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Chromium web browser

Chromium is the open-source web-browser project primarily maintained by Google. As well as being the base for Google’s 
Chrome browser, Chromium is also used as the base for Microsoft Edge, Opera and app frameworks such as Electron.

Why port Chromium to Morello?
● Hardening web browsers against vulnerability and exploitation is critical, as they are important platforms for 

human-machine interaction. These environments contain complex multi-million lines code bases rich in vulnerabilities.

● A number of research projects have sought to develop memory-safe web browsers. However, they compromise 
compatibility with contemporary websites. Providing a memory-safe web-browser that is both widely used and 
preserves compatibility with deployed web sites remains a challenging research goal.

● Chromium is extremely large, estimated around between 20 and 40 million lines of code, primarily written in unsafe C 
and C++. Porting the majority of this code to a memory safe language is economical unviable; with large direct and 
opportunity costs. Porting Chromium helps to validate one of CHERI’s key propositions, that it offers a route to 
memory safety for large, legacy C and C++ applications. 

● CHERI-based fine-grained, performant, compartmentalisation allows the redesign of Chromium’s security model. This 
is especially important on mobile platforms where device resources restrict use of process-based isolation.



Challenges (mix intrinsic and extrinsic factors)
● Scale:

○ Google engineers build Chromium as a distributed workload, a single Morello box is not well suited to these demands.
○ One of the few projects building tens of millions of lines of C++ code, issues with the Morello toolchain may be expected.

● Complexity:
○ High-level of complexity, especially in dependencies such as JS language runtimes.

● Unsupported platform:
○ As FreeBSD is not a supported platform, the Chromium project doesn’t accept FreeBSD specific patches. This makes 

maintaining changes/patches for CHERI C/C++ and CheriBSD even more cumbersome and time consuming.
○ The baseline Chromium port is significantly behind mainline Chromium, and the project’s development velocity is high. As 

a result makes many changes are immediately out of date.
○ Building the FreeBSD Chromium port is fragile, for example it requires a number of additional steps to replace libraries 

with system supplied versions or to link and copy files. 
● Third-party dependencies:

○ Forking and patching the large number of third-party dependencies impacts productivity.
○ Many dependencies such as the matrix multiplication library ruy include optimizations in assembly that require extensive 

modifications.

My approach to the project is that this is a proof-of-concept. Good enough is OK, and so pragmatic 
changes are permissible, for example disabling assembly optimization or minor features.



V8 Overview

V8 is an open-source, high-performance, Javascript and Web Assembly engine developed 
by Google and used by web browsers based on the open-source Chromium web browser 
including Google Chrome and Microsoft Edge. V8 is also integrated in application 
frameworks such as Electron and in the server-side Javascript environment Node.js.

V8 contains approximately 2 million lines of contemporary C++, with an additional several 
hundreds of thousands of lines generated from code written in V8’s Torque DSL (along with 
approximately 600K lines of Javascripts primarily implementing builtin functions).

Language runtimes known to be significantly more disruptive to port to CHERI C/C++. 
Therefore, our initial plan was to postpone v8 until a working Chromium was available. 
However…

● Chromium cannot be built without support for Javascript.
● And v8 cannot be built without support for purecap code generation.

Therefore, our initial project goal is to port V8 to CHERI C/C++ to run on Morello.

Through this work we’ve learned a lot about V8, but still plenty to understand. My focus will 
be on design frictions between v8 and CHERI and how we’ve chosen to reconcile these 
issues. 
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Heap Memory

Old space (Old Gen)New space (Young Gen)

Pointer representation in v8

Semi space Semi space Old pointer 
space

Old data 
space
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Property space
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Old-pointer-space: 
Contains most objects 
which may have pointers 
to other objects. Most 
objects are moved here 
after surviving in 
new-space for a while.

How does v8 represent pointers to other objects?

Two different compile-time choices:

● Compressed pointers, used in web 
browsers, where per-instance memory 
utilisation is critical.

● Uncompressed pointers, used in server 
environments (Node.js) where the 
limitations imposed by compressed 
pointers are too restrictive.



Pointer representation in v8: 64-bit architecture

Compressed pointer representation

Pointers are offsets into a 4GB size, 4GB aligned 
memory region referred to as a compression cage.

