus
width considerations, rounded up to the next whole multiple). This allows the user to specify
only a single base address for the bank and have each item line up correctly.

b) nameGroup group includes the following. See X.Y.Z.
1) name (mandatory) identifies the bank.
2) displayName (optional) allows a short descriptive text to be associated with the bank.
3) description (optional) allows a textual description of the bank.

c) addressSpecifier group includes the following.
1) baseAddress (mandatory) specifies the starting address of the block. The type of this element

is set to scaledNonNegativeInteger. The baseAddress element is configurable with attributes
from bool.prompt.att, see X.Y.Z on configuration. The prompt attribute allow the setting of a
string for the configuration and has a default value of “Base Address:”.

d) bankBase group include the following. This group is later used inside the bankedBaseType type to
create recursion.
1) addressBlock (multiple usage allowed) is an address block that makes up part of the bank. See

7.8.5.
2) bank (multiple usage allowed) is a bank within the bank. This allows for complex configura-

tions with nested banks. See 7.8.6.
3) subspaceMap (multiple usage allowed) is a reference to the master’s address map for inclusion

in the bank. See 7.8.8.
4) memoryBlockData group contains information about usage, access, volatility and other param-

eters. See 7.8.3.
5) vendorExtensions adds any extra vendor-specific data related to this bank.

See also: SCR 8.2 and SCR 8.3.

7.8.4.3 Example

The following example shows a serial bank with four memory blocks of 1K units of 8-bit data. The only
address specified is 0x10000, but this causes address block ram0, ram1, ram2, and ram3 to be mapped
to addresses 0x10000, 0x11000, 0x11000 0x12000, and 0x13000 respectively.

<spirit:memoryMap>
<spirit:bank bankAlignment="serial">
 <spirit:name>bank1</spirit:name>
 <spirit:baseAddress>0x10000</spirit:baseAddress>
 <spirit:addressBlock>
 <spirit:name>ram0</spirit:name>
 <spirit:range>0x1000</spirit:range>
 <spirit:width>32</spirit:width>
 </spirit:addressBlock>
 <spirit:addressBlock>
95 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
 <spirit:name>ram1</spirit:name>
 <spirit:range>0x1000</spirit:range>
 <spirit:width>32</spirit:width>
 </spirit:addressBlock>
 <spirit:addressBlock>
 <spirit:name>ram2</spirit:name>
 <spirit:range>0x1000</spirit:range>
 <spirit:width>32</spirit:width>
 </spirit:addressBlock>
 <spirit:addressBlock>
 <spirit:name>ram3</spirit:name>
 <spirit:range>0x1000</spirit:range>
 <spirit:width>32</spirit:width>
 </spirit:addressBlock>
</spirit:bank>
<spirit:addressUnitBits>8</spirit:addressUnitBits>
</spirit:memoryMap>

7.8.5 Banked address block

7.8.5.1 Schema

The following schema details the information contained in the addressBlock element, which can appear in a
bank element. It is of type bankedBlockType.

7.8.5.2 Description

The addressBlock element inside a bank element describes a single, contiguous block of memory that is
part of a bank. It contains the following elements.

a) nameGroup group includes the following. See X.Y.Z.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 96
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
1) name (mandatory) identifies the address block.
2) displayName (optional) allows a short descriptive text to be associated with the address block.
3) description (optional) allows a textual description of the address block.

b) blockSize group includes the following.
4) range (mandatory) gives the address range of an address block. This is expressed as the num-

ber of addressable units of the memory map. The size of an addressable unit is defined inside
the containing memoryMap/addressUnitBits element. The type of this element is set to
scaledPositiveInteger. The range element is configurable with attributes from long.prompt.att,
see X.Y.Z on configuration.

5) width (mandatory) is the bit width of a row in the address block. A row in an address block sets
the maximum single transfer size into the memory map allowed by the referencing bus inter-
face and also defines the maximum size that a single register can be defined across. The type of
this element is set to nonNegativeInteger. The width element is configurable with attributes
from long.prompt.att, see X.Y.Z on configuration.

c) memoryBlockData group contains information about usage, access, volatility and other parameters.
See 7.8.3.

d) registerData group contains information about the grouping of bits into registers and fields. See
7.10.1.

e) vendorExtensions (optional) adds any extra vendor-specific data related to the address block.

NOTE—The bankedBlockType of a addressBlock element is almost identical to the addressBlockType of an
addressBlock element(see 7.8.2); the only difference is there is no baseAddress in the bankedBlockType version.

See also: SCR 8.3.

7.8.5.3 Example

See the example in 7.8.4.3.

7.8.6 Banked bank

7.8.6.1 Schema

The following schema details the information contained in the nested bank element, which can appear in
another bank element. It is of type bankBankType.
97 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
7.8.6.2 Description

The bank element allows multiple address blocks, banks or subspace maps to be to be concatenated together
horizontily or veritically a single entity. It contains the following attributes and elements.

a) bankAlignment (mandatory) attribute organizes the bank:

1) parallel specifies each item is located at the same base address with different bit offsets. The bit
offset of the first item in the bank always starts at 0, the offset of the next items in the bank is
equal to the widths of all the previous items.

2) serial specifies the first item is located at the bank’s base address. Each subsequent item is
located at the previous item’s address, plus the range of that item(adjusted for LAU and bus
width considerations, rounded up to the next whole multiple). This allows the user to specify
only a single base address for the bank and have each item line up correctly.

b) nameGroup group includes the following. See X.Y.Z.

1) name (mandatory) identifies the bank.

2) displayName (optional) allows a short descriptive text to be associated with the bank.

3) description (optional) allows a textual description of the bank.

c) The bank element or type bankedBankType then contains the bankBase group. This group is
defined inside the bank element of type addressBankType. See X.Y.Z. The effect of its inclusion
here creates recursion, where by banks maybe included inside banks included inside banks.

NOTE—A banked bank is similar to a bank in a memory map (see 7.8.4); the only difference is there is no
baseAddress element in a bank of type bankedBankType.

See also: SCR 8.2 and SCR 8.3.

7.8.6.3 Example

Need example.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 98
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
7.8.7 Banked subspace

7.8.7.1 Schema

The following schema details the information contained in the subspaceMap element, which can appear in
a bank element. It is of type bankSubspaceType.

7.8.7.2 Description

The subspaceMap element allows a bank to map the address space of a master interface into the bank. It
contains the following elements.

a) masterRef attribute contains the name of the master interface whose address space needs to be
mapped. This shall reference a bus interface name with a interface mode of master. The master inter-
face must also be referenced by a second interface through a slave/bridge/masterRef element, and
the bridge element shall also have the opaque attribute set to True.

b) nameGroupOptional group includes the following. See X.Y.Z .

1) name (optional) identifies the subspace map.

2) displayName (optional) allows a short descriptive text to be associated with the subspace map.

3) description (optional) allows a textual description of the subspace map.

c) parameters details any additional parameters that apply to the subspaceMap. See X.Y.Z.

d) vendorExtensions adds any extra vendor-specific data related to the subspaceMap.

See also: SCR 8.2.

7.8.7.3 Example

Add an example here.
99 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
7.8.8 Subspace map

7.8.8.1 Schema

The following schema details the information contained in the subspaceMap element, which can appear in
a memoryMap element. It is of type subspaceRefType.

7.8.8.2 Description

The subspaceMap element maps the address subspace of a master interface from an opaque bus bridge into
the memory map. It contains the following elements.

a) masterRef attribute contains the name of the master interface whose address space needs to be
mapped. This shall reference a bus interface name with a interface mode of master. The master inter-
face must also be referenced by a second interface through a slave/bridge/masterRef element, and
the bridge element shall also have the opaque attribute set to True.

b) nameGroup group includes the following. See X.Y.Z.

1) name identifies the subspace map.

2) displayName (optional) allows a short descriptive text to be associated with the subspace map.

3) description (optional) allows a textual description of the subspace map.

c) addressSpecifier group includes the following.

1) baseAddress (mandatory) specifies the starting address of the block. The type of this element
is set to scaledNonNegativeInteger. The baseAddress element is configurable with attributes
from long.att, see X.Y.Z on configuration. The prompt attribute allow the setting of a string for
the configuration and has a default value of “Base Address:”.

d) parameters details any additional parameters that apply to the subspaceMap. See X.Y.Z.

e) vendorExtensions adds any extra vendor-specific data related to the subspaceMap.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 100
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
7.8.8.3 Example

The following example shows an address block starting at address 0x1000 containing 64 addressable 32-
bit units.

<spirit:component>…

 <spirit:busInterfaces>

 <spirit:busInterface>

 <spirit:name>M1</spirit:name>…

 <spirit:master>…</spirit:master>

 </spirit:busInterface>

 <spirit:busInterface>

 <spirit:name>M2</spirit:name>?

 <spirit:master>…</spirit:master>

 </spirit:busInterface>

 <spirit:busInterface>

 <spirit:name>M3</spirit:name>?

 <spirit:master>…</spirit:master>

 </spirit:busInterface>

 <spirit:busInterface>

 <spirit:name>S</spirit:name>?

 <spirit:slave>

 <spirit:memoryMapRef spirit:memoryMapRef="memMap"/>

 <spirit:bridge spirit:masterRef="M1" spirit:opaque="true"/>

 <spirit:bridge spirit:masterRef="M2" spirit:opaque="true"/>

 <spirit:bridge spirit:masterRef="M3" spirit:opaque="true"/>

 </spirit:slave>

 </spirit:busInterface>

 </spirit:busInterfaces>

 <spirit:addressSpaces>

 …

 </spirit:addressSpaces>

 <spirit:memoryMaps>

 <spirit:memoryMap>

 <spirit:name>memMap</spirit:name>

 <spirit:subspaceMap spirit:masterRef="M1">

 <spirit:name>submap1</spirit:name>

 <spirit:baseAddr baseAddress>0x0000</spirit:baseAddress>

 </spirit:subspaceMap>

 <spirit:subspaceMap spirit:masterRef="M2">

 <spirit:name>submap2</spirit:name>

 <spirit:baseAddress>0x1000</spirit:baseAddress>

 </spirit:subspaceMap>

 <spirit:subspaceMap spirit:masterRef="M3">

 <spirit:name>submap3</spirit:name>

 <spirit:baseAddress>0x2000</spirit:baseAddress>

 </spirit:subspaceMap>

 </spirit:memoryMap>

 </spirit:memoryMaps>

</spirit:component>
101 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
7.9 Remapping

7.9.1 Memory remap

7.9.1.1 Schema

The following schema details the information contained in the memoryRemap element, which can appear
in a memoryMap element. It is of type memoryRemapType.

7.9.1.2 Description

The memoryRemap element describes how the address space blocks need to be mapped on a slave bus
interface in a specific remap state. This element contains the following elements, attributes and groups.

a) state attribute (mandatory) identifies the remap state name for which the alternate memory map is
active. See 7.9.2.

b) nameGroup group includes the following. See X.Y.Z.
1) name (mandatory) identifies the memory remap.
2) displayName (optional) allows a short descriptive text to be associated with the memory

remap.
3) description (optional) allows a textual description of the memory remap.

c) memoryMap group (optional) is any number of the following.
1) addressBlock describes a single block. See 7.8.2.
2) bank represents a collections of address blocks, banks or subspace maps. See 7.8.4.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 102
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
3) subspaceMap maps the address subspaces of master interfaces into the slave’s memory map.
See 7.8.8.

memoryRemap describes remapping in regular components and opaque bridges. Remap states include the
name, associated remap port, and remap value). The memory map itself is partitioned in one or more
memory remaps, which describe the memory layout for a particular state.

The following semantic rules apply to the state attribute.

— If there are duplicate state attributes in different memoryRemap tags in the same memoryMap sec-
tion, only the first occurrence shall be recognized. In other words, the state attribute values of mem-
oryRemap shall be unique within a memoryMap section.

— If a component has no remapStates tag specified, then the memoryMap is assumed to be in the
default state.

— If a component has remapStates specified, but no memoryRemap, the first state listed is synony-
mous with the default state and shall match the memoryMap tag with no state attribute.

7.9.1.3 Example

This is an example of a memory that is normally read-write, but in state lock is remapped to be a read-only
memory.

<spirit:component>

…

 <spirit:memoryMaps>

 <spirit:memoryMap>

 <spirit:name>mmap1</spirit:name>

<spirit:memoryMap>

 <spirit:addressBlock>

 <spirit:name>ab1</spirit:name>

 <spirit:baseAddress>0x0000

 </spirit:baseAddress>

 <spirit:range>4096</spirit:range>

 <spirit:usage>memory</spirit:usage>

 <spirit:access>read-write</spirit:access>

 </spirit:addressBlock>

 </spirit:memoryRemap >

<spirit:memoryMap state="lock">

 <spirit:addressBlock>

 <spirit:name>ab1readonly</spirit:name>

 <spirit:baseAddress>0x0000

 </spirit:baseAddress>

 <spirit:range>4096</spirit:range>

 <spirit:usage>memory</spirit:usage>

 <spirit:access>read-only</spirit:access>

 </spirit:addressBlock>

 </spirit:memoryRemap >

 </spirit:memoryMap>

 </spirit:memoryMaps>

…

</spirit:component>
103 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
7.9.2 Remap states

7.9.2.1 Schema

The following schema details the information contained in the remapStates element, which may appear as
an element inside a component element. This element may contain one or more remapState elements.

7.9.2.2 Description

A remapStates element describes a set of one or more remapState elements. Each remapState element
defines a conditional remap state where each state is conditioned by a remap port specified with a
remapPort element. A remapState element does not specify remapping addresses. The remapping
addresses are defined by the memoryRemap element (of a memoryMap element) and its state attribute
refers to the remapState element’s name explained in this section.

remapState contains the following elements and attributes.

a) nameGroup group includes the following. See X.Y.Z.

1) name (mandatory) identifies the memory remap.

2) displayName (optional) allows a short descriptive text to be associated with the memory
remap

3) description (optional) allows a textual description of the memory remap.

b) remapPort specifies when the remap state gets effective. A collection of remapPort elements make
up the condition for this remap state. All elements must be true for the remap state to be enabled.
The type of this element is of scaledNonNegativeInteger. This element contains the logical value of
the single port bit specified by the follow two attributes.

1) portNameRef (mandatory) attribute is the name of the port for which this logic value compari-
sion is assigned.

2) portIndex (optional) attribute references the index of a port when the port being referenced is
vectored. The type of the attribute is nonNegativeInteger.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 104
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
7.9.2.3 Example

This is an example of the remapState element with the state name of boot. The example specifies a remap
state called boot will be in effect when the port named doRemap gets the logic value of 0x01, while
another remap state called normal will be in effect when the port gets the logic value of 0x00.

<spirit:component>
 <spirit:remapStates>
 <spirit:remapState>
 <spirit:name>boot</spirit:name>
 <spirit:remapPort spirit:portNameRef="doRemap">0x01
 </spirit:remapPort>
 </spirit:remapState>
 <spirit:remapState>
 <spirit:name>normal</spirit:name>
 <spirit:remapPort spirit:portNameRef="doRemap">0x00
 </spirit:remapPort>
 </spirit:remapState>
 </spirit:remapStates >
</spirit:component>
105 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
7.10 Registers

7.10.1 Register

7.10.1.1 Schema

The following schema details the information contained in the register element, which may appear as an
element inside the addressBlock element. This element describes a register.

7.10.1.2 Description

the registerData group contains an unbounded list of register elements. A register element describes a
register in an address block. This element contains the following elements.

a) nameGroup group includes the following. See X.Y.Z .
1) name (mandatory) identifies the register.
2) displayName (optional) allows a short descriptive text to be associated with the register.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 106
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
3) description (optional) allows a textual description of the register.
b) dim (optional, unbounded) assigns a dimension to the register, so it is repeated as many times as the

value of the dim elements. For multi-dimensional register arrays, the memory layout is presumed to
follow the C language rules. The dim element is of type nonNegativeInteger.

c) addressOffset describes the offset, in addressing units from the containing memoryMap/
addressUnitBits element. The offset is from the start of the addressBlock. The addressOffset ele-
ment is of type scaledNonNegativeInteger.

d) size (mandatory) is the width of the register, counting in bits. The type of this element is set to
scaledNonNegativeInteger. The size element is configurable with attributes from long.prompt.att,
see X.Y.Z on configuration.

e) volatile (optional) if true indicates the data in the register is volatile; the default is false. The type of
this element is set to Boolean.

f) access (optional) indicates the accessibility of the register: read-write, read-only, or write-only.
g) reset (optional) indicates the value of the register’s contents when the device is reset. See 7.10.2.
h) field (optional) describes any bit-fields in a register. See 7.10.3.
i) parameters (optional) describes any parameter names and types when the register width can be

parameterized.
j) vendorExtensions (optional) adds any extra vendor-specific data related to this register.

See also: SCR 7.1, SCR 7.2, SCR 7.3, and SCR 7.4.

7.10.1.3 Example

The following example shows a register with its sub-elements.

<spirit:register>

<spirit:name>status</spirit:name>

<spirit:description>Status register</spirit:description>

<spirit:addressOffset>0x4</spirit:addressOffset>

<spirit:size>32</spirit:size>

<spirit:volatile>true</spirit:volatile>

<spirit:access>read-only</spirit:access>

<spirit:field>

<spirit:name>dataReady</spirit:name>

<spirit:description>Indicates that new data is available in the receiver
holding register</spirit:description>

<spirit:bitOffset>0</spirit:bitOffset>

<spirit:bitWidth>1</spirit:bitWidth>

<spirit:access>read-only</spirit:access>

</spirit:field>

<spirit:field>

<!-- … -->

</spirit:field>

</spirit:register>

7.10.2 Register reset value

7.10.2.1 Schema

The following schema details the information contained in the reset element, which may appear as an
element inside the register element. This element describes the reset value of the register.
107 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
7.10.2.2 Description

The reset element describes the value of a register at reset. It has two subelements.
a) value (mandatory) contains the actual reset value. The value element is of type scaledNonNega-

tiveInteger. The value element is configurable with attributes from long.prompt.att, see X.Y.Z on
configuration.

b) mask (optional) defines which bits of the register have a known reset value. The mask element is of
type scaledNonNegativeInteger. The mask element is configurable with attributes from
long.prompt.att, see X.Y.Z on configuration.
A 1 bit in the mask means the corresponding bit of the register has a known reset value; a 0 bit
means that it does not. All bits of the value which correspond to 0 bits of the mask are ignored. The
absence of a mask element is equivalent to a mask of the same size as the register consisting of all 1
bits.

7.10.2.3 Example

The following example shows a reset value. A register with this reset value will have its bottom eight bits set
to 0 on reset.

<spirit:reset>
<spirit:value>0</spirit:value>
<spirit:mask>0xFF</spirit:mask>

</spirit:reset>

7.10.3 Register bit-fields

7.10.3.1 Schema

The following schema details the information contained in the field element, which may appear as an
element inside the register element. This element describes a bit field of a register.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 108
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
7.10.3.2 Description

A field element of a register describes a smaller bit-field of a register. This element contains the following
elements.

a) nameGroup group includes the following. See X.Y.Z.

1) name (mandatory) identifies the register.

2) displayName (optional) allows a short descriptive text to be associated with the register.

3) description (optional) allows a textual description of the register.

b) bitOffset (mandatory) describes the offset (from bit 0 of the register) where this bit-field starts. The
bitOffset element is of type nonNegativeInteger.

c) bitWidth (mandatory) is the width of the field, counting in bits. The bitWidth element is of type
postiveInteger. The bitWidth element is configurable with attributes from long.prompt.att, see
X.Y.Z on configuration.
109 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
d) access (optional) indicates the accessibility of the field: read-write, read-only, or write-only. If this
is not present, the access is inherited from the register.

e) values (optional) lists the set of legal values that may be written to the bit-field. This is an
unbounded list, each containing 3 subelements.
1) value (mandatory) is the value for the bit filed. The value element is of type scaledInteger.
2) name (mandatory) is a symbolic name for the value. The name element is of type token.
3) description (optional) is a textual description for the value. The description element is of type

string.
f) parameters (optional) details any additional parameters that describe the field for generator usage.

See X.Y.Z.
g) vendorExtensions (optional) adds any extra vendor-specific data related to this field.

See also: SCR 7.2 and SCR 7.4.

7.10.3.3 Example

The following example shows a bit field with its sub-elements.

<spirit:field>

<spirit:name>paritySelect</spirit:name>
<spirit:displayName>Parity Select</spirit:displayName>
<spirit:description>Selects parity polarity (0=odd parity, 1=even
parity)</spirit:description>
<spirit:bitOffset>4</spirit:bitOffset>
<spirit:bitWidth>1</spirit:bitWidth>
<spirit:access>read-write</spirit:access>
<spirit:values>

<spirit:value>0</spirit:value>
<spirit:name>oddParity</spirit:name>
<spirit:description>oddParity</spirit:description>

</spirit:values>
<spirit:values>

<spirit:value>1</spirit:value>
<spirit:name>evenParity</spirit:name>
<spirit:description>evenParity</spirit:description>

</spirit:values>
</spirit:field>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 110
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
111 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
7.11 Models

7.11.1 Model

7.11.1.1 Schema

The following schema details the information contained in the model element, which may appear as an
element inside the component or abstractor element.

7.11.1.2 Description

The model element describes the views, ports and model related parameters of a component or abstractor. A
An object may A model element may contain the following.

a) views (optional) contains a list of all the views for this object. An object may have many different
views. An RTL view may describe the source hardware module/entity with its pin interface; a SW
view may define the source device driver C file with its .h interface; a documentation view may
define the written specification of this IP. See 7.11.2.

b) ports (optional) contains the list of ports for this object. A ports is and external connection from the
object. An object may only have one set of ports that must be valid for all view. See 7.11.3.

c) modelParameters (optional) contains a list of parameters that are needed to configure a model
implementation specified in a view. An object may only have one set of model parameters that must
be valid for all views. See 7.11.18.

7.11.1.3 Example

This shows a model section for a Timer component describing the view of the IP in terms of compatibility,
language, file set reference, and model name.

<spirit:model>
<spirit: ports>
...
</spirit: ports>
<spirit:modelParameters>
...
</spirit:modelParameters>
<spirit:views>

<spirit:view>
<spirit:name>VHDL</spirit:name>
<spirit:envIdentifier>:modelsim.mentor.com:</spirit:envIdentifier>
<spirit:envIdentifier>:ncsim.cadence.com:</spirit:envIdentifier>
<spirit:language spirit:strict="true">vhdl</spirit:language>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 111
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
<spirit:fileSetRef>fs-vhdlSource</spirit:fileSetRef>

<spirit:modelName>leon2_Timers(struct)</spirit:modelName>

<spirit:view>

</spirit:views>

</spirit:model>

7.11.2 Views

7.11.2.1 Schema

The following schema details the information contained in the views element, which may appear as an
element inside a model element. This element may contain one or more view elements.

7.11.2.2 Description

A views element describes an unbounded set of view elements. Each view element specifies a representation
level of a component. It contains the following elements.

a) nameGroupNMToken group includes the following. See X.Y.Z.
1) name (mandatory) identifies the view. The name element is of type NMTOKEN.

2) displayName (optional) allows a short descriptive text to be associated with the view. The dis-
playName element is of type string.
112 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
3) description (optional) allows a textual description of the view. The description element is of
type string.

b) envIdentifier designates and qualifies information about how this model view is deployed in a par-
ticular tool environment. The format of the element is a string with three fields separated by two
colons [:] in the format of Language:Tool:VendorSpecific. The regular expression which is used to
check the string is [A-Za-z0-9_+*\.]*:[A-Za-z0-9_+*\.]*:[A-Za-z0-9_+*\.]* The sections are:

i) Language indicates this view may be compatible with a particular tool, but only if that lan-
guage is supported in that tool, e.g., different versions of some simulators may support
two or more languages. In some cases, knowing the tool compatibility is not enough and
may be further qualified by language compatibility, e.g., a compiled HDL model may
work in a VHDL-enabled version of a simulator, but not in a SystemC-enabled version of
the same simulator.

ii) Tool indicates this view contains information that is suitable for the named tool. This
might be used if this view references data that is tool-specific and would not work generi-
cally, e.g., HDL models that use simulator-specific extensions.
Vendors shall publish lists of approved tool identification strings. These strings shall con-
tain the tool name, as well as the company’s domain name, separated by dots. Some exam-
ples of well-formed tool entries are:
designcompiler.synopsys.com

ncsim.cadence.com

modelsim.mentor.com

This field can alternatively indicate generic tool family compatibility, such as *Simula-
tion or *Synthesis. To support transportability of created data files, it is important to
use the published, generally recognized, tool designation when referencing a tool. See also
www.The SPIRITconsortium.org.

iii) VendorSpecific can be used to further qualify tool and language compatibility. This can be
used to indicate additional processing information may be required to use this model in a
particular environment. For instance, if the model is a SWIFT simulation model, the
appropriate simulator interface may need to be enabled and activated.

