
Protecting supply chains with CHERI David Chisnall
SCI Semiconductor

What (nearly) went wrong with liblzma?

ld-linux.so

ssh

libsystemd.so

liblzma.so

GOT

GOT

GOT

What (nearly) went wrong with liblzma?

ld-linux.so

ssh

libsystemd.so

liblzma.so

GOT

GOT

GOT

Read-only GOTs protect cross-library control flow

What (nearly) went wrong with liblzma?

ld-linux.so

ssh

libsystemd.so

liblzma.so

GOT

GOT

GOT

ifunc resolver runs

GOT overwritten with
malicious targets

The ifunc is not the problem

Any library can
change GOT
permissions

Any library can
tamper with

any other data

What happens when a supply-chain
attacker compromises your program?

What happens when a supply-chain
attacker compromises your program?Game Over

Supply chain security requires
boundaries around reused code

CHERI Compartmentalization
Mitigating Unknown Vulnerabilities

10

What is a compartment?

Code Data

Isolation is
easy, sharing is
hard

CHERI is designed to enable safe
sharing!

This Photo by Unknown Author is licensed under CC BY

https://www.flickr.com/photos/28591409@N06/14062132771/
https://creativecommons.org/licenses/by/3.0/

Compartments interact only via capabilities

Call other compartments via call gates

Access shared resources (e.g. MMIO regions) only via memory
capabilities

CHERIoT provides layered security

System

Fine-grained
auditing

Rich policy
enforcement

Compartments

Limited blast
radius

Protected
secrets

CHERI Foundations
No buffer
overflows

No use after
free

No pointer
injection

Control-flow
integrity

Sealing enables software capabilities

15

User
compartment

Allocator
compartment

Allocator
quota

Sealed
capability to
object

Sealing enables software capabilities

16

User
compartment

Allocator
compartment

Allocator
quota

Call (via call gate)

Sealing enables software capabilities

17

User
compartment

Allocator
compartment

Allocator
quota

Call (via call gate)

Unsealed capability

CHERIoT linker reports
describe contents and
interactions

{

 "compartments": {

 "Firewall": {

 "code": {

 "inputs": [

 {

 "file": "build/cheriot/cheriot/release/Firewall.compartment",

 "section_name": ".text",

 "sha256": "b69e004de8cbaee30f71f5f4d929f57ed0e21401f4130ee31e108b40c93b2688",

 "size": 4850

 },

 {

 "file": "build/cheriot/cheriot/release/Firewall.compartment",

 "section_name": ".init_array",

 "sha256": "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855",

 "size": 0

 }

],

 "name": ".Firewall_code",

 "output": {

 "sha256": "eb6f4833e07c93b357411bc5328e8681c5e5ee2ba65e14f9d2894c978e195407"

 }

 },

 "exports": [

 {

 "export_symbol": "__export_Firewall__Z21ethernet_driver_startv",

 "exported": true,

 "interrupt_status": "enabled",

 "kind": "Function",

 "register_arguments": 0,

 "start_offset": 208

 },

• Code and data hashes

• Exported functions

• Imported functions

• MMIO regions

• Sealed objects

• Thread stack sizes

• Thread entry points

JSON is not for humans

19

Rego policy language

• Part of the OpenPolicyAgent project
• Mostly declarative policy language
• Consumes JSON, produces JSON
• Supports composable modules

20

CHERIoT-Audit consumes JSON with Rego

Firmware integrators write policies

cheriot-audit checks them

Can also inspect compartment status

21

Case study: CHERIoT
Network Stack

22

OpenSNTP

OpenMQTT

FreeRTOS+TCP

BearSSL

NetAPI

Firewall

Possible vectors
for supply-chain
attacks

No compartment except the
firewall may access the ethernet
device directly
data.compartment.mmio_allow_list(ethernetDevice, {"Firewall"})

The TCP/IP compartment’s
incoming frame API is exposed
only to the Firewall compartment
data.compartment.compartment_call_allow_list("TCPIP",
"ethernet_receive_frame.*", {"Firewall"})

data.network_stack.all_connection_capabilities

What compartments can
connect where?

[{

 "capability": {

 "connection_type": "UDP",

 "host": "pool.ntp.org",

 "port": 123

 },

 "owner": "SNTP"

 }, {

 "capability": {

 "connection_type": "TCP",

 "host": "cheriot.demo",

 "port": 8883

 },

 "owner": "mqtt_demo"

 }]

What happens
when a
supply-chain
attacker
compromises
the TCP/IP
stack?

They cannot call user code

They cannot allocate more memory
than their quota

They cannot control the firewall

They can tamper with packets to and
from the network

They can (currently) lie about DNS
responses

Summary

Memory safety is just
the start

CHERI memory safety is
a building block for
compartmentalisation

Sealing is essential for
rich abstractions

Compartmentalisation
is a key part of supply-
chain security

See https://cheriot.org for more information!

https://cheriot.org/

