
Information Security Group

TLS Security - Where Do We Stand?
Kenny Paterson

1

2

Outline

•  TLS overview
•  TLS attacks and proofs
•  Lucky 13
•  TLS Record Protocol and RC4
•  Discussion

3

TLS Overview

•  SSL = Secure Sockets Layer.
–  Developed by Netscape in mid 1990s.
–  SSLv1 broken at birth.
–  SSLv2 flawed, now IETF-deprecated (RFC 6176).
–  SSLv3 still widely supported.

•  TLS = Transport Layer Security.
–  IETF-standardised version of SSL.
–  TLS 1.0 in RFC 2246 (1999).
–  TLS 1.1 in RFC 4346 (2006).
–  TLS 1.2 in RFC 5246 (2008).

4

Importance of TLS

•  Originally designed for secure e-commerce, now used
much more widely.
–  Retail customer access to online banking facilities.
–  Access to gmail, facebook, Yahoo, etc.
–  Mobile applications, including banking apps.
–  Payment infrastructures.

•  TLS has become the de facto secure protocol of choice.
–  Used by hundreds of millions of people and devices every day.
–  A serious attack could be catastrophic, both in real terms and in

terms of perception/confidence.

5

Simplified View of TLS

Client Server
Handshake Protocol

Record Protocol

Used by client and server to
1. Negotiate ciphersuite
2. Authenticate
3. Establish keys used in the Record Protocol

Provides confidentiality and authenticity of application
layer data using keys from Handshake Protocol

TLS Protocol Architecture

TCP

Record Protocol

Handshake
Protocol

Alert
Protocol

HTTP,
other apps

Change
Cipher
Spec

Protocol

6

7

TLS Complexity

•  Multiple interacting sub-protocols.

•  Many different options for each sub-protocol.

•  Which option is used is negotiated during the
Handshake Protocol itself.
–  And can be renegotiated using that protocol too.

•  Different versions of the protocol.

•  Many extensions of the basic protocol.

•  Specification versus implementation.
–  Plenty of room for imprecision and error.
–  Spec. and code now contain layers of attack-specific

fixes.

8

Common Researcher Responses
to TLS Complexity
•  Prove security of parts of the protocol.

–  For example, just the cryptographic transform used
in the Record Protocol.

–  Ignoring padding, compression, statefulness,
fragementation,…

•  Idealise the protocol.
–  For example, assume that Handshake Protocol uses

CCA-secure public key encryption (it doesn’t!)
–  Or use a symbolic approach to cryptography.

9

Positive Security Results for TLS

9

Theory for symmetric encryption in TLS:
•  [K01] Krawczyk, Crypto 2001
•  [MT10] Maurer and Tackmann, ACM-CCS 2010
•  [PRS11] Paterson, Ristenpart, Shrimpton, Asiacrypt 2011

Theory for key exchange in TLS:
•  [BR93] Bellare and Rogaway, Crypto 1993
•  [JK02] Jonsson and Kaliski Jr., Crypto 2002
•  [MSW08] Morrissey et al., Asiacrypt 2008
•  [JKSS12], Jager et al., Crypto 2012
•  [GKS13] Giesen et al., ACM-CCS 2013
•  [KPW13] Krawczyk et al., Crypto 2013

10

Common Researcher Responses
to TLS Complexity
•  Prove security of parts of the protocol.

–  For example, just the cryptographic transform used
in the Record Protocol.

–  Ignoring padding, compression, statefulness,
fragementation,…

•  Idealise the protocol.
–  For example, assume that Handshake Protocol uses

CCA-secure public key encryption (it doesn’t!)
–  Or use a symbolic approach to cryptography.

•  Break (some aspect of) the protocol.