Any or all of the envIdentifier fields may be used. Where there are multiple environments for
which a particular view is applicable, multiple envIdentifier elements can be listed.

c) The implementation details for this view can have two possibities. The first is a hierarchical view
which uses the hierarchyRef element.
1) hierarchyRef (mandatory) references a hierarchical design from a view of a component. This

element is required only if the view is used to reference a hierarchical design. The hierar-
chyRef element is of type libraryRefType (see X.Y.Z), it contains four attributes to specify a
unique VLNV. See 6.2 on bus definitions.
i) vendor attribute (mandatory) identifies the owner of referenced description.
ii) library attribute (mandatory) identifies a library of referenced description.
iii) name attribute (mandatory) identifies a name of referenced description.
iv) version attribute (mandatory) identifies a version of referenced description.addressSpeci-

fier group includes the following.
d) The second possibility of a view is to reference a file set.

1) language (optional) specifies the hardware description language used for a specific view, for
example, verilog or vhdl. The language element is of type token. This may have an
attribute strict (optional) of type Boolean; if true the language shall be strictly enforced. The
default is false.

2) modelName (optional) is a language-specific identifier of the model. In VHDL’s case, this
may hold the top-level entity name and the architecture name or the configuration name;
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 113
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
whereas, in Verilog’s case, this may simply hold the name of the module. The modelName ele-
ment is of type string.

3) defaultFileBuilder (optional) is an unbounded list of default file builder options for the
fileSets referenced in this view. See 7.13.1.

4) fileSetRef (optional) is an unbounded list of references to fileSets used by this view.

5) constraintSetRef (optional) is an unbounded list of references to constraint sets, valid timing
constraints for a view. constraintsSets are defined for wire style ports.

6) whiteboxElementRefs (optional) contains references to whitebox elements of a component
that are vild for this view. If the view contains an implementation of any of the whitebox ele-
ments for the component, the view section shall include a reference to that whitebox element,
with a string providing a language-dependent path to enable the DE to access the whitebox ele-
ment. See 7.15.

7) parameters (optional) details any additional parameters that describe the view for generator
usage. See X.Y.Z.

e) vendorExtensions (optional) adds any extra vendor-specific data related to the view.

See also: SCR 12.3.

7.11.2.3 Example

The following is an example of the view element with the name of vhdlsource.

<spirit:views>

<spirit:view>

<spirit:name>vhdlsource</spirit:name>

<spirit:envIdentifier>:modelsim.mentor.com:</spirit:envIdentifier>

<spirit:envIdentifier>:ncsim.cadence.com:</spirit:envIdentifier>

<spirit:envIdentifier>:vcs.synopsys.com:</spirit:envIdentifier>

<spirit:envIdentifier>:designcompiler.synopsys.com:

</spirit:envIdentifier>

<spirit:language>vhdl</spirit:language>

<spirit:modelName>leon2_Uart(struct)</spirit:modelName>

<spirit:fileSetRef>fs-vhdlSource</spirit:fileSetRef>

<spirit:constraintSetRef>normal</spirit:constraintSetRef>

</spirit:view>

</spirit:views>

7.11.3 Component ports

7.11.3.1 Schema

The following schema defines the information contained in the ports element, which may appear within a
component.
114 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
7.11.3.2 Description

The ports element defines an unbounded list of port elements. Each port element describe a single external
port on the ocmponent or abstractor.

a) nameGroupNMToken group includes the following. See X.Y.Z.
1) name (mandatory) identifies the port. Each port shall be uniquely identified. The name ele-

ment is of type NMTOKEN.
2) displayName (optional) allows a short descriptive text to be associated with the port. The dis-

playName element is of type string.
3) description (optional) allows a textual description of the port. The description element is of

type string.
b) Each port shall be described as a wire or transactional port.

1) wire (mandatory) defines ports that transport purely binary values or vectors of binary values.
See 7.11.4.

2) transactional (mandatory) defines all other style ports, typically used for transactionl level
modeling (TLM). See 7.11.16.1.

c) vendorExtensions (optional) adds any extra vendor-specific data related to the port.

7.11.3.3 Example

This example shows a component with a wire port (clk) and two transactional ports (initiator and
target).

<spirit:ports>
<spirit:port>

<spirit:name>clk</spirit:name>
<spirit:wire>

<spirit:direction>in</spirit:direction>
</spirit:wire>

</spirit:port>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 115
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
<spirit:port>
<spirit:transactional>

<spirit:name>initiator</spirit:name>
<spirit:service>

<spirit:initiative>requires</spirit:initiative>
<spirit:serviceTypeDefs>

<spirit:serviceTypeDef>
<spirit:typeName>read_write_if</spirit:typeName>

</spirit:serviceTypeDef>
/spirit:serviceTypeDefs>

</spirit:service>
</spirit:transactional>

</spirit:port>
<spirit:port>

<spirit:transactional>
spirit:name>target</spirit:name>
<spirit:service>

<spirit:initiative>provides</spirit:initiative>
<spirit:serviceTypeDefs>

<spirit:serviceTypeDef>
<spirit:typeName>read_write_if

</spirit:typeName>
</spirit:serviceTypeDef>

</spirit:serviceTypeDefs>
</spirit:service>

</spirit:transactional>
</spirit:port>

</spirit:ports>

7.11.4 Component wire ports

7.11.4.1 Schema

The following schema details the information contained in the wire element, which may appear as an
element inside the top-level component/model/port element.
116 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
7.11.4.2 Description

The wire element describes the properties for ports that are of a wire style. A port can come in two different
styles, wire or transactional. A wire port applies for all scalar types (e.g., VHDL std_logic and Verilog
wire) and vectors of scalars. A wire port transports purely binary values or vectors of binary values.

— Scalar types in VHDL also include integer and enumeration values. Scalars in IP-XACT only
include binary values that relate to a single wire in an HW implementation.

— Since wire ports allow only binary values, IP-XACT does not support tri-state or multiple strength
values.

The wire element contains the following elements.
a) allLogicalDirectionsAllowed (optional) attribute defines the possible legal combinations for the

direction of ports between the component and the abstraction definition. See 6.2.
Table 4 shows the possible legal mappings from a component or abstractor port to the abstraction
definition port through the bus interface port mappings when the attribute allLogicalDirectionsAl-
lowed equal false is set.

When the attribute is instead set to true, all mapping values are possible (legal).
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 117
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
a) direction (mandatory) specifies the direction of this port: in for input ports, out for output ports, and
inout for bidirectional and tri-state ports. phantom can also be used to define a port which only
exists on the IP-XACT component, but not on the implementation referenced from the view.

b) vector (optional) determines if this port is a scalar port or a vectored port. The left and right vector
bounds elements inside the vector element are those specified in the implementation source. The
port width is max(left,right) - min(left,right) +1. The left and right elements are of type nonNega-
tiveInteger. The left and right elements are configurable with attributes from long.prompt.att, see
X.Y.Z on configuration.
The left element means first boundary, the right element, the second boundary. left may be larger
than right and that left may be the MSB or LSB (right being the opposite). The left and right ele-
ments are the (bit) rank of the left-most and right-most bits of the port.
When the vector element is present and the left and right elements are not equal, the port is defined
as a multi-bit vector port. When the vector element is present and the left and right elements are
equal, the port is defined as a single-bit vector port. When the vector element and the left and right
elements are not present, the port is defined as a scalar port.

c) wireTypeDefs (optional) describes the ports type as defined by the implementation, see 7.11.5.
d) driver (optional) defines a driver which may be attached to this port if no other object is connected

to this port. This allows the IP to define the default state of unconnected inputs. A wire style port
may only define a driver element for a port if the direction of the port is in or inout. See also 7.11.6

e) constraintSets (optional) defines multiple set of constraints on a port used for synthesis or other
operations. See 7.11.11.

7.11.4.3 Example

The following examples show how the vector elements are used when mapping to an HDL language.

reset: in std_logic; -- VHDL

would be defined with no left or right elements under the vector element.

<spirit:wire>

<spirit:direction>in</spirit:direction>

</spirit:wire>

Whereas

data: out std_logic_vector(29 downto 3); -- VHDL

Table 4—allLogicalDirectionsAllowed=”false”

Direction
logical direction

in out inout

Physical
direction

in legal - legal

out - legal legal

inout - - legal

phantom legal legal legal
118 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
would be defined in IP-XACT as left=29 and right=3 with all bits in descending order.

<spirit:wire>

<spirit:direction>out</spirit:direction>

<spirit:vector>

<spirit:left>29</spirit:left>

<spirit:right>3</spirit:right>

</spirit:vector>

</spirit:wire>

7.11.5 Component wireTypeDef

7.11.5.1 Schema

The following schema details the information contained in the wireTypeDef element, which may appear as
an element inside the top-level wire style port element. These elements define the definition type name,
where the type is defined, and which views of a component or an abstractor use this type.

7.11.5.2 Description

The wireTypeDefs element describes the type properties for a port per view of a component or abstractor.
There can be an unbounded series of wireTypeDefs defined for each port, allowing the type properties to be
defined differently for each view. wireTypeDef contains the following elements.

a) typeName (mandatory) defines the name of the type for the port. For VHDL, some typical values
would be std_logic and std_ulogic.
1) constrained (optional) attribute indicates the type of definition that is used for the array port.

The constrained element is of type Boolean. When set to true, this indicates that the port of
the type is constrained and the indices are not needed when the type is used. The default is
false, which indicates that the definition has not constrained the number of bits. See 7.11.5.2.1
and 7.11.5.2.2.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 119
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
b) typeDefinition (optional) is defined by IP-XACT per language. Table 5 shows some examples.
There can be multiple typeDefinitions for each port. The typeDefinition element is of type string..

c) viewNameRef (mandatory) maps the correct type properties to the correct view. Multiple views can
use the same set of type properties by specifying multiple viewNameRef elements. The
viewNameRef must match a view/name in the containing object. The viewNameRef element is of
type NMTOKEN.

7.11.5.2.1 Constrained array type

A constrained array type is a type for which the indices of the array have been specified in the definition.

type BYTE is array (7 downto 0) of std_logic;

entity example is

 port(

 A: out BYTE;

 B: in BYTE

);

end example;

Also, the definition of port A in an IP-XACT file contains the indices in XML to designate the width so
these types below can be mixed in the same component.

<spirit:port>

<spirit:name>A</spirit:name>

<spirit:wire>

<spirit:vector>

<spirit:left>7</spirit:left>

<spirit:right>0</spirit:right>

</spirit:vector>

<spirit:typeDefs>

<spirit:typeDef>

<spirit:typeName spirit:constrained="true">BYTE

</spirit:typeName>

<spirit:typeDefinition>MYLIB.MYPKG.all</spirit:typeDefinition>

<spirit:viewNameRef>VHDLsimView</spirit:viewNameRef>

</spirit:typeDef>

</spirit:typeDefs>

</spirit:wire>

<spirit:port>

Table 5—typeDefinition examples

Language Meaning

VHDL “Use” statement text (IEEE.std_logic_1164.all).

Verilog Nothing needed, no meaning.

SystemC Include file name (systemc.h).

SystemVerilog Include file name (if the name does not contain a :); import package name (if the
name contains a :).
120 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
7.11.5.2.2 Unconstrained array type

An unconstrained array type is a type for which the indices of the array have not been specified in the
definition, e.g.,

type std_logic_vector is array (NATURAL RANGE <>) of std_logic;

entity example is
 port(
 A: out std_logic_vector (7 downto 0);
 B: in std_logic_vector (7 downto 0)
);
end example;

could be described in IP-XACT as

<spirit:port>
<spirit:name>A</spirit:name>
<spirit:wire>

<spirit:vector>
<spirit:left>7</spirit:left>
<spirit:right>0</spirit:right>

</spirit:vector>
<spirit:typeDefs>

<spirit:typeDef>
<spirit:typeName spirit:constrained=”false”>BYTE

</spirit:typeName>
<spirit:typeDefinition>MYLIB.MYPKG.all</spirit:typeDefinition>
<spirit:viewNameRef>VHDLsimView</spirit:viewNameRef>

</spirit:typeDef>
</spirit:wire>

<spirit:port>

7.11.5.2.3 Defaults

wireTypeDefs do not need to be defined for every view of a port. IP-XACT provides for these defaults
based on the language of the view, as shown in Table 6. For those languages not shown here, no defaults can
be presumed.

7.11.5.2.4 Rules

— A view name may only appear once in all the ports viewNameRef elements.
— If the view name is not found in a viewNameRef, the default type properties apply (seeTable 6).

Table 6—View defaults

Language Single bit Vectors

VHDL std_logic std_logic_vector

Verilog wire wire

SystemC sc_logic sc_lv

SystenVerilog logic logic
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 121
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
7.11.5.3 Example

See the examples in 7.11.5.2.2.

7.11.6 Component driver

7.11.6.1 Schema

The following schema details the information contained in the driver element, which may appear as an
element inside the top-level wire style port element. This element defines the type and value(s) to drive on
this port when it is not connected in a design.

7.11.6.2 Description

The driver element shall contain one of three different types of drivers that can be applied to a wire port of
a component or abstractor.

a) defaultValue (optional) specifies a static logic value for this port. The defaultValue can specify a
simple 1-bit wire port or a vectored wire port. The defaultValue element is of type scaledNonNega-
tiveInteger. The defaultValue element is configurable with attributes from long.prompt.att, see
X.Y.Z on configuration.

b) clockDriver (optional) specifies a repeating high-low waveform of this port. See 7.11.7.
c) singleShotDriver (optional) specifies a non-repeating high-low waveform for this port. See 7.11.8.

A driver element shall not be defined for a wire style port with a direction element of out.

7.11.6.3 Example

This example shows a default value of 0x0F set for a vectored wire port named scaler.

<spirit:port>
<spirit:name>scaler</spirit:name>
<spirit:wire>

<spirit:direction>in</spirit:direction>
<spirit:vector>

<spirit:left>7</spirit:left>
<spirit:right>0</spirit:right>

</spirit:vector>
<spirit:driver>

<spirit:defaultValue>0x0F</spirit:defaultValue>
</spirit:driver>

</spirit:wire>
122 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
</spirit:port>

7.11.7 Component driver/clockDriver

7.11.7.1 Schema

The following schema details the information contained in the clockDriver element, which may appear as
an element inside the top-level wire style port/driver element. This element defines the properties of a
clock waveform or repeating high-low waveform.

7.11.7.2 Description

The clockDriver element contains four elements that describe the properties of a clock waveform. These are
also depicted in Figure 10.

a) clockPeriod (mandatory) specifies the overall length (in time) of one cycle of the waveform. The
clockPeriod element is of type configurableDouble. The clockPeriod element is configurable with
attributes from float.prompt.att, see X.Y.Z on configuration. This element also contains a units
(optional) attribute for specifying the units of their time values: ns (the default) and ps. ns stands for
nanosecond and is equal to 10-9 seconds. ps stands for picosecond and is equal to 10-12 seconds.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 123
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
b) clockPulseOffset (mandatory) specifies the time delay from the start of the waveform to the first
transition. The clockPulseOffset element is of type configurableDouble. The clockPulseOffset
element is configurable with attributes from float.prompt.att, see X.Y.Z on configuration. This ele-
ment also contains a units (optional) attribute for specifying the units of their time values: ns (the
default) and ps. ns stands for nanosecond and is equal to 10-9 seconds. ps stands for picosecond and
is equal to 10-12 seconds.

c) clockPulseValue (mandatory) specifies the logic value to which the signal transitions. This value is
also the opposite of the value from which the waveform will start. The clockPulseValue element is
of type scaledNonNegativeInteger. The clockPulseValue element is configurable with attributes
from long.prompt.att, see X.Y.Z on configuration.

d) clockPulseDuration (mandatory) specifies how long the waveform remains at the value specified
by clockPulseValue. The clockPulseDuration element is of type configurableDouble. The clock-
PulseDuration element is configurable with attributes from float.prompt.att, see X.Y.Z on configu-
ration. This element also contains a units (optional) attribute for specifying the units of their time
values: ns (the default) and ps. ns stands for nanosecond and is equal to 10-9 seconds. ps stands for
picosecond and is equal to 10-12 seconds.

e) clockName (optional) attribute specifies a name for the clock driver. If this is not defined, the name
of the port to which this clockDriver is applied shall be used.

Figure 10—clockDriver elements

7.11.7.3 Example

This is an example of a clock driver set on the wire port named clk. The clock starts off in the logic 0
state for 4 ns, then transitions to the logic 1 state for 4 ns. This cycle is the repeated forever.

<spirit:port>
<spirit:name>clk</spirit:name>
<spirit:wire>

<spirit:direction>in</spirit:direction>
<spirit:driver>

<spirit:clockDriver spirit:clockName="clk">
<spirit:clockPeriod>8</spirit:clockPeriod>
<spirit:clockPulseOffset>4</spirit:clockPulseOffset>
<spirit:clockPulseValue>1</spirit:clockPulseValue>
<spirit:clockPulseDuration>4</spirit:clockPulseDuration>

</spirit:clockDriver>

clockDuration

clockPulseDuration

clockPulseValue

clockPulseOffset
124 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
</spirit:driver>

</spirit:wire>

</spirit:port>

7.11.8 Component driver/singleShotDriver

7.11.8.1 Schema

The following schema details the information contained in the singleShotDriver element, which may
appear as an element inside the top-level wire style port/driver element. This element defines the properties
of a single-shot waveform or non-repeating high-low waveform.

7.11.8.2 Description

The singleShotDriver element contains three elements that describe the properties of the waveform. These
are also depicted in Figure 11.

a) singleShotOffset (mandatory) specifies the time delay from the start of the waveform to the transi-
tion. The singleShotOffset element is of type configurableDouble. The singleShotOffset element
is configurable with attributes from float.prompt.att, see X.Y.Z on configuration. This element also
contains a units (optional) attribute for specifying the units of their time values: ns (the default) and
ps. ns stands for nanosecond and is equal to 10-9 seconds. ps stands for picosecond and is equal to
10-12 seconds.

b) singleShotValue (mandatory) specifies the logic value to which the signal transitions. This value is
also the opposite of the value from which the waveform will start. This value is also the opposite of
the value from which the waveform will start. The singleShotValue element is of type scaledNon-
NegativeInteger. The singleShotValue element is configurable with attributes from
long.prompt.att, see X.Y.Z on configuration.

c) singleShotDuration (mandatory) specifies hog long the waveform remains at the value specified by
singleShotValue. The singleShotDuration element is of type configurableDouble. The single-
ShotDuration element is configurable with attributes from float.prompt.att, see X.Y.Z on configu-
ration. This element also contains a units (optional) attribute for specifying the units of their time
values: ns (the default) and ps. ns stands for nanosecond and is equal to 10-9 seconds. ps stands for
picosecond and is equal to 10-12 seconds.

d) These elements all have a group of attributes named general.att applied to them. These attributes
are described in the general section of this document, they allow the user to change the values of
these defaults in the design file for each instantiation of a component or change the design configu-
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 125
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
ration file for each instantiation of an abstractor. The two elements related to time (singleShotDura-
tion and singleShotOffset) have a fixed time unit of nanoseconds (10-9 seconds).

Figure 11—singleShotDriver elements

7.11.8.3 Example

This is an example of a single-shot driver set on the wire port named reset. The waveform starts off in the
logic 0 state for 100 ns and then transitions to the logic 1 state.

<spirit:port>

<spirit:name>reset</spirit:name>

<spirit:wire>

<spirit:direction>in</spirit:direction>

<spirit:driver>

<spirit:singleShotDriver>

<spirit:singleShotOffset>0</spirit:singleShotOffset>

<spirit:singleShotValue>0</spirit:singleShotValue>

<spirit:singleShotDuration>100</spirit:singleShotDuration>

</spirit:singleShotDriver>

</spirit:driver>

</spirit:wire>

</spirit:port>

7.11.9 Implementation constraints

Implementation constraints can be defined to document requirements that need to be met by an
implementation of the component. Constraints are defined in groups called constraint sets (in the IP-XACT
element port/wire/constraintSets/constraintSet) so different constraints can be associated with different
views of the component. A particular set of constraints is tied to a component view by the constraintSetId
attribute in the constraint set and the matching constraintSetRef element in the view.

7.11.10 Component wire port constraints

7.11.10.1 Schema

The following schema defines the information contained in the constraintSets element, which may appear
within a wire element within a component port element (component/model/ports/port/wire).

singleShot Duration

singleShotValue

singleShot Offset
126 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
7.11.10.2 Description

The constraintSets element is used to define technology independent implementation constraints associated
with the containing wire port of the component. The constraintSets element contains one or more
constraintSet elements which define a set of constraints for the port. If more than one constraintSet
element is present, each shall have a unique value for the constraintSetId attribute so each constraintSet
can be uniquely referenced from a view. constraintSet also contains the following optional elements.

a) nameGroupOptional group includes the following. See X.Y.Z.
1) name (optional) identifies the constraint set.
2) displayName (optional) allows a short descriptive text to be associated with the constraint set.
3) description (optional) allows a textual description of the constraint set.

b) vector (optional) determines if this port is a scalar port or a vectored port. The left and right vector
bounds elements inside the vector element are those specified the bounds of the vector. The left and
right elements are of type nonNegativeInteger.

c) driveConstraint (optional) defines a driving constraint for this port. See 7.11.11 for details.
d) loadConstraint (optional) defines a load constraint for this port. See 7.11.12 for details.
e) timingConstraint (optional) defines a timing constraint relitive to a clock for this port. See 7.11.13

for details.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 127
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
7.11.10.3 Example

This example shows a port containing a single timing constraint appearing in two different constraint sets.

<spirit:port>

<spirit:name>hgrant</spirit:name>

<spirit:wire>

<spirit:direction>in</spirit:direction>

<spirit:constraintSets>

<spirit:constraintSet spirit:constraintSetId=”timing”>

<spirit:timingConstraint spirit:clockName=”hclk”>40

</spirit:timingConstraint>

</spirit:constraintSet>

<spirit:constraintSet spirit:constraintSetId=”area”>

<spirit:timingConstraint spirit:clockName=”hclk”>50

</spirit:timingConstraint>

</spirit:constraintSet>

</spirit:constraintSets>

</spirit:wire>

</spirit:port>

7.11.11 Port drive constraints

7.11.11.1 Schema

The following schema defines the information contained in the driveConstraint element, which may appear
within a modeConstraints or mirroredModeConstraints element within a wire type port in an abstraction
definition or within a constraintSet element within a wire type port in a component.

7.11.11.2 Description

The driveConstraint element defines a technology-independent drive constraint associated with the
containing wire port of a component or the component port associated with the logical port within an
abstraction definition if the driveConstraint element is contained within an abstraction definition. The
actual constraint consists of a technology-independent specification of a library cell presumed to drive the
input port. The cellSpecification element defines the cell (see 7.11.14).

The driveConstraint element is not valid on output port.

See also: SCR 14.1, SCR 14.3, and SCR 14.6.
128 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
7.11.11.3 Example

This example shows two different drive constraints. The first represents a median-strength D flop and the
second a low-strength sequential cell.

<spirit:driveConstraint>

<spirit:cellSpecification>

<spirit:cellFunction>dff</spirit:cellFunction>

</spirit:cellSpecification>

</spirit:driveConstraint>

<spirit:driveConstraint>

<spirit:cellSpecification>

<spirit:cellClass spirit:strength=”low”>sequential

</spirit:cellClass>

</spirit:cellSpecification>

</spirit:driveConstraint>

7.11.12 Port load constraints

7.11.12.1 Schema

The following schema element defines the information contained in the loadConstraint element, which
may appear within a modeConstraints or mirroredModeConstraints element within a wire type port in an
abstraction definition or within a constraintSet element within a wire type port in a component.

7.11.12.2 Description

The loadConstraint element defines a technology-independent load constraint associated with the
containing wire port of a component or the component port associated with the logical port within an
abstraction definition if the loadConstraint element is contained within an abstraction definition. The actual
constraint consists of two parts, the technology-independent specification of a library cell and a count.
loadConstraint also contains the following elements.

a) cellSpecification (mandatory) defines the library cell (see 7.11.14).
b) count (optional) indicates how many loads of the indicated type are modeled as if attached to the

output port. The default is three loads. The count element is of type positiveInteger.

The loadConstraint element is not valid on input ports.

See also: SCR 14.2, SCR 14.4, and SCR 14.5.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 129
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
7.11.12.3 Example

This example shows two different load constraints. The first is load consisting of three D flops of median
strength and the second is a load consisting of four low-strength sequential cells.

