Computer Laboratory Security Seminar – Cambridge University

Towards Interactive Belief, Knowledge & Provability: Possible Application to Zero-Knowledge Proofs ➡ Ph.D. Thesis Chapter 5

Simon Kramer

December 18, 2007

Target audience: Cryptographers, Computer Scientists, Logicians, Philosophers

Overall Argument

- 1. Zero-Knowledge proofs have a *natural* (logical) formulation in terms of *modal* logic.
- 2. Modal operators of *interactive belief*, *knowledge*, and provability are definable as natural generalisations of their noninteractive counterparts.

Overview

- 1. Introduction
 - i. Motivation
 - ii. Goal
 - iii. Prerequisites

individual knowledge

propositional Knowledge

- spatial implication
- evidence & Belief, proof & Provability

epistemic implication

- 2. Interactive individual knowledge, proof & Provability
- 3. Application to Zero-Knowledge proofs
- 4. Interactive evidence & Belief
- 5. Conclusion

Introduction **Motivation**

How to redefine modern cryptography in terms of modal logic? probabilistic polynomial-time Turing-machines

- → low-level & operational definitions (how)
- mentally intractable proofs
- Modern cryptography is cryptic.

How to generalise non-interactive modal concepts to the interactive setting? [van Benthem]

from monologue to dialogue

rational agency (game theory)

Introduction Goal

To redefine modern cryptography in terms of modal logic

- → high-level & declarative definitions (what)
- mentally tractable proofs
- Logical cryptology.

To define **interactive** belief, knowledge, and provability

building blocks for rational agency

Introduction **Prerequisites (1/5)**

Individual knowledge (knowledge of messages):

- name generation
- message reception
- message *analysis*
- message *synthesis*

Introduction **Prerequisites (2/5)**

Propositional Knowledge (Knowledge of the truth of propositions) – almost:

K	$\models K_b(\phi \to \phi') \to (K_b(\phi) \to K$
\mathbf{T}	$\models K_b(\phi) \to \phi$
4	$\models K_b(\phi) \to K_b(K_b(\phi))$
5	$\models \neg K_b(\phi) \to K_b(\neg K_b(\phi))$
Ν	$\frac{\models \phi}{\models K_b(\phi)}$

Introduction **Prerequisites (3/5)**

Spatial implication (assume — guarantee):

for all extensions \mathfrak{s}'' of \mathfrak{s} by \mathfrak{s}' , $\mathfrak{s} \models \phi \triangleright \phi'$:iff if $\mathfrak{s}' \models \phi$ then $\mathfrak{s}'' \models \phi'$

 $\langle \epsilon \cdot \mathbf{I}(\mathsf{Eve}, \{|M|\}_k), P \rangle \models \mathsf{Eve} \, \mathsf{k} \, \mathsf{k} \triangleright \mathsf{Eve} \, \mathsf{k} \, M$

 $\not\models \neg \text{Eve } \mathsf{k} M \triangleright \neg \text{Eve } \mathsf{k} M$ \models Eve k $M \triangleright$ Eve k M

Simon Kramer, Ecole Polytechnique Paris 8

Introduction **Prerequisites (4/5)**

Provability (other than Artëmov's) & proof:

 $\mathsf{P}_b(\phi) := \exists m(m \text{ proofFor } \phi \land b \mathbf{k} m)$ $m \operatorname{proofFor} \phi := \forall (c : A_{Adv})(c \mid m \triangleright \mathsf{K}_c(\phi))$

Theorem: B_a is KD4

9

Belief and evidence:

 $m \operatorname{evidenceFor} \phi := \forall (c : A_{\operatorname{Adv}})(\mathsf{K}_c(\phi) \triangleright c \, \mathsf{k} \, m)$ $\mathsf{B}_{b}(\phi) := \exists m(m \text{ evidenceFor } \phi \land b \land m)$

Simon Kramer, Ecole Polytechnique Paris

Introduction **Prerequisites (5/5)**

Epistemic implication (*if* – *then* **possibly** *because*):

 $\langle \epsilon \cdot \mathbf{I}(\mathsf{Eve}, \{|M|\}_k) \cdot \mathbf{I}(\mathsf{Eve}, k), P \rangle \models \mathsf{Eve} \, \mathsf{k} \, M \supseteq \mathsf{Eve} \, \mathsf{k} \, k$

