Introduction	Eavesdropping Antennas	Experimental Work	Results	Conclusions
0000		0000000000	0000000	00

Eavesdropping Near Field Contactless Payments: A Quantitative Analysis

Thomas P. Diakos¹ Johann A. Briffa¹ Tim W. C. Brown² Stephan Wesemeyer¹

¹Department of Computing, University of Surrey, Guildford ²Centre for Communication Systems Research, University of Surrey, Guildford

Computer Laboratory, University of Cambridge, January 21, 2014

Thomas P. Diakos (t.diakos@surrey.ac.uk)

Introduction	Eavesdropping Antennas	Experimental Work	Results	Conclusions
0000		0000000000	0000000	00

Outline

Introduction: Near Field Communications

Eavesdropping Antennas

Experimental Work

Results

Conclusions and Future Work

Thomas P. Diakos (t.diakos@surrey.ac.uk)

Eavesdropping Near Field Contactless Payments: A Quantitative Analysis

Near Field Communications

Near Field

- Distance \ll Wavelength (\approx 22m)
- ► HF 13.56 MHz radio inductive coupling
- H-fields
- Reader and tag (passive)
- Short ('from a touch to a few cm') range of operation

NFC devices

- Reader and tag on the same device
- Power on-board

Near Field Communications

Near Field Contactless Payments

- Marketed as ideal for quick, convenient transactions
- Contactless Cards and NFC devices
- ▶ 23 million cards in the UK alone
- 13.32% of smartphones equipped with NFC

Near Field Communications

Near Field Contactless Payments

- Marketed as ideal for quick, convenient transactions
- Contactless Cards and NFC devices
- ▶ 23 million cards in the UK alone
- 13.32% of smartphones equipped with NFC

What's the catch?

'Because the transmission range is so short, NFC-enabled transactions are inherently secure.' http://nfc-forum.org/what-is-nfc/nfc-in-action/

Introduction 00●0	Eavesdropping Antennas	Experimental Work 0000000000	Results 00000000	Conclusions
Near Field Contactl	ess Payments			

Eavesdropping - Chosen attack

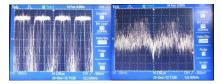
Why eavesdropping?

Thomas P. Diakos (t.diakos@surrey.ac.uk)

Eavesdropping Near Field Contactless Payments: A Quantitative Analysis

Introduction 00●0	Eavesdropping Antennas	Experimental Work	Results 0000000	Conclusions 00
Near Field Contactless	Payments			

Eavesdropping - Chosen attack


- Why eavesdropping?
- 'Inherently' secure?
- Difficult to defend against
- 'Contact world' heritage

Introduction	Eavesdropping Antennas	Experimental Work	Results 00000000	Conclusions
Near Field Contactless	Payments			

Eavesdropping - Past work

- Expensive, cumbersome equipment
- No control over transmit power
- Traces on a scope?

Our contribution

Thomas P. Diakos (t.diakos@surrey.ac.uk)

Eavesdropping Near Field Contactless Payments: A Quantitative Analysis

Eavesdropping - Past work

- Expensive, cumbersome equipment
- No control over transmit power
- Traces on a scope?

Our contribution

- Relatively inexpensive, inconspicuous equipment
- Varying Magnetic field strength
- Quantitative analysis

Introduction 0000	Eavesdropping Antennas	Experimental Work 0000000000	Results 0000000	Conclusions
Eavesdropping Antenn	as			

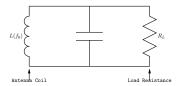
Design Factors

The ideal eavesdropping antenna

- Maximise SNR
- Resonance
- Suitable Q factor
- Impedance matched

Eavesdropping Antennas

xperimental Work


Results 00000000 Conclusions

Eavesdropping Antennas

NFC antenna design principles

Ideal H-antenna

- H-field antenna
- L constant
- ► R (DC) negligible

Thomas P. Diakos (t.diakos@surrey.ac.uk)

Eavesdropping Near Field Contactless Payments: A Quantitative Analysis

Introduction 0000	Eavesdropping Antennas	Experimental Work 0000000000	Results 00000000	Conclusions
Eavesdropping Antenn	as			

NFC Antenna Design Principles

H-Antenna Receiver Mode

► In RX mode:

$$\frac{V_L}{V_{in}} = \frac{1}{1 + \frac{j\omega L(\omega)}{R_L} - \omega^2 LC}$$
(1)

