
Compounds: a next-generation

hierarchical data model (I)
Markus G. Kuhn, Steven J. Murdoch, Piotr Zieliński

Computer Laboratory
Security Group

Abstract

Compounds provide a simple, flexible, hierarchical data model that
unifies the advantages of XML and file systems. We originally designed
it for Project Dendros, our distributed, revision-controlled storage sys-
tem that aims to fully separate the control over data from its storage
location. Compounds also provide an excellent extensible and general-
purpose data format. A processing framework based on stackable fil-
ters allowed us to add rich functionality in a highly modular man-
ner, including access control, compression, encryption, serialization,
querying, transformation, remote access, and revision control.

XML started out as a plain-text file format; later a whole range of
different APIs and abstract data models emerged (SAX, DOM, XML
Infoset, XPath, etc.). The confusion between content and “syntactic

sugar” in XML documents makes XML difficult to use with alterna-
tive representations, digital signatures and in revision-control systems.
Compounds started out as a far simpler, yet more flexible abstract data
model, for which several fully equivalent plain-text, binary and graph-
ical representations are defined. Compounds can naturally represent
XML in any of its data models.

Like XML, compounds are trees of strings. Unlike in XML, com-
pounds clarify for each child whether its position relative to its siblings
matters – as in structured text documents – or not – as in relational
databases and file systems. This distinction not only simplifies the
automatic merging of concurrent updates; it also supports encodings
optimized for fast access.

Brief definition of compounds

A compound is a recursively defined structure.
Each compound consists of five elements:
STRING — An arbitrary-length string of bytes.
TAG — A single byte, that distinguishes sev-
eral kinds of STRING, for example:

control strings are reserved for use by
the compound processing framework
(e.g., to activate filters)
meta strings allow an application to
distinguish textual meta information
from normal text (e.g., for markup
tags, such as XML element names)
text strings are the standard type for
any normal character data (UTF-8)
binary strings are used for arbitrary
non-text data (typically displayed in
hexadecimal)

DIRECTORY — a mapping from key com-
pounds to value compounds
KEY SET — a subset (“visible keys”) of the set
of key compounds in the DIRECTORY

LIST — a sequence of compounds

DIRECTORY access: A value compound can
only be accessed by providing the correspond-
ing key compound. If a provided key is not
contained in the DIRECTORY, the reply will
be a special nil value that is distinct from
all compounds, to indicate that the provided
key was invalid. The set of all valid keys
may be infinite where a compound is not a
stored data structure but is generated on-the-
fly algorithmically. The set of valid keys can-
not be enumerated, but a compound carries a
KEY SET that enumerates a subset of all valid
keys. These are called visible keys, because
a user can discover their existence from the
KEY SET.

Graphical representation

We draw a box ( ) around each com-
pound. Inside, the STRING is shown as an
ellipse ( string ), and the TAG determines its
colour.

Compounds contained inside another com-
pound are shown below its string , connected
to a vertical line. LIST elements appear to the
right of this line, connected via a small circle;

the first list element appearing highest. The
key/value pairs of the DIRECTORY are con-
nected via a small right-pointing arrowhead,
with the key on the left and the value on the
right of the vertical line. Invisible keys are in-
dicated by white arrowheads.

A simple example compound:

authors

1

email mgk25@cl.cam.ac.uk

Markus G. Kuhn

2 Steven J. Murdoch

3 Piotr Zieliński

lang en

abstract Compounds provide ...

approved

The top-level compound has an empty string, an
empty list, and three visible key/value entries in its
directory. The value compound associated with the
authors key has an empty string, an empty direc-
tory and a list with three elements. (As a conven-
tion, where the STRING is not used, it is set to be an
empty control string, to distinguish unused strings
from the empty text string.)

Text representation

For debugging, documentation, and direct
manual access to compounds by developers
or system administrators, we need a plain-
text representation. Here, we outline a sim-
ple subset of the Compound Representation
Form – Text (CRF-T) that we designed for
such purposes. It is equally suited to discuss
compounds informally via email and to han-
dle them in a round-trip compatible way with
plain-text editors (emacs, notepad, etc.).

In CRF-T, each compound starts with a rep-
resentation of the tag and string, optionally
followed by directory and list elements en-
closed in parentheses, separated by commas.
For all KEY SET elements, the corresponding
key/value pairs from the DICTIONARY appear
in arbitrary order, separated by =. All list el-
ements appear on their own, in the order in
which they appear in the list.

STRING ( key = value , key = value , . . . ,
list item , list item , . . . )

Each STRING is enclosed in ". . ." if it con-
tains characters other than letters and dig-
its. Binary strings are shown as hexadeci-
mal digits enclosed in <. . .>. Some tag val-
ues are indicated by a punctuation prefix: . =

control string and * = meta string. Examples:

size *bold <ff7f> .reset "Dr. Smith"

Directory elements ( key = value ) and list ele-

ments ( list item ) may be mixed arbitrarily. In
the data model, only the relative positions of
list elements will be preserved, not those of di-
rectory elements.