<spirit:loadConstraint>
<spirit:cellSpecification>

<spirit:cellFunction>dff</spirit:cellFunction>
</spirit:cellSpecification>

</spirit:loadConstraint>
<spirit:loadConstraint>

<spirit:cellSpecification>
<spirit:cellClass spirit:strength=”low”>sequential</spirit:cellClass>

</spirit:cellSpecification>
<spirit:count>4</spirit:count>

</spirit:loadConstraint>

7.11.13 Port timing constraints

7.11.13.1 Schema

The following schema defines the information contained in the timingConstraint element, which may
appear within a modeConstraints or mirroredModeConstraints element within a wire type port in an
abstraction definition or within a constraintSet element within a wire type port in a component.

7.11.13.2 Description

The timingConstraint element defines a technology-independent timing constraint associated with the
containing wire port of a component or abstraction definition. Its of type delayPercentageType, the value is
a floating point number between 0 and 100 which represents the percentage of the cycle time to be allocated
to the timing constraint on the port. If the component port is an input (or the port in an abstraction definition
ends up mapping to a physical port with direction in), the timing constraint represents an input delay
constraint; otherwise, it represents an output delay constraint. timingConstraint also contains the following
attributes.
130 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
a) clockEdge (optional) specifies to which edge of the clock the constraint is relative. The default
behavior is the constraint is relative to the rising edge of the clock. The clockEdge attribute may
have two values rise (the default) or fall.

b) delayType (optional) restricts the constraint to applying to only best-case (minimum) or worst-case
(maximum) timing analysis. By default, the constraint is applied to both. The delayType attribute
may have two values min or max.

c) clockName (mandatory) specifies the delay constraint relative to the clock. The cycle time of the
referenced clock is what actually determines the actual magnitude of the delay constraint (<clock
cycle time> * 100 / <timing constraint element value>). The clockName element is of type Name.

See also: SCR 14.7 and SCR 14.9.

7.11.13.3 Example

This example shows three basic timing constraints. The first indicates a delay of 40% of the clock hclk,
relative to the rising edge of hclk, and applicable to both best and worst case timing analysis. The second
indicates a delay of 30% of the clock hclk, relative to the falling edge of hclk, and applicable to best case
timing. The third indicates a delay of 50% of the clock hclk, relative to the falling edge of hclk, and
applicable to worst case timing.

<spirit:timingConstraint

spirit:clockName=”hclk”>40</spirit:timingConstraint>

<spirit:timingConstraint spirit:clockName=”hclk”spirit:clockEdge=”fall”

spirit:delayType=”min”>30</spirit:timingConstraint>

<spirit:timingConstraint spirit:clockName=”hclk” spirit:clockEdge=”fall”

spirit:delayType=”max”>50</spirit:timingConstraint>

7.11.14 Load and drive constraint cell specification

7.11.14.1 Schema

The following schema defines the information contained in the cellSpecification element, which may
appear within a loadConstraint or driveConstraint element indicating the type of cell to use in the
constraint.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 131
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
7.11.14.2 Description

The cellSpecification element defines a cell in a technology-independent fashion such that drive and load
constraints can be defined without referencing a specific technology library. The cell is defined so a design
environment can map it to an appropriate cell in a specific library when the actual constraint is generated.
The cellSpecification element ahsll contain one of the following two elements.

a) cellFunction (mandatory) specifies a cell function from the user defined library. The cellFunction
element shall be one of the following values: nd2, buf, inv, mux21, dff, latch or xor2. The cell-
Function element contains a cellStrength (optional) attribute that provides the cell strength specifi-
cation. The value shall be one of low, median (the default) or high. median implies the middle cell
of all the cells that match the desired function, sorted by drive or load strength (as appropriate for the
given constraint), is used.

b) cellClass (mandatory) specifies a cell class from the user defined library. The cellClass element
shall be one of the following values: combinational or sequential. The cellClass element contains a
cellStrength (optional) attribute that provides the cell strength specification. The value shall be one
of low, median (the default) or high. median implies the middle cell of all the cells that match the
desired class, sorted by drive or load strength (as appropriate for the given constraint), is used.

7.11.14.3 Example

This example shows two different variations of cell specifications. The first indicates a median-strength D
flop cell and the latter a low-strength sequential cell.

<spirit:cellSpecification>
<spirit:cellFunction>dff</spirit:cellFunction>

</spirit:cellSpecification>
<spirit:cellSpecification>

<spirit:cellClass spirit:strength=”low”>sequential</spirit:cellClass>
</spirit:cellSpecification>

7.11.15 Other clock drivers

7.11.15.1 Schema

The following schema defines the information contained in the otherClockDrivers element, which may
appear within a component element.
132 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
7.11.15.2 Description

The otherClockDrivers element defines clocks within a component that are not directly associated with a
top-level port, e.g., virtual clocks and generated clocks. The otherClockDrivers element contains one or
more otherClockDriver elements, each of which represents a single clock. The otherClockDriver element
consists of a number of sub-elements which define the format of the clock waveform.

a) clockPeriod, clockPulseOffset, clockPulseValue and clockPulseDuration (all required) are all
detailed in the description of the element clockDriver. See 7.11.7.

b) clockName (mandatory) attribute indicating the name of the clock for reference by a constraint. The
clockName element is of type Name.

c) clockSource (optional) attribute defines the physical path and name to the clock generation cell.

7.11.15.3 Example

This example shows a virtual and a generated clock within the otherClockDrivers element.

<spirit:otherClockDrivers>
<spirit:otherClockDriver spirit:clockName=”virtClock”>

<spirit:clockPeriod>5</spirit:clockPeriod>
<spirit:clockPulsOffset>0</spirit:clockPulseOffset>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 133
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
<spirit:clockPulseValue>1</spirit:clockPulseValue>
<spirit:clockPulseDuration>2.5</spirit:clockPulseDuration>

</spirit:otherClockDriver>
<spirit:otherClockDriver spirit:clockName=”genClock”

spirit:clockSource=”i_clkGen/clk1”>
<spirit:clockPeriod spirit:units=”ps”>10</spirit:clockPeriod>
<spirit:clockPulsOffset spirit:units=”ps”>2</spirit:clockPulseOffset>
<spirit:clockPulseValue>0</spirit:clockPulseValue>
<spirit:clockPulseDuration spirit:units=”ps”>5

</spirit:clockPulseDuration>
</spirit:otherClockDriver>

<spirit:otherClockDrivers>

7.11.16 Transactional ports

7.11.16.1 Component transactional port type

7.11.16.1.1 Schema

The following schema defines the information contained in the transactional element (in a component/
model/ports/port element).
134 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
7.11.16.1.2 Description

A transactional element in a component model port enables to define a physical transactional port of the
component, which implements or uses a service. A service can be implemented with functions or methods. It
contains the following elements.

a) allLogicalDirectionsAllowed (optional) attribute defines the possible legal combinations for the
initiative (defined in service/initiative, see 7.11.16.3) of ports between the component and the
abstraction definition. See 6.2 on bus interfaces. The allLogicalDirectionAllowed attribute is of
type Boolean. If true logical ports with different initiatives from the physical port initiative may be
mapped together. Forbidden for phantom ports, which always allow logical ports with all initiatives
value to be mapped onto the physical port. Also ignored for "both" ports, since any logical port may
be mapped to a physical "both" port.

b) transTypeDef (optional) defines the port type expressed in the default language for this port. See
7.11.16.2.

c) service (mandatory) describes the interface protocol associated to the transactional port. See
7.11.16.3.

d) access (optional) defines the access for a port.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 135
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
1) portAccessType (optional) indicates to a netlister how to access the port. The portAccessType
shall one of two possible values ref or ptr. If ref it should access theport directly and if ptr it
should access the port with a pointer.

2) portAccessHandle (optional) indicates to a netlister the string to use to access the port, instead
of the port name. The portAccessHandle is of type string.

e) connection (optional) defines the number of legal connections for a port.
1) maxConnections (optional) indicating the maximum number of connections that this port sup-

ports. Its default value is 0, which indicates an unbounded number of legal connections. The
maxConnections element is of type nonNegativeInteger.

2) minConnections (optional) indicating the minimum number of connections that this ports sup-
ports. Its default value is 1. The minConnections element is of type nonNegativeInteger.

7.11.16.1.3 Example

The following example shows the transactional type definition of a custom specific tlm_port, defined in
the include file tlm_port.h.

<spirit:transTypeDef>
<spirit:typeName>tlm_port</spirit:typeName>
<spirit:typeDefinition>tlm_port.h</spirit:typeDefinition>

</spirit:transTypeDef>

7.11.16.2 Component transactional port type definition

7.11.16.2.1 Schema

The following schema defines the information contained in the transTypeDef element (in a component/
model/ports/port/transactional element).

7.11.16.2.2 Description

A transTypeDef element defines the port type expressed in the default language for this port (e.g., SystemC
or SystemVerilog). It contains the following elements.

a) typeName (mandatory) defines the port type (such as sc_port/sc_export in SystemC or any
user-defined type, such as tlm_port). The typeName element may be associated with an optional
136 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
Boolean constrained attribute (the default value is false). If true this indicates that the port type
definition has constrained the number of bits in the vector.

b) typeDefinition (optional) indicates a location where the type is defined,e.g., in SystemC and Sys-
temVerilog, this is the include file containing the type definition. The typeDefinition element is of
type string.

7.11.16.2.3 Example

The following example shows the transactional type definition of a custom specific tlm_port, defined in
the include file tlm_port.h.

<spirit:transTypeDef>

<spirit:typeName>tlm_port</spirit:typeName>

<spirit:typeDefinition>tlm_port.h</spirit:typeDefinition>

</spirit:transTypeDef>

7.11.16.3 Component transactional port service

7.11.16.3.1 Schema

The following schema defines the information contained in the service element (in a component/model/
ports/port/transactional element).

7.11.16.3.2 Description

A service element describes the interface protocol associated to the transactional port. It contains the
following elements and attributes.

a) initiative (mandatory) defines the type of access: requires, provides, both, or phantom.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 137
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
1) For example, a SystemC sc_port should be defined with the requires initiative, since it
requires a SystemC interface. A SystemC sc_export should be defined with the provides
initiative, since it provides a SystemC interface.

2) A both value indicates the type of access is both requires and provides.
3) A phantom value indicates the type of access is a phantom port.

Phantom ports are additional ports in the component port list, which do not correspond to ports
of the implementation. As with real component ports, the mapping of a set of logical bus ports
to that phantom port implies any design using that component shall connect those logical ports
with no intervening logic. The difference is a real component port needs to have a correspond-
ing port in any RTL, TLM, or hierarchical IP-XACT implementation of the component;
whereas, for phantom ports there is no corresponding port in the implementation. See 7.11.17.

b) serviceTypeDefs (optional) contains one or more serviceTypeDef elements. This serviceTypeDef
element defines a single service type definition.
1) typeName (mandatory) defines the name of the service type (can be any predefined type, such

as Boolean or any user-defined type, such as addr_type). The typeName element may be
defined with two optional attributes: constrained (a Boolean indicating if the port type has
constrained the number of bits in the vector) and implicit (a Boolean indicating a netlister
should not declare this service in a language-specific, top-level netlist).

2) typeDefinition (optional) indicates a location where the type is defined,e.g., in SystemC and
SystemVerilog, this is the include file containing the type definition.

3) parameters (optional) specifies any service type parameters. See X.Y.Z.
c) vendorExtensions (optional) adds any extra vendor-specific data related to the service.

7.11.16.3.3 Example

The following example shows the definition of the service provided by a SystemC port.

sc_export< pvt_if<ADDR, DATA> > pvt_port

<spirit:service>
<spirit:initiative>provides</spirit:initiative>
<spirit:serviceTypeDefs>

<spirit:serviceTypeDef>
<spirit:typeName>pvt_if</spirit:typeName>
<spirit:parameters>

<spirit:parameter name=”addr” resolve=”user”>ADDR
</spirit:parameter>

<spirit:parameter name=”data” resolve=”user”>DATA
</spirit:parameter>

</spirit:parameters>
</spirit:serviceTypeDef>

</spirit:serviceTypeDefs>
</spirit:service>

7.11.17 Phantom ports

In some components, the RTL or TLM implementation of the component does not fully implement the
functionality of the component described by IP-XACT. In RTL components, this is typically because the
component has to work in design flows that only allow a signal to be routed though an RTL component if
there is some logic within the RTL component associated with that signal. This is particularly a problem for
components containing channels.
138 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
An IP-XACT channel is supposed to represent the complete bus infrastructure between the master, slave,
and system bus interfaces connected to the bus. As such, the component containing the channel should
contain everything that is needed to create this infrastructure. In many buses, however, some signals are
directly connected between the components attached to the bus, with no intervening logic. This is most often
the case with clock and reset signals. If the component is to be usable in a wide range of design flows these
signals cannot be included in the RTL of the component.

To fully describe such a channel component and allow netlisters that have no special knowledge of that bus
type to netlist designs containing it, IP-XACT describes these additional connections as phantom ports. Phan-
tom ports are additional ports included in the component’s port list, but marked as phantom. As with real
component ports, the mapping of a set of logical bus ports to that phantom port implies any design using that
component needs to connect those logical ports with no intervening logic. The difference is a real component
port needs to have a corresponding port in any RTL, TLM, or hierarchical IP-XACT implementation of the
component; whereas, for phantom ports there is no corresponding port in the implementation.

7.11.18 modelParameters

7.11.18.1 Schema

The following schema details the information contained in the modelParameters element, which may
appear as an element inside the top-level component/model or abstractor/model element.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 139
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
7.11.18.2 Description

Model parameters are most often used in HDL languages to specify information that is passed to the model
to configure it for a process. The modelParameters element may contain any number modelParameter
elements. The modelParameter elements describe the properties for a single parameter that is applied to all
the models specified under the model/views element. It contains the following elements.

a) dataType (optional) attribute specifies the data type as it pertains to the language of the model. This
definition is used to define the type for component declaration and such and has no semantic mean-
ing. For example, systemC this could be int, double, char*, etc. For VHDL this could be
std_logic, std_logic_vector, integer, etc.

b) usageType (optional) attribute specifies how this parameter is used in different modeling languages:
nontyped (the default) and typed. See 7.11.18.2.1.

a) nameGroup group includes the following. See X.Y.Z .
1) name (mandatory) identifies the modelParameter.
2) displayName (optional) allows a short descriptive text to be associated with the register.
3) description (optional) allows a textual description of the register.

b) value (mandatory) contains the actual value of the parameter. The value element is of type string.
The value element is configurable with attributes from string.prompt.att, see X.Y.Z on configura-
tion.

c) vendorExtensions (optional) adds any extra vendor-specific data related to the modelParamter.

See also: All SCRs that apply to the parameter element also apply to modelParameters, see Table B5.

7.11.18.2.1 Typed and non-typed parameters classification

There are two categories of parameters: type and non-typed.

The type parameters (or declaration parameters) appear in object-oriented (OO) languages such a C++/
SystemC or SystemVerilog.

In C++/SystemC, these are named Class template parameters. Templates can be used to develop a generic
class prototype (specification) which can be instantiated with different data types. This is very useful when
the same kind of class is used with different data types for individual members of the class. Parameterized
types are used as data types and then a class can be instantiated, i.e., constructed and used by providing
arguments for the parameters of the class template. A class template is a specification of how a class should
be built (i.e., instantiated) given the data type or values of its parameters.

Class template parameters can have default arguments, which are used during class template instantiation
when arguments are not provided. Because the provided arguments are used starting from the far left
parameter, default arguments should be provided for the right-most parameters.

Example 1

template <typename T>
class FIFO {

FIFO();
T pull();
void push(T &x);

};

In SystemVerilog, typed parameters are named type parameters. Type parameters can be used in
SystemVerilog classes, interfaces, or modules to provide the basic function of C++ templates.
140 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
Example 2

typedef bit[32] DataT;
interface FIFO #(type T);

Method T pull();
Method push (T x);

endinterface: FIFO

The generic non-typed parameters (or initialization parameters) appear in all languages (procedural or OO)
and in particular in VHDL, Verilog, SystemC, and SystemVerilog. A non-typed parameter is like an
ordinary (function-parameter) declaration. In SystemC, it represents a constant in a class template definition
or a parameter in a class constructor, i.e., this can be determined at compilation time. In VHDL, it is
represented by generics. In Verilog or SystemVerilog, it is represented by parameters.

Example 3

Here is an example of non-typed parameters usage on a simple GCD model expressed in various languages.

VHDL

entity GCD is
generic (Width: natural);
port (
Clock,Reset,Load: in std_logic;

A,B: in unsigned(Width-1 downto 0);
Done: out std_logic;
Y: out unsigned(Width-1 downto 0));

end entity GCD;

(System)Verilog

module GCD (Clock, Reset, Load, A, B, Done, Y);
parameter Width = 8;

input Clock, Reset, Load;
input [Width-1:0] A, B;
output Done;
output [Width-1:0] Y;

…
endmodule

SystemC

template <unsigned int Width = 8>
SC_MODULE (GCD) {

sc_in<bool> Clock, Reset, Load;
sc_in<sc_uint<Width> >a, b;
sc_out<bool> Done;
sc_out<sc_uint<Width> > y;
…

}

These two kinds of parameters (typed and non-typed) can be combined to model complex IP modules.

Example 4
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 141
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
In SystemC:

template <typename T> // type parameter
class testModule : public sc_module {
public:

testModule(sc_module_name modnamemodname, string
portname) :

// non type parameters
sc_module(modname),
testport(portname) {…}
sc_port<T> testport;

};

In a top SC netlist design, such a class is instantiated as follows.

testModule<bool> test(“myModuleName”,“port1”);

In IP-XACT, the testModule parameters are represented as follows.

<spirit:modelParameters>
<!-- template parameter -->
<spirit:modelParameter spirit:usageType="typed">

<spirit:name>T</spirit:name>
<spirit:value

spirit:choiceRef="typenameChoice"
spirit:configGroups="requiredConfig"
spirit:id="Tid"
spirit:prompt="T:"
spirit:resolve="user">boolean</spirit:value>

</spirit:modelParameter>
<!-- constructor parameters -->
<spirit:modelParameter spirit:usageType="nontyped">

<spirit:name>modname</spirit:name>
<spirit:value

spirit:choiceRef="modulenameChoice"
spirit:configGroups="requiredConfig"
spirit:id="modnameId"
spirit:prompt="moduleName:"
spirit:resolve="user">myModuleName</spirit:value>

</spirit:modelParameter>
<spirit:modelParameter spirit:usageType="nontyped">

<spirit:name>portname</spirit:name>
<spirit:value

spirit:choiceRef="portnameChoice"
spirit:configGroups="requiredConfig"
spirit:id="portnameid"
spirit:prompt="portName:"
spirit:resolve="user">port1</spirit:value>

</spirit:modelParameter>
</spirit:modelParameters>

7.11.18.2.2 Generic parameters mapping in different languages

Table 7 summarizes the two kind of parameters (initialization and declaration) expressed in the four most
commonly used HW languages.
142 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
A declaration parameter (e.g., int) shall be used when declaring an IP instance in a top netlist (e.g,. myIP
int myIntIP;). An initialization parameter (e.g., myName) shall be used when initializing the instance
of that IP (e.g., myIntIP(“myName”);).

Table 7—Parameter mappings

Language Non-typed parameters
(initialization) Typed parameters (declaration)

VHDL generics N.A

Verilog parameter N.A

SystemC constructor Template (constant or variable type)

SystemVerilog parameter parameter
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 143
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
144 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
7.12 Component generators

7.12.1 Schema

The following schema details the information contained in the componentGenerators element, which may
appear as an element inside the top-level component element.

7.12.2 Description

The componentGenerators element contains an unbounded list of componentGenerator elements. Each
componentGenerator element defines a generator that are assigned and may be run on this component.
componentGenerator contains two attributes: hidden and scope. The hidden (optional) attribute specifies,
when True, this generator shall not be run as the initial generator and is required to be run as port of a chain.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 144
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
If False (the default), this generator may be run as an initial generator or in a generator chain. This attribute
is of type Boolean. The scope (optional) attribute is an enumerated list of instance and entity. instance
indicates this generator shall be run once for all instances of this component. entity indicates this generator
shall be run once for each instance of this component.

componentGenerator contains the following elements.
a) nameGroup group includes the following.

1) name (mandatory) identifies the component generator. The name element is of type Name.
2) displayName (optional) allows a short descriptive text to be associated with the component

generator. The displayName element is of type string.
3) description (optional) allows a textual description of the component generator. The descrip-

tion element is of type string.
b) phase (optional) determines the sequence in which a generators are run. Multiply selected genera-

tors are run in order starting with zero (0). If generators have the same phase numbers, the order
shall be interpreted as not important and the generators can be run in any order. If no phase number
is given the generator is considered in the “last” phase and these generators are run in the order they
are encountered while processing componentGenerator elements. The phase element is of type
float and shall also be a positive number.
phase can also contain a scope (optional) attribute specifying the scope of the phase number in this
generator as related to other generators. This is an enumerated list of global or local. global (the
default) indicates the phase number shall be used across all generators when determining the gener-
ator sequence. local indicates the phase number shall only be used in comparison with generators
defined within this component description.

c) parameters (optional) specifies any componentGenerator type parameters. See X.Y.Z.
d) apiType (optional) indicates the type of API used by the generator: an enumerated list of TGI or

none. TGI indicates the generator uses communication to the design environment compliant with
the TGI. none indicates the generator does not use any communication with the DE.

e) transportMethods (optional) defines alternate SOAP transport protocol that this generator can sup-
port. The default SOAP transport protocol is HTTP if this element is not present.

transportMethod specifies the alternate transport protocol. This element is an enumerated list
of only one element file. file indicates the SOAP transport protocol is transported to the DE
view of a file or file handle.

f) generatorExe (mandatory) contains an absolute or relative (to the location of the containing
description) path to the generator executable. The path may also contain environment variables from
the host system, which are used to abstract the location of the generator. The generatorExe element
is of type spiritURI.

g) vendorExtensions (optional) adds any extra vendor-specific data related to the componentGenera-
tor.

h) group (optional, unbounded) is a list of names used to assign this generator to a group with other
generators. These group names are then referenced by a generator chain selector to forming a chain
of generators. See X.Y.Z. The group element is of type Name.

7.12.3 Example

This example shows
145 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
7.13 Files

7.13.1 filesets

7.13.1.1 Schema

The following schema details the information contained in the fileSets element, which may appear in
component or an abstractor.

7.13.1.2 Description

The fileSets element contains may contain one or more fileSet elements. A fileSet contains a list of files
associated with a component. A Fileset can establish the (relative) path directory of files and elements
associated with a component and/or include any build instructions. If completion order is important (e.g., for
VHDL files), the files shall be listed in the order needed for completion. fileSet has the following mandatory
and optional elements.

a) nameGroup group includes the following. See X.Y.Z.
1) name (mandatory) identifies the file set. The name element is of type Name.
2) displayName (optional) allows a short descriptive text to be associated with the file set. The

displayName element is of type string.
3) description (optional) allows a textual description of the file set. The description element is of

type string.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 146
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
b) group (optional, unbounded) describes the function or purpose of the file set with a single word
group name (e.g., diagnostics, interrupt, etc.). The group element is of type Name.

c) file (optional, unbounded) references a single file or directory associated with the file set (see
7.13.2).

d) defaultFileBuilder (optional, unbounded) specifies the default build commands for the files within
this file set.

e) dependency (optional, unbounded) is the path to a directory containing (include) files on which the
file set depends. The dependency element is of type spiritURI.

f) function (optional, unbounded) specifies the information about a function for a generator (see
7.13.5).

g) vendorExtensions (optional) provides a place for any vendor-specific extensions.

7.13.1.3 Example

The following is an example of a fileSet with two VHDL files.

<spirit:fileSets>
<spirit:fileSet spirit:fileSetId="fs-vhdlSource">

<spirit:name>fs-vhdlSource</spirit:name>
<spirit:file>

<spirit:name>hdlsrc/timers.vhd</spirit:name>
<spirit:fileType>vhdlSource</spirit:fileType>
<spirit:logicalName>leon2_timers</spirit:logicalName>

</spirit:file>
<spirit:file>

<spirit:name>hdlsrc/leon2_Timers.vhd</spirit:name>
<spirit:fileType>vhdlSource</spirit:fileType>
<spirit:logicalName>leon2_timers</spirit:logicalName>

</spirit:file>
</spirit:fileSet>

</spirit:fileSets>

7.13.2 file

7.13.2.1 Schema

The following schema details the information contained in the file element, which may appear as an element
inside the fileset element.
147 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
7.13.2.2 Description

A file is a reference to a file or directory. It is an optional element of a fileset. If completion order is
important (e.g., for VHDL files), the files shall be listed in the order needed for completion. The file element
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 148
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
contains an attribute fileId (optional) which is used for references to this file from inside fileSet/function/
fileRef element. The file element also allows for vendor attributes to be applied. file contains the following
elements.

a) name (mandatory) contains an absolute or relative (to the location of the containing description)
path to a file name or directory. The path may also contain environment variables from the host sys-
tem, used to abstract the location of files. The name element is of type spiritURI. The name element
is configurable with attributes from string.prompt.att, see X.Y.Z on configuration.

b) fileType (required, unbounded) group contains one of the following two elements.
1) fileType (mandatory) describes the type of file referenced from the this enumerated list of

industry standard files: unknown, cSource, cppSource, asmSource, vhdlSource, vhdl-
Source-87, vhdlSource-93, verilogSource, verilogSource-95, verilogSource-2001, swOb-
ject, swObjectLibrary, vhdlBinaryLibrary, verilogBinaryLibrary, unelaboratedHdl,
executableHdl, systemVerilogSource, systemVerilogSource-3.0, systemVerilogSource-3.1,
systemCSource, systemCSource-2.0, systemCSource-2.0.1, systemCSource-2.1, vera-
Source, eSource, perlSource, tclSource, OVASource, SVASource, pslSource, systemVer-
ilogSource-3.1a, and SDC.