► At resonance:

$$\frac{V_L}{V_{in}} = \frac{R_L \sqrt{C}}{j \sqrt{L(\omega_o)}} \tag{2}$$

H-Antenna Conclusions

- Low Inductance, high load Resistance
- Magnitude of 2 is equal to the Q-factor

0000	

xperimental Work

Results 00000000 Conclusions

Eavesdropping Antennas

Large Metallic structures

The shopping trolley

- Various distances
- Fixed Ground
- Network Analyser

	Eavesdropping Antennas	Experimental Work	Conclusions
	00000000000		00
Eavesdropping Antenna	s		

The shopping trolley

Findings at 13.5 MHz

Scenario	Inductance at	Resistance at	
	13.5 MHz $/~\mu$ H	13.5 MHz $/ \Omega$	
Near End	0.42	1.31	
Middle End	1.42	18.48	
Leg End	3.73	70.66	
Far End	2.59	7.67	

Connection point dependence

Thomas P. Diakos (t.diakos@surrey.ac.uk)

Introduction 0000	Eavesdropping Antennas	Experimental Work 0000000000	Results 0000000	Conclusions
Eavesdropping Antenn	as			

Shopping Trolley antenna

Pros

- Ease of execution (variable C)
- High load resistance desirable
- Short connection points

cons

- Trolley resistance
- Loop size

Thomas P. Diakos (t.diakos@surrey.ac.uk)

Eavesdropping Antenna Benchmarks

Eavesdropping H-fields

- H-loop antenna used as a transmitter
- Controlled H-field through current
- Signal generator and power amplifier
- Three types of eavesdropping antennas
- Path Loss measurements

Introduction

Eavesdropping Antennas

xperimental Work

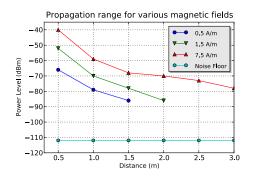
Results 00000000 Conclusions

Eavesdropping Antennas

NFC Antenna Design Principles

H-Loop Antenna

• Matched to 50Ω with a resistor (10Ω) in series

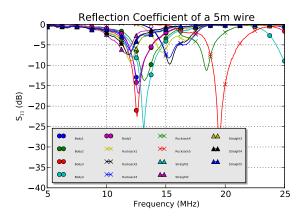

Thomas P. Diakos (t.diakos@surrey.ac.uk)

Eavesdropping Near Field Contactless Payments: A Quantitative Analysis

Introduction	Eavesdropping Antennas	Experimental Work	Results	Conclusions
0000		0000000000	00000000	00
Eavesdropping Antenn	as			

Path Loss Measurements

Various H-fields for H-loop and trolley only



Thomas P. Diakos (t.diakos@surrey.ac.uk)

Introduction	Eavesdropping Antennas	Experimental Work	Results	Conclusions
0000		0000000000	00000000	00
Eavesdropping Antenna	IS			

Quarter Wavelength Antenna

S_{11} Reflection Coefficients

Thomas P. Diakos (t.diakos@surrey.ac.uk)

xperimental Work

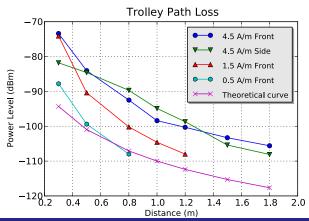
Results DOOOOOOO Conclusions

Eavesdropping Antennas

Quarter Wavelength Antenna

Worn over body

Water content of body reduces efficiency



Thomas P. Diakos (t.diakos@surrey.ac.uk)

Introduction	Eavesdropping Antennas	Experimental Work	Results	Conclusions
0000	000000000000000	0000000000	0000000	
Eavesdropping Antenn	as			

Path Loss Measurements

Trolley

Thomas P. Diakos (t.diakos@surrey.ac.uk)

	Eavesdropping Antennas	Experimental Work	Conclusions
	000000000000		00
Eavesdropping Antenna	as		

Path Loss Measurements

Summary

- H-loop and trolley are most efficient
- Antenna orientation
- H-field strength
- Proceed with FER measurements

Thomas P. Diakos (t.diakos@surrey.ac.uk)

Introduction	Eavesdropping Antennas	Experimental Work	Results	Conclusions
0000		●0000000000	0000000	00
Experimental Work				

Near Field Contactless Payments

- ▶ PHY layer based on ISO 14443 standard
- Half-duplex communication
- Type A and Type B

Thomas P. Diakos (t.diakos@surrey.ac.uk)

