Reward Sharing for Mixnets

Claudia Diaz, Harry Halpin, Aggelos Kiayias Nym Technologies SA

https://nymtech.net/nym-cryptoecon-paper.pdf

What is a mixnet?

- Type of overlay anonymous communication network
- Multi-hop, layered encryptions, sourcerouted
- Packet-based, per-mix reordering of packet flows (different from OR)
- Nym mixnet: layered structure, uniform routing

Why incentivized?

- Scalability : mixnet can add nodes to meet arbitrarily large user demand
 - Volunteer-operated networks : inelastic pool of volunteers to bear operational costs
 - Incentivized : extra income can fund growth needed to serve increased demand
 - Market for consuming/providing private bandwidth
- Scale with good quality of service (low packet loss)
 - P2P architectures where all users are also providers for others do not work
 - Distinguish profesionalized providers (paid for the work) and consumers (pay for the service)
 - Privacy for consumers; verifiability and transparency for providers (intermediaries)
- Goal of incentives : populate sufficiently big mixnet with reliable mix nodes
 - The number of mix nodes that is *sufficient* depends on service demand (traffic load)
 - Nodes compete on quality : select well-performing mix nodes and weed out weak nodes

Mitigate Sybil attacks

- At least one intermediary node must be honest to provide privacy to a communication
 - If adversary controls all the intermediaries: can reconstruct path and link sender to receiver
- How to prevent the adversary from fully capturing a significant amount of routes?
 - Volunteer networks + variable node capacity : adversary setting up high-bandwidth nodes can route (and deanonymize) a large fraction of paths
 - Uniform routing (same resources required from all nodes) removes the high-bandwidth advantage (forcing adversary to set up more nodes)
 - Longer routes (more mixnet layers) : impact on latency and resources
 - ... how to raise the cost of Sybil attacks and select nodes for the mixnet in a decentralized manner
- Given an excess of mix node candidates competing to provide the service:
 - Allow all stakeholders to signal which mix node they want to endorse for active service provision
 - Select mix nodes for service provision proportionally to their stakeholder support
 - In addition to setting up nodes, the Sybil adversary now needs to either become itself a major stakeholder (expensive) or gather support from many stakeholders for each of its Sybil nodes (effortful)

Stake as reputation

- "Stakeholder support" for mix nodes must be meaningful
 - Limited supply: nodes compete for stakeholder support
 - Incentivize stakeholders to support "best nodes" for the network:
 - **Reliability and performance**: high uptime, no packet loss
 - Cost effectiveness
 - Trust in the operator : node lifetime, **operator stake**, history of engagement and contributions to the ecosystem, geolocation, donation to a good cause, endorsements
- "Reputation" is represented by the total stake associated to a node
 - Includes stake bonded by the operator to register the node and stake delegated from other stakeholders to support the node
 - Reputation maxes out when a *stake saturation point* is reached
 - Prevent stake from over-concentrating on too few nodes, ensure stakeholders spread their support over sufficient nodes

Reputation-based selection of nodes

- The mixnet is periodically (hourly) reconstituted : sample fresh set of nodes to route packets for the next time period
 - Nodes are selected with probability proportional to their reputation
 - Additional selection of standby set to incentivize spare capacity and allow for fast mixnet growth

Mix nodes are rewarded based on performance and reputation

Enables decentralized decision-making

- No centralized entity making or executing decisions
 - Which nodes should be part of the network
 - How much they are rewarded for their work
- Collective decision-making by stakeholders requires:
 - All participants have access to all the relevant network information
 - Ability to verify the authenticity and integrity of data and operations
- Blockchain
 - Public record of: node registrations (keys, addresses), network parameters, staking state, node performance measurements, etc.
 - Smart contracts for network management, reward algorithms
 - Integrity, availablity, governance mechanisms for updating software / parameters

Bootstrapping reserve

- Chicken and egg problem:
 - Anonymity grows with the user base
 - Little incentive to pay at the start and thus no initial income to fund operations
 - Low quality of service at the start (due to poor funding) precludes usage growth
- Initial funding needed to support infrastructure while usage picks up
 - Part of the token supply is locked in a reserve that provides initial rewards
 - Released gradually over time
 - After some years: income from user fees needed to sustain network operations
 - Somewhat similar to Bitcoin mining/fees (though with important differences)

Nym economic model

• Validators:

- Function: maintain the blockchain, network state, execute smart contracts
- Third-party service paid by blockchain transaction fees from all participants
- Nyx chain: anyone can write general-purpose Web Assembly smart contracts
 - Can support (and be paid for) any other services (not exclusive to Nym mixnet)

• Gateways:

- Function: interface between users and mixnet, collecting user payments, forwarding packets, caching received packets, censorhip circumvention access
- Chosen by the user rather than automatically assigned (unlike nodes in route)
- Paid by a fraction of the bandwidth fees
 - Compete for users, may offer additional services

Components of the reward scheme (1)

- 1. Node registration by any stakeholder
 - operator bond (pledge), node cost, profit margin
- 2. Delegation of stake to a registered node to increase its reputation
 - maxes out at the "stake saturation point" (disincentives to stake more)
 - stake saturation point = available staking supply / target number of nodes (K)
- 3. Selection of nodes for the mixnet
 - sampling K nodes without replacement, weighed by (capped) reputation
 - active set: populate L layers of width W, sufficient to serve demand (first LW)
 - standby set: spare capacity to allow for fast mixnet growth (next K-LW)
 - rewarded at a lower rate than active nodes
 - unselected nodes: not rewarded for the epoch

prob active vs rep

stake distribution

Components of the reward scheme (2)

