Optical surveillance on silicon chips: your crypto keys are visible

Dr Sergei Skorobogatov

http://www.cl.cam.ac.uk/~sps32 email: sps32@cam.ac.uk

Computer Laboratory

Talk Outline

- Introduction
- Background of optical emission
- Experimental setup
- Results for an old microcontroller chip
- Limitations and improvements
- Challenge with modern chips
- Results for a secure FPGA chip
- Countermeasures
- Conclusion

Introduction

- Operating semiconductor circuits emit photons
 - known for over 40 years
 - actively used in failure analysis for over 20 years
- Existing failure analysis techniques
 - picosecond imaging circuit analysis (PICA) uses photomultiplier array
 - photon emission microscopy (PEM) uses special IR cameras
 - both techniques are expensive and require sophisticated sample preparation
- What about hardware security?
 - any possibility of seeing internal signals?
 - any leaks from memory arrays?

Introduction

- Optical emission analysis attacks were introduced in 2008 and exploit well known fact that photon emission of a chip is correlated with the processed data*
 - done on a PIC16F84A (0.9 μm) running at 6MHz with 7V supply
 - from backside with the silicon substrate thinned down to 20 μ m
 - using Mepsicron II camera with hi-res 2D imaging and 50ps timing
 - continued for 12 hours with test code in a loop
 - proved that AES key can be extracted from the operating device
- Can this be used to compromise security in silicon chips?
 - requires expensive equipment and special chip preparation
 - was not considered as a threat, hence, no protection is in place
 - does not form part of standard security evaluation techniques
- * J. Ferrigno et al, "When AES blinks: introducing optical side channel", IET Information Security

Introduction

- Challenges
 - find low-cost detectors suitable for optical emission analysis
 - reduce the cost of sample preparation
- Any technical progress for the past 20 years?
 - are modern CCD cameras good for the attack?
 - what about photomultipliers (PMT)?
 - what parameters are essential for such detectors?
- If optical emission from operating chip has correlation with processed data, is there any correlation between photon emission and power consumption?
 - if found, this can be used for finding weak spots in protection against power analysis attacks
 - optical emission can be scaled down to an individual transistor

Background

- What is the problem with optical emission analysis attacks?
- Number of photons emitted per every switch of a transistor $N_e = S_e B(L_H I_d/qv_s)T_s \sim 10^{-2}...10^{-4}$ photons/switch
 - S_{e} spectral emission density, B emission bandwidth, L_{H} hot-carrier region length,

 $\rm I_{d}$ – drain current, q – e⁻ charge, $\rm v_{s}$ – carrier saturated velocity, $\rm T_{s}$ – transition time

- Emission spectrum is from ~500nm to above 1200nm with maximum emission at 900nm...1100nm (NIR region)
- Small fraction of emitted photons can be detected: <1%
 - emission is isotropic, so with a lens only 25%...45% is observed
 - there are losses in optics due to reflections and absorption (80%)
 - low quantum efficiency (QE) of detectors in NIR region: 1%...20%
- Backside approach: <0.1%
 - high refractive index of silicon (n_{1000nm} =3.58) causes high reflection (32%) and low critical angle (θ =16.2°) results in reduced aperture

Background

- Optical emission is higher from the n-MOS transistor due to higher mobility of electrons
- Emission takes place near the drain area where the speed of carriers declines

- Challenges in choosing the right detector
 - single-photon sensitivity
 - low emission intensity requires longer integration time, hence, detectors must have low noise and low dark current
 - NIR emission spectrum requires detectors sensitive in that area
- Photomultiplier (PMT)
 - single-sensor detector with large aperture
 - fast detection
- Avalanche photodiode (APD)
 - single-sensor detector with small aperture
 - fast detection
- Cameras with charge-coupled devices (CCD)
 - 2D detector with high resolution: 500x500 to 4000x3000
 - very low frame rate: 10µs to 1s

- Challenges in choosing the right PMT and APD: as good as possible NIR sensitivity, as low as possible dark current
 - PMT usually have very limited NIR sensitivity
 - detectors with better NIR sensitivity have higher dark current
 - low dark current in APD is caused by their small aperture size
 - too small aperture size of APD (10µm...500µm) complicates their usage

Type of detector	Wavelength, nm	QE at 900nm	QE at 1000nm	Dark current, e⁻/s	Time response
Quantar Mepsicron II, S25	180–940	1%	0%	0.005	50ps
Hamamatsu H10330-25	850–1250	2%	2%	2000	900ps
Hamamatsu H6780-01	250–850	0%	0%	400	780ps
Sensl PCDMini-0020	400–1100	2%	1%	50	200ps

- Challenges in choosing the right CCD camera: as good as possible NIR sensitivity, as low as possible dark current
 - monochrome cameras have good NIR sensitivity
 - CCTV and hobbyist astronomical cameras have low dark current and good NIR sensitivity

