
© 1999 Citrix Systems
(Cambridge)

1

Richard
Hayton

Citrix Systems

(Cambridge)

Ken
Moody

University of Cambridge

An Open Architecture for
Secure Interworking

Services

© 1999 Citrix Systems
(Cambridge)

2

Access Control Fundamentals

� Access control is about classifying clients
� those that may perform some action

� those that may not

� If we wish to support transfer of privileges
� we must also classify clients that may delegate access

� and those that may be delegated to…...

� We could consider transfer of privilege as the right to
modify the access control policy
� the standard ACL approach

� However this is dangerously difficult to control

© 1999 Citrix Systems
(Cambridge)

3

An alternative approach

� Formalise the rules by which the dynamic aspect of a
policy may evolve
� i.e. who may delegate, revoke etc.

� These rules must allow recursive specification
� X may delegate R to Y, but Y may only delegate R’ to Z

� Describe delegation in terms of the roles of the clients
� easier to understand than delegation of rights

� easy to specify recursive cases

� This approach distinguishes between static policy rules
and dynamic policy instantiations.

© 1999 Citrix Systems
(Cambridge)

4

Why separate STATIC and DYNAMIC aspects?

� static policy can be analysed to see if a particular type
 of access is feasible
� “is it possible for a student to see the exam”

� there are decidability issues for large systems

� It is not possible to grant access that breaches policy
� e.g. accidentally (mis)editing an ACL

� all valid applications of policy rules are embodied
in the static policy

� Easier to manage

© 1999 Citrix Systems
(Cambridge)

5

RDL: Role Definition Language

� A means of expressing static policy statements
� Described in terms of the preconditions for role entry

� Strong grounding in formal methods

� Extensions for delegation and revocation

� Policies as Proofs

� STATIC Policy corresponds to a set of axioms

� DYNAMIC Policy corresponds to a set of theorems

� Validating access ≡ validating a proof

© 1999 Citrix Systems
(Cambridge)

6

An RDL Statement

� rolename(args1) ← rolename(args2)
 [∧ rolename(args3)...]

 [: constraints on args]

� e.g.

ChiefExaminer() ← LoggedOn(ajh,x)

: x in TrustedServers

grant client if client already has

© 1999 Citrix Systems
(Cambridge)

7

Delegation

� rolename(args) ← rolename(args) � rolename(args)
 [: constraints on args]

� e.g.

Examiner(e) ← LoggedOn(p, x)

 ��ChiefExaminer() : p in Staff

© 1999 Citrix Systems
(Cambridge)

8

RDL Statements as Horn Clauses

Examiner(e) ← LoggedOn(p, x)

� ChiefExaminer() : p in Staff

α requests Examiner(e) based on L,D,C,{E}

L is of the form “α has LoggedOn(p,x)”

D is of the form “β delegates Examiner(e) to P”

“α has P” is provable from {L,E}

C is of the form “β has ChiefExaminer()”

p is a member of the set Staff

α may be issued with “α has Examiner(e)”

Is equivalent to

© 1999 Citrix Systems
(Cambridge)

9

Revocation

� May want to revoke for a variety of reasons
� delegator wishes to revoke

� delegator is revoked

� preconditions fail (e.g. no longer logged on)

� side conditions fail (e.g. removed from a group)

� Must control which of these are active
� e.g. cannot revoke a vote

� Mechanism for revocation should be rapid

© 1999 Citrix Systems
(Cambridge)

10

Specifying Revocation

� Clauses so far are ENTRY CONDITIONS

� Must be true to allow entry to a role

� Wish to revoke when some conditions no longer hold...

� MEMBERSHIP RULES

� Revocation occurs when membership can no longer be
proved using the MEMBERSHIP RULES

© 1999 Citrix Systems
(Cambridge)

11

Revocation Example

� Revoke Candidate role
� at the whim of the Examiner

� if the Examiner is revoked

� if the candidate ceases to be a student

� Don’t revoke under any other circumstances

� Specify by annotating RDL statement

© 1999 Citrix Systems
(Cambridge)

12

Annotated RDL for Revocation

Candidate(p,e) ← LoggedOn(p,x)

�* Examiner(e)*

: (p in Students)*

An example theorem:
C2 has Examiner(Math)

C2 delegates Candidate(Fred,Math) to C1

Fred in Students

C1 has Candidate(Fred,Math)

© 1999 Citrix Systems
(Cambridge)

13

Policy Definition : Summary

� We must distinguish static from dynamic policy
� the only effective way to manage complexity

� RDL provides straightforward but powerful policy
expression
� formal grounding

� extensible

� so how does it all work in practice?

© 1999 Citrix Systems
(Cambridge)

14

Implementation Approach
� Services

� manage policy related to service objects and service roles

� issue certificates to clients to represent entry to a role

� Clients
� obtain certificates from a variety of services

� choice which certificate to use when

� Authentication
� integrity check on client specific certificate

� validation of proof of certificate theorem
� involves a callback to the issuing service (to allow rapid revocation)

� we build proofs when certificates are issued to make this fast

© 1999 Citrix Systems
(Cambridge)

15

One service as a client of another

policy

Enter Login role

1.

Check client has Login role
3.

policy2.

Request entry to Examiner role

Examination
Service

Login
Service

Client

© 1999 Citrix Systems
(Cambridge)

16

Policy Separation
� A service may make use of the roles issues by another

service without being concerned with the mechanisms by
which these roles are issued and revoked.

� This is a powerful abstraction
� allows us to encapsulate legacy systems

� allows for system evolution

� new services do not weaken old services

� services can be separately administered

� different services can make different
security/efficiency/availability trade-offs.

all the advantages of object oriented programming

© 1999 Citrix Systems
(Cambridge)

17

Managing Proofs

� We construct proofs dynamically, as certificates are issued
� this allows rapid validation of role membership

� These proofs may be collapsed due to revocation

� The implementation of this is the key to OASIS
� the rest of the talk will give an overview of how this works

� We have tested this with a prototype implementation

© 1999 Citrix Systems
(Cambridge)

18

Managing Proofs - Credential Records

� Small records linked to form a proof tree
� Each record represents this service’s belief about some fact

� validity of a role membership

� group membership

� other belief (e.g. it is Sunday)

� Each certificate is validated by a single credential record
� fast to validate

� easy to construct

� easy to revoke

C1 has Candidate(Fred,Math) ❑

© 1999 Citrix Systems
(Cambridge)

19

Credential Record Graphs

C1 has Login.LoggedOn(Fred) ❑

C2 has Examiner(Math) ❑

C1�C2 ❑

Fred in Students

C1 has Candidate(Fred,Math) ❑

© 1999 Citrix Systems
(Cambridge)

20

Credential Record Graphs

C1 has Login.LoggedOn(Fred) ❑

C2 has Examiner(Math) ❑

C1�C2 ❑

Fred in Students

C1 has Candidate(Fred,Math) ❑

© 1999 Citrix Systems
(Cambridge)

21

Events: Detecting Failure

� on a failure
� mark records as unknown

� control use of related certificates

� don’t destroy state
� rapid recovery

� Tuneable implementation
� heartbeat interval

� acceptable delay before
signalling failure

Change Events
Heart Beats

Unknown

© 1999 Citrix Systems
(Cambridge)

22

Summary

� Policy Definition

� Need a powerful language for STATIC policy

� Need a mechanism for applying policy DYNAMICALLY

� Scale & Complexity
� Each service manages its own roles

� Implementation(policy) is encapsulated in service
� expression, mechanism, trade-offs …..

� Validation
� dynamically build proof trees for rapid validation

� rapid, selective revocation is then straightforward