11

TLS Attack Literature

11

•  [B98] Bleichenbacher, Crypto 1998
•  [V02] Vaudenay, Eurocrypt 2002
•  [M02] Moeller, http://www.openssl.org/~bodo/tls-cbc.txt, 2002
•  [CHVV03] Canvel et al., Crypto 2003
•  [B04] Bard, eprint 2004
•  [B06] Bard, SECRYPT 2006
•  [RD09] Ray and Dispensa, TLS renegotiation attack, 2009
•  [PRS11] Paterson et al., Asiacrypt 2011
•  [DR11] Duong and Rizzo, “Here come the XOR Ninjas”, 2011
•  [AP12] AlFardan and Paterson, NDSS 2012
•  [DR12] Duong and Rizzo, CRIME, 2012
•  [MVVP12] Mavrogiannopoulos et al.,CCS 2012
•  [AP13] N.J. AlFardan and K.G. Paterson, IEEE S&P, 2013
•  [ABPPS13] N.J. AlFardan et al., USENIX Security, 2013
•  [BFKPS13] Bhargavan et al., IEEE S&P, 2013

12

TLS Attack Literature

12

•  [B98] Bleichenbacher, Crypto 1998
•  [V02] Vaudenay, Eurocrypt 2002
•  [M02] Moeller, http://www.openssl.org/~bodo/tls-cbc.txt, 2002
•  [CHVV03] Canvel et al., Crypto 2003
•  [B04] Bard, eprint 2004
•  [B06] Bard, SECRYPT 2006
•  [RD09] Ray and Dispensa, TLS renegotiation attack, 2009
•  [PRS11] Paterson et al., Asiacrypt 2011
•  [DR11] Duong and Rizzo, “Here come the XOR Ninjas”, 2011
•  [AP12] AlFardan and Paterson, NDSS 2012
•  [DR12] Duong and Rizzo, CRIME, 2012
•  [MVVP12] Mavrogiannopoulos et al.,CCS 2012
•  [AP13] N.J. AlFardan and K.G. Paterson, IEEE S&P, 2013
•  [ABPPS13] N.J. AlFardan et al., USENIX Security, 2013
•  [BFKPS13] Bhargavan et al., IEEE S&P, 2013

13

TLS Attack Literature

13

•  [B98] Bleichenbacher, Crypto 1998
•  [V02] Vaudenay, Eurocrypt 2002
•  [M02] Moeller, http://www.openssl.org/~bodo/tls-cbc.txt, 2002
•  [CHVV03] Canvel et al., Crypto 2003
•  [B04] Bard, eprint 2004
•  [B06] Bard, SECRYPT 2006
•  [RD09] Ray and Dispensa, TLS renegotiation attack, 2009
•  [PRS11] Paterson et al., Asiacrypt 2011
•  [DR11] Duong and Rizzo, “Here come the XOR Ninjas”, 2011
•  [AP12] AlFardan and Paterson, NDSS 2012
•  [DR12] Duong and Rizzo, CRIME, 2012
•  [MVVP12] Mavrogiannopoulos et al.,CCS 2012
•  [AP13] N.J. AlFardan and K.G. Paterson, IEEE S&P, 2013
•  [ABPPS13] N.J. AlFardan et al., USENIX Security, 2013
•  [BFKPS13] Bhargavan et al., IEEE S&P, 2013

14

TLS Attack Literature

14

•  [B98] Bleichenbacher, Crypto 1998
•  [V02] Vaudenay, Eurocrypt 2002
•  [M02] Moeller, http://www.openssl.org/~bodo/tls-cbc.txt, 2002
•  [CHVV03] Canvel et al., Crypto 2003
•  [B04] Bard, eprint 2004
•  [B06] Bard, SECRYPT 2006
•  [RD09] Ray and Dispensa, TLS renegotiation attack, 2009
•  [PRS11] Paterson et al., Asiacrypt 2011
•  [DR11] Duong and Rizzo, “Here come the XOR Ninjas”, 2011
•  [AP12] AlFardan and Paterson, NDSS 2012
•  [DR12] Duong and Rizzo, CRIME, 2012
•  [MVVP12] Mavrogiannopoulos et al.,CCS 2012
•  [AP13] N.J. AlFardan and K.G. Paterson, IEEE S&P, 2013
•  [ABPPS13] N.J. AlFardan et al., USENIX Security, 2013
•  [BFKPS13] Bhargavan et al., IEEE S&P, 2013