2) userFileType (mandatory) describes any other file type that can not be described from the list
for fileType. The userFileType element is of type string.

c) includeFile (optional) when True, declares the file as an include file. If this element is not present
the default value is False. includeFile is of type Boolean. includeFile has an attribute external-
Declarations (optional), when True, this indicates the include file is needed by users of any files in
this file set. The default is false.

d) logicalName (optional) is the logical name for the file or directory, such as a VHDL library. The
logicalName element is of type Name. logicalName includes an attribute default (optional) that
means something. The default attribute is of type Boolean and the default is false.

e) exportedName (optional, unbounded) defines any names that can be referenced externally. export-
edName is of type Name.

f) buildCommand (optional) contains flags or commands for building the containing source file.
These flags or commands override any flags or commands present in higher-level defaultFile-
Builder elements. See X.Y.Z.

g) dependency (optional, unbounded) is the path to a directory containing (include) files on which the
file depends. The dependency element is of type spiritURI.

h) define (optional, unbounded) specifies the define symbols to use in the source file. See 7.13.4.
i) imageType (optional, unbounded) relates the current file to an executable image type in the design.
j) description (optional) details the file for the user. The description element is of type string.
k) vendorExtensions (optional) provides a place for any vendor-specific extensions.

See also SCR 12.1.

7.13.2.3 Example

The following is an example of two file sets. One with a Verilog file with a dependency on a directory and
one with a VHDL file.

<spirit:fileSets>
 <spirit:fileSet>
 <spirit:name>fs-verilogSource</spirit:name>

<spirit:file>
 <spirit:name>data/i2c/RTL/i2c.v</spirit:name>
 <spirit:fileType>verilogSource</spirit:fileType>
 <spirit:logicalName>i2c_lib</spirit:logicalName>
149 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
 </spirit:file>

 <spirit:dependency>data/i2c/RTL</spirit:dependency>

 </spirit:fileSet>

 <spirit:fileSet>

 <spirit:name>fs-vhdlWrapper</spirit:name>

 <spirit:file>

 <spirit:name>data/i2c/RTL/i2c.vhd</spirit:name>

 <spirit:fileType>vhdlSource</spirit:fileType>

 <spirit:logicalName>i2c_lib</spirit:logicalName>

 </spirit:file>

 </spirit:fileSet>

 </spirit:fileSets>

7.13.3 buildCommand

7.13.3.1 Schema

The following schema details the information contained in the buildCommand element, which may appear
as an element inside the file element.

7.13.3.2 Description

A buildCommand contains flags or commands for building the containing source file. These flags or
commands override any flags or commands present in higher-level defaultFileBuilder elements.

a) command (optional) element defines a compiler or assembler tool that processes the software of
this type. The command element is of type string. The command element is configurable with
attributes from string.prompt.att, see X.Y.Z on configuration.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 150
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
b) flags (optional) documents any flags to be passed along with the software tool command. The flag
element is of type string. The flags element is configurable with attributes from string.prompt.att,
see X.Y.Z on configuration. The flags element contains an attribute append (optional), which, when
True indicates the flags shall be appended to the current flags. If false, the flags shall replace the
existing flags.

c) replaceDefaultFlags (optional) documents flags that replace any of the passed default flags. The
replaceDefaultFlags element is of type Boolean. The replaceDefaultFlags element is configurable
with attributes from bool.prompt.att, see X.Y.Z on configuration.

d) targetName (optional) defines the path to the file derived from the source file. The targetName ele-
ment is of type spiritURI. The targetName element is configurable with attributes from
string.prompt.att, see X.Y.Z on configuration.

7.13.3.3 Example

The following is an example.

<spirit:fileSets>

</spirit:fileSets>

7.13.4 define

7.13.4.1 Schema

The following schema details the information contained in the define element, which may appear as an
element inside the file element.

7.13.4.2 Description

The define element specifies the define symbols to use in the source file. This define element allows for
vendor attributes to be applied.

a) nameGroupString group includes the following. See X.Y.Z.
151 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
1) name (mandatory) identifies the name of the define symbol used in the source file. The name
element is of type String.

2) displayName (optional) allows a short descriptive text to be associated with the define ele-
ment. The displayName element is of type string.

3) description (optional) allows a textual description of the define element. The description ele-
ment is of type string.

b) value (mandatory) contains the value of the define symbol. The value element is of type string. The
value element is configurable with attributes from string.prompt.att, see X.Y.Z on configuration.

c) vendorExtensions (optional) provides a place for any vendor-specific extensions.

7.13.4.3 Example

The following is an example

<spirit:fileSets>

</spirit:fileSets>

7.13.5 function

7.13.5.1 Schema

The following schema details the information contained in the function element, which may appear as an
element inside the fileset element.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 152
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
7.13.5.2 Description

A function specifies information about a generator function. function contains an attribute replicate
(optional), when set to True, the generator compiles a separate object module for each instance of the
component in the design. This allows the function to be called with different attributes for each instance
within the design (e.g., base address). The replicate attribute is of type Boolean and the default value is
False. function has the following elements.

a) entryPoint (optional) is the entry point name for the function or subroutine.

b) fileRef (mandatory) reference to the file that contains the entry point for the function. The value of
this element shall match an attribute in file/fileId.

c) returnType (optional) is an enumerated string type which indicates the return type for the function.
The two possible values are int and void.

d) argument (optional, unbounded) lists any arguments passed when this function is called. All argu-
ments shall be passed in the order presented in this description. See 7.13.6.

e) disabled (optional) disables the software function. The disabled element is of type Boolean and the
default is False. When True, the software function is not available for use. When False, the function
is available. The disabled element is configurable with attributes from bool.prompt.att, see X.Y.Z
on configuration.
153 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
f) sourceFile (optional, unbounded) references any source files. The order of the source files may be
important, as this could indicate a compile order.

7.13.5.3 Example

The following example includes a file with a fileId and a function referencing that file.

<spirit:fileSets>
 <spirit:fileSet spirit:fileSetId="fs-systemcSource">
 <spirit:name>sourceFiles</spirit:name>
 <spirit:file spirit:fileId="source">
 <spirit:name>src/source.cc</spirit:name>
 <spirit:fileType>systemCSource-2.1</spirit:fileType>
 </spirit:file>
 <spirit:function>
 <spirit:fileRef>source</spirit:fileRef>
 <spirit:returnType>void</spirit:returnType>
 <spirit:argument spirit:dataType="int">
 <spirit:name>argument_1</spirit:name>
 <spirit:value>0</spirit:value>
 </spirit:argument>
 </spirit:function>
 </spirit:fileSet>
 </spirit:fileSets>

7.13.6 argument

7.13.6.1 Schema

The following schema details the information contained in the argument element, which may appear as an
element inside the function element.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 154
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
7.13.6.2 Description

The argument element specifies the arguments passed to the function when making a call. All arguments
shall be passed in the order presented in this description. The dataType (mandatory) attribute specifies the
type for this argument, e.g., an int or Boolean. The argument element also allows for vendor attributes
to be applied.

a) nameGroupString group includes the following. See X.Y.Z.

1) name (mandatory) identifies the name of the argument in the function. The name element is
of type String.

2) displayName (optional) allows a short descriptive text to be associated with the argument.
The displayName element is of type string.

3) description (optional) allows a textual description of the argument. The description element
is of type string.

b) value (mandatory) contains the value of the argument. The value element is of type string. The
value element is configurable with attributes from string.prompt.att, see X.Y.Z on configuration.

c) vendorExtensions (optional) provides a place for any vendor-specific extensions.

sourceFile references any source files. Order is important in the source file. It has the following
mandatory subelements.

i) sourceName identifies the boot load file. Relative names are searched for in the project
directory and the source of the component directory.

ii) fileType references the SPIRIT file type. If multiple files are referenced, order is impor-
tant. There are two categories that can be referenced:

fileType includes file types and enumerated by SPIRIT and

userFileType encompasses all other file types.

7.13.6.3 Example

The following example includes a file with a fileId and a function referencing that file.

<spirit:fileSets>

 <spirit:fileSet spirit:fileSetId="fs-systemcSource">

 <spirit:name>sourceFiles</spirit:name>

 <spirit:file spirit:fileId="source">

 <spirit:name>src/source.cc</spirit:name>

 <spirit:fileType>systemCSource-2.1</spirit:fileType>

 </spirit:file>

 <spirit:function>

 <spirit:fileRef>source</spirit:fileRef>

 <spirit:returnType>void</spirit:returnType>

 <spirit:argument spirit:dataType="int">

 <spirit:name>argument_1</spirit:name>

 <spirit:value>0</spirit:value>

 </spirit:argument>

 </spirit:function>

 </spirit:fileSet>

 </spirit:fileSets>
155 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
7.13.7 sourceFile

7.13.7.1 Schema

The following schema details the information contained in the sourceFile element, which may appear as an
element inside the function element.

7.13.7.2 Description

The sourceFile element specifies the location of the source files for this function. All source files shall be
processed in the order presented in this description.

a) sourceName (mandatory) contains an absolute or relative (to the location of the containing descrip-
tion) path to a file name or directory. The path may also contain environment variables from the host
system, used to abstract the location of files. Relative names are searched for in the project directory
and the source of the component directory. The sourceName element is of type spiritURI.

b) fileType (required) group contains one of the following two elements.

1) fileType (mandatory) describes the type of file referenced from the this enumerated list of
industry standard files: unknown, cSource, cppSource, asmSource, vhdlSource, vhdl-
Source-87, vhdlSource-93, verilogSource, verilogSource-95, verilogSource-2001, swOb-
ject, swObjectLibrary, vhdlBinaryLibrary, verilogBinaryLibrary, unelaboratedHdl,
executableHdl, systemVerilogSource, systemVerilogSource-3.0, systemVerilogSource-3.1,
systemCSource, systemCSource-2.0, systemCSource-2.0.1, systemCSource-2.1, vera-
Source, eSource, perlSource, tclSource, OVASource, SVASource, pslSource, systemVer-
ilogSource-3.1a, and SDC.

2) userFileType (mandatory) describes any other file type that can not be described from the list
for fileType. The userFileType element is of type string.

7.13.7.3 Example

The following example
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 156
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
157 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
7.14 Choices

7.14.1 Schema

The following schema details the information contained in the choices element, which may appear as an
element inside the top-level component or abstractor element.

7.14.2 Description

The choices element contains an unbounded list of choice elements. Each choice element is a list of items
used by a modelParameter element, parameter element, or any other configurable element with a
choiceRef attribute. These elements indicate they are using a choice element by setting the attribute
choiceRef. This choiceRef attribute shall reference a valid choice/name element in the containing XML
document.

The choice definition contains the following elements.
a) name (mandatory) specifies the name of this list and is used by other element for reference. The

name element is of type Name.
b) enumeration (mandatory) is an unbounded list of of elements, where each holds a possible value

that the referencing element may contain.
1) text (optional) attribute causes optional text to be displayed when choosing the choice value.

The resulting value stored in the configurable element corresponds to the enumeration value for
the choice. If the text attribute is not present, the enumeration value may be displayed. The
text element is of type string.

2) help (optional) attribute gives any additional information about this enumeration element.. The
help element is of type string.

See also: SCR 5.12.

7.14.3 Example

This example shows the addressable size (width) and the word size (Dwidth) of a memory component.

<spirit:model>

 <spirit:modelparameters>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 157
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
 <spirit:modelparameter spirit:name="width"
spirit:choiceRef="widthOptions">1</spirit:modelparameter>

 <spirit:modelparameter spirit:name="Dwidth"
spirit:choiceRef="DwidthOptions">4</spirit:modelparameter>

 </spirit:modelparameters>
</spirit:model>

<spirit:choices>
 <spirit:choice>
 <spirit:name>widthOptions</spirit:name>
 <spirit:enumeration spirit:text="8K">1</spirit:enumeration>
 <spirit:enumeration spirit:text="64K">2</spirit:enumeration>
 <spirit:enumeration spirit:text="256K">3</spirit:enumeration>

 </spirit:choice>
 <spirit:choice>
 <spirit:name>DwidthOptions</spirit:name>
 <spirit:enumeration spirit:text="2Bytes">4</spirit:enumeration>
 <spirit:enumeration spirit:text="4Bytes">5</spirit:enumeration>
 <spirit:enumeration spirit:text="8Bytes">6</spirit:enumeration>
 </spirit:choice>

</spirit:choices>
158 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
7.15 Whitebox elements

Verification IP, such as monitors, have pseudo-physical bus interfaces to connect with bus interface ports
under test, while not being an actual part of the design, but as part of a test bench instead. Other verification
tools may require access to component IP in a design, at a level deeper than the interfaces defined for the
component. A whitebox element provides such access. This can be used in situations where internal
registers, flags, or whole IP-XACT interfaces need to be monitored or on internal nodes or interfaces driven
by verification IP.

7.15.1 Schema

The following schema details the information contained in the whiteboxElements element, which may
appear as an element inside the top-level component element.

7.15.2 Description

The whiteboxElements element contains the a list of one or more whiteboxElement elements. Each
whiteboxElement element contains the following elements.

a) nameGroup group includes the following. See X.Y.Z.

1) name (mandatory) identifies the whitebox element.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 159
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
2) displayName (optional) allows a short descriptive text to be associated with the whitebox ele-
ment.

3) description (optional) allows a textual description of the whitebox element.

b) whiteboxType (mandatory) documents this whitebox element’s referent: a register, pin, signal, or
interface within the component. register indicates that a register definition (referenced by the regis-
terRef element) in this component can be mapped to physical signal(s) by a reference from the
model/view. pin indicates a port on an internal instance in this component can be mapped to physi-
cal signal(s) by a reference from the model/view. signal indicates a signal between two internal
instances in this component can be mapped to physical signal(s) by a reference from the model/
view. interface indicates an IP-XACT interface can be mapped from a lower-level component on
this hierarchical component.

c) drivable (optional), when True, indicates the whitebox describes a point within the IP that can be
driven, i.e., forced to a new value. If False, (the default), the whitebox references a point that cannot
be driven. The drivable element is of type Boolean.

d) registerRef (optional) names the register indicated by this whitebox when the whiteboxType is reg-
ister. The registerRef is the full hierarchical path from the component’s top-level memory map to
the register, using / as a hierarchy separator. The registerRef element is of type string.

e) parameters (optional) specifies any parameter names and types for a whitebox that can be parame-
trized.

f) vendorExtensions (optional) provides a space for any vendor-specific extensions.

7.15.3 Example

The following example shows the definition of a status register that can be accessed within a component
during verification.

<spirit:whiteboxElements>

<spirit:whiteboxElement>

<spirit:name>Status</spirit:name>

<spirit:whiteboxType>register</spirit:whiteboxType>

<spirit:driveable>false</spirit:driveable>

<spirit:registerRef>stat</spirit:registerRef>

</spirit:whiteboxElement>

</spirit:whiteboxElements>

7.16 Whitebox element reference

7.16.1 Schema

The following schema details the information contained in the whiteboxElementRefs element, which may
appear as an element inside the component/model/views/view element.
160 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
7.16.2 Description

The whiteboxElementRefs element contains a list of one or more whiteboxElementRef elements. The
whiteboxElementRef makes a reference to a whiteboxElement of the component and defines the view
specific path to the element. name (mandatory) attribute identifies the whiteboxElement in the containing
component for which the following whiteboxPath applies. The name element is of type Name.
whiteboxElement element contains the following elements.

whiteboxPath (mandatory, unbounded) contains elements to define the path in this view to the
above referenced whiteboxElement.
1) pathName (mandatory) is the language and view specific path to the location of the whitebox-

Element. The pathName is of type string.
2) left (optional, paired with right) sets the element bounds of the pathName if required by the

language. The left element is of type nonNegativeInteger.
3) right (optional, paired with left) sets the element bounds of the pathName if required by the

language. The right element is of type nonNegativeInteger.

7.16.3 Example

The following example shows the definition of a the whitebox path to the status register bits in a component.

<spirit:whiteboxElementRefs>
<spirit:whiteboxElementRef spirit:name=”Status”>

<spirit:whiteboxPath>ucontrol/ureg/status</spirit:whiteboxPath>
<spirit:left>7</spirit:left>
<spirit:right>0</spirit:right>

</spirit:whiteboxElementRef>
</spirit:whiteboxElementRefs>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 161
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
162 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
7.17 CPUs

7.17.1 Schema

The following schema details the information contained in the CPUs element, which may appear as an
element inside the top-level component element.

7.17.2 Description

The cpus element contains an unbounded list of cpu elements for the containing component. The cpu
element describes a containing component with a programmable core that has some sized address space.
That same address space may also be referenced by a master interface and used to create a link for the
programmable core to know from which interface transaction the software will depart.

a) nameGroup group includes the following. See X.Y.Z.
1) name (mandatory) identifies the component generator. The name element is of type Name.
2) displayName (optional) allows a short descriptive text to be associated with the component

generator. The displayName element is of type string.
3) description (optional) allows a textual description of the component generator. The descrip-

tion element is of type string.
b) addressSpaceRef (required, unbounded) contains an attribute to describe information about the

range of addresses with which the master interface related to this cpu can generate transactions.
addressSpaceRef (mandatory) attribute references a name of an address space defined in the
same component. The address space will define the range and width for transaction on this
interface. See 7.7.1.

c) parameters (optional) specifies any cpu-type parameters. See X.Y.Z.
d) vendorExtensions (optional) adds any extra vendor-specific data related to the cpu.

7.17.3 Example

This example shows a simple cpu with a single addressMap reference.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 162
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
<spirit:cpus>
 <spirit:cpu>
 <spirit:name>processor</spirit:name>
 <spirit:addressSpaceRef spirit:addressSpaceRef="main"/>
 </spirit:cpu>
 </spirit:cpus>
163 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
8. Designs descriptions

8.1 Designs

An IP-XACT design is the central placeholder for the collection of the assymbly of component objects meta-
data. A design describes the a list of components referenced by this description, their configuration and their
interconnections to each other. The interconnections may be between interfaces or between ports on a
component. A design file is anologus to a schematic of components.

While a design description, with referenced components and interconnection, describes most of the
information for a design, some information is missing. Such as the exact port names used by a bus interface.
To resolve this a component description (refered to as a hierachical component), which contains this missing
information, may contain a view with a reference to the design description to form a complete single level
hierarchical description. From this point it is simple to create hierarchical descriptions by including
hierachical component description in design descriptions.

8.1.1 Schema

The following schema details the information contained in the design element, which is one of the seven
top-level elements of the schema.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 165
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
8.1.2 Description

The design element describes the a list of referenced components, their configuration and interconnections
to each other. Each element of a design is detailed in the rest of this clause; the main sections of a design
are:

a) versionedIdentifier group provides a unique identifier, made up of 4 subelements for a top level IP-
XACT element. See X.Y.Z for more details.
1) vendor (mandatory) identifies the owner of this description. The reccomended format of the

vendor element is the company internet domain name.
2) library (mandatory) identifies a library of this description. This allows one vendor to group

descriptions.
3) name (mandatory) identifies a name of this description.
4) version (mandatory) identifies a version of this description. This allows one vendor to provide

many descriptions which all have the same name but are still uniquely identified.
b) componentInstances (optional) contains the list of components that are instantiated (referenced)

inside the design (see 8.2).
c) interconnections (optional) contains the list of connections between bus interfaces of components

listed inside the design(see 8.3).
d) adHocConnections (optional) contains a list of connections between component ports listed inside

this design (see 8.5).
e) hierConnections (optional) contains a list of connections between a component instance’s bus

interface and a bus interface inside the encompassing component (see 8.6). See section on compo-
nent view to see how the encompassing component can refer a design.
This element only allows making hierarchical reference between bus interfaces. Hierarchical refer-
ence between ports is made inside the adHocConnections element.

f) description (optional) allows a textual description of the design., the description element is of type
string.

g) vendorExtensions (optional) adds any extra vendor-specific data related to the design.

8.1.3 Example

The following example shows as sample design with 3 components.

<spirit:design xmlns:spirit="http://www.spiritconsortium.org/XMLSchema/
SPIRIT/1.4" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4
http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4/index.xsd">
<spirit:vendor>spiritconsortium.org</spirit:vendor>
<spirit:name>design_MCS</spirit:name>
<spirit:version>1.0</spirit:version>
<spirit:componentInstances>

<spirit:componentInstance>
<spirit:instanceName>i_ahbMaster</spirit:instanceName>
<spirit:componentRef spirit:vendor="spiritconsortium.org"

spirit:library="Addressing" spirit:name="ahbMaster" spirit:version="1.0"/
>

<spirit:configurableElementValues>
<spirit:configurableElementValue

spirit:referenceId="asBase">0</spirit:configurableElementValue>
</spirit:configurableElementValues>

</spirit:componentInstance>
<spirit:componentInstance>
166 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
<spirit:instanceName>i_ahbChannel12</spirit:instanceName>
<spirit:componentRef spirit:vendor="spiritconsortium.org"

spirit:library="Addressing" spirit:name="ahbChannel12"
spirit:version="1.0"/>

</spirit:componentInstance>
<spirit:componentInstance>

<spirit:instanceName>i_ahbSlave</spirit:instanceName>
<spirit:componentRef spirit:vendor="spiritconsortium.org"

spirit:library="Addressing" spirit:name="ahbSlave" spirit:version="1.0"/>
</spirit:componentInstance>

</spirit:componentInstances>
<spirit:interconnections>

<spirit:interconnection>
<spirit:name>m2c</spirit:name>
<spirit:activeInterface spirit:componentRef="i_ahbMaster"

spirit:busRef="AHBMaster"/>
<spirit:activeInterface spirit:componentRef="i_ahbChannel12"

spirit:busRef="MirroredMaster0"/>
</spirit:interconnection>
<spirit:interconnection>

<spirit:name>c2s</spirit:name>
<spirit:activeInterface spirit:componentRef="i_ahbSlave"

spirit:busRef="AHBSlave"/>
<spirit:activeInterface spirit:componentRef="i_ahbChannel12"

spirit:busRef="MirroredSlave0"/>
</spirit:interconnection>

</spirit:interconnections>
<spirit:description>Addressing example, master-channel-slave</
spirit:description>

</spirit:design>

8.2 Design component instances

8.2.1 Schema

The following schema details the information contained in the componentInstances element, which may
appear as an element inside the top-level design element.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 167
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
8.2.2 Description

The componentInstances element contains an unbounded list of component instances that are described
inside the componentInstance element. This element contains the following subelements.

a) instanceName (mandatroy) assigns a unique name for this instance of the component in this design.
The value of this element shall be unique inside a design element. The instanceName element is of
type Name.

b) displayName (optional) allows a short descriptive text to be associated with the instance. The dis-
playName is of type string.

c) description (optional) allows a textual description of the instance. The displayName is of type
string.

d) componentRef (mandatory) is a reference to a component description for this component instance.
The componentRef element is of type libraryRefType (see X.Y.Z), it contains four attributes to spec-
ify a unique VLNV.
1) vendor attribute (mandatory) identifies the owner of the referenced description.
2) library attribute (mandatory) identifies a library of referenced description.
3) name attribute (mandatory) identifies a name of referenced description.
4) version attribute (mandatory) identifies a version of referenced description.

e) configurableElementValues (optional) specifies the configuration for a specific component
instance by providing the value of a specific component parameter. The configurableElementsVal-
ues is an unbounded list of configurableElementsValue.
1) configurableElementValue (required) specifies the value to apply to a parameter, in this

instance, pointed to by the referenceId attribute. The configurableElementValue is of type
string. The contained referenceId (required) is a reference to the id attribute of an element in
the component instance. The referenceId attribute is of type Name.

f) vendorExtensions (optional) adds any extra vendor-specific data related to the design.
168 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
See also: SCR 1.11.

