
Practical Implications of
Java/JVM/JRE

Li Gong
lgong@mozilla.com

Security Seminar Series
Computer Lab, Cambridge, UK

May 04, 2011

mailto:lgong@mozilla.com

Disclaimers via Old Quotes

• Theorem -- “Any problem in computer science
can be solved with another level of
indirection” *David Wheeler/Butler Lampson+

• Corollary -- “There is nothing new in
computer science after 1970s” (all just rehash
of old problems in new settings) [Lampson?]

• Nevertheless, old tricks applied in different
environments can have new practical impacts

Who Do We (Secure Systems Builders)
Work For?

• Programmers/application developers

– “Users” do not directly use the OS

• So the key objective is to help the developer
get what is intended with his/her code

– Make the most common cases the easiest to write

– Reduce risks of badly written code

• Major assumption

– The system “we” produce has correct behaviors

Four Major Concerns for JDK 1.2
(as written in late 1996)

• Usability
– Suitable for a wide variety of applications

• Simplicity
– Easy to understand and analyze

• Adequacy
– Enough features before the next release

• Adaptability
– Do not over prescribe

– Can evolve with ease

Java source code

Java bytecode

Java virtual machine

Native OS

Java compiler

Bytecode
verifier

JVM written in
C/Java

How Java Code Is Run/Executed

How Java Code Is Run/Executed

• Java source code is compiled into Java bytecode

• Bytecode is fed into and interpreted by JVM/JRE

• Design objectives

– Only valid bytecode is run

– Only intended consequences occur

• Good intended behaviors are ensured by usual testing

• Bad unintended behaviors must be prevented

• JVM/JRE itself written in part in Java

How Java Code Is Run/Executed

• Java source code is compiled into Java bytecode

– How do we know the source is valid Java code?

– A correct compiler accepts valid Java source code and
produces valid Java bytecode

– Can we trust the compiler someone else uses? No?

• Bytecode is fed into and interpreted by JVM/JRE

– How do we ensure that we accept only valid
bytecode?

It’s an Input Validation Problem

• F(n), n = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
– N is completely/well structured
– N has a small space
– Input validation is trivial

• Java bytecode
– Not completely/well structured
– Has a large space
– Consider an extreme example H(x) where x is 128 bit

arbitrary number and H() is a one-way hash function that
produces 256 bit hash values. Given any y, is y valid hash?

• Java is dynamically extensible
– Type safety problem (think of buffer overflows)

Ensuring Bytecode Validality

• Static bytecode verifier

• Runtime type checking

• Have we covered all cases?

– UW bytecode basher by Brian Bershad, Gun Sirer

• Can we type check sufficiently fast during run
time?

– Acceptable in the absolute

– Acceptable in the relative

Preventing Bad Unintended
Consequences

• Least-privilege principle
– Associate objects with protection domains, each with

its own set of privileges
– Calculate dynamically “active privileges” (or if a

specific privilege is active)

• Internal representation of privileges
– java.security.permission classes, generic, extensible
– The “implies” method

• External declarations of privileges
– Policy specification (not intended as the only solution)

• Note: no requirement for MLS, info flow, etc.

Critical Issues of Least Privilege

• Can privilege calculations be done sufficiently
fast?
– Typical environments have simple permissions

– Can be punted away – write your own algorithm

• Protection domains retrofitted into JVM/JRE
– JIT cannot combine frames from different domains

and other complications

– Protection domains related to class/type extensions*

• Special privileged operations
– Programmers must declare these explicitly

Get the Book and/or Read the Docs

JDK 1.2 Security Feature List
(12/11/1996)

• Project code named Gibraltar
• Features

– Authentication
– Delegation
– Fine-grained access control
– Policy management
– Audit
– Secret sharing
– Key generation
– Storage of private keys (e.g., passwords)

• Alpha (05/1997), FCS (09/1997)

Other Considerations Circa 1996/7

• Export control of crypto packages

– Key escrow/key recovery,
RSA/Bsafe/Cylink/others, CDSA, MS CAPI

– “Church of Cryptology”

• Where is Java security headed

– Is it just a component of the browser? More
specifically the Netscape browser?