15

TLS Attack Literature

15

•  [B98] Bleichenbacher, Crypto 1998
•  [V02] Vaudenay, Eurocrypt 2002
•  [M02] Moeller, http://www.openssl.org/~bodo/tls-cbc.txt, 2002
•  [CHVV03] Canvel et al., Crypto 2003
•  [B04] Bard, eprint 2004
•  [B06] Bard, SECRYPT 2006
•  [RD09] Ray and Dispensa, TLS renegotiation attack, 2009
•  [PRS11] Paterson et al., Asiacrypt 2011
•  [DR11] Duong and Rizzo, “Here come the XOR Ninjas”, 2011
•  [AP12] AlFardan and Paterson, NDSS 2012
•  [DR12] Duong and Rizzo, CRIME, 2012
•  [MVVP12] Mavrogiannopoulos et al.,CCS 2012
•  [AP13] N.J. AlFardan and K.G. Paterson, IEEE S&P, 2013
•  [ABPPS13] N.J. AlFardan et al., USENIX Security, 2013
•  [BFKPS13] Bhargavan et al., IEEE S&P, 2013

16

Outline

•  TLS overview
•  TLS attacks and proofs
•  Lucky 13*
•  TLS Record Protocol and RC4
•  Discussion

*AlFardan and Paterson, Lucky 13: Breaking the TLS and DTLS
Record Protocols, IEEE Security and Privacy Symposium, 2013.
(www.isg.rhul.ac.uk/tls/lucky13.html)

MAC

SQN || HDR Payload

Padding

Encrypt

Ciphertext

MAC tag Payload

HDR

TLS Record Protocol:
MAC-Encode-Encrypt (MEE)

MAC HMAC-MD5, HMAC-SHA1, HMAC-SHA256

Encrypt CBC-AES128, CBC-AES256, CBC-3DES, RC4-128

17

Padding “00” or “01 01” or “02 02 02” or …. or “FF FF….FF”

TLS Record Protocol:
Authenticated Encryption

•  TLS 1.2 additionally supports authenticated encryption
–  AES-GCM in RFC 5288
–  AES-CCM in RFC 6655

•  However, TLS 1.2 is not yet widely supported

SSL Pulse: Webserver TLS support Browser TLS support (out-of-the-box)

TLS v1.1 TLS v1.1

TLS v1.0 TLS v1.0 TLS v1.0

19

Lucky 13

•  Distinguishing attacks and full plaintext recovery
attacks against TLS-CBC implementations
following implementation advice in the TLS 1.2
spec.
–  And variant attacks against those that do not.

•  Applies to all versions of SSL/TLS.
–  SSLv3.0, TLS 1.0, 1.1, 1.2.
–  And DTLS.

•  Demonstrated in the lab against OpenSSL and
GnuTLS.

20

History: TLS and Padding Oracles

[V02,CHVV03]:
•  Specifics of TLS padding format can be

exploited to mount a plaintext recovery attack.
•  The attack depends on being able to distinguish

good from bad padding.
–  In practice, this is done via a timing side-channel.
–  The MAC is only checked if the padding is good, and

the MAC is always bad in the attack.
–  Distinguish cases by timing TLS error messages.

21

Countermeasures?

•  Redesign TLS:
–  Pad-MAC-Encrypt or Pad-Encrypt-MAC.
–  Too invasive, did not happen.

•  Switch to RC4?

•  Or add a fix to ensure uniform errors?
–  If attacker can’t tell difference between MAC and pad

errors, then maybe TLS’s MEE construction is
secure?

–  So how should TLS implementations ensure uniform
errors?

22

Ensuring Uniform Errors

From the TLS 1.2 specification:

…implementations MUST ensure that record processing
time is essentially the same whether or not the padding is
correct.

In general, the best way to do this is to compute the MAC
even if the padding is incorrect, and only then reject the
packet.

Compute the MAC on what though?

 22

23

Ensuring Uniform Errors

For instance, if the pad appears to be incorrect, the
implementation might assume a zero-length pad and then
compute the MAC.