Introduction 0000	Eavesdropping Antennas	Experimental Work 0●00000000	Results 0000000	Conclusions
Experimental Work				

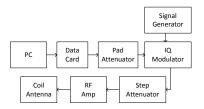
Near Field Contactless Payments

ISO 14443 type A communication

- 106kbps or 9.4 µs bit duration
- Manchester encoded baseband
- ▶ 847 kHz Subcarrier modulation (OOK)
- Standard / short frames
- SOF and EOF markers

Introduction 0000	Eavesdropping Antennas	Experimental Work	Results 00000000	Conclusions 00
Experimental Work				

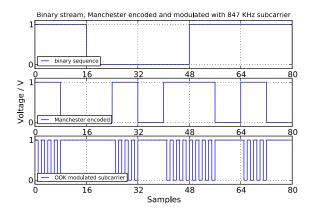
Computing Frame Error Rates


- A known (random), long sequence
- Transmitter / Receiver
- Processing and computation

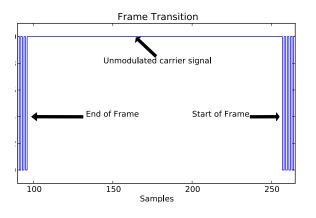
Thomas P. Diakos (t.diakos@surrey.ac.uk)

Introduction 0000	Eavesdropping Antennas	Experimental Work 000●0000000	Results 0000000	Conclusions
Experimental Work				

Transmitter arrangement


- Synthetic data, 60 bytes per frame
- Subcarrier generated in software
- External trigger signal at 1.7 MHz

Introduction 0000	Eavesdropping Antennas	Experimental Work 0000000000	Results 0000000	Conclusions
Experimental Work				


Sequence of 5 bits

Thomas P. Diakos (t.diakos@surrey.ac.uk)

Introduction	Eavesdropping Antennas	Experimental Work	Results	Conclusions
0000		00000●00000	0000000	00
Experimental Work				


Transition between two PICC frames

Thomas P. Diakos (t.diakos@surrey.ac.uk)

Introduction	Eavesdropping Antennas	Experimental Work	Results	Conclusions
0000		000000●0000	0000000	00
Experimental Work				

Receiver arrangement

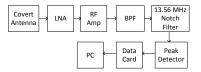
- LNA maximises SNR
- Band Pass Filter 12.7-14.4MHz
- Logarithmic detector

Thomas P. Diakos (t.diakos@surrey.ac.uk)

Eavesdropping Near Field Contactless Payments: A Quantitative Analysis

Introduction	Eavesdropping Antennas	Experimental Work	Results	Conclusions
0000		000000●0000	0000000	00
Experimental Work				

Receiver arrangement

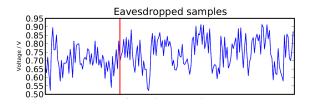


Thomas P. Diakos (t.diakos@surrey.ac.uk)

Eavesdropping Near Field Contactless Payments: A Quantitative Analysis

Introduction	Eavesdropping Antennas	Experimental Work	Results	Conclusions
0000		000000●0000	0000000	00
Experimental Work				

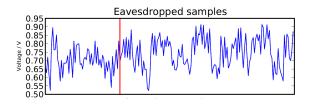
Receiver arrangement



- LNA maximises SNR
- Band Pass Filter 12.7-14.4MHz
- Logarithmic detector
- Capture card sampling at 1.7MS/s

Introduction 0000	Eavesdropping Antennas	Experimental Work 0000000●000	Results 0000000	Conclusions
Experimental Work				

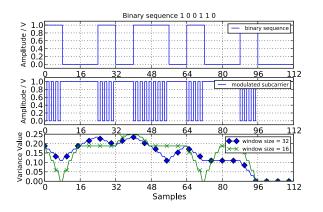
Noise corruption


Frame synchronisation becomes challenging

Thomas P. Diakos (t.diakos@surrey.ac.uk)

Introduction	Eavesdropping Antennas	Experimental Work	Results	Conclusions
0000		0000000●000	0000000	00
Experimental Work				

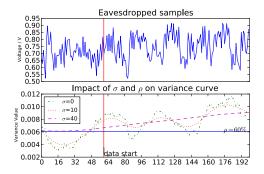
Noise corruption



- Frame synchronisation becomes challenging
- Variance computing sliding window
- Threshold crossing

Introduction	Eavesdropping Antennas	Experimental Work	Results	Conclusions
0000		0000000●00	0000000	00
Experimental Work				

