Protecting supply chains with CHERI

David Chisnall
SCI Semiconductor
NIGHTMARE SUPPLY CHAIN ATTACK SCENARIO —

What we know about the xz Utils backdoor that almost infected the world

Malicious updates made to a ubiquitous tool were a few weeks away from going mainstream.

DAN GOODIN • 4/1/2024, 7:55 AM
What (nearly) went wrong with liblzma?
What (nearly) went wrong with liblzma?

Read-only GOTs protect cross-library control flow
What (nearly) went wrong with liblzma?

ld-linux.so

ssh
 GOT

libsystemd.so
 GOT

liblzma.so
 GOT

GOT overwritten with malicious targets

ifunc resolver runs
The ifunc is not the problem

Any library can change GOT permissions

Any library can tamper with any other data
What happens when a supply-chain attacker compromises your program?
What happens when a supply-chain attacker compromises your program? Game Over
Supply chain security requires boundaries around reused code.
CHERI Compartmentalization
Mitigating Unknown Vulnerabilities
What is a compartment?
Isolation is easy, sharing is hard

CHERI is designed to enable safe sharing!
Compartments interact only via capabilities

- Call other compartments via call gates
- Access shared resources (e.g. MMIO regions) only via memory capabilities
CHERIoT provides layered security

System

- Fine-grained auditing
- Rich policy enforcement

Compartments

- Limited blast radius
- Protected secrets

CHERI Foundations

- No buffer overflows
- No use after free
- No pointer injection
- Control-flow integrity
Sealing enables software capabilities
Sealing enables software capabilities

User compartment → Call (via call gate) → Allocator compartment

Allocate quota
Sealing enables software capabilities
CHERIoT linker reports describe contents and interactions

- Code and data hashes
- Exported functions
- Imported functions
- MMIO regions
- Sealed objects
- Thread stack sizes
- Thread entry points

```json
{
    "compartments": {
        "Firewall": {
            "code": {
                "inputs": [
                    {
                        "file": "build/cheriot/cheriot/release/Firewall.compartment",
                        "section_name": ".text",
                        "sha256": "b69e004de8cb4e3f7f1f5f4d929f57ed0e21401f4310ee31e108b40c93b2688",
                        "size": 4850
                    },
                    {
                        "file": "build/cheriot/cheriot/release/Firewall.compartment",
                        "section_name": ".init_array",
                        "sha256": "e3b0c44298fc1c49afbf4c8996fb92427ae41e4649b34ca495991b7852b855",
                        "size": 0
                    }
                ],
                "name": ".Firewall_code",
                "output": {
                    "sha256": "eb6f4833e07c93b57411bc5328e8681c5e5ee2ba65e14f9d2894c978e195407"
                }
            },
            "exports": [
                {
                    "export_symbol": "__export_Firewall__Z21ethernet_driver_startv",
                    "exported": true,
                    "interrupt_status": "enabled",
                    "kind": "Function",
                    "register_arguments": 0,
                    "start_offset": 208
                }
            ]
        }
    }
}
```
JSON is not for humans
Rego policy language

• Part of the OpenPolicyAgent project
• Mostly declarative policy language
• Consumes JSON, produces JSON
• Supports composable modules
CHERIoT-Audit consumes JSON with Rego

1. Firmware integrators write policies
2. cheriot-audit checks them
3. Can also inspect compartment status
Case study: CHERIoT Network Stack
Possible vectors for supply-chain attacks

- OpenMQTT
- BearSSL
- FreeRTOS+TCP
- NetAPI
- OpenSNTP
- Firewall
No compartment except the firewall may access the ethernet device directly

data.compartment.mmio_allow_list(ethernetDevice, {"Firewall"})
The TCP/IP compartment’s incoming frame API is exposed only to the Firewall compartment

data.compartment.compartment_call_allow_list("TCPIP", "ethernet_receive_frame.*", {"Firewall"})
data.network_stack.all_connection_capabilities

What compartments can connect where?

[{
 "capability": {
 "connection_type": "UDP",
 "host": "pool.ntp.org",
 "port": 123
 },
 "owner": "SNTP"
}, {
 "capability": {
 "connection_type": "TCP",
 "host": "cheriot.demo",
 "port": 8883
 },
 "owner": "mqtt_demo"
}]
What happens when a supply-chain attacker compromises the TCP/IP stack?

- They cannot call user code
- They cannot allocate more memory than their quota
- They cannot control the firewall
- They can tamper with packets to and from the network
- They can (currently) lie about DNS responses
Summary

Memory safety is just the start.

CHERI memory safety is a building block for compartmentalisation.

Sealing is essential for rich abstractions.

Compartmentalisation is a key part of supply-chain security.

See https://cheriot.org for more information!