•  This approach is adopted in many implementations,

including OpenSSL, NSS (Chrome, Firefox),
BouncyCastle, OpenJDK, …

•  One alternative (GnuTLS and others) is to remove as
many bytes as are indicated by the last byte of plaintext
and compute the MAC on what’s left.

23

24

Ensuring Uniform Errors

… This leaves a small timing channel, since MAC
performance depends to some extent on the size of the
data fragment, but it is not believed to be large enough to
be exploitable, due to the large block size of existing MACs
and the small size of the timing signal.

24

25

Ensuring Uniform Errors

… This leaves a small timing channel, since MAC
performance depends to some extent on the size of the
data fragment, but it is not believed to be large enough to
be exploitable, due to the large block size of existing MACs
and the small size of the timing signal.

25

26

Lucky 13 – Plaintext Recovery

XOR 2-byte Δ here
and submit for decryption

Produces valid
patterns “01 01”

or “00”,
OR bad pad.

26

Ct

Pt

dK

Ct-1

dK

R2 R1

dK dK

IV

(HMAC-SHA-1 + AES-CBC)

27

Case: “01 01” (or longer valid pad)

XOR 2-byte Δ here
and submit for decryption

27

Ct

Pt

dK

Ct-1

dK

R2 R1

dK dK

IV

SQN||HDR

13 + 16 + 16 + 10 = 55 bytes 20 bytes

4 SHA-1 compression
function evaluations

“01 01”
(or longer
valid pad)

28

Case: “00”

XOR 2-byte Δ here
and submit for decryption

28

Ct

Pt

dK

Ct-1

dK

R2 R1

dK dK

IV

SQN||HDR

56 bytes 20 bytes

5 SHA-1 compression
function evaluations

“00”

29

Case: Bad padding

XOR 2-byte Δ here
and submit for decryption

29

Ct

Pt

dK

Ct-1

dK

R2 R1

dK dK

IV

SQN||HDR

57 bytes 20 bytes

5 SHA-1 compression
function evaluations

zero-length
pad

30

Lucky 13 – Plaintext Recovery

•  The injected ciphertext causes bad padding and/or a bad
MAC.
–  This leads to a TLS error message
–  The attacker times its appearance on the network.

•  There is a timing difference between “01 01” case and the
other 2 cases.
–  A single SHA-1 compression function evaluation.
–  Roughly 1000 clock cycles, 1µs range on typical processor.
–  Measurable difference on same host, LAN, or a few hops away.

•  Detecting the “01 01” case allows last 2 plaintext bytes in the
target block Ct to be recovered.
–  Using some standard CBC algebra.

•  Attack then extends easily to all bytes. 30

31

Experimental Results

•  Byte 14 of plaintext set to 01; byte 15 set to FF.
•  OpenSSLv1.0.1 on server running at 1.87Ghz.
•  100 Mbit LAN.
•  Median times (noise not shown). 31

Ha
rd

wa
re

Cy
cl

es
�Cal

cu
la

te
d
by

Ad
ve

rs
ar

y⇥

⇥15 � 0xFE

0 50 100 150 200 250
1.286⇤106

1.287⇤106

1.288⇤106

1.289⇤106

1.290⇤106

1.291⇤106

1.292⇤106

�15

32

Lucky 13 – Countermeasures

•  We really need constant-time decryption for TLS-CBC.

•  Add dummy hash compression function computations when
padding is good to ensure total is the same as when padding
is bad.

•  Add dummy padding checks to ensure number of iterations
done is independent of padding length and/or correctness of
padding.

•  Watch out for length sanity checks too.
–  Need to ensure there’s enough space for some plaintext after

removing padding and MAC, but without leaking any information
about amount of padding removed.

•  TL;DR:
–  It’s a bit of a nightmare.

32

33

Lucky 13 – Impact

•  OpenSSL patched in versions 1.0.1d, 1.0.0k and 0.9.8y, released
05/02/2013.

•  NSS (Firefox, Chrome) patched in version 3.14.3, released
15/02/2013.