Other Considerations (Cont.)

• Protect against decompilation of Java bytecode
– Code obfuscation
– Encrypted bytecode

• Control of resource consumption by applets
• Java on a smartcard
• Java as e-commerce platform (Java Wallet)
• JavaOS (Java Station)

– Security needs for a standalone OS?

• Sun company wide security architecture and
strategy?

So Where Is the Drama?

• The whole project is equally a social (and political) process,
not just a tech project

• Stressful – 1000~ meetings in 30 months, 300 pages of
meeting notes

• Fast moving -- be ready to take the single available shot
• Constant onslaught of security bugs

– The Friday fire drills
– Microsoft was a Java licensee; but was it a good partner?

• There were people who wanted to “kill” it
– Sun internal (delete our workspace, override security code,

resist changes to the VM, resist security audit)
– Fringes inside IBM (and other places)
– Netscape fight (more later)

Technical Lessons Learned

• Systematic is better and easier than ad hoc
– Implementing least privilege in JDK 1.2 turned out

to be easier and more robust than a “bolted-on”
binary sandbox model in JDK 1.0/1.1

• Do not use NULL
– you cannot later change the behavior of a NULL

(Null ClassLoader, Null SecurityManager)

• Do not overload functions
– finding a class (which should be easily extensible)

and defining it (which should be tightly controlled)

Is Java Fail Safe?

• Java cannot guarantee sequential execution,
due to exceptions handling, even with Catch
and Finally

• What happens when machine run out of
memory? What’s the defined behavior then?

Alternative Ideas

• Erlingsson and Schneider, Inlined Reference Monitor
(IRM)
– Why interesting: support for arbitrary enforceable

policy
– Why not in: too late in the JDK 1.2 cycle to be fully

evaluated
• Balfanz and Gong, multi-processing

– Why: support for different security policies and
properties for different processes

– Why not in: too radical departure from JDK, too
disruptive to existing code, not backward
compatible

GuardedObject

• An object containing a resource (e.g., a file) and a specific
guard (a permission)
– The resource is accessible only if the permission is allowed

• Access permission is checked at the point of resource
consumption, ensuring the right check is done in the right
context
– Can pass objects (references) around freely
– Can prepare resources before actual requests
– developers do not need to know about security managers or

access control checks

• This is “slipped” into JDK, but not used internally, because it
is alien to the familiar usage of invoking SecurityManager

Observations – The Good
(the practical impacts)

• Java security has matured
– From “what it is” to “how to utilize the features”

– Did too little, too much, or just right?

• Raised the bar for everyone else
– Anyone designing a new language/platform must

consider type safety, systems security, least
privilege, etc.

• Impacted thousands of programmers on their
security awareness

Observations – The Bad

• Those companies who can afford the time and
effort to improve security do not feel incented
to spend the/adequate resources

• Those who want to differentiate from the
dominate players cannot afford the time and
effort

• When rarely a good/better security platform
emerges, competition would not allow it to be
adopted across the industry

Observations – The Bad (cont.)

• Many/any extensible systems (e.g., browser
add-ons, iPhone apps) need the same sort of
protection/security infrastructure, but they
tend to be built on different technology
platforms, so reuse is difficult or impossible

Observations – The Ugly

• A new thing (a toy widget, scripting language,
etc.) starts nice and small, with limited usage
scope and no security considerations

• It gains good traction

• The feature set keeps expanding and the toy
becomes a widely adopted

• Soon the “small toy” resembles a full system
or programming platform, except without
adequate security support

12-Month Battle with Netscape

• The three battles

– JFC vs Netscape’s IFC (combined into Swing)

– Hotspot vs Netscape’s proposed Java VM

– Java security vs Netscape Java security extensions

• IBM as arbitrator

– Don Neal overall IBM taskforce lead (Bob Blakely
took over the lead 3 months later)

– Arbitration resolution meeting 10/15/2007

“Never Forget Class Struggle!”

• Email me at lgong@mozilla.com

