Practical Implications of
Java/JVM/IRE

Li Gong
lgong@mozilla.com
Security Seminar Series
Computer Lab, Cambridge, UK
May 04, 2011



mailto:lgong@mozilla.com

Disclaimers via Old Quotes

* Theorem -- “Any problem in computer science
can be solved with another level of
indirection” [David Wheeler/Butler Lampson]

e Corollary -- “There is nothing new in
computer science after 1970s” (all just rehash
of old problems in new settings) [Lampson?]

* Nevertheless, old tricks applied in different
environments can have new practical impacts



Who Do We (Secure Systems Builders)
Work For?

* Programmers/application developers
— “Users” do not directly use the OS

* So the key objective is to help the developer
get what is intended with his/her code

— Make the most common cases the easiest to write
— Reduce risks of badly written code

* Major assumption
— The system “we” produce has correct behaviors



Four Major Concerns for JDK 1.2
(as written in late 1996)

Usability

— Suitable for a wide variety of applications
Simplicity

— Easy to understand and analyze
Adequacy

— Enough features before the next release
Adaptability

— Do not over prescribe

— Can evolve with ease



How Java Code Is Run/Executed

/[ Java source code ]

¢ 6 _____

Java bytecode ]

______ Bytecode
verifier

Java virtual machine ]

\
______ JVM written in
=

Native OS




How Java Code Is Run/Executed

Java source code is compiled into Java bytecode
Bytecode is fed into and interpreted by JVM/JRE

Design objectives
— Only valid bytecode is run
— Only intended consequences occur

* Good intended behaviors are ensured by usual testing
* Bad unintended behaviors must be prevented

JVM/JRE itself written in part in Java



How Java Code Is Run/Executed

e Java source code is compiled into Java bytecode
— How do we know the source is valid Java code?

— A correct compiler accepts valid Java source code and
produces valid Java bytecode

— Can we trust the compiler someone else uses? No?

* Bytecode is fed into and interpreted by JVM/JRE

— How do we ensure that we accept only valid
bytecode?



It’s an Input Validation Problem

* F(n),n=0,1,2,3,4,5,6,7,8,9
— N is completely/well structured
— N has a small space
— Input validation is trivial

* Java bytecode
— Not completely/well structured
— Has a large space

— Consider an extreme example H(x) where x is 128 bit
arbitrary number and H() is a one-way hash function that
produces 256 bit hash values. Given any y, is y valid hash?

* Java is dynamically extensible
— Type safety problem (think of buffer overflows)



Ensuring Bytecode Validality

Static bytecode verifier

Runtime type checking

Have we covered all cases?

— UW bytecode basher by Brian Bershad, Gun Sirer

Can we type check sufficiently fast during run
time?

— Acceptable in the absolute

— Acceptable in the relative



Preventing Bad Unintended
Consequences

Least-privilege principle

— Associate objects with protection domains, each with
its own set of privileges

— Calculate dynamically “active privileges” (or if a
specific privilege is active)

Internal representation of privileges

— java.security.permission classes, generic, extensible

— The “implies” method

External declarations of privileges

— Policy specification (not intended as the only solution)

Note: no requirement for MLS, info flow, etc.



Critical Issues of Least Privilege

* Can privilege calculations be done sufficiently
fast?

— Typical environments have simple permissions
— Can be punted away — write your own algorithm

* Protection domains retrofitted into JVM/JRE

— JIT cannot combine frames from different domains
and other complications

— Protection domains related to class/type extensions®
e Special privileged operations
— Programmers must declare these explicitly



Get the Book and/or Read the Docs




JDK 1.2 Security Feature List
(12/11/1996)

* Project code named Gibraltar

* Features
— Authentication
— Delegation
— Fine-grained access control
— Policy management
— Audit
— Secret sharing
— Key generation
— Storage of private keys (e.g., passwords)

. Alpha (05/1997), FCS (09/1997)



Other Considerations Circa 1996/7

* Export control of crypto packages

— Key escrow/key recovery,
RSA/Bsafe/Cylink/others, CDSA, MS CAPI

— “Church of Cryptology”

 Where is Java security headed

— Is it just a component of the browser? More
specifically the Netscape browser?