•  Opera patched in version 12.13, released 30/01/2013
•  Oracle released a special critical patch update of JavaSE,

19/02/2013.
•  BouncyCastle patched in version 1.48, 10/02/2013
•  Also GnuTLS, PolarSSL, CyaSSL, MatrixSSL.
•  Microsoft “determined that the issue had been adequately

addressed in previous modifications to their TLS and DTLS
implementation”.

•  Apple: status unknown.

 (Full details at: www.isg.rhul.ac.uk/tls/lucky13.html)
33

34

Other Lucky 13 Countermeasures?

•  Introduce random delays during decryption.
–  Surprisingly ineffective, analysis in [AP13].

•  Redesign TLS:

–  Pad-MAC-Encrypt or Pad-Encrypt-MAC.
–  Currently, some discussion on TLS mailing lists.
–  TLS 1.3?

•  Switch to TLS 1.2
–  Has support for AES-GCM and AES-CCM.
–  Some encouraging signs of increasing adoption.

•  Use RC4?

35

Outline

•  TLS overview
•  TLS attacks and proofs
•  Lucky 13
•  TLS Record Protocol and RC4*
•  Discussion

*AlFardan, Bernstein, Paterson, Poettering, Schudlt, On the Security of
RC4 in TLS. USENIX Security Symposium, 2013.
(www.isg.rhul.ac.uk/tls)

MAC

SQN || HDR Payload

Padding

Encrypt

Ciphertext

MAC tag Payload

HDR

TLS Record Protocol: MEE

MAC HMAC-MD5, HMAC-SHA1, HMAC-SHA256

Encrypt CBC-AES128, CBC-AES256, CBC-3DES, RC4-128

36

Padding “00” or “01 01” or “02 02 02” or …. or “FF FF….FF”

MAC

SQN || HDR Payload

Encrypt

Ciphertext

MAC tag Payload

HDR

MAC HMAC-MD5, HMAC-SHA1, HMAC-SHA256

Encrypt CBC-AES128, CBC-AES256, CBC-3DES, RC4-128

37

TLS Record Protocol: RC4-128

MAC

SQN || HDR Payload

Encrypt

Ciphertext

MAC tag Payload

HDR

MAC HMAC-MD5, HMAC-SHA1, HMAC-SHA256

Encrypt CBC-AES128, CBC-AES256, CBC-3DES, RC4-128

38

TLS Record Protocol: RC4-128

MAC tag

HDR

RC4 Key scheduling RC4 Keystream generation

RC4 State
Byte permutation and indices i and j

•  In the face of the attacks on CBC-based ciphersuites
in TLS, switching to RC4 has been a recommended
mitigation (e.g. Qualys, F5).

•  Use of RC4 in the wild:

•  Problem:

•  RC4 is known to have statistical weaknesses.

•  (RC4 widely considered weak because of WEP debacle.)

Use of RC4 in TLS

ICSI Certificate Notary

Recent survey of 16 billion TLS connections:
Approx. 50% protected via RC4 ciphersuites

Single-byte Biases in the RC4 Keystream

•  [Mantin-Shamir 2001]:

•  [Mironov 2002]:
–  Described distribution of (bias away from 0, sine-like distribution)

•  [Maitra-Paul-Sen Gupta 2011]: for

•  [Sen Gupta-Maitra-Paul-Sakar 2011]:

Zi = value of i-th keystream byte

l = keylength

•  Our approach in [ABPPS13]:
–  Based on the output from 245 random independent 128-bit RC4 keys,

estimate the keystream byte distribution of the first 256 bytes
..

•  Revealed many new biases in the RC4 keystream.
–  (Some of these were independently discovered by [Isobe et al. 2013].)

Complete Keystream Byte
Distributions

Z1

...

Z2 Z3 ...

...