Type of detector	Wavelength, nm	QE at 900nm	QE at 1000nm	Dark current, e⁻/s	Time response
Quantar Mepsicron II, S25	180–940	1%	0%	0.005	50ps
Hamamatsu C4880-21	200–1200	50%	20%	0.3	20ms
Hamamatsu C4880-50	200–1100	30%	10%	0.01	20ms
Average monochrome CCD	400–1000	5%	1%	1	20ms
Average colour CCD	400–700	0%	0%	1	20ms
Sony Super HAD CCD	300–1050	8%	1%	0.02	10µs
Sony EXview HAD CCD	300–1100	12%	5%	0.02	10µs

- Sample preparation: PIC16F628 microcontroller (0.9µm)
- Locating internal blocks: Flash, EEPROM, SRAM, CPU
- Running the chip at 20MHz clock (5MIPS) with 6V power supply to boost the emission

- PMT setup: decapsulated chip facing sensor's aperture
 - Hamamatsu H6780-01 PMT sensor
- CCD setup: camera mounted on a microscope with the chip placed in a test socket
 - Starlight Xpress SXV-H9 CCD camera

- PMT: 60' acquisition time, digital storage oscilloscope in color-graded mode with infinite persistence with histogram
- SPA: 10Ω resistor, digital storage oscilloscope with active probe
- Test code: bsf portb,3 clrf 0x75 decf 0x75,f bcf portb,3 goto loop
- PMT vs SPA
 - higher bandwidth
 - special hardware will suit better as oscilloscope is not designed for long-time integration (latency issue)

- PMT vs SPA
 - higher bandwidth provides more data for analysis
 - possible localisation of source through apertures and optics
 - good correlation suggests possibility of using optical emission analysis for characterisation of areas contributing to power trace
 - acquisition of emission requires some time with the device under test performing the same operation and precisely synchronised

- CCD
 - 2× objective lens
 - 30' integration time
 - EEPROM data: 00h, FFh
 - SRAM data: variable 00h...FFh
 - continuous EEPROM reading and SRAM writing and reading
- Test code: incf EEADR,f bsf EECON1,RD movf EEDATA,w decf 0x75,f goto loop
- 2D image with recognisable areas of emission from Flash, EEPROM, SRAM and CPU

- CCD with high magnification
 - 100× objective lens
 - 10' integration time
 - EEPROM data: 00h, FFh
 - continuous EEPROM reading
- Test code: incf EEADR,f bsf EECON1,RD movf EEDATA,w goto loop
- Emission from the NMOS transistor is significantly higher than from the PMOS

- EEPROM area
 - 10× objective lens
 - 10' integration time
 - data: 56h, 56h, 56h...56h, 00h
 - continuous EEPROM reading
- Test code: incf EEADR,f bsf EECON1,RD movf EEDATA,w goto loop
- Flash memory has similar structure and gives similar result
 - data extraction is complicated by the fact that program code is executed from the flash memory

- SRAM area
 - 10× objective lens
 - 10' integration time
 - data: A6h, W=A6h
 - continuous reading and writing
- Test code: movf 0x75, w movwf 0x75
 goto loop goto loop
- Low emission from memory cells
 - write drivers, bus drivers, row and column selectors leak the most
- Write data have the same emission for '0' and '1'
 - dual-rail logic used in SRAM: separate bit lines for writing '0' & '1'
 - difference in the emission could predict leakage in the power trace

- SRAM area
 - 10× objective lens
 - 10' integration time
 - data: A6h, W=C3h
 - continuous XOR operation
- Test code: movlw 0xA6 movwf 0x74 movlw 0xC3 xorwf 0x74, f

goto loop

- Leakage through both read and write logic
 - read: intensity is proportional to the number of '1's
 - write: '0's and '1's are separated

- Data recovery
 - slow process: minimum 1 minute per byte
- Modern chips
 - three or more metal layers prevent direct observation and analysis
 - smaller technologies will require longer integration time
- Backside approach
 - silicon is transparent to light with wavelengths above 1000 nm
 - lower spatial resolution of $\sim 1\mu m$ (R=0.61 λ /NA)
 - longer integration time due to higher losses in silicon and optics
 - higher magnification lenses give better result
 - use of NIR optics improves result, but expensive
 - substrate thinning and AR coating are useful, but expensive
 - increase of the power supply voltage boosts the optical emission

- Increasing the power supply voltage: every 10% of increase above nominal voltage boosts the emission by 40%...120%
- PIC16F628: EEPROM reading

Power supply voltage	3.5V	4.0V	4.5V	5.0V	5.5V	6.0V
Photometry results	1046	1286	2427	8400	23292	43026

• PIC16F628 (0.9µm) vs PIC16F628A (0.5µm):

higher density with CMP technology: approx. 5 times lower intensity

• PIC16F628: EEPROM area from front and rear sides higher reflections and absorption in Si: approx. 10 times lower intensity

