$C \cdot \underbrace{O \cdot M \cdot O \cdot D}_{\text{MACHER MARKETTAR MAR$

The MIST Expⁿ Algorithm

```
{ To compute: ResultM = M<sup>E</sup> }
StartM ← M;
ResultM ← 1;
While E > 0 do
Begin
Choose a random "divisor" D;
R ← E mod D;
If R ≠ 0 then
ResultM ← StartM<sup>R</sup> × ResultM;
StartM ← StartM<sup>D</sup>;
E ← E div D;
{ Invariant: M<sup>E</sup> Init = StartM<sup>E</sup> × ResultM }
End

Colin D. Walter, Comado Research Lab, Bradford
Next Generation Digital Security Solutions
```

C · O · M · O · D · O

Addition Sub-Chains

 For each pair (D,R) we need an addition chain which calculates StartM^D and StartM^R efficiently.

```
1+1=2 for D=2, any R
1+1=2; 1+2=3 for D=3, any R
1+1=2; 1+2=3; 2+3=5 for D=5, any R\neq 4
1+1=2; 2+2=4; 1+4=5 for D=5, R=4
```

· These are minimal, i.e. fewest possible multns.

The MIST Algorithm

Colin D. Walter, Comodo Research Lab, Bradford Next Generation Digital Security Solutions

C - O - M - O - D - O

Addition Sub-Chains

 We need instructions which include the update of ResultM: ijk means multiply contents at addresses i and j and write result to address k.

• Use 1 for location of StartM, 2 for TempM, 3 for ResultM:

```
(111)
                         for (D,R) = (2,0)
(112, 133)
                         for (D.R) = (2.1)
                         for (D,R) = (3,0)
(112, 121)
(112, 133, 121)
                         for (D,R) = (3,1)
(112, 233, 121)
                          for (D,R) = (3,2)
(112, 121, 121)
                          for (D,R) = (5,0)
(112, 133, 121, 121)
                         for (D,R) = (5,1)
(112, 233, 121, 121)
(112, 121, 133, 121)
                         for (D.R) = (5.2)
                         for (D,R) = (5,3)
(112, 222, 233, 121)
                         for (D,R) = (5,4)
```

The MIST Algorithm

Colin D. Walter, Comodo Research Lab, Bradford Next Generation Digital Security Solutions Probability of each (D,R)

This gives the probabilities:

 $\begin{aligned} & \boldsymbol{p_D} &= \sum_{\boldsymbol{i}} p_{\boldsymbol{i}} p_{D|\boldsymbol{i}} & \text{for each divisor } \boldsymbol{D} \\ & \boldsymbol{p_{D,R}} &= \sum_{\boldsymbol{i} = \boldsymbol{R} \bmod 30} p_{\boldsymbol{i}} p_{D|\boldsymbol{i}} & \text{for each pair } (\boldsymbol{D,R}) \end{aligned}$

For the divisor selection process above:

 $p_2 = 0.629$ $p_3 = 0.228$ $p_5 = 0.142$

The MIST Algorithm

Colin D. Walter, Comodo Research Lab, Bradford Next Generation Digital Security Solutions

 $C\cdot O\cdot M\cdot O\cdot D\cdot O$

Avage Addn Chain Properties

• The probabilities of addition sub-chain lengths are:

```
length 1 is p_{2,0} = 0.354

length 2 is p_{3,0} + p_{2,1} = 0.458

length 3 is p_{5,0} + p_{3,1} + p_{3,2} = 0.139

length 4 is p_{5,1} + p_{5,2} + p_{5,3} + p_{5,4} = 0.049
```

- · So average divisor sub-chain has length 1.883 mults
- Av decrease in E is $2^{p_2}3^{p_3}5^{p_5} = 2.500$ per subchain
- So $0.757 \log_2 E$ subchains & $1.425 \log_2 E$ mult^s
- This is *faster* than the binary expⁿ algorithm and marginally slower than 4-ary expⁿ

The MIST Algorithm

Colin D. Walter, Comodo Research Lab, Bradford Next Generation Digital Security Solutions Choice of Divisor

Initial choice: $D \leftarrow 0$;

If Random(8) < 7 then

If (E mod 2) = 0 then $D \leftarrow 2$ else

If (E mod 5) = 0 then $D \leftarrow 5$ else

If (E mod 3) = 0 then $D \leftarrow 3$;