8.2.3 Example

The following example shows two component instances of a design. The first one, i_timers, has a
configurable element attach to it while the second one, i_irqctrl, was not configurable.

<spirit:componentInstances>
<spirit:componentInstance>

<spirit:instanceName>i_timers</spirit:instanceName>
<spirit:componentRef spirit:vendor="spiritconsortium.org"

 spirit:library="Leon2" spirit:name="timers"
spirit:version="1.4"/>

<spirit:configurableElementValues>
<spirit:configurableElementValue spirit:referenceId="TPRESC">22
</spirit:configurableElement>

</spirit:configurableElementValues>
</spirit:componentInstance>
<spirit:componentInstance>

<spirit:instanceName>i_irqctrl</spirit:instanceName>
<spirit:componentRef spirit:vendor="spiritconsortium.org"

 spirit:library="Leon2" spirit:name="irqctrl"
spirit:version="1.4"/>

</spirit:componentInstance>
</spirit:componentInstances>

8.3 Design interconnections

8.3.1 Schema

The following schema details the information contained in the interconnections element, which may appear
as an element inside the top-level design element.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 169
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
8.3.2 Description

The interconnections element contains an unbounded list of interconnection and monitorInterconnection
elements. For further description on interface connections see interface connections, X.Y.Z.

a) interconnection (optional, unbounded) specifies a connection between one bus interface of a com-
ponent and another bus interface of a component. Each interconnection contain the following ele-
ments.

1) nameGroup group includes the following. See X.Y.Z .

i) name (mandatory) identifies a unique name for the interconnection.

ii) displayName (optional) allows a short descriptive text to be associated with the connec-
tion.

iii) description (mandatory, 2 elements) allows a textual description of the connection.

4) activeInterface (optional) element specifies the two bus interfaces that are part of the intercon-
nection. Only connections between two bus interfaces are allowed; broadcasting of intercon-
nections is not allowed. The activeInterface element is of type interface, see X.Y.Z.

b) monitorInterconnections specifies the connection between an activeInterface on a component and
a list of monitorInterfaces that are part of design component instances.

1) activeInterface (mandatroy) specifies the component bus interface to monitor; only one inter-
face is allowed. The list of monitorInterfaces specifies the component monitor interfaces con-
nected to the single active interface. The activeInterface element is of type interface, see
X.Y.Z.
170 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
2) monitorInterface (mandatory, unbounded) specifies the connection between an activeInter-
face on a component and a list of monitorInterfaces that are part of design component
instances. There may be one or more monitorInterconnections specified. The monitorInter-
face element is of type interface, see X.Y.Z.

See also: SCR 2.2, SCR 2.3, SCR 2.4, SCR 2.5, SCR 2.6, SCR 2.7, SCR 2.8, SCR 2.9, SCR 2.10, SCR 2.11,
SCR 2.12, SCR 2.13, SCR 2.14, SCR 4.1, SCR 4.2, SCR 4.3, SCR 4.4, SCR 4.5, SCR 4.6, SCR 6.15, and
SCR 6.16.

8.3.3 Example

The following example shows two interconnections between three components: the interconnection
interco1 connects the interface ambaAPB on i_timers to the interface MirroredSlave0 on
i_apbbus while interco2 connects the interface ambaAPB on i_irqctrl to the interface
MirroredSlave1 on i_apbbus.

<spirit:interconnections>
<spirit:interconnection>

<spirit:name>interco1</spirit:name>
<spirit:activeInterface spirit:componentRef="i_timers"

 spirit:busRef="ambaAPB"/>
<spirit:activeInterface spirit:componentRef="i_apbbus"

spirit:busRef="MirroredSlave0"/>
</spirit:interconnection>
<spirit:interconnection>

<spirit:name>interco2</spirit:name>
<spirit:activeInterface spirit:componentRef="i_irqctrl"

spirit:busRef="ambaAPB"/>
<spirit:activeInterface spirit:componentRef="i_apbbus"

spirit:busRef="MirroredSlave1"/>
</spirit:interconnection>

</spirit:interconnections>

8.4 Design interconnection and monitor interconnection active interface

8.4.1 Schema

The following schema details the information contained in the activeInterface element, which may appear
as an element inside the interconnection or monitorInterconnection element within interconnections.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 171
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
8.4.2 Description

The activeInterface or monitorInterface element specifies the bus interface of a design component
instance that is part of an interconnection or a monitor interconnection. They both have the following
attributes.

a) componentRef (mandatory) references the instance name of a component present in the design.
This component instance name needs to exist in the design.

b) busRef (mandatory) references one of the component bus interfaces. This specific bus interface
needs to exist on the specified component instance.

8.4.3 Example

The following example shows an active interface referring the ambaAPB bus interface on the component
instance i_timers and a monitor.

<spirit:activeInterface spirit:componentRef="i_timers"
spirit:busRef="ambaAPB"/>

<spirit:monitorInterface spirit:componentRef="i_monitor"
spirit:busRef="ambaAPBMonitor"/>

8.5 Design ad-hoc connections

The name ad-hoc is used for connections that are made on a port-by-port basis and not done through the
higher-level bus interface. The same ports which make up a busInterface can be used in ad-hoc
connections.

IP-XACT supports two cases of ad-hoc connections: the wire connection (between ports having a wire style)
and the transactional connection (between ports having a transactional style). The direct connection between
a wire-style port and a transactional-style port is not allowed; a specific adapter component needs to be
inserted in between them.
172 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
8.5.1 Schema

The following schema details the information contained in the adHocConnections element, which may
appear as an element inside the top-level design element.

8.5.2 Description

The adHocConnections element contains an unbounded list of adHocConnection elements. An
adHocConnection specifies connections between component instance ports or between component instance
ports and ports of the encompassing component (in the case of a hierarchical component). Each
adHocConnection element has a tiedValue (optional) attribute that specifies a fixed logic (1 and 0) value
for this connection. The tiedValue attribute is of type scaledNonNegativeInteger. The adHocConnection
element contains the following subelements.

a) nameGroup group includes the following. See X.Y.Z.

1) name (mandatory) identifies a unique name for the interconnection.

2) displayName (optional) allows a short descriptive text to be associated with the connection.

3) description (mandatory, 2 elements) allows a textual description of the connection.

b) internalPortReference (mandatory, unbounded) references the port of a component instance. This
element has four attributes.

1) componentRef (mandatory) references the component instance name for the port. The compo-
nentRef attribute is of type Name.

2) portRef (mandatory) references the port name on the specific component instance. The por-
tRef attribute is of type Name.

3) left and right (optional) specify a portion of the port range. The left and right attribute is of
type nonNegativeInteger.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 173
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
c) externalPortReference (optional, unbounded) references a port of the encompassing component
where this design is referred (for hierarchical ad-hoc connections). This element has three attributes.
1) portRef (mandatory) references the port name on the encompassing component. The portRef

attribute is of type Name.
2) left and right (optional) specify a portion of the port range. The left and right attribute is of

type nonNegativeInteger.

See also: SCR 6.15 and SCR 6.16.

8.5.3 Example

The following example shows two ad-hoc connections. The first one, d1e1074, is done between port
irlin on component instance i_irqctrl and port irqvec on component instance i_leon2Proc.
The second one, i_leon2Proc_mresult, is made between port mresult on component instance
i_leon2Proc and port i_leon2Proc_mresult of the encompassing component.

<spirit:adHocConnections>
<spirit:adHocConnection>

<spirit:name>d1e1074</spirit:name>
<spirit:internalPortReference spirit:componentRef="i_irqctrl"

spirit:portRef="irlin" spirit:left="3"
 spirit:right="0"/>

<spirit:internalPortReference spirit:componentRef="i_leon2Proc"
spirit:portRef="irqvec"
 spirit:left="3" spirit:right="0"/>

</spirit:adHocConnection>
<spirit:adHocConnection>

<spirit:name>i_leon2Proc_mresult</spirit:name>
<spirit:internalPortReference spirit:componentRef="i_leon2Proc"

spirit:portRef="mresult"
 spirit:left="31" spirit:right="0"/>

<spirit:externalPortReference spirit:portRef="i_leon2Proc_mresult"/
>

</spirit:adHocConnection>
</spirit:adHocConnections>

8.5.4 Ad-hoc wire connection

For ad-hoc connections between wire-style ports, IP-XACT requires:
— The style of each port be the same style (i.e., wire).
— The directions match as described in Table 8.
— The sizes of each port (max(left,right) - min(left,right) + 1) are exactly the

same and their bits are connected from left-to-right with no exceptions. In the internalPortRefer-
ence element, left and right only define the size of the portion of the port that is connected.

Table 8—Direction requirements

Direction in out inout

in yes yes yes

out yes no yes

inout yes yes yes
174 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
Example

This is an example of these rules being applied.

<spirit:adHocConnection>

</spirit:internalPortReference componentRef="U1" portRef="A"

left="8" right="1">

</spirit:internalPortReferencenal componentRef="U2" portRef="B"

left="7" right="0">

</spirit:adHocConnection>

Implies these connections:

U1/A[8] = U2/B[7]

U1/A[7] = U2/B[6]

U1/A[6] = U2/B[5]

U1/A[5] = U2/B[4]

U1/A[4] = U2/B[3]

U1/A[3] = U2/B[2]

U1/A[2] = U2/B[1]

U1/A[1] = U2/B[0]

NOTE—The typeNames do not have to match between the two ports, it is up to the DE or simulator to potentially
resolve unmatching types, e.g., it is possible to connect a VHDL std_logic port to a SystemC sc_in bool port.

8.5.5 Ad-hoc transactional connection

For ad-hoc transactional connections, IP-XACT requires:

— The style of each port be the same style (i.e., transactional).

— The transTypeDef/typeName name of each port are the same (e.g., sc_port).

— The initiatives match as described in Table 9.

— The service/serviceTypeDef/typeNames match.

Furthermore, two ports with a requires initiative can be connected. This means they would both connect to
a mediated link (e.g., a wire, buffer, FIFO, or any complex link) in a top SystemC or SystemVerilog netlist.
This mediated link provides the protocol interfaces required by each port. The name, type, and parameters of
this mediated link are not defined by IP-XACT, but could be given as input to a netlister generator.

Table 9—Initiative requirements

Initiative requires provides both

requires yes yes yes

provides yes no yes

both yes yes yes
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 175
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
8.6 Design hierarchical connections

8.6.1 Schema

The following schema details the information contained in the hierConnections element, which may appear
as an element inside the top-level design element.

8.6.2 Description

The hierConnections element contains an unbounded list of hierConnection elements. hierConnection
represents a hierarchical interface connection between a bus interface on the encompassing component and a
bus interface on a component instance of the design. hierConnection contains an interfaceRef (mandatory)
attribute that provides one end of the interconnection; it is the name of the bus interface on the encompassing
component. The interfaceRef attribute is of type Name. The hierConnection element contains the
following elements and attributes.

a) activeInterface (mandatroy) specifies the component instance bus interface for connection to the
encompassing component, only one activeInterface is allowed. The activeInterface element is of
type interface, see X.Y.Z.

b) vendorExtensions (optional) adds any extra vendor-specific data related to the hierarchical inter-
face connection.

See also: SCR 10.1, SCR 10.2, SCR 10.3, SCR 10.4, SCR 10.5, SCR 10.6, SCR 10.7, SCR 10.8, SCR 10.9,
SCR 10.11, SCR 10.12, SCR 10.13, and SCR 10.14.

8.6.3 Example

The following example shows a hierarchical interconnection between the AHBReset_1 bus interface on
the encompassing component and the AHBReset bus interface on the i_ahbbus component instance.

<spirit:hierConnections>
<spirit:hierConnection spirit:interfaceRef="AHBReset_1">

<spirit:activeInterface spirit:componentRef="i_ahbbus"
spirit:busRef="AHBReset"/>

</spirit:hierConnection>
</spirit:hierConnections>
176 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
9. Abstractor descriptions

Designs that incorporate IP models using different modeling styles (e.g., TLM and RTL modeling styles)
may contain interconnections between such components using different abstractions of the same bus type. A
DE may describe how such interconnections are to be made using an abstractor. Unlike a component, an
abstractor is not referenced from a design file, but instead is referenced from a design configuration file. See
the design configuration file section 4.4 for more information on referencing abstractors. IP-XACT can:

— Model different level of abstraction for the same bus type through the use of abstraction definitions.
— Model special-purpose components called “abstractors” to bridge between two different abstraction

of the same bus type.
— Extend the design configuration file to allow DEs to generate designs that include these abstractors

where needed.

This chapter defines abstractors and describes how to model them as IP-XACT objects.

9.1 Abstractors

9.1.1 Schema

The following schema details the information contained in the abstractor element, which is one of the
seven top-level elements in the IP-XACT specification used to describe an abstractor.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 177
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
9.1.2 Description

The abstractor element has two (mandatory) interfaces, called abstractorInterfaces. An abstractor also
contains the following elements.

a) Mandatory elements
1) abstractorInterfaces are interfaces having the same bus type, but differing abstraction types

(see 9.2).
2) versionedIdentifier is a unique VLNV identifier.
3) abstractorMode determines the interface mode of these interfaces.

i) master specifies the first interface connects to the master, the second connects to the mir-
rored-master.

ii) slave specifies the first interface connects to the mirrored-slave, the second connects to the
slave.

iii) direct specifies the first interface connects to the master, the second connects to the slave.
iv) system specifies the first interface connects to the system, the second connects to the mir-

rored-system; in this case, the group attribute is also required.
178 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
3) busType defines the VLNV of the busDefinition of the two abstractorInterfaces.

b) Optional elements

1) model defines the abstractor views, its ports, and its model parameters (see 9.3).

2) abstractorGenerators defines any generators applying to the abstractor (see 9.6).

3) The remaining elements: choices, fileSets, description, parameters, and vendorExtensions
are the same as those defined for the component. **Add xref OR copy that material here??

See also: SCR 1.13 and SCR 3.23.

9.1.3 Example

The following example shows a simple slave abstractor having AHB PV and AHB PVT interfaces.

<spirit:abstractor>

<spirit:vendor>spiritconsortium.org</spirit:vendor>

<spirit:library>Leon2</spirit:library>

<spirit:name>pv2rtl</spirit:name>

<spirit:version>1.4</spirit:version>

<spirit:abstractorMode>slave</spirit:abstractorMode>

<spirit:abstractorInterfaces>

<spirit:abstractorInterface>

<spirit:name>PVinterface</spirit:name>

<spirit:abstractionType

spirit:vendor="spiritconsortium.org"

spirit:library="Leon2"

spirit:name="AHB_PV"

spirit:version="1.0"/>

</spirit:abstractorInterface>

<spirit:abstractorInterface>

<spirit:name>PVTinterface</spirit:name>

<spirit:abstractionType

spirit:vendor="spiritconsortium.org"

spirit:library="Leon2"

spirit:name="AHB_PVT"

spirit:version="1.0"/>

</spirit:abstractorInterface>

</spirit:abstractorInterfaces>

<spirit:abstractorModel>

<spirit:abstractorGenerators>

</spirit:abstractor>

9.2 Abstractor interfaces

9.2.1 Schema

The following schema defines the information contained in the abstractorInterfaces element, which
appears within an abstractor object.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 179
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
9.2.2 Description

The abstractorInterfaces element defines the two abstraction interfaces of the abstractor. Each
abstractorInterface contains the following elements.

a) Mandatory elements
1) name (included in nameGroup) identifies the abstraction interface. nameGroup can also have

two additional (optional) subelements: displayName, which allows a short descriptive text to
be associated with the abstraction interface, and description which allows a textual description
of the abstraction interface.

2) abstractionType is the VLNV of an abstraction definition.
b) Optional elements

1) portMap defines the mapping between the abstractor ports and the logical ports defined in the
referenced abstractionDefinition. This schema is the same as the portMap schema defined in
a component.**Add xref OR copy that material here??

2) The elements parameters and vendorExtensions and the vendor attributes (xs:any) are the
same as those defined for the component. **Add xref OR copy that material here??

9.2.3 Example

This example shows a port within an abstraction definition containing a single timing constraint. On a
master interface, the port gets 40% of the cycle time and on a mirrored master interface, it gets 60% of the
cycle time.

<spirit:port>
<spirit:logicalName>HRDATA</spirit:logicalName>
180 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
<spirit:wire>
<spirit:onMaster>

<spirit:modeConstraints>
<spirit:timingConstraint

spirit:clockName=”HCLK”>40
</spirit:timingConstraint>

</spirit:modeConstraints>
<spirit:mirroredModeConstraints>

<spirit:timingConstraint
spirit:clockName=”HCLK”>60

</spirit:timingConstraint>
</spirit:mirroredModeConstraints>

</spirit:onMaster>
</spirit:wire>

</spirit:port>

9.3 Abstractor models

9.3.1 Schema

The following schema defines the information contained in the abstractor model element, which may appear
within an abstractor object.

9.3.2 Description

The abstractor model element defines the abstractor views (see 9.4), ports (see 9.5), and modelParameters.
Each of which is described in the following sections. **Where (chapter 7); let’s add this xref [for
modelParameters]?? Is all the ports material covered in 9.5??

9.3.3 Example

The following example shows an abstractor model with a single SystemC view, two transactional ports, and
a constructor model parameter.

<spirit:model>
<spirit:views>

<spirit:view>
<spirit:name>systemCView</spirit:name>
<spirit:envIdentifier>:*Simulation:</

spirit:envIdentifier>
<spirit:language>systemc2.1</spirit:language>
<spirit:modelName>pv2pvt</spirit:modelName>
<spirit:fileSetRef>abstractorFileSetRef</

spirit:fileSetRef>
</spirit:view>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 181
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
</spirit:views>
<spirit:ports>

<spirit:port>
<spirit:name>pv_slave</spirit:name>
<spirit:transactional>

<spirit:service>
<spirit:initiative>provides</

spirit:initiative>

<spirit:serviceTypeDefs><spirit:serviceTypeDef>
<spirit:typeName>trans_if</

spirit:typeName>
</spirit:serviceTypeDef></

spirit:serviceTypeDefs>
</spirit:service>

</spirit:transactional>
</spirit:port>
<spirit:port>

<spirit:name>pvt_master</spirit:name>
<spirit:transactional>

<spirit:service>
<spirit:initiative>requires</

spirit:initiative>

<spirit:serviceTypeDefs><spirit:serviceTypeDef>
<spirit:typeName>req_rsp_if</

spirit:typeName>
</spirit:serviceTypeDef></

spirit:serviceTypeDefs>
</spirit:service>

</spirit:transactional>
</spirit:port>

</spirit:ports>
<spirit:modelParameters>

<spirit:modelParameter spirit:usageType="nontyped">
<spirit:name>moduleName</spirit:name>
<spirit:value

spirit:id="moduleNameId" spirit:resolve="user">ABSTRACTOR_PV2PVT
</spirit:value>

</spirit:modelParameter>
</spirit:modelParameters>

</spirit:model>

9.4 Abstractor views

9.4.1 Schema

The following schema defines the information contained in the view element, which appears within the
views element of an abstractor.

This schema is almost identical to the component view (see xref), except:
— Abstractors have no hierarchyRef element.
— Abstractors have no constraintSetRef element.
— Abstractors have no whiteboxElementRefs element.
182 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
9.4.2 Description

The view element defines the different abstractor views. See the component view description for the
definition of each element and attributes. **Add xref OR copy that material here??

The following restrictions apply to abstractor view elements.
a) The envIdentifier shall only define simulation tools.
b) The language needs to support a mix of the two abstraction definitions described in the abstractor

(e.g., a TLM to RTL abstractor would need a language, such as SystemC, supporting both a transac-
tional abstract level description and an RTL description).

9.4.3 Example

This example shows two abstractor views: a SystemC view and a SystemVerilog view. Such a configuration
assumes the abstractor ports can be expressed with a generic typeDef that is supported in both languages.

<spirit:views>
<spirit:view>

<spirit:name>systemCView</spirit:name>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 183
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
<spirit:envIdentifier>:*Simulation:</
spirit:envIdentifier>

<spirit:language>systemc2.1</spirit:language>
<spirit:modelName>pv2pvt</spirit:modelName>
<spirit:fileSetRef>scFileSetRef</spirit:fileSetRef>

</spirit:view>
<spirit:view>

<spirit:name>systemVView</spirit:name>
<spirit:envIdentifier>:*Simulation:</

spirit:envIdentifier>
<spirit:language>systemVerilog</spirit:language>
<spirit:modelName>pv2pvt</spirit:modelName>
<spirit:fileSetRef>svFileSetRef</spirit:fileSetRef>

</spirit:view>
</spirit:views>

9.5 Abstractor ports

abstractor ports are almost identical to component ports; the abstractor transactional ports are exactly the
same as the component transactional ports. The abstractor wire ports defined here only differ from
component wire ports by the absence of the constraintSet element, because implementation constraints
are not needed for abstractors.

9.5.1 Schema

The following schema element defines the information contained in the wire element, which appears within
an abstractor port.
184 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
9.5.2 Description

The wire element is used to define wire ports described in the abstractor. See the component wire port
description for the definition of each element and attributes.**Add xref OR copy that material here??

9.5.3 Example

The following example shows a simple address port of 32 bits.

<spirit:port>

<spirit:name>paddr</spirit:name>

<spirit:wire>

<spirit:direction>in</spirit:direction>

<spirit:vector>

<spirit:left>31</spirit:left>

<spirit:right>0</spirit:right>

</spirit:vector>

</spirit:wire>

</spirit:port>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 185
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
9.6 Abstractor generators

9.6.1 Schema

The following schema defines the information contained in the abstractorGenerators element, which may
appear within an abstractor object.

9.6.2 Description

The abstractorGenerators element defines any generators applying to an abstractor. The abstractor
Generator has exactly the same schema definition as a componentGenerator.

See the component generator description for the definition of each element and attributes. **Add xref OR
copy that material here??

9.6.3 Example

The following example shows a document generator attached to an abstractor. This generator is a TCL script
that can be executed as tclsh generatorExe parameter. In this example, the parameter is a
configurable parameter named useDefaultValues. This generator uses the TGI API with a SOAP
transport protocol based on file.

<spirit:abstractorGenerator>
<spirit:name>genAbstractorDoc</spirit:name>
<spirit:parameters>

<spirit:parameter>
186 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
<spirit:name>useDefaultValues</spirit:name>
<spirit:value spirit:id="sdvId"

spirit:resolve="user">true
</spirit:value>

</spirit:parameter>
</spirit:parameters>
<spirit:apiType>TGI</spirit:apiType>
<spirit:transportMethods>

<spirit:transportMethod>file</
spirit:transportMethod>

</spirit:transportMethods>
<spirit:generatorExe>../bin/absDocGen.tcl</

spirit:generatorExe>
<spirit:group>genDocs</spirit:group>

</spirit:abstractorGenerator>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 187
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
188 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
10. Generators

IP-XACT defines a tool integration schema that provides a standard method for linking applications
(external generators and tool plug-ins) into a DE, enabling a more flexible, optimized development
environment. IP-XACT enabled tools can interpret, configure, integrate, and manipulate IP blocks which
comply with the IP meta-data description by using the IP-XACT generator interface.

This genarator interface allows the querying of XML IP meta-data which has been imported into the design-
environment, including inquires about the existence of IP, the structure of IP, or features offered by that IP,
such as configurability and interface protocol support. The generator interface can also be used by a
generator to import or export meta-data when an IP block is extracted from or imported back into the DE.

This interface also serves as an interface to generators and tool plug-ins, allowing the execution of these
scripts and code-elements against the SoC meta-description. Plus, it enables the registration of new
generators or plug-ins, exporting SoC meta-data and updating that data following generator or plug-in
execution, and handling of generator or plug-in error conditions which relate to the meta-data description.

10.1 Tight integration

In IP-XACT, a tight integration of an interface means the direct interfacing to generators and XML meta-
data within the DE, as shown in Figure 12. A Tight Genarator Interface (TGI) can manipulate values of
elements, attributes, and parameters for IP-XACT compliant XML.

Figure 12—Example of tight integration flow
--> Replace API by TGI in the preceding figure

The DE reads the XML input files and the internal database representation is accessed via a TGI, which is a
means of accessing and modifying the IP-XACT data from within an external program invoked via a
generator. The results of these generators can be used to update the database until the design and all its
configurable parameters are finally saved to an XML file. For more information on using the TGI, see the
following document: http://www.spiritconsortium.org/releases/tgi/index.html.

For 1.4, this will be shown as an external reference to the draft Standard

IP Views

XMLSPIRIT
XML

XMLSPIRIT
Flow
XML

db

Generator
Chain

Generators

A
P
I

DE 1

Design
Views

SPIRIT
Design
XML

*

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 189
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
10.2 Generator chain

In IP-XACT, a design flow can be represented as a generator chain that links an ordered sequence of named
tasks. Each named task can be represented as a single generator or as a generator chain. This way, design
flow hierarchies can be constructed and executed from within a given DE. The DE itself is responsible for
understanding the semantics of the specified chain described in the XML schema.