Keystream Distribution at!
Position 1

Pr
ob

ab
ili

ty

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at!
Position 2

Pr
ob

ab
ili

ty

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at!
Position 3

Pr
ob

ab
ili

ty

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at!
Position 4

Pr
ob

ab
ili

ty

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at!
Position 5

Pr
ob

ab
ili

ty

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at!
Position 6

Pr
ob

ab
ili

ty

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at!
Position 7

Pr
ob

ab
ili

ty

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at!
Position 8

Pr
ob

ab
ili

ty

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at!
Position 9

Pr
ob

ab
ili

ty

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at!
Position 10

Pr
ob

ab
ili

ty

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at!
Position 11

Pr
ob

ab
ili

ty

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at!
Position 12

Pr
ob

ab
ili

ty

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at!
Position 13

Pr
ob

ab
ili

ty

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at!
Position 14

Pr
ob

ab
ili

ty

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at!
Position 15

Pr
ob

ab
ili

ty

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at!
Position 16

Pr
ob

ab
ili

ty

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at!
Position 17

Pr
ob

ab
ili

ty

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at!
Position 18

Pr
ob

ab
ili

ty

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at!
Position 19

Pr
ob

ab
ili

ty

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at!
Position 20

Pr
ob

ab
ili

ty

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at!
Position 21

Pr
ob

ab
ili

ty

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at!
Position 22

Pr
ob

ab
ili

ty

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at!
Position 23

Pr
ob

ab
ili

ty

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at!
Position 24

Pr
ob

ab
ili

ty

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at!
Position 25

Pr
ob

ab
ili

ty

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at!
Position 26

Pr
ob

ab
ili

ty

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at!
Position 27

Pr
ob

ab
ili

ty

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at!
Position 28

Pr
ob

ab
ili

ty

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at!
Position 29

Pr
ob

ab
ili

ty

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at!
Position 30

Pr
ob

ab
ili

ty

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at!
Position 31

Pr
ob

ab
ili

ty

0.003906

Byte value

0.003950

0.003878

Keystream Distribution at!
Position 32

Pr
ob

ab
ili

ty

0.003906

Byte value

0.003950

0.003878

•  Based on the keystream byte distribution, we can
construct a plaintext recovery attack.

–  Exploits all single-byte biases in the initial part of the RC4
keystream.

•  The attack requires the same plaintext to be encrypted
under many different keys.

–  Applicable when using TLS?

Plaintext Recovery

•  Javascript
–  Uses XMLHttpRequest objects to generate POST requests.
–  Request to secure site possible due to Cross-Origin Resource

Sharing.
–  Number of requests generated by script must be balanced to

avoid browser overload.

Targeting Secure
HTTP Cookies

TLS

Client https://secure.comMalicious
server

Secure cookie

HTTP request
(cookie attached)

TLS

Plaintext Recovery

C1

C2

C3

Cn

...

r
Pr

Pr

Pr

Pr

...

Induced
distribution on

Zr

combine with

⇒

Likelihood of Pr being
correct plaintext byte

Recovery algorithm:
Compute most likely plaintext byte

Encryptions of plaintext
under different keys

Plaintext candidate
byte Pr

Success Probability
220 Sessions

Success Probability
221 Sessions

Success Probability
222 Sessions

Success Probability
223 Sessions

Success Probability
224 Sessions

Success Probability
225 Sessions

Success Probability
226 Sessions

Success Probability
227 Sessions

Success Probability
228 Sessions

Success Probability
229 Sessions

Success Probability
230 Sessions

Success Probability
231 Sessions

Success Probability
232 Sessions

Limitations of Attack

•  Requires 228 ~ 232 TLS connections for reliable recovery.

•  Attacker has to force TLS session renegotiation /
resumption.
–  No known mechanism from within Javascript.

•  Only the first 220 bytes of application data can be
targeted.

•  Initial 36 bytes used to encrypt last message of Handshake protocol.
•  In reality, first 220 bytes of application data usually contain uninteresting

HTTP headers.

A Second Attack

•  Fluhrer and McGrew
identified biases for
consecutive keystream
bytes.

–  Persistent throughout
keystream.

•  Based on these, we
construct an attack which:

–  Can target any plaintext byte
positions;

–  Does not require session
renegotiation / resumption.

i : keystream byte position mod 256

•  Align plaintext with repeating Fluhrer-McGrew biases

•  Exploit overlapping nature of plaintext byte pairs to obtain
approximate likelihood for plaintext candidates.