If D = 0 then

Begin $p \leftarrow Random(8)$;

If p < 6 then $D \leftarrow 2$ else

If p < 7 then $D \leftarrow 3$ else $D \leftarrow 5$

End

Avge: $1.4247 \times \log_2 E$ mult^{ns}

The MIST Algorithm

Colin D. Walter, Comodo Research Lab, Bradford Next Generation Digital Security Solutions

6

C - O - M - O - D - O

C · Q · M · Q · D · O

Choice of Divisor

```
A semi-deterministic choice:
  D \leftarrow 0:
  { Delete this line: If Random(8) < 7 then }
      If (E \mod 2) = 0 then D \leftarrow 2 else
      If (E \mod 5) = 0 then D \leftarrow 5 else
      If (E \mod 3) = 0 \text{ then } D \leftarrow 3;
  If D = 0 then
  Begin
      p \leftarrow Random(8);
      If p < 6 then D \leftarrow 2 else
      If p < 7 then D \leftarrow 3 else
      D ← 5
   End
                                         Avge: 1.4197×log<sub>2</sub>E mult<sup>ns</sup>
```

The MIST Algorithm

S&M Chains

C · O · M · O · D · O

- Assume an attacker can distinguish Squares and Multiplies from a single exponentiation (e.g. from Hamming weights of arguments deduced from power variation on bus.)
- A division chain is the list of pairs (D,R) used in an expⁿ scheme. It determines the addition chain to be used, and hence the sequence of squares and multiplies which occur:

(2,1), (3,0)(3,1), (3,2), (5,0) **SMMM** SMM (5,1), (5,2), (5,3) SSMM (5.4)

Divisor sub-chain boundaries are deduced from occurrences of S except for ambiguity between (5,4) and (2,0)(3,x) or (2,0)(5,0).

Colin D. Walter, Comodo Research Lub, Bradford Next Generation Digital Security Solutions

S&M Chains

· There is/are:

I way to interpret S

2 ways to interpret *SMM*3 ways to interpret *SMM* with no preceding *S*4 ways to interpret *SMM* with preceding *S*

4 ways to interpret SMMM

- · Using the known probabilities for each occurring: THEOREM: The search space for exponents with the same S&M sequence as E has size approx $E^{3/5}$.
- For 4-ary expⁿ, it is **much** easier to average traces. easier to be certain of the S&M sequence, and the search space is only $E^{7/18}$ — which is smaller.

The MIST Algorithm

Colin D. Walter, Comodo Research Lab, Bradford Next Generation Digital Security Solutions

C · O · M · O · D · O

Operand Re-Use

C - O - M - O - D - O

- THEOREM: With MIST, the search space for exponents with the same operand sharing sequence as E has size approx $E^{1/3}$.
 - this assumes opd sharing is determined with total accuracy from one exponentiation;
 - it also assumes unconstrained choice of divisors at each step;
 - in comparison, the search space for m-ary \exp^n has size E^n .
- It isn't clear if recovery from errors is possible.
- Selecting exact divisors will vastly decrease the search.

Colin D. Walter, Comodo Research Lab, Bradford Next Generation Digital Security Solutions

 $C + \underbrace{O \cdot M \cdot O \cdot D}_{B \cup SEARCOLLAD} \cdot O$

Deterministic Choices

- The deterministic constraints cut the search space for E.
- By how much? Consecutive divisor choices are not independent, so theory simplified this way is inadequate.
- When the divisor is chosen semi-deterministically (as above) and these constraints are taken into account: THEOREM: The search space for exponents with the same S&M sequence as E has size approx $E^{1/4}$.
- It is still computationally infeasible to recover E.

The MIST Algorithm

11

Deterministic Choices

 $C\cdot O\cdot M\cdot O\cdot D\cdot O$

- Knowledge of op^d sharing cuts the search space further.
- By how much? Simulations were used to find out.
- When the divisor is chosen deterministically and these constraints are taken into account:

THEOREM: The search space for exponents with the same op^d sharing pattern as E has size approx $E^{0.115}$.

It may now be computationally feasible to recover E: 768-bit exponents give search space of size 288, 1024-bit known RSA modulus with CRT has size only 259.

The MIST Algorithm