Uncompressed pointer representation

Pointers on the JS heap are integer pointer values 
of the same width as the native architecture
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Porting remains in the early stages



Uncompressed pointer representation: Morello

But there are some problems lurking… 

In addition to pointers to other JS objects, the v8 
Javascript heap also contains external 
references; typically used to associate JS 
objects with C++ data structures
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This all looks looks fairly promising, 
adapting to CHERI C/C++ involves ensure 

the cage base is a valid capability 
bounded to the compression cage

JS Heap
External 

Reference
C++ data 
structure

The V8 JS ExternalReference type wraps a 
void *, and therefore on Morello is a capability.

However, with uncompressed pointers the JS heap 
cannot align a value to a stronger value than 
alignof(Tagged_t), that is 32-bits.

Other archs on v8 allow an unaligned load of this pointer



V8 Sandox (1TB)

V8 Heap (4GB)

V8 Heap Sandbox (v8_enable_sandbox = true)

The software sandboxing is designed to isolate 
V8's (heap) memory such that any memory 
corruption there cannot "spread" to other parts of 
the process' memory.

All objects located outside the sandbox (“external 
entities”) are referenced through pointer tables, 
which are themselves also located outside of the 
sandbox. 

External references contain type information 
(checked on access) to prevent type confusion 
attacks: “It should be noted that this construction 
assumes that setting the top bits of a pointer to a 
nonzero value causes the pointer to become 
invalid.”

V8 Object

C++ data 
structure

Index Eternal 
reference

1 addr1

2 addr3

“All problems in computer science 
can be solved by another level of 
indirection” - Butler Lampson

V8 Object

OK, well that isn’t going to work



V8 Sandox (1TB)

V8 Heap (4GB)

Redesigned V8 Heap Sandbox 

Simplest possible approach, store the capability 
and the tag separately in adjacent indexes in the 
external pointer table.

When an EPT entry is no longer used, it needs to 
be freed so it can be reused again later. No 
mechanism in V8 to execute a finalizer function 
(which could free any EPT entries) whenever a 
HeapObject is collected by the GC. As such, the 
table itself needs to be garbage collected. Slight 
modifications required to the garbage collection.

Other designs are available see Google’s design 
document for the External Pointer Table: 
https://docs.google.com/document/d/1V3sxltuFjjhp_6gr
GHgfqZNK57qfzGzme0QTk0IXDHk/edit

V8 Object

C++ data 
structure

Index Eternal 
reference

1 addr1

2 addr1 tag

3 addr2

4 addr2 tag

V8 Object

https://docs.google.com/document/d/1V3sxltuFjjhp_6grGHgfqZNK57qfzGzme0QTk0IXDHk/edit
https://docs.google.com/document/d/1V3sxltuFjjhp_6grGHgfqZNK57qfzGzme0QTk0IXDHk/edit


V8 Sandox (1TB)

V8 Heap (4GB)

External code space 

With the sandbox enable v8 must be built with an external, 
code space. Keeping in mind that it is not possible to store a 
capability on the JS heap, how then does a Javascript object 
refer to the code space?

On the version of V8 being ported, the code space used the 
same pointer compression scheme as was shown for the 
uncompressed pointer build. Therefore, the code space was 
itself 4GB in size and 4GB aligned. Objects reference the code 
space by storing just the top 32-bits, shifting right to create the 
address

OK, well that isn’t going to work AGAIN
New compression scheme added for the code space to 
preserve capabilities, code space aligned to the minimum OS 
page size, with single cage base or cage base per Isolate

V8 Object
V8 Object

Code space



Code generation

V8’s compilation pipeline has evolved significantly in recent years. From a high-level it is now fairly straightforward, though 
another mid-tier optimizing compiler Maglev somewhat complicated this picture

Optimized 
Code
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(Optimizing 
compiler)

Optimized

Ignition
(Interpreter)

Bytecode

Interpreted

Optimize

function 
f(A) {

StackCheck
LdaZero
TestGreaterThan ab

Bytecode handlers are generated at build time, so even the 
interpreter needs working code generation!



Code generation backend

Changes to code generation include:

● Add new aarch64c (Morello) instructions such as capability specific load/stores and additions.
● Introduce capability width registers:

○ Ensure that the correct instruction is generated when operating on capability width registers.
○ Allow allocation of temporary capability width registers.
○ Update macros to use capability register; either where specific or temporary X (64-bit width) registers are 

used.
○ Update runtime checks to support capability width registers.
○ Introduce named capability registers such as csp.
○ Update named registers such as the V8 frame register fp to capability registers.
○ Update builtlins written in assembly to use capability registers; either where specific or temporary X (64-bit 

width) registers are used.
○ Update call descriptors to use capability registers for parameters where needed.