New challenges

- Actel[®] ProASIC3[®] 0.13µm, 7 metal layers, flash FPGA
 - *"highly secure FPGA"* which is reprogrammable, non-volatile, single-chip and live-at-power-up solution
 - "offer one of the highest levels of design security in the industry"
 - robust design security features: flash logic array, flash ROM, security fuses, FlashLock[™], AES
 - "even without any security measures (such as FlashLock with AES), it is not possible to read back the programming data from a programmed device"
 - allows secure ISP field upgrades using 128-bit AES-encrypted bitstream with AES authentication and MAC verification
 - other security measures: voltage monitors, internal charge pumps, asynchronous internal clock and many others
 - "unique in being highly resistant to both invasive and noninvasive attacks"

- Sample preparation of A3P060 FPGA: front and rear
 - the surface is covered with sticky polymer which needs to be removed for physical access to the surface
 - >99% of the surface is covered with supply grid or dummy fillers
 - backside: low-cost approach used without any treatment

- Sample preparation: front
 - only three top metal layers are visible at a most
 - full imaging will require de-layering and scanning electron microscopy
 - any invasive attacks will require sophisticated and expensive equipment

- Backside imaging is the only possibility
 - low spatial resolution of about $1\mu m$ (R=0.61 λ /NA=0.61 \cdot 1000/0.5)
- 20× NIR objective lens, light source with Si filter
- Locating internal blocks: JTAG, Flash ROM, SRAM
- Optical emission analysis
 - power supply was increased from 1.5V to 2.0V to boost the emission

- Increasing the power supply voltage: every 10% of increase above nominal Vcc boosts the emission by 40%...120%
- A3P060: JTAG ID reading

Power supply voltage	1.5V	1.6V	1.8V	2.0V	2.2V	2.5V
Photometry results	889	1194	1953	5270	9536	23270

- JTAG glue logic
 - 20× NIR objective lens, 60' integration time
 - repeating the same operation
- Some recognisable differences
- Partial reverse engineering information
 - operation-related activity
 - obfuscated data flow paths
 - security-related operations

- Flash ROM (Settings + Data)
 - 20× NIR objective lens
 - 60' integration time
 - continuous reading
- Recognisable data pattern
 - some data can be extracted
 - gives information about location

- SRAM dedicated for AES
 - 20× NIR objective lens
 - 120' integration time
 - continuous initialisation
- AES key recovery
 - key scheduling used in AES
 - AES key can be easily calculated from any round key
 - existence of separate JTAG commands for AES initialisation, authentication and decryption
 - information is leaked by the SRAM array and write drivers

- SRAM dedicated for AES
 - 20× NIR objective lens
 - 120' integration time
 - continuous initialisation
- Exploiting power supply trick
 - alternating the supply voltage during the operation: 2.0V peak
 - 16µs per AES initialisation
 - 1.6µs per each round key: calculation + storage
 - 16 bit at a time: 8 write cycles

- SRAM dedicated for AES
 - 20× NIR objective lens
 - 120' integration time
 - continuous initialisation
- Exploiting power supply trick
 - alternating the supply voltage during the last round operation: 2.5V peak
 - 0.2µs increase of the supply voltage from 1.5V to 2.5V for one write cycle

Countermeasures

- Use of modern chips with multiple metal layers forces an attacker to use backside approach and results in longer time required for the attack
- Metal shielding over sensitive areas can help but cannot prevent backside analysis
- Adding dummy cycles to normal operations
- Encryption makes analysis harder
- Asynchronous circuits could make the attack more problematic as data analysis requires synchronisation

Conclusion

- Optical emission analysis can be carried out at a relatively low cost using hobbyist astronomical CCD cameras with low-magnification optics
- Long exposure time is required: the device must perform the same operation millions of times in a loop
- PMT offers high bandwidth and acquired data have correlation with power analysis results and can be used for finding weak spots in protection against power analysis attacks
- Optical emission analysis offers possibility for partial reverse engineering of chips including data analysis
- Backside approach can help in modern chips, but has lower spatial resolution and requires longer integration time
- Increase of the power supply voltage boosts the optical emission and considerably reduces the time of analysis
- Modern deep-submicron chips do leak information through optical emission when their power supply is increased by at least 30%
- Lack of protection against optical side-channel attacks in modern chips might lead to possible vulnerabilities

Further reading

- J. Ferrigno, M. Hlaváč, "When AES blinks: introducing optical side channel", IET Information Security, Vol. 2, No. 3, 2008, pp. 94–98
- S. Skorobogatov, "Using Optical Emission Analysis for Estimating Contribution to Power Analysis", 6th Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC 2009), 06 September 2009, Lausanne, Switzerland. IEEE-CS Press, ISBN 978-0-7695-3824-2, pp.111–119
- Up-to-date information: http://www.cl.cam.ac.uk/~sps32/