Other Considerations (Cont.)

Protect against decompilation of Java bytecode
— Code obfuscation
— Encrypted bytecode

Control of resource consumption by applets
Java on a smartcard
Java as e-commerce platform (Java Wallet)

JavaOS (Java Station)
— Security needs for a standalone OS?

Sun company wide security architecture and
strategy?




So Where Is the Drama?

The whole project is equally a social (and political) process,
not just a tech project

Stressful — 1000~ meetings in 30 months, 300 pages of
meeting notes

Fast moving -- be ready to take the single available shot
Constant onslaught of security bugs

— The Friday fire drills

— Microsoft was a Java licensee; but was it a good partner?

There were people who wanted to “kill” it

— Sun internal (delete our workspace, override security code,
resist changes to the VM, resist security audit)

— Fringes inside IBM (and other places)
— Netscape fight (more later)



Technical Lessons Learned

e Systematic is better and easier than ad hoc

— Implementing least privilege in JDK 1.2 turned out
to be easier and more robust than a “bolted-on”
binary sandbox model in JDK 1.0/1.1

* Do not use NULL

— you cannot later change the behavior of a NULL
(Null ClassLoader, Null SecurityManager)

* Do not overload functions

— finding a class (which should be easily extensible)
and defining it (which should be tightly controlled)



Is Java Fail Safe?

* Java cannot guarantee sequential execution,

due to exceptions handling, even with Catch
and Finally

 What happens when machine run out of
memory? What’s the defined behavior then?



Alternative Ideas

* Erlingsson and Schneider, Inlined Reference Monitor
(IRM)
— Why interesting: support for arbitrary enforceable
policy
— Why not in: too late in the JDK 1.2 cycle to be fully
evaluated
e Balfanz and Gong, multi-processing

— Why: support for different security policies and
properties for different processes

— Why not in: too radical departure from JDK, too
disruptive to existing code, not backward
compatible



GuardedObject

* An object containing a resource (e.g., a file) and a specific
guard (a permission)
— The resource is accessible only if the permission is allowed

e Access permission is checked at the point of resource

consumption, ensuring the right check is done in the right
context

— Can pass objects (references) around freely
— Can prepare resources before actual requests

— developers do not need to know about security managers or
access control checks

* Thisis “slipped” into JDK, but not used internally, because it
is alien to the familiar usage of invoking SecurityManager



Observations — The Good
(the practical impacts)

e Java security has matured
— From “what it is” to “how to utilize the features”
— Did too little, too much, or just right?

* Raised the bar for everyone else

— Anyone designing a new language/platform must
consider type safety, systems security, least
privilege, etc.

* I[mpacted thousands of programmers on their
security awareness



Observations — The Bad

* Those companies who can afford the time and
effort to improve security do not feel incented
to spend the/adequate resources

e Those who want to differentiate from the

dominate players cannot afford the time and
effort

 When rarely a good/better security platform
emerges, competition would not allow it to be
adopted across the industry



Observations — The Bad (cont.)

* Many/any extensible systems (e.g., browser
add-ons, iPhone apps) need the same sort of
protection/security infrastructure, but they
tend to be built on different technology
platforms, so reuse is difficult or impossible



Observations — The Ugly

A new thing (a toy widget, scripting language,
etc.) starts nice and small, with limited usage
scope and no security considerations

It gains good traction

The feature set keeps expanding and the toy
becomes a widely adopted

Soon the “small toy” resembles a full system
or programming platform, except without
adequate security support



12-Month Battle with Netscape

* The three battles
— JFC vs Netscape’s IFC (combined into Swing)
— Hotspot vs Netscape’s proposed Java VM
— Java security vs Netscape Java security extensions

 |[BM as arbitrator

— Don Neal overall IBM taskforce lead (Bob Blakely
took over the lead 3 months later)

— Arbitration resolution meeting 10/15/2007



“Never Forget Class Struggle!”

* Email me at Igong@mozilla.com