Variance sliding window



Thomas P. Diakos (t.diakos@surrey.ac.uk)

Introduction	Eavesdropping Antennas	Experimental Work	Results	Conclusions
0000		0000000000000	0000000	00
Experimental Work				

Variance smoothing and threshold

Gaussian smoothing

Thomas P. Diakos (t.diakos@surrey.ac.uk)

Introduction 0000	Eavesdropping Antennas	Experimental Work 0000000000	Results 0000000	Conclusions
Experimental Work				


Robust Frame Synchronisation

- ► Frame length
- Rough estimate based on ρ crossing
- $(EOF SOF 32) \pm Y \Rightarrow$ multiple of 144
- Cross correlation for bit decoding

Introduction	Eavesdropping Antennas	Experimental Work	Results	Conclusions
0000		0000000000	●0000000	00
Results				

Experimental Set-up

Thomas P. Diakos (t.diakos@surrey.ac.uk)

Results	

Eavesdropping Antenna 0000000000000 Experimental Work

Results 0●000000 Conclusions

Eavesdropping Near Field Contactless Payments

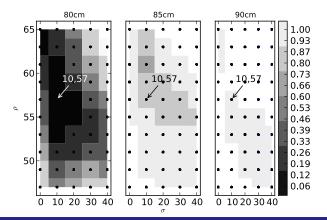
Receiver circuit and antenna

Thomas P. Diakos (t.diakos@surrey.ac.uk)

Eavesdropping Near Field Contactless Payments: A Quantitative Analysis

Introduction 0000	Eavesdropping Antennas	Experimental Work 0000000000	Results 00●00000	Conclusions
Results				

Preliminary testing


- Anechoic chamber
- Controlled environment
- 500 frame tests
- Establish σ and ρ values

Thomas P. Diakos (t.diakos@surrey.ac.uk)

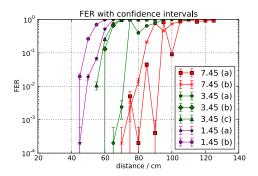
Introduction	Eavesdropping Antennas	Experimental Work	Results	Conclusions
0000		0000000000	000●0000	00
Results				

σ and ρ selection at 7.45 A/m

Thomas P. Diakos (t.diakos@surrey.ac.uk)

Introduction	Eavesdropping Antennas	Experimental Work	Results	Conclusions
0000		0000000000	0000●000	00
Results				

Experimental procedure


- 5000 frames (20 minutes per run)
- ▶ 20–170 cm, increments of 5 cm (2–30 cm for trolley)
- ▶ 1.5, 3.45, 7.45 A/m
- Experiments ran over 2 days

Introduction 0000	Eavesdropping Antennas	Experimental Work	Results 00000●00	Conclusions 00
Results				

Results

H-Loop Antenna FER

▶ Normal approximation, 95% confidence interval levels

Thomas P. Diakos (t.diakos@surrey.ac.uk)

Eavesdropping Near Field Contactless Payments: A Quantitative Analysis

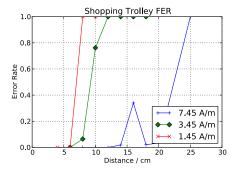
Results

Eavesdropping Antennas 00000000000000 xperimental Work

Results 000000●0 Conclusions

Eavesdropping Near Field Contactless Payments

Shopping trolley eavesdropping arrangement



Thomas P. Diakos (t.diakos@surrey.ac.uk)

Eavesdropping Near Field Contactless Payments: A Quantitative Analysis

Introduction 0000	Eavesdropping Antennas	Experimental Work 0000000000	Results 0000000●	Conclusions
Results				

Shopping trolley FER ($\sigma = 10$, $\rho = 50$)

Trolley generates its own noise, lossy antenna

Thomas P. Diakos (t.diakos@surrey.ac.uk)

Conclusions and Future work

Conclusions

- Eavesdropping distance 45-90 cm in shielded environment
- Similar conditions to those found in underground stations
- Relatively inexpensive equipment, inconspicuous antennas
- Gaussian filtering and variance computation are reliable

Future work

- Real data with real devices
- Improve portability (FPGA), integrate a skimmer
- What does this mean for the user?

Introduction 0000	Eavesdropping Antennas	Experimental Work 0000000000	Results 0000000	Conclusions
Conclusions				

Thank you for listening

Please forward any questions

Thomas P. Diakos (t.diakos@surrey.ac.uk)

Eavesdropping Near Field Contactless Payments: A Quantitative Analysis