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The adaptive template attack [1] aims to improve the cross-device template accuracy by
modifying the template models to fit the target device’s leakage signal. Template attacks
usually start with a profiling phase that builds multivariate Gaussian (MVG) leakage mod-
els of intermediate values in a cryptographic computation. They then use those models to
classify leakage signals observed in an attack phase and infer intermediate values from that.
However, this attack may not be practical as templates built on a profiling device may not
match the actual leakage of an attacked device well enough and the attacked device may
not be available for profiling.
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We present here a new way of improving the template portability by combining supervised
learning (MVG template building) with an unsupervised learning technique (template ad-
justment). Our processing pipeline starts conventionally, with point selection and LDA-
based dimensionality reduction, to build the initial templates for a profiling device. We
then reuse the same dimensionality-reducing projection in the attack phase, but follow it
with the Expectation–Maximization (EM) algorithm for template adjustment. The EM al-
gorithm is initialized with the template parameters from the profiling device, and then fed
with unlabeled traces from the attacked device. This should tailor the resulting model to
better fit the target device’s leakage model.
The binomial sampler of CRYSTALS-KYBER turned out to be an attractive target, as it
outputs a sequence of symbols chosen from one of five values, i.e. K = {−2,−1, 0, 1, 2},
resulting in an efficient parameter estimation problem. At the same time, this target has
very high accuracy requirements for the classifier, as KYBER samples several hundred such
values each time.

Table 1: Required template accuracy of the desired attack success rate (SR).

50 % SR 90 % SR 99 % SR
AES-128 (16 bytes) 95.76 % 99.344 % 99.9372 %
AES-256 (32 bytes) 97.85 % 99.671 % 99.9686 %
Kyber-512 99.86 % 99.979 % 99.9980 %
Kyber-768 99.91 % 99.986 % 99.9986 %
Kyber-1024 99.93 % 99.990 % 99.9999 %

Adaptive templates and EM algorithm

When adjusting the profiled templates, we use the EM algorithm to characterize the at-
tacked trace set in the LDA subspace as a Gaussian mixture model (GMM). This idea is
similar to the Cross-Device Profiled Attack (CDPA) introduced by Cao [2], which adds a
fine-tuning step to let their classifier neural network learn the target’s leakage model. In
our experiments, we observed that the commonly used dimensionality reduction technique
(LDA) can produce well-separated data groups across different devices. Still, the projected
attack data often drifted away from the MVG profiled template models due to cross-device
signal variance, as shown in Figure 1(a). By employing the EM algorithm to adjust the
templates, we can vastly reduce this model-data discrepancy.
GMM Modeling. A Gaussian mixture model is composed of |K| Gaussian components θi,
each with a mixture weight πi that sums up to 1.

|K|: Number of Gaussian components, i.e. K = {k1, . . . , kM}
θi∈K : Gaussian components’ parameters, i.e. θi = (µi,Σi)

πi∈K : The mixture weight of the Gaussian components
In the profiling phase, we use the multivariate Gaussian model to characterize the
traces of different intermediate values. By combining all the MVG templates, we can
form a Gaussian mixture Θ = {(πk1

, θk1
), . . . , (πkM

, θkM
)} to characterize a target de-

vice’s leakage. The weights πi of the Gaussian components are governed by the tar-
geted intermediate variable’s probability distribution. For instance, the binomially dis-
tributed secret key variable S in CRYSTALS-KYBER will have the mixture weights ΘS =
{(0.0625, θ−2), (0.25, θ−1), (0.375, θ0), (0.25, θ1), (0.0625, θ2)}.
EM Algorithm. The EM algorithm is useful in parameter estimation or to infer latent vari-
ables whose values are unknown. By iteratively updating the parameters to maximize the
likelihood of the observed data while simultaneously re-estimating the probability distri-
bution of the latent variables, EM facilitates parameter estimation for GMM.