The generator group and its elements are defined in the generator.xsd file. In addition:

— A generator group is a named generator containing a sequential list of generator invocations.

— A generator chain is a sequential list of ordered generator groups.

— A generator invocation is a method of running an application at a defined phase in the generator
group using a given number of parameters.

— A phase is a number that defines when a generator invocation occurs in a sequential ascending order.

— The behavior of the generator invocation can also be influenced.

— While the generator group names are generic (and use string values), the names of generators should
reflect what they are trying to achieve.

10.3 Phase numbers

Phase numbers are intended to define the sequence in which generators are fired. A phase number is a non-
negative floating-point number that is used to sequence when a generator is run. A series of generators and
phase number-specific sequences of named task invocations can be built to influence when a DE fires a
specific generator. Generators can be attached to high-level chains or specific components.

Multiple generators can contain the same phase number, as shown in Figure 13.

Figure 13—Generator example with phase number

In this case, the order does not matter with respect to other generators at the same phase. If no phase number
is given, then the DE can decide the generator’s position.

100

SPIRITGEN_SIM_HS_INIT
(Generator Group)

initNetlistGenerator

Phase Number

190 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
Generators can be attached to both components by using the same generator group name. In this case, the
sequence for invoking each generator depends on the associated phase number. It is up to the DE to process
the generator chains, groups, and phase numbers to construct the sequence of generator invocations.

The following XML file specifies a call to such a generator.

<?xml version="1.0" encoding="UTF-8"?>

<spirit:generatorChain xmlns:spirit=http://www.spiritconsortium.org/
XMLSchema/SPIRIT/1.4 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xsi:schemaLocation="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4
http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4/index.xsd">

 <spirit:vendor>spiritconsortium.org</spirit:vendor>

 <spirit:library>buildChain</spirit:library>

 <spirit:name>commonInit</spirit:name>

 <spirit:version>r1.0</spirit:version>

 <spirit:generator>

 <spirit:name>initNetlistGenerator</spirit:name>

 <spirit:phase>100</spirit:phase>

 <spirit:accessType>

 <spirit:readOnly>true</spirit:readOnly>

 <spirit:hierarchical>true</spirit:hierarchical>

 <spirit:instanceRequired>true</spirit:instanceRequired>

 </spirit:accessType>

<spirit::generatorExe>/user/spirit/generators/setupNetlist

</spirit::generatorExe>

 </spirit:generator>

 <spirit:componentGeneratorSelector>

 <spirit:groupSelector>

 <spirit:name>SPIRITGEN_SIM_HS_INIT</spirit:name>

 </spirit:groupSelector>

 </spirit:componentGeneratorSelector>

 <spirit:busGeneratorSelector>
 <spirit:groupSelector>

 <spirit:name>SPIRITGEN_SIM_HS_INIT</spirit:name>

 </spirit:groupSelector>

 </spirit:busGeneratorSelector>
 <spirit:chainGroup>SPIRITGEN_SIM_HS_INIT</spirit:chainGroup>

</spirit:generatorChain>

10.4 Generator schema

10.4.1 generatorChain

10.4.1.1 Schema

The following schema defines the information contained in the generatorChain top object.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 191
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
10.4.1.2 Description

In IP-XACT, a design flow can be represented as a generator chain that links an ordered sequence of named
tasks. Each named task can be represented as a single generator or as a generator chain. This way, design
flow hierarchies can be constructed and executed from within a given DE. The DE itself is responsible for
understanding the semantics of the specified chain described in the generatorChain XML.

General comment -- It would be nice if there was an indication of each entry as an element or an attribute.

The generatorChain element contains the following elements and attributes.
a) Mandatory elements

1) versionedIdentifier is a unique VLNV identifier.
2) At least one selector used to invoke a generator. A generator can be one of the following.

i) generatorChainSelector is a reference to another generatorChain (see 10.4.2).
ii) componentGeneratorSelector is a reference to a (list of) component generators (see

10.4.3).
iii) generator defines the generator (see 10.4.4).
192 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
b) Optional elements and attributes

1) hidden indicates (when set to True) this generatorChain object shall not be presented to the
user (the default is False). For example, this may be part of a chain and have no useful meaning
when invoked standalone.

2) chainGroup defines the list of ordered generator group names. This can be viewed as the list of
events to which this generatorChain is sensitive.

3) In addition, a generatorChain can be further configured by specifying parameters and a set of
choices. Lastly, its description can be enhanced by adding a displayName and description or
extended using vendorExtensions. These generic elements can be found in other top IP-XACT
objects, such as the component, and will therefore not be described here.
**Add xref OR copy that material here??
Let’s copy this material as much as possible (and minimize this type of cross-reference

10.4.1.3 Example

The following example defines a generator chain called GEN_COSIM_CHAIN, which is intended to specify
a sequence of four simulation tasks (INIT, CONFIG, BUILD, and COMPILE) for both HW and SW
compilation.

<?xml version="1.0" encoding="UTF-8"?>

<spirit:generatorChain

xmlns:xs=http://www.w3.org/2001/XMLSchema

xmlns:spirit=http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4
xsi:schemaLocation="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4
http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4/index.xsd">

 <spirit:vendor>spiritconsortium.org</spirit:vendor>

 <spirit:library>buildChain</spirit:library>

 <spirit:name>CompleteBuild</spirit:name>

 <spirit:version>1.0</spirit:version>

 <spirit:generatorChainSelector>

 <spirit:groupSelector>

 <spirit:name>GEN_COSIM_INIT</spirit:name>

 </spirit:groupSelector>

 </spirit:generatorChainSelector>

 <spirit:generatorChainSelector>

 <spirit:groupSelector>

 <spirit:name>GEN_COSIM_CONFIG</spirit:name>

 </spirit:groupSelector>

 </spirit:generatorChainSelector>

 <spirit:generatorChainSelector>

 <spirit:groupSelector>

 <spirit:name>GEN_COSIM_BUILD</spirit:name>

 </spirit:groupSelector>

 </spirit:generatorChainSelector>

 <spirit:generatorChainSelector>

 <spirit:groupSelector>

 <spirit:name>GEN_COSIM_COMPILE</spirit:name>

 </spirit:groupSelector>

 </spirit:generatorChainSelector>

 <spirit:chainGroup>GEN_COSIM_CHAIN</spirit:chainGroup>

</spirit:generatorChain>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 193
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
10.4.2 generatorChain selector

10.4.2.1 Schema

The following schema defines the information contained in the generatorChainSelector element, which
may appear within a generatorChain.

10.4.2.2 Description

The generatorChainSelector element defines which generator(s) to invoke. This element contains the
following mandatory elements and attributes.

a) unique specifies (when set to True) only a single generator can be selected (the defaults is False). If
more that one generator is selected based on the selection criteria, the DE shall prompt the user to
resolve to a single generator.

b) The selected generator(s) can be a generatorChain (referenced by its VLNV through the genera-
torChainRef element) or a list of group names (referenced by the groupSelector/name element)
which identifies a list of generators (whose name match the given groupSelector names).

The matching generators are the generatorChain generators whose chainGroup element values
match one (or all if the multipleGroupSelector is set to AND) of the given groupSelector names.

c) The groupSelector can be a single name or a list of names. When a list of names is specified, the
multipleGroupSelectorOperator attribute can specify if the selection applies when one of the gen-
erator names matches (Boolean OR) or all the generator names match (Boolean AND).
194 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
10.4.2.3 Example

Assume three generatorChains X, Y, and Z have been created with the chainGroup names {A, B}, {A,
C}, and {B, C}, respectively. This example shows how a new generatorChain object can select Y.

<spirit:generatorChainSelector>
<spirit:groupSelector

spirit:multipleGroupSelectionOperation=“and“>
<spirit:name>A</spirit:name>
<spirit:name>C</spirit:name>

</spirit:groupSelector>
</spirit:ports>

10.4.3 generatorChain component selector

10.4.3.1 Schema

The following schema defines the information contained in the componentGeneratorSelector element,
which may appear within a generatorChain.

10.4.3.2 Description

Similar to the generatorChainSelector, componentGeneratorSelector selects a component generator or a
list of component generators from a group selector. The following also apply.

a) The groupSelector can be a single name or a list of names. When a list of names is specified, the
multipleGroupSelectorOperator attribute can specify if the selection applies when one of the gen-
erator names matches (Boolean OR) or all the generator names match (Boolean AND).

b) The matching generators are the component generators whose groupName element values match
one (or all if the multipleGroupSelector is set to AND) of the generatorChain/groupSelector
names.

10.4.3.3 Example

The following example shows a generatorChain selecting all the component generators whose
groupName matches the name docGen.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 195
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
<spirit:componentGeneratorSelector>
<spirit:groupSelector>

<spirit:name>docGen</spirit:name>
</spirit:groupSelector>

</spirit:componentGeneratorSelector>

10.4.4 generatorChain generator

10.4.4.1 Schema

The following schema defines the information contained in the generator element, which may appear
within a generatorChain or component.
196 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
10.4.4.2 Description

The generator element describes a specific generator executable. This element contains the following
elements and attributes.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 197
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
a) Mandatory elements

1) name (included in nameGroup) identifies the generator. nameGroup can also have two addi-
tional (optional) subelements: displayName, which allows a short descriptive text to be associ-
ated with the generator, and description which allows a textual description of the generator.

2) generatorExe defines an executable path, which shall include the command to launch this gen-
erator.

b) Optional information

1) hidden indicates (when set to True) this generator object shall not be presented to the user (the
default is False). For example, this may be part of a chain and have no useful meaning when
invoked standalone.

2) phase defines the sequence in which generators should be fired. In addition, the scope attribute
can be used to attach a generator phase: local or global (default).

3) parameters defines the generator parameters described as a list of name and value pairs, which
can be extended with specific vendorAttributes or vendorExtensions.

4) apiType is the API used by the generator: TGI (the default) or None (to designate there is no
communication between the DE and the generator).

5) transportMethods defines the list of transport protocols (other than http) supported by this
generator. The only supported protocol is file.

6) vendorExtensions adds any extra vendor-specific data related to the generator.

10.4.4.3 Example

The following example shows a netlist generator.

<spirit:generator>

<spirit:name>generateNetlist<spirit:name>

<spirit:phase>100.0</spirit:phase>

<spirit:parameters>

<spirit:parameter>

<spirit:name>language<spirit:name>

<spirit:value

spirit:id=netlistGenLangId

spirit:resolve=user

spirit:choiceRef= netlistGenLangChoicesId>vhdl

</spirit:value>

</spirit:parameter>

</spirit:parameters>

<spirit:apiType>TGI</spirit:apiType>

<spirit:generatorExe>tclsh ../generic_netlister.tcl</
spirit:generatorExe>

</spirit:generator>
198 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
11. Design configuration descriptions

11.1 Design configuration

IP-XACT includes a schema for documents that store design configuration information—all the
configurable information that is not recorded in the design file. The design configuration information is
useful when transporting designs between design environments; it contains information that would
otherwise have to be re-entered by the designer; while the design itself contains all information regarding
configuration of the design, e.g., instance base addresses.

The design configuration file contains the following configuration information.
— configurable information defined in generators within generator chains; this information is not refer-

enced via the design file;
— the active, or current, view selected for instances in the design;
— the configuration information for interconnections between the same bus types with differing

abstraction types (i.e., abstractor reference, parameter configuration, and view selection). See also:
the abstractor section 4.9.2.

Finally, a design configuration applies to a single design, but a design may have multiple design
configuration files.

11.2 designConfiguration

11.2.1 Schema

The following schema defines the information contained in the designConfiguration root element.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 199
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
11.2.2 Description

The designConfiguration element details the configuration for a design. It contains the following
mandatory and options elements.

a) Mandatory elements
1) versionedIdentifier is a group containing the vendor, library, name, and version elements.
2) designRef specifies the design VLNV to which the configuration applies. It has the vendor,

library, name, and version attributes.
b) Optional elements

1) generatorChainConfiguration contains the configurable information associated with a gener-
ator defined within a generatorChain. See 11.3.

2) interconnectionConfiguration contains information about the abstractors required for the
connection of two interfaces with different abstractionDefinition types. See 11.4.

3) viewConfiguration lists the active view for each instance of the design. It has the following
subelements.
200 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
i) instanceName specifies the component instance name for which the view is being
selected. This instance name shall be unique with other instance names inside the refer-
enced design file.

ii) viewName defines the current valid view for the selected component instance.
4) description allows a textual description of the design configuration.
5) vendorExtensions adds any extra vendor-specific data related to the design configuration.

See also: SCR 1.5.

11.2.3 Example

The following example shows a designConfiguration containing a generator chain configuration: one
abstractor configuration in an interconnectionConfiguration and one instance view configuration.

<spirit:designConfiguration xmlns:spirit="http://www.spiritconsortium.org/
XMLSchema/SPIRIT/1.4" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:schemaLocation="http://www.spiritconsortium.org/XMLSchema/
SPIRIT/1.4/index.xsd">

 <spirit:vendor>spiritconsortium.org</spirit:vendor>
 <spirit:library>Library</spirit:library>
 <spirit:name>Configs</spirit:name>
 <spirit:version>1.0</spirit:version>
 <spirit:designRef spirit:vendor="spiritconsortium.org"

spirit:library="DesignLibrary" spirit:name="Design1"
spirit:version="1.0"/>

 <spirit:generatorChainConfiguration>
 <spirit:generatorChainRef spirit:vendor="spiritconsortium.org"

spirit:library="generatorLibrary" spirit:name="generator1"
spirit:version="1.0"/>

 <spirit:generators>
 <spirit:generatorName>gen1</spirit:generatorName>
 <spirit:configurableElementValues>

 <spirit:configurableElementValue
spirit:referenceId="tmpDir"> my_temp_dir</
spirit:configurableElementValue>

 </spirit:configurableElementValues>
</spirit:generators>

 </spirit:generatorChainConfiguration>
 <spirit:interconnectionConfiguration>
 <spirit:interconnectionRef>
 connection1
 </spirit:interconnectionRef>
 <spirit:abstractors>
 <spirit:abstractor>
 <spirit:instanceName>a1</spirit:instanceName>
 <spirit:abstractorRef
 spirit:vendor="spiritconsortium.org"
 spirit:library="AbstractorLibrary"
 spirit:name="AHBPvToRtl"
 spirit:version="1.0"/>
 <spirit:viewName>verilog</spirit:viewName>
 </spirit:abstractor>
</spirit:abstractors>
 </spirit:interconnectionConfiguration>
 <spirit:viewConfiguration>
 <spirit:instanceName>instance_1</spirit:instanceName>
 <spirit:viewName>verilog</spirit:viewName>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 201
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
 </spirit:viewConfiguration>
</spirit:designConfiguration>

11.3 generatorChainConfiguration

11.3.1 Schema

The following schema defines information contained in generatorChainConfiguration, which may appear
as an element inside the designConfiguration root element.

11.3.2 Description

The generatorChainConfiguration element contains the configurable information associated with a
generatorChain and its generators. Configurable information for any generators associated with
components is stored in the design file (in the configuration of an instance associated with a
componentGenerator). The generatorChainConfiguration element contains the following mandatory
and options elements.

a) Mandatory elements
generatorChainRef points to the VLNV of a generatorChain through the vendor, library, name,
and version attributes.

b) Optional elements
generators specify any configurable information for the generators referenced in a chain. It has the
following subelements.

i) generatorName (mandatory) identifies the generator in the referenced chain.
ii) configurableElementValues (optional) specifies any configurableElementValue ele-

ments, which contain values for the generator configurable elements, referenced via the
mandatory referenceId attribute.

See also: SCR 1.7.

11.3.3 Example

The following example shows the configurable information for a generatorChain. Here two generators
inside the referenced generatorChain are configured.
202 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
<spirit:generatorChainConfiguration>

 <spirit:generatorChainRef spirit:vendor="spiritconsortium.org"
spirit:library="generatorLibrary" spirit:name="generator1"
spirit:version="1.0"/>

 <spirit:generators>

 <spirit:generatorName>gen1</spirit:generatorName>

 <spirit:configurableElementValues>

 <spirit:configurableElementValue
spirit:referenceId="tmpDir"> my_temp_dir</
spirit:configurableElementValue>

</spirit:generators>

<spirit:generators>

 <spirit:generatorName>gen2</spirit:generatorName>

 <spirit:configurableElementValues>

 <spirit:configurableElementValue
spirit:referenceId="verbose_level"> 1</
spirit:configurableElementValue>

 <spirit:configurableElementValue
spirit:referenceId="dump_log"> true</
spirit:configurableElementValue>

 </spirit:configurableElementValues>

</spirit:generators>

 </spirit:generatorChainConfiguration>

11.4 interconnectionConfiguration

11.4.1 Schema

The following schema defines information contained in interconnectionConfiguration element, which
may appear as an element inside the designConfiguration root element.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 203
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
11.4.2 Description

The interconnectionConfiguration element contains information about the abstractors used to connect two
interfaces having the same busDefinition types and different abstractionDefinition types. The
interconnectonConfiguration element contains the following mandatory elements and attributes.

a) interconnectionRef contains a reference to a design interconnection name or a hierConnection
interfaceRef name.

b) abstractors contains the abstractor elements, this list of elements specify the order in which the
abstractors shall be chained together to bridge from one abstraction to another. An abstractor has
the following subelements.
1) instanceName (mandatory) defines the name of the abstractor instance.
2) abstractorRef (mandatory) points to the VLNV of the abstractor through the vendor,

library, name, and version attributes.
3) viewName (mandatory) defines the name of the active view for this abstractor instance.
4) displayName (optional) defines the display name for the abstractor instance.
5) description (optional) provides a textual description of the abstractor instance.
6) configurableElementValues (optional) has configurableElementValue elements, which

describe the values of configurable elements of the referenced generatorChain. The manda-
tory referenceId attribute in a configurableElementValue specifies the id of the configurable
element to reconfigure.

General comment -- section 11.4.2 includes all sub-elements in a single list and then indicates within each
list entry whether or not the entry is optional. This is inconsistent with the way chapter 10 was done where
the mandatory and optional elements are separated into different lists. I like the chapter 11 approach better
because it allows for closer alignment with the schema pictures, but the important thing is to be consistent.
See also: SCR 3.13, SCR 3.14, SCR 3.15, SCR 3.16, SCR 3.17, SCR 3.18, SCR 3.19, SCR 3.20, SCR 3.21,
and SCR 3.22.

11.4.3 Example

The following example shows the configuration of the connection1 interconnection, with the definition
of a chain of two abstractors to insert to bridge the two abstractions. The abstractor instances are
abstraction1 and abstraction2. The active views of these abstractor instances are verilog and
verilog_view. The abstractor VLNVs are defined in the abstractorRef elements.

<spirit:interconnectionConfiguration>
 <spirit:interconnectionRef>
 connection1
 </spirit:interconnectionRef>
 <spirit:abstractors>
 <spirit:abstractor>
 <spirit:instanceName>abstractor1</spirit:instanceName>
 <spirit:abstractorRef
 spirit:vendor="spiritconsortium.org"
 spirit:library="AbstractorLibrary"
 spirit:name="AHBPvToAHBPvt"
 spirit:version="1.0" />
 <spirit:viewName>verilog</spirit:viewName>
 </spirit:abstractor>

<spirit:abstractor>
 <spirit:instanceName>abstractor2</spirit:instanceName>
 <spirit:abstractorRef
 spirit:vendor="spiritconsortium.org"
204 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
 spirit:library="AbstractorLibrary"
 spirit:name="AHBPvtToRtl"
 spirit:version="1.0" />
 <spirit:viewName>verilog_view</spirit:viewName>
 </spirit:abstractor>
</spirit:abstractors>
 </spirit:interconnectionConfiguration>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 205
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
206 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
12. Addressing and addressing formulas

**Once the WG approves the technical content of Anthony’s IPXACTaddressing.doc write-up, I’ll
incorporate it into this clause. In the meantime, this merely serves as a placeholder.**
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 207
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
208 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
Annex A

(informative)

Bibliography

Update this list as relevant

[B1] Bradner, S., IETF RFC 2119 “Key words for use in RFCs to Indicate Requirement Levels.” Best Cur-
rent Practice: 14 (See http://www.ietf.org/rfc/rfc2119.txt.)

[B2] IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition. New York: Insti-
tute of Electrical and Electronics Engineers, Inc.

[B3] IP-XACT Leon Register Transfer Examples, v1.4, see http://www.spiritconsortium.org/
doc_downloads/???. **add the actual reference**

[B4] IP-XACT Leon Transaction Level Examples, v1.4, see http://www.spiritconsortium.org/
doc_downloads/???. **add the actual reference**

[B5] IP-XACT Schema on-line documentation, v1.4, see http://www.spiritconsortium.org/doc_downloads/
???. **add the actual reference**

[B6] IP-XACT Tight Generator Interface Overview, v1.4, see http://www.spiritconsortium.org/
doc_downloads/???. **add the actual reference**

[B7] The Transaction Level Model of SystemC. This model is in the process of standardization by the Open
SystemC Initiative (OSCI) (http://www.systemc.org)
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 209
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

www.ietf.org/rfc/rfc2119.txt
http://www.systemc.org

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
210 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
Annex B

(normative)

Semantic consistency rules

**Generally, any “i.e.” additions should be in the Rules column, not the Notes column;
let’s confirm all these before rearranging their placement in each table**

For an IP-XACT document or a set of IP-XACT documents, to be valid they shall, in addition to conforming
to the IP-XACT schema, obey certain semantic rules. While many of these are described informally in other
sections of this document, this chapter defines them formally. Tools generating IP-XACT documents must
ensure these rules are obeyed. Tools reading IP-XACT documents shall report any breaches of these rules to
the user.

Most of the semantic rules listed here can be checked purely by manually examining a set of IP-XACT
documents. A few, listed at the end of this annex, need some external knowledge, so they cannot be checked
this way. In Table B1 — Table B14, Single doc check indicates a rule can be checked purely by manually
examining a single IP-XACT document. Rules for which Single doc check is No require the examination of
the relationships between IP-XACT documents.

Table B1—Cross-references and VLNVs

Rule
number

V1.2 rule
number Rule

Single
doc

check
Notes

SCR 1.1 1 Every IP-XACT document visible to a tool
shall have a unique VLNV.

No Only applies only to
those documents visi-
ble to a particular tool
or DE at one time. In
particular, users are
likely to store multi-
ple versions of the
same documents,
with the same
VLNVs, in source
control systems.

SCR 1.2 2 Any VLNV in an IP-XACT document used
to reference another IP-XACT document
shall precisely match the identifying VLNV
of an existing IP-XACT document.

No In the schema, such
references always use
the attribute group
versionedIdentifier.

SCR 1.3 3 The VLNV in an extends element in a bus
definition shall be a reference to a bus defi-
nition.

No

SCR 1.4 4 The VLNV in a busType element in a bus
interface or abstraction definition shall be a
reference to a bus definition.

No

SCR 1.5 5 The VLNV in a designRef element in a
design configuration shall be a reference to
a design.

No
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 211
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
SCR 1.7 7 The VLNV in a generatorChainRef ele-
ment in a design configuration shall be a ref-
erence to a generator chain.

No

SCR 1.9 9 The VLNV in a generatorChainRef sub-
element of the element generatorChainSe-
lector in a generator chain shall be a refer-
ence to a generator chain.

No

SCR 1.11 11 The VLNV in a componentRef element in a
design shall be a reference to a component.

No

SCR 1.12 The XML document element of a an IP-
XACT document shall be an abstractor,
abstractionDefinition, busDefinition,
component, design, designConfiguration
or generatorChain element.

No

SCR 1.13 The VLNV in an abstractionType element
in a component or abstractor shall reference
an abstractionDefiniton.

SCR 1.14 If a bus definition contains an abstraction-
Type sub-element, the abstraction defini-
tion’s busType element and the bus
interface’s busType element shall reference
the same bus definition.

No I.e., the abstraction
referenced shall be an
abstraction of the ref-
erenced bus.

SCR 1.15 The VLNV in an abstractorRef in a
designConfiguration shall reference an
abstractor.

No

SCR 1.16 The VLNV in an extends element in an
abstraction definition shall be a reference to
an abstraction definition.

No

Table B2—Interconnections

Rule
number

V1.2 rule
number Rule

Single
doc

check
Notes

SCR 2.1 12. In the attributes of an activeInterface or
monitorInterface element, the value of the
busRef attribute shall be the name of a bus-
Interface in the component description ref-
erenced by the VLNV of the component
instance named in componentRef attribute.