Derivation of individual knowledge

$$\begin{array}{c} \epsilon \cdot \mathbf{I}(\mathsf{Eve}, \{\![M]\!]_k) \cdot \mathbf{I}(\mathsf{Eve}, k) \vdash_{\mathsf{Eve}}^{\{\mathbf{I}(\mathsf{Eve}, k)\}} (\mathsf{Eve}, k) \\ \hline \epsilon \cdot \mathbf{I}(\mathsf{Eve}, \{\![M]\!]_k) \cdot \mathbf{I}(\mathsf{Eve}, k) \vdash_{\mathsf{Eve}}^{\{\mathbf{I}(\mathsf{Eve}, k)\}} (\mathsf{Eve}, k) \\ \hline \epsilon \cdot \mathbf{I}(\mathsf{Eve}, \{\![M]\!]_k) \cdot \mathbf{I}(\mathsf{Eve}, k) \vdash_{\mathsf{Eve}}^{\{\mathbf{I}(\mathsf{Eve}, k)\}} k \\ \hline \epsilon \cdot \mathbf{I}(\mathsf{Eve}, \{\![M]\!]_k) \cdot \mathbf{I}(\mathsf{Eve}, k) \vdash_{\mathsf{Eve}}^{\{\mathbf{I}(\mathsf{Eve}, k)\}} k \\ \hline \epsilon \cdot \mathbf{I}(\mathsf{Eve}, \{\![M]\!]_k) \cdot \mathbf{I}(\mathsf{Eve}, k) \vdash_{\mathsf{Eve}}^{\{\mathbf{I}(\mathsf{Eve}, k)\}} M \end{array}$$

Simon Kramer, Ecole Polytechnique Paris 10

Interactive individual knowledge, proof & Provability

Interactive individual knowledge

 $M' \supseteq_{(a,b)} M := b \mathrel{\mathsf{k}} M' \land (b \mathrel{\mathsf{k}} M' \supseteq a \mathrel{\mathsf{k}} M)$

2-party interactive proof

 $M \operatorname{iProofFor}_{(a,b)} \phi := M \operatorname{iProofFor}_{(a,b)}^{a} \phi$ $(M, \blacksquare) \operatorname{iProofFor}_{(a,b)}^{c} \phi := c \operatorname{k} M \wedge M \operatorname{proofFor} \phi$

 $(M, (M', I)) \operatorname{\mathsf{iProofFor}}_{(a,b)}^{c} \phi := M' \supseteq_{(a,b)} M \land (M', I) \operatorname{\mathsf{iProofFor}}_{(b,a)}^{c} \phi$

Possible Application to Zero-Knowledge Proofs (1/3)

2-party *Interactive* Provability

 $\mathsf{IP}_{(a,b)}(\phi) := \exists m(m \; \mathsf{iProofFor}_{(a,b)} \; \phi)$

Zero-Knowledge proofs (definition) "Zero-knowledge proofs are defined as those [interactive] proofs that convey no additional knowledge other than the correctness of the $\neg \exists m''(\mathsf{K}_a(\mathsf{K}_b(m'' \text{ evidenceFor } \phi))))$

proposition $[\phi]$ in question." [GMR89]

 $\mathsf{ZK}_{(a,b)}(\phi) := \mathsf{IP}_{(a,b)}(\mathsf{K}_a(\exists m'(\mathsf{K}_b(m' \operatorname{proofFor} \phi))) \land$

Possible Application to Zero-Knowledge Proofs (2/3) Zero-Knowledge proofs (properties)

Spelled out, a (the verifier) knows through interaction with b(the prover) that b knows a proof (m') for the proposition ϕ , however a does not know that proof nor any evidence (m'')that could corroborate the truth of ϕ . (Observe the importance of the scope of the existential quantifiers.) Philosophically speaking, a has pure propositional knowledge of ϕ , i.e., a has zero individual (and thus zero intuitionistic—no witness!) knowledge *relevant* to the truth of ϕ . In Goldreich's words, it is "as if [the verifier] was told by a trusted party that the assertion holds" [Gol05, Page 39].

Possible Application to Zero-Knowledge Proofs (3/3)

Zero-Knowledge proofs (conjecture) "[A]nything that is feasibly computable from a zeroknowledge proof is also feasibly computable from the (valid) assertion itself." [Gol05, Page 39]

 $\models \phi \to ((\mathsf{K}_{a}(\varphi) \supseteq \mathsf{ZK}_{(a,b)}(\phi)) \to (\mathsf{K}_{a}(\varphi) \supseteq \phi))$

Interactive evidence & Belief

2-party *interactive* evidence

- $M ext{iEvidenceFor}_{(a,b)} \phi := M ext{iEvidenceFor}_{(a,b)}^a \phi$
- (M, \blacksquare) iEvidenceFor $^{c}_{(a,b)} \phi := c \ k \ M \land M$ evidenceFor ϕ
- (M, (M', I)) iEvidenceFor $^{c}_{(a,b)} \phi := M' \supseteq_{(a,b)} M \land (M', I)$ iEvidenceFor $^{c}_{(b,a)} \phi$

2-party *interactive* Belief

 $\mathsf{IB}_{(a,b)}(\phi) := \exists m(m \, \mathsf{iEvidenceFor}_{(a,b)} \phi)$

Conclusion

- 1. Modern cryptography is cryptic due to its machine-based definitions.
- 2. This deep-rooted problem must be administered a radical remedy: redefinition.
- 3. Modal logic is a good candidate remedy.