E-step: Calculate the posterior distribution of the latent variable (intermediate vari-
able) S, with the given attacked trace set Ta = {t1, . . . , tN} and GMM Θ(l−1):
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M-step: Find the optimal Θ by maximizing the expectation of the likelihood with
respect to the posterior latent variable distribution from the E-step. Note that, since
the Gaussian components’ weights πi are set by the probability distribution of the
targeted intermediate variable as a known GMM parameter, we keep the πi fixed
during the M-step:
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Measurement setup

We target the CRYSTALS-KYBER implementation from the pqm4 crypto library, com-
piled for ARM Cortex-M4 with gcc -Os. The target hardware setup uses a Chip-
Whisperer CW308T-STM32F-SOCKET board, which allows us to easily swap eight
STM32F303RCT7 devices within the same measurement setup. We bought these MCUs
from four different component distributors (DK, FN, MS, RS) to obtain samples of differ-
ent batches with different manufacturing dates and thus ensure a wider spread in manufac-
turing variation. We supplied the targets with a 5 MHz external clock signal phase-locked
with a 10-bit oscilloscope (NI PXIe-5160) connected across a 10-ohm resistor in the VCC
line via a 5 MHz high-pass filter.

Result

Figure 1(a) demonstrates the cross-device mismatch between profiling-device templates and
attack-device traces before the EM adjustment. The gray scattered dots are the attack trace
set Ta in the LDA subspace, and the multivariate Gaussian templates are shown as ellipses,
color-coded by their respective intermediate values. Not only does Ta have a systematic
shift from the templates, but the relative position between different data groups is also
shifted. Figure 1(b) illustrates the effect of our EM-based template adjustment. The adjust-
ment relocated the templates and still identifies their respective data group with a well-fitted
Gaussian model.

(a) Profiled templates. (b) EM adjusted templates.

Figure 1: Attacked traces and EM-based template adjustment in LDA subspace.

Table 2 lists the single-trace attack success rates on the KYBER binomial sampler target in a
cross-device attack scenario. The left side of the table shows poor template portability with
classical LDA-based templates, where most templates did not achieve a single-trace attack
across different devices. In contrast, our EM-adjusted templates achieved a 100 % success
rate for most cross-device attack scenarios. The result demonstrates the effectiveness of our
adaptive template attack technique.

Table 2: Single-trace attack success rate of the binomial sampler in KYBER768.KenGen.

Profiling

Target
DK1 DK2 FN1 FN2 MS1 MS2 RS1 RS2 DK1 DK2 FN1 FN2 MS1 MS2 RS1 RS2

Template Attack Adaptive Template Attack
DK1 100.0% 99.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 100.0% 100.0% 100.0% 100.0% 80.2% 100.0% 100.0%
DK2 94.1% 100.0% 0.0% 0.0% 0.4% 0.0% 25.1% 70.7% 100.0% 100.0% 100.0% 100.0% 100.0% 2.0% 44.7% 100.0%
FN1 0.0% 0.0% 100.0% 84.6% 12.6% 0.0% 0.0% 0.0% 100.0% 100.0% 100.0% 100.0% 100.0% 28.3% 100.0% 100.0%
FN2 0.0% 0.0% 87.6% 100.0% 74.1% 53.4% 0.0% 0.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
MS1 0.0% 0.2% 0.4% 86.1% 100.0% 92.2% 0.5% 14.2% 100.0% 100.0% 100.0% 100.0% 100.0% 99.9% 100.0% 100.0%
MS2 0.0% 0.0% 0.0% 41.2% 26.7% 100.0% 0.0% 0.4% 100.0% 97.2% 100.0% 100.0% 100.0% 100.0% 99.9% 100.0%
RS1 1.1% 29.0% 0.0% 0.0% 0.0% 18.7% 100.0% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
RS2 0.0% 22.3% 0.0% 0.0% 0.0% 1.5% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Conclusion

We have shown that by treating the templates as a Gaussian mixture model, we can use
the EM algorithm to improve model fitness to the attacked device and increase cross-device
template accuracy. This adjustment method allows us to reuse the LDA projection vectors,
and build high-quality templates for an attacked device with unlabeled traces. Such porta-
bility improvement is crucial when dealing with a large number of subkeys, for example in
post-quantum systems, like CRYSTALS-KYBER.
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