What is a mixnet?

• Type of overlay anonymous communication network

• Multi-hop, layered encryptions, source-routed

• Packet-based, per-mix reordering of packet flows (different from OR)

• Nym mixnet: layered structure, uniform routing
Why incentivized?

- **Scalability**: mixnet can add nodes to meet arbitrarily large user demand
 - Volunteer-operated networks: inelastic pool of volunteers to bear operational costs
 - Incentivized: extra income can fund growth needed to serve increased demand
 - Market for consuming/providing private bandwidth

- Scale with good **quality of service** (low packet loss)
 - P2P architectures where all users are also providers for others do not work
 - Distinguish professionalized providers (paid for the work) and consumers (pay for the service)
 - Privacy for consumers; verifiability and transparency for providers (intermediaries)

- **Goal** of incentives: populate sufficiently big mixnet with reliable mix nodes
 - The number of mix nodes that is *sufficient* depends on service demand (traffic load)
 - Nodes compete on quality: select well-performing mix nodes and weed out weak nodes
Mitigate Sybil attacks

- At least one intermediary node must be honest to provide privacy to a communication
 - If adversary controls all the intermediaries: can reconstruct path and link sender to receiver

- How to prevent the adversary from fully capturing a significant amount of routes?
 - Volunteer networks + variable node capacity: adversary setting up high-bandwidth nodes can route (and deanonymize) a large fraction of paths
 - Uniform routing (same resources required from all nodes) removes the high-bandwidth advantage (forcing adversary to set up more nodes)
 - Longer routes (more mixnet layers): impact on latency and resources
 - … how to raise the cost of Sybil attacks and select nodes for the mixnet in a decentralized manner

- Given an excess of mix node candidates competing to provide the service:
 - Allow all stakeholders to signal which mix node they want to endorse for active service provision
 - Select mix nodes for service provision proportionally to their stakeholder support
 - In addition to setting up nodes, the Sybil adversary now needs to either become itself a major stakeholder (expensive) or gather support from many stakeholders for each of its Sybil nodes (effortful)
Stake as reputation

• “Stakeholder support” for mix nodes must be meaningful
 • Limited supply: nodes compete for stakeholder support
 • Incentivize stakeholders to support “best nodes” for the network:
 • Reliability and performance: high uptime, no packet loss
 • Cost effectiveness
 • Trust in the operator: node lifetime, operator stake, history of engagement and contributions to the ecosystem, geolocation, donation to a good cause, endorsements

• “Reputation” is represented by the total stake associated to a node
 • Includes stake bonded by the operator to register the node and stake delegated from other stakeholders to support the node
 • Reputation maxes out when a stake saturation point is reached
 • Prevent stake from over-concentrating on too few nodes, ensure stakeholders spread their support over sufficient nodes
Reputation-based selection of nodes

- The mixnet is periodically (hourly) reconstituted: sample fresh set of nodes to route packets for the next time period
 - Nodes are selected with probability proportional to their reputation
 - Additional selection of **standby set** to incentivize spare capacity and allow for fast mixnet growth
Mix nodes are rewarded based on performance and reputation

MIXNODE REWARDS

Mix node rewards are distributed to node operator and delegators
Enables decentralized decision-making

• No centralized entity making or executing decisions
 • Which nodes should be part of the network
 • How much they are rewarded for their work

• Collective decision-making by stakeholders requires:
 • All participants have access to all the relevant network information
 • Ability to verify the authenticity and integrity of data and operations

• Blockchain
 • Public record of: node registrations (keys, addresses), network parameters, staking state, node performance measurements, etc.
 • Smart contracts for network management, reward algorithms
 • Integrity, availability, governance mechanisms for updating software / parameters
Bootstrapping reserve

• **Chicken and egg problem:**
 • Anonymity grows with the user base
 • Little incentive to pay at the start and thus no initial income to fund operations
 • Low quality of service at the start (due to poor funding) precludes usage growth

• **Initial funding needed to support infrastructure while usage picks up**
 • Part of the token supply is locked in a reserve that provides initial rewards
 • Released gradually over time
 • After some years: income from user fees needed to sustain network operations
 • Somewhat similar to Bitcoin mining/fees (though with important differences)
Nym economic model
• Validators:
 • Function: maintain the blockchain, network state, execute smart contracts
 • Third-party service paid by blockchain transaction fees from all participants
 • Nyx chain: anyone can write general-purpose Web Assembly smart contracts
 • Can support (and be paid for) any other services (not exclusive to Nym mixnet)
• **Gateways:**
 • Function: interface between users and mixnet, collecting user payments, forwarding packets, caching received packets, censorship circumvention access
 • Chosen by the user rather than automatically assigned (unlike nodes in route)
 • Paid by a fraction of the bandwidth fees
 • Compete for users, may offer additional services
Components of the reward scheme (1)

