TRRespass: Exploiting the Many Sides of Target Row Refresh

Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen Onur Mutlu, Cristiano Giuffrida, Herbert Bos, **Kaveh Razavi**

DRAM

The Rowhammer problem

We have reduced transistor without caring for reliability/security

Rowhammer: affects 87% of deployed DDR3 memory.

So what can you do with it?

root@home:#

In the cloud

Razavi et al., "Flip Feng Shui: Hammering a Needle in the Software Stack," SEC'16

Rooting Android phones

Device	#flips	1 st exploitable flip after
LG Nexus 5 ¹	1058	116s
LG Nexus 5 ⁴	0	-
LG Nexus 5 ⁵	747,013	1s
LG Nexus 4	1,328	7s
OnePlus One	3,981	942s
Motorola Moto G (2013)	429	441s
LG G4 (ARMv8 - 64-bit)	117,496	5s

22 seconds to root on 18 out of 27 tested phones.

Van der Veen et al., "Drammer: Deterministic Rowhammer Attacks on Mobile Phones," CCS'16

And over the network...

Tatar et al., "Throwhammer: Rowhammer Attacks over the Network and Defenses," ATC'18

What about DDR4?

Rowhammer: affects 87% of deployed DDR3 memory.

Drammer: bit flips on Pixel phones with LPDDR4 (2016) ThirdIO's Mark Lanteigne reports flips on DDR4 DIMMs (2016) Gruss et al. report flips on DDR4 (SP'18, 2018)

Recent DDR4 systems

Micron's DDR4 devices automatically perform a type of TRR mode in the background and provide an MPR Page 3 MPR3[3:0] of 1000, indicating there is no restriction to the number of ACTIVATE commands to a given row in a refresh period provided DRAM timing specifications are not violated.

TRR: Keep track of intensely activated rows and refresh their neighbors.

So is Rowhammer a solved problem?

42 recent DIMMs from Samsung, Micron and Hynix (95%+ of market)

Known hammering patterns.

Results

So what is TRR and is it really effective?

After a few weeks of reading patents...

Maximum Activation Count

7-6	4-3	4-0
Reserved	t _{MAW}	MAC

MAW: Maximum Activation Window MAC: Maximum Activation Count

TRR-compliant DRAM modules advertise these values

Memory controller tunes its mitigation based on them

Detecting MC-based mitigations

Using memory access time \rightarrow Detecting extra refresh commands

Using Rowhammer bit flips \rightarrow Detecting existence of mitigation

With Timing

Xeon E5-2620 v2

With Flips

pTRR: Stops most flips

No mitigation on clients

MC-based mitigations on different platforms

CPU	Family	Year	DRAM generation	Defense	
Server Line					
Xeon E5-2620 v4	Broadwell	2016	DDR4	REF×2	
Xeon E5-2620 v2	Ivy Bridge	2013	DDR3	p-TRR	
Xeon E3-1270 v3	Haswell	2013	DDR3		
Consumer Line					
Core i9-9900K	Coffee Lake R	2018	DDR4	—	
Core i7-8700K	Coffee Lake	2017	DDR4		
Core i7-7700K	Kaby Lake	2017	DDR4	—	
Core i7-5775C	Broadwell	2015	DDR3	—	

TRR timeline

All our DDR4 DIMMs after '16 have MAC set to unlimited No bit flip with all known Rowhammer patterns

Understanding in-DRAM TRR

Using memory access time

Using Rowhammer bit flips

Any TRR solution:

- 1) Sampling mechanism \rightarrow Happens at memory access
- 2) Inhibitor mechanism \rightarrow Extra refreshes

When do extra internal refreshes happen?

SoftMC

- Open-source platform for DRAM studies
- Support for DDR4
- Precise control over DRAM commands
 - ACTIVATE, READ/WRITE, PRECHARGE, REFRESH
- Run DRAM out of spec

Extra refreshes

On a DIMM from manufacturer C: No REFRESH command (generally 1 every 7.8us)

- 1) Write values in memory
- 2) Hammer for 64 ms (refresh cycle)
- 3) Check for flips

Results

Figuring out the sampler size

Pick N aggressor rows

- 1) Hammer each for 10K (N x 10K)
- 2) Send M REFRESH commands
- 3) Repeat for 10 times

Results

Flips are distributed uniformly over the victims

Results

1 TRR per REFRESH command

Results

Remaining flips likely due to aggressor being discarded

Results

Sampler size is 4 given that number of flips plateau after 4 REFs

Flips with native REFRESH rate

Other DIMMs?

Reverse engineered DIMMs from Manufacturer A: very different

Newer DIMMs from Manufacturer C? Different mitigation

Can we automate the analysis to try on different DIMMs?