● Preserve PointerRepresentation of operands until code generation (in order to identify operations on pointer 
values).



Current status of v8 and future directions

● Uncompressed pointers: 
○ Successfully ported a minimal viable v8, this can execute some Javascript and builtins.
○ More work required to resolve remaining tags faults during code generation.
○ More thorough testing!

● Compressed pointers
○ Adapt the v8 Torque DSL to pad data structures with capability values (now completed by Domagoj Stolfa, 

University of Cambridge)
○ Fix initial stack allocation (on going).
○ …

● Analysis of security and performance of uncompressed and compressed pointer representations.
● HW enforced sandboxing:

○ “In principle, the sandbox could be implemented with hardware support: similar to the userland-kernel split, V8 
would execute some mode-switching instruction when entering or leaving sandboxed code”

○ CHERI-based compartmentalisation of existing design.
○ Re-visit the design in presence of fine-grained, performant compartmentalization.

https://docs.google.com/document/d/12MsaG6BYRB-jQWNkZiuM3bY8X2B2cAsCMLLdgErvK4c/edit?usp=sharing


Chromium is currently WIP

● Initial challenging to even build Chromium
○ Together with KCL Chromepartments 

team, we managed to coerce the 
Chromium tools to fetch Chromium 
sources and dependencies.

○ Chromium can then be built 
straightforwardly with ninja; though some 
manually steps are still required.

● The chrome target builds over fifty thousand 
object, currently approximately 40% build.

○ With varying degrees of confidence.
● Ported third-party dependencies include:

○ Perfetto, system profiling, app tracing and 
trace analysis framework

○ Graphics libraries such as skia, dawn and 
angle.

● Memory safe Chromium prerequisite to explore 
compartmentalisation… 

Future directions:

Browser 
process

Mojo 
IPC

Library

Render 
process

For example, Library 
compartmentalisation can restricts 
access to IPC and therefore further 

attack surfaces in the Browser process 



Qualitative porting experience 

● Assertion of overly strong invariants is common.
○ For example, asserting the size of datatypes, that fail due to the stronger alignment requirements for capabilities.

● The arm64 Assembler and MacroAssembler include many checks that only fail at runtime.
○ Frequently check that register sizes are 32-bit or 64-bit, these fail for capability registers at runtime

● Many ad-hoc hecks for 64-bit pointers, else of course it must be 32-bit.
● Compiling V8 is slow:

○ V8’s use of inlining (at the least in the ported version) significantly increases compilation times, many minutes for one 
object isn’t uncommon.

○ Changes to the arm64 backend result in one thousand objects being rebuilt, sometimes that make sense other times it 
is a little confusing.

○ ccache and distcc do help at least a bit.
● Builtins written in assembler are painful to adapt:

○ Require extensive changes to operand registers; however it is not always clear whether a given value is a capability.
○ Difficult to debug when a capability tag is lost.

● Code uses u/intptr_t types to store an integer type that is either a 32-bit or 64-bit width depending on the architecture.
○ This use is widespread within Google.
○ Results in capability aware types being used where they are not needed (carrying cost), and/or confusion about where 

pointers/integers are being used.



Conclusions

● Porting of Chromium to Morello is complicated by both its scale and complexity.
● Its is noticeable harder to make progress as FreeBSD is an unsupported platform.

○ Build tools don’t work on FreeBSD without some effort.
○ Opaque patch set maintained in FreeBSD ports.

● We didn’t expect to engage with porting of v8 early in the project, but found this to be a prerequisite for Chromium.
● Though we expected porting a language runtime to be difficult, v8 to be difficult to proved even we expected:

○ Design fricitions with CHERI required more extensive changes .
○ Guidance that the v8 JIT could be disabled proved to be wrong, nothing works without working code 

generation for purecap.
○ Overly strong invariants common in the code base.
○ Incorrect usage of u/intptr_t types problematic for CHERI.
○ Much more handwritten assembler than envisaged for a language runtime!

● Significant value in demonstrating that CHERI-based compartmentalization can be used to strengthen or redesign 
the Chromium security model.

○ But lots of (ongoing) work to get to this point…



Q & A


