

Deep Learning Assisted Side-Channel Attacks

Elena Dubrova Department of Electrical Engineering Royal Institute of Technology (KTH), Stockholm, Sweden

Outline

- Introduction to side-channel attacks & motivation
- Attack examples:
 - Nordic nRF52 far field EM analysis
 - USIM card power analysis
 - Masked Saber power analysis
- Summary & open probelms

Acknowledgements to:

Martin Brisfors, Sebastian Forsmark, Huanyu Wang, Ruize Wang, Kalle Ngo

What is a side-channel attack?

Motivation: In the near future ...

- Millions not so well protected Internet-connected devices will be involved in services related to confidential data
 - Wearables
 - Connected cars
 - Smart home

source: http://www.wearables.com/5-babymonitors-wearable-infant-tech/

source: http://www.dqindia.com/cognizant-is-betting-big-on-connected-cars/

source: https://blog.econocom.com/en/blog/smartbuilding-and-bms-a-little-glossary/

ANDY GREENBERG SECURITY 03.17.16 6:59 PM

THE FBI WARNS THAT CAR HACKING IS A REAL RISK

ANDY GREENBERG SECURITY 07.21.15 6:00 AM

HACKERS REMOTELY KILL A JEEP ON THE HIGHWAY --WITH ME IN IT

SECURITY

Hacker looks to sell 9.3 million alleged patient healthcare records on the dark web

By James Rogers Published June 28, 2016

What does Fitbit hacking mean for wearables and IoT?

BY STEPHEN COBB POSTED 12 JAN 2016 - 02:49PM

The price of wearable craze: Personal health data hacks

Your personal health information is about 10 times more valuable than a stolen credit card number on the black market.

Maggie Overfelt, special to CNBC.com Saturday, 12 Dec 2015 | 5:05 PM ET

A All S

What needs protection?

Saab@MarcusWandt

Proprietary designs Proprietary algorithms Proprietary bitstreams

Preventing Hardware Trojans, counterfeit, overproduction

Supply

chain

Assets

IP

On-device data On-device keys TRNGs

source: http://www.publicintegrity.org/ 2011/11/07/ 7323/counte

Attacks vectors

How side-channel attacks work

- Algorithms are implemented in CPUs, FPGAs, ASICs, ...
- Different operations may consume different amount of power/time
- The same operation executed on different data may consume different amount of power/time
- It may be possible to recognize which operations and data are processed from power/EM traces/timing
 - if the implementation is not protected

source: hackaday.com

Analsyis of AES-128 encryption algorithm

AES-128

Power trace representing 16 executions of SubBytes on 8-bit MCU (ATXmega128D4)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

How deep learning is used in side-channel analysis

Profiling stage: Train a neural network using traces from profiling devices

How deep learning is used in side-channel analysis, cont.

Attack stage: Use the trained network to classify traces from the device under attack

Example 1: Nordic nRF52 SoC EM analysis

photo credit: Katerina Gurova

AES encryption key can be extracted from < 350 EM traces captured at 15 m distance to device

Far Field Side-Channel Attack on AES Using Deep Learning, R. Wang, H. Wang, E. Dubrova, ASHES'2020, Nov. 13, 2020

Advacned Far Field EM Side-Channel Attack on AES, R. Wang, H. Wang, E. Dubrova, CPSS'2021, June 7, 2020

Nordic Semiconductor's nRF52832 SoC

- Powerful single-chip solutions for ultra low power wireless applications
- Dominates the IoT platforms market
 - short range communications (Bluetooth Low Energy, Zigbee,...)
- Personal area networks, interactive entertainment devices, remote control toys, computer peripherals, ...
- Contains:
 - 32-bit ARM Cortex-M4 processor
 - Multi-protocol 2.4GHz radio

Consequences of encryption key compromise

Eavesdrop & decrypt messages

Impersonate the compromised device & send fake messages to the other party (if the message is not authenticated)

Impersonate the other party & send fake messages to the device (if the message is not authenticated)

AES-128 algorithm

Sources of EM emissions in mixed-signal circuits

Measurment setup

Center receiving frequency = f_{BT} + $2f_{clock}$ = 2.528 GHz f_{BT} = 2.4 GHz (Bluetooth band frequency) f_{clock} = 64 MHz (ARM Cortex M4 CPU clock)

Locating the attack point in trace

Pre-processing: averaging & min-max scaling

Experimental results & comparison with previous work

	Analysis method	Distance to device	Environment	Repetition of single trace	Key enumeration	Number of traces
CCS'2018	Template attack	10m	Anechoic chamber	500	No	1428
		1m	Office			52589
CHES'2020	Template attack	15m	Office	1000	2 ²³	5000
Our	Deep	15m	Office	100	No	13
contribution	learning			10		59
				1		341

Example 2: USIM card power analysis

photo credit: Martin Brisfors

USIM's long-term key can be extracted from the USIM using 4 power traces on average (max 20)

How Deep Learning Helps Compromising USIM, M. Brisfors, S. Forsmark, E. Dubrova, CARDIS'2020, Nov. 18-19, 2020

Universal Subscriber Identity Module (USIM)

- USIM is a type of smart card
- Contains:

- Secret key K pre-shared with home subscriber server
- International Mobile Subscriber Identity (IMSI)
- Operator Variant Algorithm Configuration Field (OP)
- All cryptographic operations involving K are carried out within the USIM

3G/4G/5G security relies on the USIM's key

MILENAGE algorithm

Measurment setup

Measure

10.0 mV/div -34.60 mV

value

status

USIM power trace for one MILENAGE call

Idx Edge Time

Zoomed interval of MILENAGE execution

Attack steps

- In MILENAGE, RAND ⊕ OP_C is first computed and then the result is encrypted
- If E_k is AES-128, the key K can be recovered in two steps:
 - 1. Recover $OP_C \oplus K$ using S-box output in the 1st round as the attack point
 - 2. Recover the 1st round key, RK1, using the S-box output in the 2nd round as the attack point
 - 3. Compute K from RK1
 - 4. $OP_C = (OP_C \oplus K) \oplus K$

Results of 1st key byte recovery in 1st round

Results of 1st key byte recovery in 2nd round

Cost of USIM attack

• The attack can be done with a low-cost equipment

ChipWhisperer	250 USD
ChipWhisperer UFO board	240 USD
LEIA	3780 SEK
	< 1000 USD

If trained DL models are available, the attack does not require expert-level skills in side-channel analysis

5 min video demo of USIM attack

Demo showing how to:

- Capture traces from a victim device
- Find attack point
- Recover the key using a trained DL model
- Estimate the number of traces required to extract the key

Example 3: Masked Saber power analysis

photo credit: Kalle Ngo

- Saber is one of the Round 3 candidates of NIST post-quantum cryptography standartization competition
- Key Encapsulation Mechanism (KEM)
 - security relies on the hardness of the Module Learning With Rounding problem (MLWR)

A Side-Channel Attack on a Masked IND-CCA Secure Saber KEM, K. Ngo, E. Dubrova, Q. Guo, T. Johansson, https://eprint.iacr.org/2021/079.pdf

Saber KEM procedures

Saber.KEM.Encaps $((seed_{\mathbf{A}}, \mathbf{b}))$

1:
$$m \leftarrow \mathcal{U}(\{0,1\}^{256})$$

2: $(\hat{K},r) = \mathcal{G}(\mathcal{F}(pk),m)$
3: $c = \text{Saber.PKE.Enc}(pk,m;r)$
4: $K = \mathcal{H}(\hat{K},c)$
5: return (c,K)
session key

public key secret key Saber.KEM.Decaps $((z, pkh, pk, \mathbf{s}), \mathbf{c})$ 1: $m' = \text{Saber.PKE.Dec}(\mathbf{s}, c) \longleftarrow$ attack 2: $(\hat{K}', r') = \mathcal{G}(pkh, m')$ 3: c' = Saber.PKE.Enc(pk, m'; r')4: if c = c' then 5: return $K = \mathcal{H}(\hat{K}', c)$ 6: **else** 7: return $K = \mathcal{H}(z, c)$

8: end if

long-term

How deep learning helps break masking

Previous attacks on masked implementations

PROFILING STAGE

Previous attacks, cont.

ATTACK STAGE

Locating attack point

0.15 -

POL2MSG attack point

Poly_a2a attack point

Results for POL2MSG leakage point

Device average p_0 p_1 p_2 p_4 p_5 p_6 p_7 p_3 0.998 0.998 0.9930.9920.9890.9880.9850.953 0.987 D_1 D_{2} 0.994 0.9890.986 0.9590.9780.962 0.9850.9450.975 D_3 0.9840.9850.9880.963 0.9720.9910.9750.819 0.960 0.992 0.9900.9890.9710.9790.9800.9820.906 0.974 average used for training similar to D₁ AB A IR IT I different from D₁ Use Use Use for for for nois nois 101

Table 3: Probability p_j to recover m[j] from a single trace using POL2MSG() leakage point.

Messagy recovery results for poly_A2A

Table 4: Expected probability to recover a message bit from a single trace using poly_A2A() leakage point.

Device	p_0	p_1	p_2	p_3	p_4	p_5	p_6	p_7	average
D_1	0.845	0.970	0.959	0.905	0.948	0.960	0.953	0.972	0.939
D_2	0.828	0.962	0.942	0.945	0.920	0.919	0.950	0.950	0.927
D_3	0.848	0.900	0.941	0.884	0.949	0.905	0.914	0.947	0.911
average	0.840	0.944	0.947	0.912	0.939	0.928	0.939	0.956	0.926

Secret key recovery

- Session key can be derived directly from the recovered message
- Long-term secret key can be recovered from:
 - 16 chosen ciphertexts for LightSaber
 - 24 chosen ciphertexts for Saber
- Future work breaking combined countermeasures

Summary

- Be aware that deep learning opens opportunities for adversaries as well
- Deep learning side-channel attacks are very powerful
 - can overcome some countermeasures
 - Noise-based
 - Masking
- We need to understand possibilities and limitations of deep learning to design stronger countermeasures

Links to videos

How Deep Learning Helps Compromising USIM: https://www.youtube.com/watch?v=7uJq1GIfTUY&feature=you tu.be

Far Field Side-Channel Attack on AES Using Deep Learning: https://drive.google.com/file/d/1h7RmxIEFUQSFgwrlg8DnWPz DBws49FdG/view?usp=sharing