No

SCR 2.2 13. In the sub-elements of an interconnection
element, the bus interfaces referenced by the
two activeInterface sub-elements shall be
compatible, i.e., the VLNVs of the busType
elements within the two busInterface ele-
ments shall reference compatible busDefi-
nitions.

No

Table B1—Cross-references and VLNVs (Continued)

Rule
number

V1.2 rule
number Rule

Single
doc

check
Notes
212 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
SCR 2.3 14. A particular component/bus interface com-
bination shall appear in only one intercon-
nection element in a design.

Yes

SCR 2.4 15. An interconnection element shall only con-
nect a master interface to a slave interface or
a mirrored-master interface.

No

SCR 2.5 16. An interconnection element shall only con-
nect a mirrored-master interface to a master
interface.

No

SCR 2.6 17. An interconnection element shall only con-
nect a slave interface to a master interface or
a mirrored-slave interface.

No

SCR 2.7 18. An interconnection element shall only con-
nect a mirrored-slave interface to a slave
interface.

No

SCR 2.8 19. An interconnection element shall only con-
nect a direct system interface to a mirrored-
system interface.

No

SCR 2.9 20. An interconnection element shall only con-
nect a mirrored-system interface to a direct
system interface.

No

SCR 2.10 21. In a direct master to slave connection, the
value of bitsInLAU in the master's address
space shall match the value of bitsInLAU in
the slave's memory map.

No

SCR 2.11 22. In a direct master to slave connection, the
range of the master's address space shall be
greater or equal to the range of the slave's
memory map.

No When the slave's
memory map is
defined in terms of
memory banks or
subspace maps, cal-
culating its range
may be complex.

SCR 2.12 23. In a direct master to slave connection, the
busDefinitions referenced by the busInter-
faces shall have a directConnection ele-
ment with the value True.

No

SCR 2.13 24. In a connection between a system interface
and a mirrored-system interface, the values
of the group elements of the two bus inter-
faces shall be identical.

No

SCR 2.14 If the same logical port is in the port map of
both ends of a direct master to slave connec-
tion, the vector elements of that logical port
shall be identical in the two port maps.

No Logical ports can
only be identified
with one another if
the two bus interfaces
reference the same
abstraction definition.

Table B2—Interconnections (Continued)

Rule
number

V1.2 rule
number Rule

Single
doc

check
Notes
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 213
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
Delete these definitions and/or move them into the appropriate Schema section

B.0.1 Compatibility of busDefinitions

a) A busDefinition A is an extension of busDefinition B if A contains an extension element that refer-
ences B or an extension of B.

b) A busDefinition is compatible with itself.
c) If A is an extension of B, then A and B are compatible.
d) No other pairs of busDefinitions are compatible.
e) A set of busDefinitions {A, B, C, ...} is compatible if every possible pair of busDefinitions

from the set ({ A, B }, { A, C }, { B, C } ...) is compatible.

B.0.2 Interface mode of a bus interface

Specifies whether the bus interface is a master, slave, system, mirroredMaster, mirroredSlave,
mirroredSystem, or monitor interface.

Table B3—Channels, bridges, and abstractors

Rule
number

V1.2 rule
number Rule

Single
doc

check
Notes

SCR 3.1 25. Within a channel element, all the busInter-
faceRef elements shall refer to compatible
abstraction definitions, i.e., the VLNVs of
the abstractionType elements within the
busInterface elements shall reference com-
patible abstractionDefinitions.

No Compatibility of the
abstraction defini-
tions implies compat-
ibility of their
associated bus defini-
tions.

SCR 3.2 26. All bus interfaces referenced by a channel
shall be mirrored interfaces.

Yes

SCR 3.3 27. A channel can be connected to no more mir-
rored-master busInterfaces than the least
value of maxMasters in the busDefinitions
referenced by the connected busInterfaces
(whether these interfaces are mirrored-mas-
ter or mirrored-slave interfaces).

No A channel may con-
nect ports with differ-
ent bus definitions,
and hence different
values of maxMas-
ters, as long as the
bus definitions are
compatible.

SCR 3.4 28. A channel can be connected to no more mir-
rored-slave bus interfaces than the least
value of maxSlaves in the bus definitions
referenced by the connected bus interfaces
(whether these interfaces are mirrored-mas-
ter or mirrored-slave interfaces).

No A channel may con-
nect ports with differ-
ent bus definitions,
and hence different
values of max-
Slaves, as long as the
bus definitions are
compatible.

SCR 3.5 29. Each bus interface on a component shall
connect to only one channel of that channel
component.

Yes
214 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
SCR 3.6 30. The interface referenced by masterRef sub-
element of a bridge element shall be a mas-
ter.

Yes

SCR 3.13 The value of the interconnectionRef sub-
element of an interconnectionConfigura-
tion element shall precisely match the name
of an interconnection described in the
design referenced by the containing design
configuration.

No

SCR 3.14 An interconnectionConfiguration element
of a design configuration document that ref-
erences a master to mirrored-master inter-
connection in the corresponding design shall
only reference abstractors with an abstrac-
torMode of master.

No

SCR 3.15 An interconnectionConfiguration element
of a design configuration document that ref-
erences a slave to mirrored-slave intercon-
nection in the corresponding design shall
only reference abstractors with an abstrac-
torMode of slave.

No

SCR 3.16 An interconnectionConfiguration element
of a design configuration document that ref-
erences a system to mirrored-system inter-
connection in the corresponding design shall
only reference abstractors with an abstrac-
torMode of system.

No

SCR 3.17 An interconnectionConfiguration element
of a design configuration document that ref-
erences a master to slave interconnection in
the corresponding design shall only refer-
ence abstractors with an abstractorMode of
direct.

No

SCR 3.18 An interconnectionConfiguration element
shall not reference an interconnection in
which the abstraction types referenced by
the two endpoints are identical.

No

SCR 3.19 In the list of abstractors referenced by an
interconnectionConfiguration element,
the first abstractionType element of the
first referenced abstractor shall be compati-
ble with the abstractionType element of the
master, system, or mirrored-slave endpoint
of the interconnection.

No Rules 3.19 — 3.22
mean the abstractors
associated with an
interconnection need
to form a non-looping
chain between the
two ends.

SCR 3.20 In the list of abstractors referenced by an
interconnectionConfiguration element,
the second abstractionType element of the
last referenced abstractor shall be compati-
ble with the abstractionType element of the
mirrored-master, mirrored-system, or slave
endpoint of the interconnection.

No

Table B3—Channels, bridges, and abstractors (Continued)

Rule
number

V1.2 rule
number Rule

Single
doc

check
Notes
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 215
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
Delete these definitions and/or move them into the appropriate Schema section

B.0.3 Compatibility of abstractionDefinitions

a) An abstractionDefinition A is an extension of abstractionDefinition B if A contains an extension
element that references B or an extension of B.

b) An abstractionDefinition is compatible with itself.
c) If A is an extension of B, then A and B are compatible.
d) No other pairs of abstractionDefinitions are compatible.

SCR 3.21 In the list of abstractors referenced by an
interconnectionConfiguration element,
the first abstractionType element of every
referenced abstractor, except the first, shall
be compatible with the second abstraction-
Type element of the previous abstractor in
the interconnectionConfiguration list.

No

SCR 3.22 In the list of abstractors referenced by an
interconnectionConfiguration element, no
two abstractionType elements in the refer-
enced abstractors shall have the same value.

No

SCR 3.23 The VLNVs in the busType elements of
both abstraction definitions referenced by an
abstractor shall exactly match the VLNV in
the busType element of the abstractor.

No

SCR 3.24 If abstraction definition AA is an abstraction
of bus definition A and abstraction defini-
tion AB is an abstraction of bus definition B,
then abstraction definition AA shall only
contain an extension element referencing
abstraction definition AB if bus definition A
contains an extension element referencing
bus definition B.

No If abstraction defini-
tion AA extends
abstraction definition
AB, AA and AB need
to be abstractions of
different buses.

Table B3—Channels, bridges, and abstractors (Continued)

Rule
number

V1.2 rule
number Rule

Single
doc

check
Notes
216 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55

Table B4—Monitor interfaces and interconnections

Rule
number

V1.2 rule
number Rule

Single
doc

check
Notes

SCR 4.1 31. An interconnection element cannot refer-
ence a monitor interface.

No

SCR 4.2 32. The activeInterface sub-element of a moni-
torInterconnection element shall reference
a master, slave, system, mirroredMaster,
mirroredSlave, or mirroredSystem inter-
face.

No

SCR 4.3 33. The monitorInterface sub-elements of a
monitorInterconnection element shall ref-
erence a monitor bus interface.

No

SCR 4.4 34. In a monitorInterconnection element, the
value of the interfaceModeMode of the
monitor interfaces shall match the inter-
faceModeMode of the active interface.

No This means all the
active interfaces shall
have the same inter-
face mode.

SCR 4.5 35. A monitor interface shall only be connected
to a system or mirroredSystem interface if
it has a group sub-element and the value of
this element matches the value of the group
sub-element of the system or mirroredSys-
tem interface.

No

SCR 4.6 36. A particular component/busInterface-
Name combination shall only appear in one
monitorInterconnection element.

No This applies to both
monitor and active
interfaces; however, a
single monitorInter-
connection element
can connect an active
interface to many
monitor interfaces.
The same active
interface can also
appear in at most one
interconnection ele-
ment.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 217
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
Table B5—Configurable elements

Rule
number

V1.2 rule
number Rule

Single
doc

check
Notes

SCR 5.1 37. A configurable element shall have a depen-
dency attribute if and only if it has a resolve
attribute with the value dependent.

Yes

SCR 5.2 38. The value of a dependency attribute shall
be an XPATH expression. This XPATH
expression shall only reference the contain-
ing document.

Yes

SCR 5.3 39. The XPATH expression in a dependency
attribute shall not reference configurable
elements having a resolve attribute value of
dependent or generated.

Yes

SCR 5.4 40. Any parameters used within all dependent
parameter's XPATH id() calls shall exist.

Yes

SCR 5.5 41. All references to elements in dependency
XPATH expressions shall be by id. Depen-
dency XPATH expressions shall not use
document navigation to reference other ele-
ments.

Yes This rule allows
XPATH expressions
to remain valid
through schema or
design changes. DEs
reading IP-XACT
documents should
treat breaches of this
rule as minor errors,
and attempt to inter-
pret any XPATH
expressions in the
document.

SCR 5.6 42. An id attribute is required in any element
with a resolve attribute value of user or
generated.

Yes

SCR 5.7 43. configurableElement elements within
componentInstance elements shall only
reference configurable elements that exist in
the component referenced by the enclosing
componentInstance element; the value of
the referenceId attribute of the config-
urableElement element shall match the
value of the id attribute of some config-
urable element of the component.

No The schema guaran-
tees uniqueness of id
values in a compo-
nent.

SCR 5.8 44. configurableElement elements shall only
reference configurable elements with a
resolve attribute value of user or gener-
ated.

No

SCR 5.9 45. If a configurableElement element refer-
ences an element with a formatType
attribute value of float or long and contain-
ing a minimum attribute, the value of the
configurableElementValue element shall
be greater or equal to the specified value of
the minimum attribute.

No
218 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
Delete these definitions and/or move them into the appropriate Schema section

SCR 5.10 46. If a configurableElement element refer-
ences an element with a format attribute
value of float or long and containing a max-
imum attribute, the value of the config-
urableElementValue sub-element shall be
less than or equal to the specified value of
the maximum attribute.

No

SCR 5.11 47. If an element has a format attribute with a
value of choice, it also needs a choiceRef
attribute.

Yes

SCR 5.12 48. If a configurableElement element refer-
ences an element with a choiceRef attribute,
the value for configurableElementValue
sub-element shall be one of the values listed
in the choice element referenced by the
choiceRef attribute.

No

SCR 5.13 . configurableElement elements within gen-
eratorChain elements in design configura-
tion documents shall only reference
configurable elements that exist in the gen-
erator chain referenced by the enclosing
generatorChain element; the value of the
referenceId attribute of the config-
urableElement element shall match the
value of the id attribute of some config-
urable element of the generator chain.

No The schema guaran-
tees uniqueness of id
values in a generator
chain.

SCR 5.14 . configurableElement elements within gen-
erator elements in design configuration
documents elements shall only reference
configurable elements that exist in the gen-
erator referenced by the enclosing genera-
tor element (within the generator chain
referenced by the enclosing generator-
Chain element); the value of the referen-
ceId attribute of the configurableElement
element shall match the value of the id
attribute of some configurable element of
the generator.

No The schema guaran-
tees uniqueness of id
values in a generator
chain.

SCR 5.15 . configurableElement elements within
abstractor elements in design configuration
documents elements shall only reference
configurable elements that exist in the
abstractor referenced by the enclosing
abstractor element; the value of the refer-
enceId attribute of the configurableEle-
ment element shall match the value of the id
attribute of some configurable element of
the abstractor.

No The schema guaran-
tees uniqueness of id
values in an abstrac-
tor.

Table B5—Configurable elements (Continued)

Rule
number

V1.2 rule
number Rule

Single
doc

check
Notes
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 219
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
B.0.4 Configurable element

This is an element that uses the common.att attribute group. The definition of such elements can define that
its value is derived by calculation from other elements, or set by the user or a generator.

Note—This is different from a configurableElement element, which is an element that references and sets the
value of a configurable element.

B.0.5 Element referenced by configurableElement element

Every configurableElement element references a component document and is contained within a
componentInstance element. The element referenced by a configurableElement element is the configurable
element in that component document with an id attribute matching the referenceId of the
configurableElement element.

Table B6—Ports

Rule
number

V1.2 rule
number Rule

Single
doc

check
Notes

SCR 6.1 49. The value of any busPortName sub-ele-
ment in a busInterface element shall match
the value of a logicalName element of the
abstraction definition referenced by the bus-
Interface element.

No

SCR 6.5.1 If the abstraction definition referenced by a
bus interface specifies an initiative value for
a logical port of requires for that interface
mode of bus interface, the port map shall
only map that logical port to a component
port with an initiative value of requires,
both, or phantom, or to a component port
with an allLogicalInitiativesAllowed
attribute with the value True.
For system interfaces, the port initiative val-
ues shall be looked up from the onSystem
element with the group name matching that
of the bus interfaces.
For mirrored interfaces, the bus port initia-
tive values needs to be reversed before
doing the comparison.

No
220 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
SCR 6.5.2 If the abstraction bus definition referenced
by a bus interface specifies an initiative
value for a logical port of provides for that
interface mode of bus interface, the port
map shall only map that logical port to a
component port with an initiative value of
provides, both, or phantom, or to a compo-
nent port with an allLogicalInitiativesAl-
lowed attribute with the value True.
For system interfaces, the port initiative val-
ues shall be looked up from the onSystem
element with the group name matching that
of the bus interfaces.
For mirrored interfaces, the bus port initia-
tive values shall be reversed before doing
the comparison. Mirrored bus interfaces
shall be looked up as if they were not mir-
rored.

No

SCR 6.5.3 If the abstraction bus definition referenced
by a bus interface specifies an initiative
value for a logical port of both for that inter-
face mode of bus interface, and the bus
interface has a port map, the port map shall
only map that logical port to a component
port with an initiative value of both or
phantom, or to a component port with an
allLogicalInitiativesAllowed attribute with
the value True.
For system interfaces, the port initiative val-
ues shall be looked up from the onSystem
element with the group name matching that
of the bus interfaces.
For mirrored interfaces, the bus port initia-
tive values shall be reversed before doing
the comparison. Mirrored bus interfaces
shall be looked up as if they were not mir-
rored.

No

SCR 6.6.1 If the abstraction definition referenced by a
bus interface specifies a direction for a logi-
cal port of in for that interface mode of bus
interface, the port map shall only map that
logical port to a component port with a
direction of in, inout, or phantom, or to a
component port with an allLogicalDirec-
tionsAllowed attribute with the value True.
For system interfaces, the port directions
shall be looked up from the onSystem ele-
ment with the group name matching that of
the bus interfaces.
For mirrored interfaces, the bus port direc-
tions shall be reversed before doing the
comparison.

No

Table B6—Ports (Continued)

Rule
number

V1.2 rule
number Rule

Single
doc

check
Notes
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 221
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
SCR 6.6.2 If the abstraction definition referenced by a
bus interface specifies a direction for a logi-
cal port of out for that interface mode of bus
interface, the port map shall only map that
logical port to a component port with a
direction of out, inout, or phantom, or to a
component port with an allLogicalDirec-
tionsAllowed attribute with the value True.
For system interfaces, the port directions
shall be looked up from the onSystem ele-
ment with the group name matching that of
the bus interfaces.
For mirrored interfaces, the bus port direc-
tions shall be reversed before doing the
comparison.

No

SCR 6.6.3 If the abstraction definition referenced by a
bus interface specifies a direction for a logi-
cal port of inout for that interface mode of
bus interface, the port map shall only map
that logical port to a component port with a
direction of inout or phantom, or to a com-
ponent port with an allLogicalDirection-
sAllowed attribute with the value True.
For system interfaces, the port directions
shall be looked up from the onSystem ele-
ment with the group name matching that of
the bus interfaces.
For mirrored interfaces, the bus port direc-
tions shall be reversed before doing the
comparison.

No

SCR 6.7 If the abstraction definition referenced by a
bus interface specifies, for a port, a presence
value of required for that interface mode of
bus interface, and the bus interface has a
port map, the port shall be in that port map.
For system interfaces, the port presence
shall be looked up from the onSystem ele-
ment with the group name matching that of
the bus interfaces.
Mirrored bus interfaces shall be looked up
as if they were not mirrored.

No Port maps are
optional, even on
buses with required
ports. See also 6.20.
The third possible
presence value
(optional) neither
forces nor forbids the
inclusion of the sig-
nal in the port map.

SCR 6.9 Only one component port in a port connec-
tion equivalence class may have the direc-
tion out.

No

SCR 6.11 Only one component port in a port connec-
tion equivalence class may have the initia-
tive provides.

No

SCR 6.12 If abstraction definition A extends abstrac-
tion definition B, then abstraction definition
A needs to have port elements for every port
declared in abstraction definition B.

No

Table B6—Ports (Continued)

Rule
number

V1.2 rule
number Rule

Single
doc

check
Notes
222 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
SCR 6.13 If the abstraction definition referenced by a
bus interface specifies a port is a wire port
(i.e., the port element contains a wire sub-
element), the port map shall only map that
logical port to a wire component port.

No

SCR 6.14 If the abstraction definition referenced by a
bus interface specifies a port is a transac-
tional port (i.e., the port element contains a
transactional sub-element), the port map
shall only map that logical port to a transac-
tional component port.

No

SCR 6.15 For any port connection equivalence class
containing at least one physical in port, only
one logical port of that port connection
equivalence class shall be a port of a bus
interface that has an interconnection to a bus
interface using a different abstraction.

No This rule prevents
shared signals from
crossing abstractions
boundaries, since
abstractors cannot
describe the handling
of such signals.

SCR 6.16 For any port connection equivalence class
containing at least one physical requires
port, only one logical port of that port con-
nection equivalence class shall be a port of a
bus interface that has an interconnection to a
bus interface using a different abstraction.

No This is the equivalent
of rule 6.15 for trans-
actional ports.

SCR 6.17 The value of the group sub-element of an
onSystem element shall match the value of
one of the system group names referenced in
the bus definition referenced by the abstrac-
tion definition containing the onSystem ele-
ment.

No

SCR 6.18 The value of the group sub-element of a
system element shall match the value of one
of the system group names referenced in the
bus definition referenced by the bus inter-
face containing the onSystem element.

No

SCR 6.19 If an abstraction definition’s busType ele-
ment references an addressable bus, the
abstraction definition shall contain at least
one port and isAddress sub-element.

No

SCR 6.20 If the abstraction definition referenced by a
bus interface specifies, for a port, a presence
value of illegal for that interface mode of
bus interface, and the bus interface has a
port map, the port shall not be in that port
map.
For system interfaces, the port presence
shall be looked up from the onSystem ele-
ment with the group name matching that of
the bus interfaces.
Mirrored bus interfaces shall be looked up
as if they were not mirrored.

No Port maps are
optional, even on
buses with required
ports. See also 6.20.
The third possible
presence value
(optional) neither
forces nor forbids the
inclusion of the port
in the port map.

Table B6—Ports (Continued)

Rule
number

V1.2 rule
number Rule

Single
doc

check
Notes
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 223
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

gdelp
Cross-Out

gdelp
Replacement Text
Needs a different link

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
Delete these definitions and/or move them into the appropriate Schema section

B.0.6 Port connection equivalence class

The port connection equivalence class of a (logical or component) port is the set of model and logical ports
that can be reached from that port through any sequence of:

a) Bus interfaces' logical to physical port maps.

b) Interconnections between logical ports implied by interconnections between bus interfaces using the
same abstraction of the bus.

c) Ad-hoc connections.

B.0.7 Addressable bus interface

A bus interface shall be addressable if its isAddressable element has the value True.

Table B7—Registers

Rule
number

V1.2 rule
number Rule

Single
doc

check
Notes

SCR 7.1 50. No register shall have an addressOffset that
falls within the address range of another reg-
ister in the same address block. The address
range of a register is the half open range
[addressOffset, addressOff-
set + (size +bitsInLau -1) ÷
bitsInLau).

Yes I.e., registers shall not
overlap.

SCR 7.2 51. No bit field shall have a bitOffset value that
falls within the bit range of another bit field.
The range of a bit field is the half open
range [bitOffset, bitOff-
set+width).

Yes I.e., bit fields shall
not overlap.

SCR 7.3 52. Any register in an address block shall fall
entirely within that address block. I.e., for
every register 0 addressOffset
addressBlockRange – register-
Size; where addressBlockRange is the
range of the address block and registerSize
is the size of the register in least addressable
units ((size +bitsInLau -1) ÷
bitsInLau).

Yes

SCR 7.4 53. Any bit field in a register shall fall entirely
within that register. I.e., for every bit field 0
bitOffset RegisterSize – bit-
FieldWidth; where RegisterSize is the
size (in bits) of the register, and bitField-
Width is the width of bit field.

Yes
224 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
Table B8—Memory maps

Rule
number

V1.2 rule
number Rule

Single
doc

check
Notes

SCR 8.1 54. The width of an address block included in a
memory map shall be a multiple of the
memory map's bitsInLau.

Yes

SCR 8.2 55. Neither a parallel bank, nor banks within a
parallel bank, shall contain subspace maps.

Yes

SCR 8.3 56. If a parallel bank contains a serial bank, the
widths of all address blocks and sub-banks
of that serial bank shall have identical
widths.

Yes I.e., the serial bank
has a fixed, well-
defined width. This is
required for sensible
addressing of the
locations in a parallel
bank.

Table B9—Addressing

Rule
number

V1.2 rule
number Rule

Single
doc

check
Notes

SCR 9.1 57. A non-hierarchical addressable master bus
interface shall have an addressSpaceRef
sub-element.

No Since there are poten-
tially useful applica-
tions of IP-XACT
that do not require
addressing informa-
tion, failure to obey
this rule should be
treated as a warning
rather than an error.

SCR 9.2 58. A non-hierarchical addressable slave bus
interface shall have a memoryMapRef sub-
element or one or more bridge sub-elements
referencing addressable master bus inter-
faces.

No Since there are poten-
tially useful applica-
tions of IP-XACT
that do not require
addressing informa-
tion, failure to obey
this rule should be
treated as a warning
rather than an error.

SCR 9.3 Only an address space referenced by the
addressSpaceRef sub-element of a cpu ele-
ment may contain an exectutableImage
sub-element.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 225
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
Table B10—Hierarchy

Rule
number

V1.2 rule
number Rule

Single
doc

check
Notes

SCR 10.1 59. All members of a hierarchical family of bus
interfaces shall reference the same busDefi-
nition in their busType sub-elements

No

SCR 10.2 60. All members of a hierarchical family of bus
interfaces shall have the same interface
mode (master, slave, system, etc.)

No

SCR 10.3 61 If any member of a hierarchical family of
bus interfaces has a connection sub-element
with a value other than explicit (the default),
then all the sub-element values need to be
identical.

No

SCR 10.4 62 If any member of a hierarchical family of
bus interfaces has an index sub-element,
they all shall have identical index sub-ele-
ments.

No

SCR 10.5 63. If any member of a hierarchical family of
bus interfaces has a bitSteering sub-ele-
ment, they all shall have identical bitSteer-
ing sub-elements.

No

SCR 10.6 64. If any member of a hierarchical family of
bus interfaces has a portMap sub-element,
they all shall.

No

SCR 10.7 65. All the portMaps of a hierarchical family of
bus interfaces reference the same set of bus
ports, i.e., if one contains a port with the
busPortName element and the value s, they
all shall.

No An effect of this,
together with 9.1 and
9.2, is when a hierar-
chical bus interface is
addressable, its non-
hierarchical descen-
dents (i.e., the leaves
of the tree) also are,
and, hence, they con-
tain addressing infor-
mation.