The previous example compound in CRF-T:

(
authors=
(

"Markus G. Kuhn"
(email="mgk25@cl.cam.ac.uk"),

"Steven J. Murdoch",
"Piotr Zieli\u0144ski"

),
abstract(lang=en)=

"Compounds provide a ...",
approved=

)

Other representations

The full CRF-T encoding adds a TEX-like
notation optimized for text-markup applica-
tions.

We have defined a sorting order for com-
pounds and a unique, canonical binary en-
coding, CRF-S, that preserves this order in
the lexicographic sorting order of the result-
ing byte strings. It is of particular use in con-
nection with B-trees and cryptographic hash
functions.

Our CRF-B encoding is a binary encoding op-
timized for compactness and efficient memory
access.

Future variants will be particularly optimized
for efficient on-disk access (good page locality,
concurrent access, crash recovery).

2005-06-30



Compounds: a next-generation

hierarchical data model (II)
Markus G. Kuhn, Steven J. Murdoch, Piotr Zieliński

Computer Laboratory
Security Group

Paths

Compounds can not only represent user data,
but also locations in, operations on, and dif-
ferences between other compounds. A com-
pound of the form

a

b

c

(a=(b=(c=)))

is called a path when it represents a location
within another compound, such as

m(a=n(b=o(c=golf(1 2)), d=q(e=6)))

The above path identifies the subcompound
reached by descending through the keys a, b,
and c. The abbreviated notation

a/b/c

represents exactly the same path. Our binary
compound representation handles paths just
as efficiently as lists of the same length. Rep-
resenting paths as a degenerated tree of nested
compounds allows us to address several loca-
tions in a compound within a single path, as
in

a/b/{c, d/e} ≡ (a=(b=(c=, d=(e=))))

Filters

The compound architecture not only defines a
data representation concept, but also a mod-
ular processing model. In the simplest case,
an application interacts with a compound
store directly, via a standardized interface that
provides support for navigating, reading and
modifying a compound. A filter is an inter-
mediate layer that can be inserted between an
application and a compound store.

application

filter

filter

filter

compound

store

remote

server

filter

filter

compound

store

compound

access

interface

network

connection

Filters use the same interface at both ends.
Downwards, they act like an application to
access the original compound below. Up-
wards they act like a compound store that of-
fers a filtered compound to an application.

A filter provides some value-added service for
an application. There are two types of filters.

Augmentation filters do not change any visible
aspect of the original compound. They merely
add invisible keys, namely control strings re-
served for the respective type of filter. A typ-
ical example would be a checksum filter that
adds a SHA-256 hash of each compound:

Original compound:

size

1 32

data ff00...

img

⇓

Filtered compound:

size

1

sha256 ...

32

sha256 ...

data

sha256 ...

ff00...

sha256 ...

img

The added keys are not visible in the KEY SET

and their values are usually calculated on-the-
fly as the user queries their value. The base fil-
ter is an augmentation filter that adds all keys
necessary to ensure that paths can address any
part of a compound, including substrings and
list elements, as in

a/b/c/.s(1,2) = go

Substitution filters are triggered by certain
control strings in the original compound.
They transform the entire compound from the
control string downwards. A typical exam-
ple would be a filter that provides on-the-fly
decompression of compressed strings or com-
pounds:

Original compound:

data

1 4df9a5...

lzw

img

⇓

Filtered compound:

data 00007fffff00...

img

Other substitution filters implement symbolic
links, remote access to other compound sys-
tems, or even entire revision control systems.
Most substitution filters also work as aug-
mentation filters and add an invisible key that
grants direct access to the original compound
below.

Several filters can be stacked, since they use
the same interface at both ends. A filter sched-
uler automatically invokes filters as necessary,
depending on the path accessed by the ap-
plication and the control strings encountered
along it.

filter

scheduler

application

compound

store

filter

filt
erfilter

filt
er

Most of the convenience and functionality
of a compound system is implemented in a
highly modular way via filters. In a dis-
tributed implementation, the ability to reorder
and bypass filters allows users to control,
which filter is executed on which side of each
network connection.

Compounds versus XML

XML documents can easily be mapped to
compounds:

• XML element names, entity names, text,
and attribute names/values all become com-
pound strings

• child elements and text inside an element
form the list of the compound representing
the XML element

• element names become meta strings, while
text maps to text strings, to distinguish
them in lists

• XML attribute names and values form the
dictionary of the compound representing
the XML element in which they occur.

Compounds offer all the benefits of XML, but
have fewer restrictions. They may be viewed
as an extended and enhanced version of XML
where:

• both attribute names and values can recur-
sively be fully-fledged structured XML doc-
uments, not just flat strings

• new attributes can be attached to any string,
not just to element names

• a clearer and simpler document model sim-
plifies automated edits and the application
of secure hash functions

• any part of a compound can hold arbitrary
binary data, without any need for extra
transparency encodings such as base64

More information:
www.cl.cam.ac.uk/Research/Security/dendros

2005-06-30