Meet TRRespass

- A Rowhammer fuzzer:
- 1) Cardinality (# aggressor rows)
- 2) Aggressor row location

- Executed from the CPU (DRAM mapping reverse engineering)
- Allocate a block of memory and try many random patterns

Successful patterns: many-sided Rowhammer

Assisted double-sided

4-sided

Results 🗦

Madala	Date	Freq.	Size	Organization		MAC Found	Found	Best Pattern	Corruptions			Double	
Module	(yy-ww)	(MHz)	(GB)	Ranks	Banks	Pins	MAC	Patterns	Best Pattern	Total	$1 \rightarrow 0$	$0 \rightarrow 1$	Refresh
$\mathcal{A}_{0,1,2,3}$	16-37	2132	4	1	16	$\times 8$	UL			-	_	-	
\mathcal{A}_4	16-51	2132	4	1	16	$\times 8$	UL	4	9-sided	7956	4008	3948	
\mathcal{A}_5	18-51	2400	4	1	8	×16	UL	—	-	—	-	—	—
$\mathcal{A}_{6,7}$	18-15	2666	4	1	8	$\times 16$	UL	-		-		-	· · · · ·
\mathcal{A}_8	17-09	2400	8	1	16	×8	UL	33	19-sided	20808	10289	10519	—
\mathcal{A}_9	17-31	2400	8	1	16	$\times 8$	UL	33	19-sided	24854	12580	12274	
\mathcal{A}_{10}	19-02	2400	16	2	16	$\times 8$	UL	488	10-sided	11342	1809	11533	\checkmark
\mathcal{A}_{11}	19-02	2400	16	2	16	$\times 8$	UL	523	10-sided	12830	1682	11148	\checkmark
$A_{12,13}$	18-50	2666	8	1	16	$\times 8$	UL	—	—	—	_	_	
\mathcal{A}_{14}	19-08 [†]	3200	16	2	16	$\times 8$	UL	120	14-sided	32723	16490	16233	—
$\mathcal{A}_{15}^{\ddagger}$	17-08	2132	4	1	16	×8	UL	2	9-sided	22397	12351	10046	-
\mathcal{B}_0	18-11	2666	16	2	16	$\times 8$	UL	2	3-sided	17	10	7	
\mathcal{B}_1	18-11	2666	16	2	16	$\times 8$	UL	2	3-sided	22	16	6	—
\mathcal{B}_2	18-49	3000	16	2	16	$\times 8$	UL	2	3-sided	5	2	3	
\mathcal{B}_3	19-08 [†]	3000	8	1	16	$\times 8$	UL	_	-	_	_	_	_
$\mathcal{B}_{4,5}$	19-08 [†]	2666	8	2	16	$\times 8$	UL	·	5 	-	· — ·	-	
$\mathcal{B}_{6,7}$	19-08 [†]	2400	4	1	16	$\times 8$	UL	-	—	—	—	—	—
\mathcal{B}_8°	19-08 [†]	2400	8	1	16	$\times 8$	UL	—	-	—	—	—	—
\mathcal{B}_9°	19-08 [†]	2400	8	1	16	$\times 8$	UL	2	3-sided	12	_	12	\checkmark
$\mathcal{B}_{10,11}$	16-13 [†]	2132	8	2	16	$\times 8$	UL	-	-	-	-	-	·
$\overline{\mathcal{C}_{0,1}}$	18-46	2666	16	2	16	$\times 8$	UL			_	—	-	-
$\mathcal{C}_{2,3}$	19-08 [†]	2800	4	1	16	$\times 8$	UL				-		
$\mathcal{C}_{4,5}$	19-08 [†]	3000	8	1	16	$\times 8$	UL	_	-	_	_	_	
$\mathcal{C}_{6,7}$	19-08 [†]	3000	16	2	16	$\times 8$	UL	· · · ·			-		· • • • •
C_8	19-08†	3200	16	2	16	$\times 8$	UL	—	2. 	—	—	-	—
\mathcal{C}_9	18-47	2666	16	2	16	$\times 8$	UL	—	-	—	—	_	—
$C_{10,11}$	19-04	2933	8	1	16	$\times 8$	UL		-	—	_	_	
C_{12} [‡]	15-01 [†]	2132	4	1	16	$\times 8$	UT	25	10-sided	190037	63904	126133	\checkmark
\mathcal{C}_{13} [‡]	18-49	2132	4	1	16	$\times 8$	UT	3	9-sided	694	239	455	

TRRespass' preliminary port to ARM

Limitations:

- 1) No DRAM mapping functions
- 2) No access to large pages
- 3) Detect N bank conflicts?
 Hammer.

Mobile Phone	Year	SoC	Memory (GB)	Found Patterns
Google Pixel	2016	MSM8996	4 [†]	\checkmark
Google Pixel 2	2017	MSM8998	4	-
Samsung G960F/DS	2018	Exynos 9810	4	_
Huawei P20 DS	2018	Kirin 970	4	—
Sony XZ3	2018	SDM845	4	-
HTC U12+	2018	SDM845	6	—
LG G7 ThinQ	2018	SDM845	4†	\checkmark
Google Pixel 3	2018	SDM845	4	\checkmark
Google Pixel 4	2019	SM8150	6	-
OnePlus 7	2019	SM8150	8	\checkmark
Samsung G970F/DS	2019	Exynos 9820	6	\checkmark
Huawei P30 DS	2019	Kirin 980	6	_
Xiaomi Redmi Note 8 Pro	2019	Helio G90T	6	-

† LPDDR4 (not LPDDR4X)

Conclusion Open PhD Positions @ ETH

Rowhammer is alive and kicking on latest systems

Maintaining data consistency in DRAM has become hard

Security through obscurity is trickier with DRAM

kaveh@ethz.ch @kavehrazavi