SCR 10.8 66. In a hierarchical family of bus interfaces, all
ports in the portMaps referencing the same
bus port shall have the same left and right
values.

No

SCR 10.9 67. In a hierarchical family of bus interfaces, the
componentPortName of all ports in the
portMap referencing the same bus port
shall reference ports with the same direc-
tion.

No

SCR 10.11 68. In a hierarchical family of bus interfaces, if
the component ports referenced by the com-
ponentPortName of all ports in the port
maps referencing the same bus port have
default values, they shall have identical
default values.

No I.e., it is legal for any
descriptions of a port
to have default val-
ues, but those that
have default values
shall have identical
default values.
226 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
SCR 10.12 69. In a hierarchical family of bus interfaces, the
componentPortName of all ports in the
portMap referencing the same bus port
shall reference ports with identical clock-
Driver sub-elements.

No

SCR 10.13 70. In a hierarchical family of bus interfaces, the
componentPortName of all ports in the
portMap referencing the same bus port
shall reference ports with identical single-
ShotDriver sub-elements.

No

SCR 10.14 71. In a hierarchical family of bus interfaces, the
componentPortName of all ports in the
portMap referencing the same bus port
shall reference ports with identical port-
ConstraintSets sub-elements.

No

Table B11—Hierarchy and memory maps

Rule
number

V1.2 rule
number Rule

Single
doc

check
Notes

SCR 11.1 72. In a hierarchical family of slave or mirrored-
master bus interfaces, all bus interfaces that
define addressing information shall define
the same set of addresses to be visible.

No I.e., if one member of
the family defines an
address as a valid
address accessible
through that bus
interface, all mem-
bers of the family that
define addressing
information shall
define that same
address as a valid
address accessible
through that bus
interface.

SCR 11.2 73. For any member of a hierarchical family of
slave or mirrored-master bus interfaces, if
an address resolves to reference a location
outside the containing hierarchical family of
components, that address shall reference the
same location (i.e., the same address on the
same bus) in every member of the hierarchi-
cal family that defines addressing informa-
tion.

No I.e., if C is a hierar-
chical component and
the IP-XACT
description of C itself
or some design of C
specifies accessing
address a of C on bus
interface I results in
an access to address
b of some other bus
interface J of C, all
designs of C that
specify addressing on
I shall indicate the
same about this
address.

Table B10—Hierarchy (Continued)

Rule
number

V1.2 rule
number Rule

Single
doc

check
Notes
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 227
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
SCR 11.3 74. If any bit address (i.e., address plus bit off-
set) is resolved to a bit within an address
block by any member of a hierarchical fam-
ily of slave bus interfaces, all members of
that family with addressing information
shall resolve that bit address to a bit with
identical behavioral properties.

No If an address resolves
to a location within
the hierarchical fam-
ily of components, its
only observable fea-
tures from outside the
hierarchical family
are its behavioral
properties (except as
defined in rule 11.4)

SCR 11.4 75. When any two addresses resolve to the same
location in the addressing information of
any member of a hierarchical family of bus
interfaces, this shall be true for all members
of the hierarchical family of bus interfaces
that have addressing information.

No I.e., aliasing of
addresses shall be
preserved. Aliasing is
observable from out-
side the hierarchical
family.

Table B12—Constraints

Rule
number

V1.2 rule
number Rule

Single
doc

check
Notes

SCR 14.1 A component wire port with direction out
shall not have a drive constraint.

Yes

SCR 14.2 A component wire port with a direction in
shall not have a load constraint.

Yes

SCR 14.3 An onMaster, onSlave, or onSystem ele-
ment of a wire port with direction out shall
not contain a drive constraint within its
modeConstraint element.

Yes

SCR 14.4 An onMaster, onSlave, or onSystem ele-
ment of a wire port with direction in shall
not contain a load constraint within its
modeConstraint element.

Yes

SCR 14.5 An onMaster, onSlave, or onSystem ele-
ment of a wire port with direction out shall
not contain a load constraint within its mir-
roredModeConstraint element.

Yes

SCR 14.6 An onMaster, onSlave, or onSystem ele-
ment of a wire port with direction in shall
not contain a drive constraint with its mir-
roredModeConstraint element.

Yes

Table B11—Hierarchy and memory maps (Continued)

Rule
number

V1.2 rule
number Rule

Single
doc

check
Notes
228 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
SCR 14.7 The clockName in a timing constraint of a
component port shall be the name of another
component port of the component or an oth-
erClockDriver of the component.

Yes

SCR 14.9 The clockName in a timing constraint of a
port within an abstraction definition shall be
the name of another port of the abstraction
definition; that referenced port shall have an
isClock sub-element.

Table B13—Design configurations

Rule
number

V1.2 rule
number Rule

Single
doc

check
Notes

SCR 15.1 The value of any generatorName element
shall match the value of a name sub-ele-
ment of a generator element in the genera-
tor chain referenced by the generatorChain
element enclosing the generatorName ele-
ment.

No

SCR 15.2 The value of an instanceName within a
viewConfiguration shall match the value of
the instanceName element of a compo-
nentInstance of the design document refer-
enced by the design configuration document
containing the viewConfiguration element.

No

SCR 15.3 The value of an viewName within a view-
Configuration shall match the value of the
name element of a view within the compo-
nent referenced by the component instance
that is itself referenced by the instance-
Name sub-element of the viewConfigura-
tion element.

No

Table B12—Constraints (Continued)

Rule
number

V1.2 rule
number Rule

Single
doc

check
Notes
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 229
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
Table B14—Rules requiring external knowledge

Rule
number

V1.2 rule
number Rule

Single
doc

check
Notes

SCR 12.1 76. The name sub-element of a file element can
contain environment variables in the form of
${ENV_VAR} which are meaningful to the
host operating system and, when expanded,
shall result in a string which is a valid URI.

Yes

SCR 12.2 77. In VLNVs, the vendor name shall be speci-
fied as the top-level internet domain name
for that organization. The domain shall be
ordered with the top-level domain name at
the end (as in HTTP URLs), e.g., men-
tor.com, arm.com, etc.

Yes This is to guarantee
uniqueness of vendor
names.

SCR 12.3 78. The envIdentifier of a view shall be a text
string consisting of three fields delimited by
colons (:). The first two fields shall be a
language name, which shall be one of the
languages available for fileTypes, and a tool
name. The tool name may be generic (e.g.,
*Simulation or *Synthesis) or a
specific tool name, such as DesignCom-
piler or VCS. The third field shall be an
arbitrary vendor-specific text string.

Yes Tool vendors need to
publish a list of valid
tool names in the
SPIRIT web site.
230 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
Annex C

(normative)

Types

Many elements and attributes defined in the standard have associated types. These types define the legal
values and ranges for input into these element and attributes.

C.1 boolean

The boolean type defines two possible value, True and False.

C.2 configurableDouble

The configurableDouble type defines a decimal floating point number of IEEE### precision, containing
the numbers 0-9.

C.3 float

The float type defines a decimal floating point number of IEEE### precision, containing the numbers 0-9.

C.4 integer

The integer type defines a decimal integer number of infinite precision, containing the numbers 0-9.

C.5 Name

The Name type defines a series of any characters, excluding whitespace characters.

C.6 NMTOKEN

The NMTOKEN type defines a series of any characters, excluding whitespace characters.

C.7 nonNegativeInteger

The nonNegativeInteger type is a subtype of integer; it follows all the same rules, except its value shall be
greater than or equal to 0.

C.8 positiveInteger

The positiveInteger type is a subtype of integer; it follows all the same rules, except its value shall be
greater than 0.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 231
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
C.9 scaledInteger

The scaledInteger type defines an integer of infinite precision. The number may be in any of the follow
formats with or without a leading +/- indication.

a) Decimal containing numbers 0-9.
b) Hexadecimal representation starting with 0x or #, and containing the numbers 0-9 and letters A-F

(case-insensitive).
c) Optionally, the number may end with the following case-insensitive suffixes. Each suffix is a multi-

plier of the resulting value.
1) K is a multiplier of 1024.
2) M is a multiplier of 1024*1024.
3) G is a multiplier of 1024*1024*1024.
4) T is a multiplier of 1024*1024*1024*1024.

Example: 4K evaluates to 4096. 0x1000 evaluates to 4096.

C.10 scaledNonNegativeInteger

The scaledNonNegativeInteger type is a subtype of scaledInteger; it follows all the same rules, except its
value shall be greater than or equal to 0.

C.11 scaledPositiveInteger

The scaledPositiveInteger type is a subtype of scaledInteger; it follows all the same rules, except its value
shall be greater than 0.

C.12 SpiritURI

The SpiritURI type defines a path to a file, directory, or executable in URI format. **Any additional
constraints??

C.13 string

The string type defines a series of any characters and may include spaces.
232 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
Annex D

(normative)

Dependency XPATH

This version of the standard utilizes XPATH 1.0 as a means to specify an equation for the contents of a
resolvable element. This is done by setting the resolve attribute to resolve=”dependent”. When the
resolve attribute is set to dependent the dependency attribute is required.

The accuracy of the XPATH functions if numeric shall be of infinite precision and not limited to any fixed
number of bits. This is necessary to ensure that all systems are interoperable and that the large calculations
required by configuration of IP-XACT components is successful.

In addition to the standard XPATH 1.0 functions (add xref), IP-XACT defines the following four extra
functions to aid expressions calculations.

D.1 spirit:containsToken

spirit:containsToken(string, string)

The containsToken function (Boolean) returns True if the first argument string contains the second
argument string as a token and otherwise returns False. To be interpreted as a token, the second string needs
to be found within the first string and be separated by white space from any other characters in the first string
that are not white space characters.

Purpose: Some attributes in IP-XACT are a list of tokens separated by white space. This function allows
XPATH selection based on whether the attribute contains a specific token.

Example: spirit:containsToken('default spine driver','pin') evaluates to False,
whereas the standard XPATH function contains would evaluate to True with the same arguments.

D.2 spirit:decode

spirit:decode(string)

The decode function (number) decodes the string argument to a number and returns the number or NaN (if
the string cannot be decoded). If the argument is omitted, it defaults to the context node converted to a
string. If the string argument is a decimal formatted number, it is returned unchanged. If it is a hexadecimal
representation starting with 0x or #, it is converted to a decimal number and returned. If it is in engineering
notation ending in a k, m, g, or t suffix (case-insensitive), the numeric part is multiplied by the appropriate
power of two. K is a multiplier of 1024. G is a multiplier of 1024*1024. G is a multiplier of
1024*1024*1024. T would equal a multiplier of 1024*1024*1024*1024.

Purpose: IP-XACT allows numbers to be expressed in hexadecimal format and engineering format. When
setting up dependencies on configurable values, it is sometimes necessary to perform some arithmetic in the
dependency XPATH expression. However, XPATH only supports arithmetic on numbers and it only
recognizes decimal strings as numbers. This function allows the alternate formats to be converted to
numbers recognizable by XPATH.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 233
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
Example: spirit:decode('0x4000') evaluates to 16384. spirit:decode('4G') evaluates to
4294967296.

D.3 spirit:pow

spirit:pow(number, number)

The pow function (number) returns a number, which is the first argument raised to the power of the second
argument.

Purpose: It is common for a component to have a configurable number of address bits. When this happens,
the size of the address range it occupies on a memory map varies exponentially with the number of address
bits. This function gives XPATH the mathematical capabilities needed to describe this relationship in a
dependency expression.

Example: spirit:pow(2, 10) evaluates to 1024.

D.4 spirit:log

spirit:log(number, number)

The log function (number) returns a number that is the log of the second argument in the base of the first
argument.

Purpose: This is the inverse of pow function. It is intended to express the reverse of the dependency
described for the pow function. In this case, the range of an address block might be configurable and the
number of address bits might be expressed as a dependency of the address range using the log function.

Example: spirit:log(2, 1024) evaluates to 10.

D.5 Example

<spirit:memoryMaps>
 <spirit:memoryMap>
 <spirit:name>mmap</spirit:name>
 <spirit:addressBlock>
 <spirit:name>ab1</spirit:name>
 <spirit:baseAddress spirit:resolve="user" spirit:id="baseAddress">0</

spirit:baseAddress>
 <spirit:bitOffset>0</spirit:bitOffset>
 <spirit:range spirit:id="range">786432</spirit:range>
 <spirit:width>32</spirit:width>
 <spirit:usage>memory</spirit:usage>
 <spirit:access>read-write</spirit:access>
 </spirit:addressBlock>
 </spirit:memoryMap>

 <spirit:memoryMap>
 <spirit:name>dependent_mmap</spirit:name>
 <spirit:addressBlock>
234 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
<!-- The baseAddress in this memoryMap is dependent on the previous memory map
and the formula to compute the baseAddress from the baseAddress of previous
map is expressed as an XPATH expression -->

 <spirit:baseAddress spirit:resolve="dependent"
spirit:dependency="spirit:pow(2,floor(spirit:log(2,
spirit:decode(id('baseAddress'))+ spirit:decode(id('range')))+1))"
spirit:id="dependentBaseAddress">0</spirit:baseAddress>

 <spirit:bitOffset>0</spirit:bitOffset>
 <spirit:range>4096</spirit:range>
 <spirit:width>32</spirit:width>
 <spirit:usage>register</spirit:usage>
 <spirit:access>read-write</spirit:access>
 </spirit:addressBlock>
 </spirit:memoryMap>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 235
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
236 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT meta-data and tool interfaces IP-XACT Standard/D4, December 19, 2007

1

5

10

15

20

25

30

35

40

45

50

55
Annex E

(informative)

External bus vs. an internal/digital interface

While the current use of IP-XACT schema may be viewed as describing single chip implementations, the
schemas works equally well at the package- and board-level. Often a PHY component exists which intercon-
nects the internal and external bus. Some standards define both of these interfaces, some define only the
internal, and some define only the external. A common point of confusion is to use an external bus standard
as an interface on an internal component. This is legal if the component caries the full PHY implementation,
but this often makes the component very technology- or implementation-dependant.

E.1 Example: ethernet interfaces

An Ethernet bus might be described as more than a single wire and in a system that includes Ethernet buses,
it might also include all the interfaces shown in Figure E.1.

Figure E.1—Ethernet interface examples

XAUI: 10-gigabit Attachment Unit Interface
MII: Media Independent Interface
GMII: Gigabit Media Independent Interface

MII: Media Independent
Interface
GMII, XGMII, RMII, SSMII,
or SMII,

Physical Coding
Sublayer

Physical Media
Attachment

Physical Media
Dependant

MAC Control

Media Access Control

Reconciliation

XAUI: 10-gigabit
Attachment Unit Interface

MIIM
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 237
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT Standard/D4, December 19, 2007 Draft Standard for

1

5

10

15

20

25

30

35

40

45

50

55
XGMII: 10-gigabit media-independent interface
RMII: Reduced MII, 7-pin interface
SSMII: Source Synchronous MII
SMII: Serial Media Independent Interface, this provides an interface to Ethernet MAC. The SMII
provides the same interface as the MII, but with a reduced pinout. The reduction in ports is achieved
by multiplexing data and control information to a port transmit port and a single receive port.

E.2 Example: I2C bus

The I2C eye-squared-see bus is a two-wire bus with a clock and data line. The standard described bus is the
two-wire bus. IP-XACT has defined an additional, related bus that is the internal digital interface. The refer-
ence BusSpec shown in Figure E.2 contains three pins for each external pin: for SDA (the data line), the
internal pins are defined as input, output, and enable as SDA_I, SDA_O, and SDA_E; in a similar manner,
for the clock bus SCL, the internal pins are defined again for the functions of input, output, and enable as
SCL_I, SCL_O, and SCL_E.

Figure E.2—I2C interface example

VDD

SDA

SCL

Standard Described I2C

SPIRIT defined (non-standard)
Internal digital reference I2C bus

I2C

Device

I2C

Device

I2C

Device

SD
A

I

SD
A

O

SD
A

E

SC
L

I

S
C

L
O

S
C

L
E

SDA SCL
238 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

	1. Overview
	1.1 Scope
	1.2 Purpose
	1.3 IP-XACT design environment
	1.3.1 System design tool
	1.3.2 Design intellectual property
	1.3.3 Generators
	1.3.4 IP-XACT interfaces

	1.4 IP-XACT enabled implementations
	1.4.1 Design environments
	1.4.2 Point tools
	1.4.3 IPs
	1.4.4 Generators

	1.5 Conventions used
	1.5.1 Visual cues (meta-syntax)
	1.5.2 Notational Conventions
	1.5.3 Syntax examples
	1.5.4 Graphics used to document the Schema

	1.6 Use of color in this standard
	1.7 Contents of this standard

	2. Normative references
	3. Definitions, acronyms, and abbreviations
	3.1 Definitions
	3.2 Acronyms and abbreviations

	4. Interoperability use model
	4.1 Roles and responsibilities
	4.1.1 Component IP provider
	4.1.2 SoC design IP provider
	4.1.3 SoC design IP consumer
	4.1.4 Design tool supplier

	4.2 IP-XACT IP exchange flows
	4.2.1 Component or SoC design IP provider use model
	4.2.2 Generator provider use model
	4.2.3 System design tool provider use model

	5. IP-XACT schema
	5.1 Schema overview
	5.1.1 Design schema
	5.1.2 Design configuration schema
	5.1.3 Component schema
	5.1.4 Bus definition schema
	5.1.5 Abstraction definition schema
	5.1.6 Abstractor schema
	5.1.7 Generator schema

	5.2 IP-XACT objects
	5.2.1 Object interactions
	5.2.2 VLNV
	5.2.3 Version control

	5.3 Design models
	5.3.1 Design
	5.3.2 Hierarchy represented by a design file
	5.3.3 Design interconnections
	5.3.4 Hierarchical connectivity

	6. Interface definition descriptions
	6.1 Definition descriptions
	6.2 Bus definition
	6.2.1 Schema
	6.2.2 Description
	6.2.3 Example

	6.3 Abstraction definition
	6.3.1 Schema
	6.3.2 Description
	6.3.3 Example

	6.4 Ports
	6.4.1 Schema
	6.4.2 Description
	6.4.3 Example

	6.5 Wire ports
	6.5.1 Schema
	6.5.2 Description
	6.5.3 Example

	6.6 Qualifiers
	6.6.1 Schema
	6.6.2 Description
	6.6.3 Example

	6.7 Wire port group
	6.7.1 Schema
	6.7.2 Description
	6.7.3 Example

	6.8 Wire port ‘mode’ constraints
	6.8.1 Schema
	6.8.2 Description
	6.8.3 Example

	6.9 Wire port mirrored-‘mode’ constraints
	6.9.1 Schema
	6.9.2 Description
	6.9.3 Example

	6.10 Transactional ports
	6.10.1 Schema
	6.10.2 Description
	6.10.3 Example

	6.11 Transactional port group
	6.11.1 Schema
	6.11.2 Description
	6.11.3 Example

	6.12 Extending bus and abstraction definitions
	6.12.1 Extending bus definitions
	6.12.2 Extending abstraction definitions
	6.12.3 Modifying definitions
	6.12.4 Interface connections

	6.13 Clock and reset handling

	7. Component descriptions
	7.1 Components
	7.1.1 Schema
	7.1.2 Description
	7.1.3 Example

	7.2 Interfaces
	7.2.1 Direct interface modes
	7.2.2 Mirrored interface modes
	7.2.3 Monitor interface modes

	7.3 Interface interconnections
	7.3.1 Direct connection
	7.3.2 Direct-mirrored connection
	7.3.3 Monitor connection
	7.3.4 Interface logical to physical port mapping

	7.4 Complex interface interconnections
	7.4.1 Channel
	7.4.2 Bridge
	7.4.3 Combining channels and bridges

	7.5 Bus interfaces
	7.5.1 busInterface
	7.5.2 Interface modes

	7.6 Component channels
	7.6.1 Schema
	7.6.2 Description
	7.6.3 Example

	7.7 Address space
	7.7.1 addressSpaces
	7.7.2 executableImage
	7.7.3 languageTools
	7.7.4 fileBuilder
	7.7.5 linkerCommandFile
	7.7.6 Local memory map

	7.8 Memory maps
	7.8.1 Memory map
	7.8.2 Address block
	7.8.3 memoryBlockData group
	7.8.4 Bank
	7.8.5 Banked address block
	7.8.6 Banked bank
	7.8.7 Banked subspace
	7.8.8 Subspace map

	7.9 Remapping
	7.9.1 Memory remap
	7.9.2 Remap states

	7.10 Registers
	7.10.1 Register
	7.10.2 Register reset value
	7.10.3 Register bit-fields

	7.11 Models
	7.11.1 Model
	7.11.2 Views
	7.11.3 Component ports
	7.11.4 Component wire ports
	7.11.5 Component wireTypeDef
	7.11.6 Component driver
	7.11.7 Component driver/clockDriver
	7.11.8 Component driver/singleShotDriver
	7.11.9 Implementation constraints
	7.11.10 Component wire port constraints
	7.11.11 Port drive constraints
	7.11.12 Port load constraints
	7.11.13 Port timing constraints
	7.11.14 Load and drive constraint cell specification
	7.11.15 Other clock drivers
	7.11.16 Transactional ports
	7.11.17 Phantom ports
	7.11.18 modelParameters

	7.12 Component generators
	7.12.1 Schema
	7.12.2 Description
	7.12.3 Example

	7.13 Files
	7.13.1 filesets
	7.13.2 file
	7.13.3 buildCommand
	7.13.4 define
	7.13.5 function
	7.13.6 argument
	7.13.7 sourceFile

	7.14 Choices
	7.14.1 Schema
	7.14.2 Description
	7.14.3 Example

	7.15 Whitebox elements
	7.15.1 Schema
	7.15.2 Description
	7.15.3 Example

	7.16 Whitebox element reference
	7.16.1 Schema
	7.16.2 Description
	7.16.3 Example

	7.17 CPUs
	7.17.1 Schema
	7.17.2 Description
	7.17.3 Example

	8. Designs descriptions
	8.1 Designs
	8.1.1 Schema
	8.1.2 Description
	8.1.3 Example

	8.2 Design component instances
	8.2.1 Schema
	8.2.2 Description
	8.2.3 Example

	8.3 Design interconnections
	8.3.1 Schema
	8.3.2 Description
	8.3.3 Example

	8.4 Design interconnection and monitor interconnection active interface
	8.4.1 Schema
	8.4.2 Description
	8.4.3 Example

	8.5 Design ad-hoc connections
	8.5.1 Schema
	8.5.2 Description
	8.5.3 Example
	8.5.4 Ad-hoc wire connection
	8.5.5 Ad-hoc transactional connection

	8.6 Design hierarchical connections
	8.6.1 Schema
	8.6.2 Description
	8.6.3 Example

	9. Abstractor descriptions
	9.1 Abstractors
	9.1.1 Schema
	9.1.2 Description
	9.1.3 Example

	9.2 Abstractor interfaces
	9.2.1 Schema
	9.2.2 Description
	9.2.3 Example

	9.3 Abstractor models
	9.3.1 Schema
	9.3.2 Description
	9.3.3 Example

	9.4 Abstractor views
	9.4.1 Schema
	9.4.2 Description
	9.4.3 Example

	9.5 Abstractor ports
	9.5.1 Schema
	9.5.2 Description
	9.5.3 Example

	9.6 Abstractor generators
	9.6.1 Schema
	9.6.2 Description
	9.6.3 Example

	10. Generators
	10.1 Tight integration
	10.2 Generator chain
	10.3 Phase numbers
	10.4 Generator schema
	10.4.1 generatorChain
	10.4.2 generatorChain selector
	10.4.3 generatorChain component selector
	10.4.4 generatorChain generator

	11. Design configuration descriptions
	11.1 Design configuration
	11.2 designConfiguration
	11.2.1 Schema
	11.2.2 Description
	11.2.3 Example

	11.3 generatorChainConfiguration
	11.3.1 Schema
	11.3.2 Description
	11.3.3 Example

	11.4 interconnectionConfiguration
	11.4.1 Schema
	11.4.2 Description
	11.4.3 Example

	12. Addressing and addressing formulas
	Annex A
	Annex B
	Annex C
	C.1 boolean
	C.2 configurableDouble
	C.3 float
	C.4 integer
	C.5 Name
	C.6 NMTOKEN
	C.7 nonNegativeInteger
	C.8 positiveInteger
	C.9 scaledInteger
	C.10 scaledNonNegativeInteger
	C.11 scaledPositiveInteger
	C.12 SpiritURI
	C.13 string

	Annex D
	D.1 spirit:containsToken
	D.2 spirit:decode
	D.3 spirit:pow
	D.4 spirit:log
	D.5 Example

	Annex E
	E.1 Example: ethernet interfaces
	E.2 Example: I2C bus

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