- 4. Node performance measurements (a whole topic by itself)
 - Decentralized solution: "secret shoppers" to sample node performance
 - Placeholder solution: validators send test packets through all nodes
 - Result: performance score ρ_i for each node (value between zero and one, representing estimated fraction of correctly routed packets)
- 5. Reward budget
 - Mixmining emission schedule:
 - 25% of token (250m) locked in the "mixmining reward pool"
 - each month 2% of reserve is made available for rewards (5m in the first month)
 - unallocated rewards are fed back to the reserve (softens exponential decay)
 - Bandwith fees:
 - dynamic posted price approach considering node operational costs
 - computed to cover operational costs plus a system-wide profit fee au
- 6. Distribution of rewards:
 - Algorithm to distribute rewards to nodes: performance, reputation, active/standby, operator bond
 - Algorithm to distribute node rewards among the node operator and delegates: cost, profit margin

Properties of node reward algorithm

- Rewards proportional to performance, reputation, and partly operator pledge
- Some rewards may not be allocated due to eg, low performance or low reputation (rewards maximally distributed at equilibrium)
 - Equilibrium: exactly K nodes with saturated reputation and perfect performance
 - Unallocated rewards are fed back to the mixmining pool
- Size of network (K)
 - Capped reputation incentivizes spread of reputation over K nodes
- Sybil protection (α)
 - Financial penalty for operators splitting their own stake over multiple nodes

Distribution of node rewards

Properties of node reward sharing algorithm

- Prioritize covering operational costs before distributing profits
- Nodes compete on cost-effectiveness and profit margin
 - Untruthful cost declarations are not advantageous (proof in the paper)
 - Profit margins are discovered through market competition between nodes
- Diminished returns for all node delegates when a node becomes oversaturated

Simulator

- Study reward distributions when the system is not in equilibrium
- Scenarios with various staking distributions, service demand, and network parameters
- Useful for testing impact of network parameters and staking behaviours
- Available: https://github.com/nymtech/rewardsharing-simulator

Examples empirical results

Operator rewards vs pledge saturation level

(c) Annualized operator rewards in S_0 (fifth year).

(d) Annualized operator rewards in S_1 (fifth year).

Annualized Return on Stake (RoS) for delegates

RoS vs node reputation

Parameters example simulations

Name	Value	Notation	Notes
	Reference M	ix Node	
Minimum node pledge	1000 NYM		Constant
Number CPUs per node	16		Constant
Peak packets/second per CPU	$3125 \mathrm{ p/s}$		Grows 1% monthly (12.7% yearly)
Monthly costs per node	\$200	$C_i(\cdot)$	Constant
Node performance	1.0(100%)	ρ_i	Constant
Node profit margin	0.1 (10%)	μ_i	Constant
Mixnet parameters			
Layers of mixnet	3	L	Constant
Width of mixnet	≥ 120	W	Proportional to demand
Active nodes	≥ 360	A	$A = L \cdot W$
Idle (reserve) nodes		B	B = A
Rewarded nodes	≥ 720	K	$K = A + B = 6 \cdot W$
Total node candidates	≥ 1440	N	$N = 2 \cdot K$
Average mixnet load	20%		Network absorbs 5x peaks
Simulation parameters			
Epoch	1 hour		
Reward interval	$1 \mathrm{month}$	t	720 hours (epochs)
Simulated period	60 months (5 years)		
Data routed per interval		M(t)	Dependent on Scenario S_0, S_1
Scenario S_0 "low demand"	$M_0(0)=0$	S_0	$M_0(t) = 0$ p/month
Scenario S_1 "growing demand"	$M_1(0) = 500 \cdot 10^9$	S_1	$M_1(t+1) = 1.06 \cdot M_1(t)$ p/month
Exchange rate NYM	1 NYM = \$1		Constant
Price for users	1^{6} packets		Constant
Income from fees in S_0	$F_0(0)=0$	S_0	$F_0(t) = 0 { m NYM/month}$
Income from fees in S_1	$F_1(0) = 500 \cdot 10^3$	S_1	$F_1(t+1) = 1.06 \cdot F_1(t)$ NYM/mont
Token distribution and staking parameters			
Mixmining pool reserve	P(0) = 250 m NYM	P(t)	$P(t+1) = P(t) - 0.02 \cdot P(t) + U(t)$
Monthly pool emissions	2%		$0.02 \cdot P(t)$
Budget rewards entire mixnet		R(t)	$R(t) = 0.02 \cdot P(t) + 0.6 \cdot F(t)$
Rewards for node i (out of K)		$R_i(t)$	Eq. (4)
Unclaimed rewards		U(t)	$U(t) = R(t) - \sum_i R_i(t)$
Available staking supply	initial: 750m NYM		1 billion minus $P(t)$
Per-node stake saturation point	initial: 1.04m NYM		Available supply divided by K
Pledged stake	0.15		Constant at 15% of available stake
Delegated stake	0.6		Constant at 60% of available stake
Unallocated stake	0.25		Constant at 25% of available stake
Sybil resilience parameter	0.3	α	Constant

Summary

- Economic model for incentivized mixnets
- Market for private bandwidth that can scale to serve demand
- Promotes quality of service and cost effectiveness
- Leverages staking and stake delegation as *node reputation*
- Participation in service provisioning is proportional to reputation
- Rewards are proportional to performance and reputation
 - Need for accurate performance estimations
- Algorithmic rewards and decentralized network management with input from all stakeholders
- Gory details: <u>https://nymtech.net/nym-cryptoecon-paper.pdf</u>