Plaintext copies P P P

A Second Attack

RC4 Keystream

TLS Ciphertexts C1 C2 C3

P3 P4

P2 P3

P1 P2

P1 P2 P3P4 P5 P6

...

⇒
Approximate
likelihood for

P = P1P2P3P4P5P6

Recovery algorithm:
Viterbi-style algorithm to
determine P with highest
approximate likelihood

Success Probability

Recovery of 16 byte cookie

Recovery of individual bytes

Countermeasures

•  Possible countermeasures against the attacks
–  Discard initial keystream bytes.
–  Fragment initial records at the application layer.
–  Add random length padding to records.
–  Limit lifetime of cookies or number of times cookies can be sent.
–  Stop using RC4 in TLS.

•  Vendor response
–  Opera has been implementing a combination of countermeasures.
–  Google seems focused on implementing TLS 1.2 and AES-GCM in

Chrome.
–  RC4 is disabled by default for TLS in Windows Preview 8.1.
–  Draft RFC for Salsa20 just published.

Summary of RC4 in TLS

•  Plaintext recovery attacks against RC4 in TLS are
feasible although not truly practical.

–  228 ~ 232 sessions for reliable recovery of initial bytes.
–  233 ~ 234 encryptions for reliable recovery of 16 bytes anywhere

in plaintext.

•  The attacks illustrate that RC4 in TLS provides a
security level far below the strength suggested by the
key size of 128 bits.

•  Furthermore, attacks only becomes better with time.

•  Our recommendation: phase out the use of RC4 in
TLS as soon as possible.

96

Outline

•  TLS overview
•  TLS attacks and proofs
•  Lucky 13
•  TLS Record Protocol and RC4
•  Discussion

97

Discussion

•  TLS’s ad hoc MAC-Encode-Encrypt construction is hard
to implement securely and hard to prove positive security
results about.
–  Long history of attacks and fixes for CBC-mode, culminating in

this year’s “Lucky 13” attack.
–  Each fix was the “easiest option at the time”.
–  Now reached point where a 500 line patch to OpenSSL was

needed to fully eliminate the Lucky 13 attack on CBC-mode.
–  Attacks show that small details matter.
–  Suitably detailed analysis for MEE-TLS-CBC only completed in

2011.

97

98

Discussion

•  RC4 was known to be weak for many years.
–  Actual exploitation of its weaknesses in a TLS context went

unexplored.
–  Needed multi-session mechanism (BEAST technology) to make

the attack plausible.
–  Borrowing tools from outside cryptography.

•  Once a bad cryptographic choice is out there in
implementations, it’s very hard to undo.
–  Old versions of TLS hang around for a long time.
–  There is no TLS product recall programme!
–  Slow uptake of TLS 1.1, 1.2.

98

99

Discussion

•  TLS is coming under sustained pressure from attacks.
–  BEAST, Lucky 13 and RC4 attacks are providing incentives to

move to TLS 1.2.
–  Good vendor response to BEAST, CRIME, Lucky 13, less so to

RC4 attack.
•  First three are fixable, the other not (really).

•  Having a cool name for your attack is important.

•  Attacks really do improve with age.

–  BEAST (1995 – 2011), Lucky 13 (Feb. 2013 – Mar. 2013).
–  RC4 attacks are currently only “semi-practical” but we ignore

such attacks at our peril.

99

100

Research Directions?

•  TLS Record Protocol cryptography has now been heavily
analysed.
–  Still some mileage in looking at AE implementations?

•  Major recent progress in analysing TLS Handshake protocol.
–  [JKSS12], [KPW13], [GKS12].

•  Can still expect implementation issues to emerge.
–  Check the “OpenSSL Fact” twitter feed regularly!

•  TLS’s complex system of interacting protocols can still throw
up surprises.
–  Alert Protocol desynchronisation attack [BFKPS13].
–  TLS Renegotiation attack [RD09].

100

101

TLS – Current Status?

101

“This is a dead parrot.”
“He’s not dead. He’s just resting.”