1. Node registration by any stakeholder
 • operator bond (pledge), node cost, profit margin

2. Delegation of stake to a registered node to increase its reputation
 • maxes out at the “stake saturation point” (disincentives to stake more)
 • stake saturation point = available staking supply / target number of nodes (K)

3. Selection of nodes for the mixnet
 • sampling K nodes without replacement, weighed by (capped) reputation
 • active set: populate L layers of width W, sufficient to serve demand (first LW)
 • standby set: spare capacity to allow for fast mixnet growth (next K-LW)
 • rewarded at a lower rate than active nodes
 • unselected nodes: not rewarded for the epoch
Components of the reward scheme (2)

4. Node performance measurements (a whole topic by itself)
 • Decentralized solution: “secret shoppers” to sample node performance
 • Placeholder solution: validators send test packets through all nodes
 • Result: performance score p_i for each node (value between zero and one, representing estimated fraction of correctly routed packets)

5. Reward budget
 • Mixmining emission schedule:
 • 25% of token (250m) locked in the “mixmining reward pool”
 • each month 2% of reserve is made available for rewards (5m in the first month)
 • unallocated rewards are fed back to the reserve (softens exponential decay)
 • Bandwith fees:
 • dynamic posted price approach considering node operational costs
 • computed to cover operational costs plus a system-wide profit fee τ

6. Distribution of rewards:
 • Algorithm to distribute rewards to nodes: performance, reputation, active/standby, operator bond
 • Algorithm to distribute node rewards among the node operator and delegates: cost, profit margin
Distribution of rewards to nodes

\[
\text{Reward budget} \times \left(\text{Total Budget} \times \text{Performance score} \times \text{Capped Stake Saturation} \times \text{Share of work} \times \left(\text{Capped Pledge Saturation} + \alpha \right) \times \frac{1}{K} \right) \times \text{Nr rewarded nodes} = \frac{1}{(1+\alpha)}
\]
Properties of node reward algorithm

• Rewards proportional to performance, reputation, and partly operator pledge

• Some rewards may not be allocated due to eg, low performance or low reputation (rewards maximally distributed at equilibrium)
 • Equilibrium: exactly K nodes with saturated reputation and perfect performance
 • Unallocated rewards are fed back to the mixmining pool

• Size of network (K)
 • Capped reputation incentivizes spread of reputation over K nodes

• Sybil protection (α)
 • Financial penalty for operators splitting their own stake over multiple nodes
Distribution of node rewards

\[
\text{Profit} = \frac{\text{Total Node Rewards} \times \text{Profit margin} + (1-\text{profit margin}) \times \text{Pledge}}{\text{Total node stake}}
\]

\[
\text{Profit Operator} = \text{Profit} \times (1-\text{profit margin})
\]

\[
\text{Profit Delegate} = \text{Profit} \times (1-\text{profit margin})
\]
Properties of node reward sharing algorithm

• Prioritize covering operational costs before distributing profits

• Nodes compete on cost-effectiveness and profit margin
 • Untruthful cost declarations are not advantageous (proof in the paper)
 • Profit margins are discovered through market competition between nodes

• Diminished returns for all node delegates when a node becomes oversaturated
Simulator

• Study reward distributions when the system is not in equilibrium
• Scenarios with various staking distributions, service demand, and network parameters
• Useful for testing impact of network parameters and staking behaviours

• Available: https://github.com/nymtech/rewardsharing-simulator
Examples empirical results

stake distribution over nodes

Low demand

fast-growing demand
Node rewards vs reputation

(a) Annualized node rewards in S_0 (first year).
(b) Annualized node rewards in S_1 (first year).
(c) Annualized node rewards in S_0 (fifth year).
(d) Annualized node rewards in S_1 (fifth year).
Operator rewards vs pledge saturation level

(a) Annualized operator rewards in S_0 (first year).
(b) Annualized operator rewards in S_1 (first year).
(c) Annualized operator rewards in S_0 (fifth year).
(d) Annualized operator rewards in S_1 (fifth year).
Annualized Return on Stake (RoS) for delegates

(a) Annualized ROS for delegates in S_0.

(b) Annualized ROS for delegates in S_1.
RoS vs node reputation

(a) Delegate ROS vs node saturation in S_0 (first year).

(b) Delegate ROS vs node saturation in S_1 (first year).

(c) Delegate ROS vs node saturation in S_0 (fifth year).

(d) Delegate ROS vs node saturation in S_1 (fifth year).
Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Notation</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum node pledge</td>
<td>1000 NYM</td>
<td>Constant</td>
<td></td>
</tr>
<tr>
<td>Number CPUs per node</td>
<td>16</td>
<td>Constant</td>
<td></td>
</tr>
<tr>
<td>Peak packets/second per CPU</td>
<td>3125 p/s</td>
<td>Constant</td>
<td></td>
</tr>
<tr>
<td>Monthly costs per node</td>
<td>$200</td>
<td>Constant</td>
<td></td>
</tr>
<tr>
<td>Node performance</td>
<td>1.0 (100%)</td>
<td>C_i</td>
<td>Grows 1% monthly (12.7% yearly)</td>
</tr>
<tr>
<td>Node profit margin</td>
<td>0.1 (10%)</td>
<td>μ_i</td>
<td>Constant</td>
</tr>
<tr>
<td>Layers of mixnet</td>
<td>3</td>
<td>L</td>
<td>Constant</td>
</tr>
<tr>
<td>Width of mixnet</td>
<td>≥ 120</td>
<td>W</td>
<td>Proportional to demand</td>
</tr>
<tr>
<td>Active nodes</td>
<td>≥ 360</td>
<td>A</td>
<td>$A = L \cdot W$</td>
</tr>
<tr>
<td>Idle (reserve) nodes</td>
<td>≥ 720</td>
<td>B</td>
<td>$B = A$</td>
</tr>
<tr>
<td>Rewarded nodes</td>
<td>≥ 1440</td>
<td>K</td>
<td>$K = A + B = 6 \cdot W$</td>
</tr>
<tr>
<td>Total node candidates</td>
<td>20%</td>
<td>N</td>
<td>$N = 2 \cdot K$</td>
</tr>
<tr>
<td>Average mixnet load</td>
<td></td>
<td></td>
<td>Network absorbs 5x peaks</td>
</tr>
<tr>
<td>Epoch</td>
<td>1 hour</td>
<td>t</td>
<td>720 hours (epochs)</td>
</tr>
<tr>
<td>Reward interval</td>
<td>1 month</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulated period</td>
<td>60 months (5 years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data routed per interval</td>
<td>$M_0(0) = 0$</td>
<td>$M(t)$</td>
<td>Dependent on Scenario S_0, S_1</td>
</tr>
<tr>
<td>Scenario S_1 “low demand”</td>
<td>$M_1(0) = 500 \cdot 10^9$</td>
<td>S_0</td>
<td>$M_0(t) = 0$ p/month</td>
</tr>
<tr>
<td>Exchange rate NYM</td>
<td>1 NYM = 1</td>
<td>S_1</td>
<td>$M_1(t + 1) = 1.06 \cdot M_1(t)$ p/month</td>
</tr>
<tr>
<td>Price for users</td>
<td>1 for 10^6 packets</td>
<td>S_0</td>
<td>Constant</td>
</tr>
<tr>
<td>Income from fees in S_0</td>
<td>$F_0(0) = 0$</td>
<td>S_1</td>
<td>$F_0(t) = 0$ NYM/month</td>
</tr>
<tr>
<td>Income from fees in S_1</td>
<td>$F_1(0) = 500 \cdot 10^3$</td>
<td>S_0</td>
<td>Constant</td>
</tr>
<tr>
<td>$F_1(t + 1) = 1.06 \cdot F_1(t)$ NYM/month</td>
<td>S_1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Token distribution and staking parameters

- **Mixing pool reserve**: $P(0) = 250$ NYM, 2%
- **Monthly pool emissions**: $P(t) = P(t) - 0.02 \cdot P(t) + U(t)$
- **Budget rewards entire mixnet**: $R(t) = 0.02 \cdot P(t) + 0.6 \cdot F(t)$
- **Rewards for node i (out of K)**: $R_i(t) = Eq. (4)$
- **Unclaimed rewards**: $U(t) = R(t) - \sum R_i(t)$
- **Available staking supply**: Initial 750m NYM
- **Per-node stake saturation point**: Initial 1.04m NYM
- **Pledged stake**: 0.15
- **Delegated stake**: 0.6
- **Unallocated stake**: 0.25
- **Sybil resilience parameter**: α Constant 0.3
Summary

- Economic model for incentivized mixnets
- Market for private bandwidth that can scale to serve demand
- Promotes quality of service and cost effectiveness
- Leverages staking and stake delegation as *node reputation*
- Participation in service provisioning is proportional to reputation
- Rewards are proportional to performance and reputation
 - Need for accurate performance estimations
- Algorithmic rewards and decentralized network management with input from all stakeholders
- Gory details: https://nymtech.net/nym-cryptoecon-paper.pdf