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Protecting supply chains with CHERI




@srecnca

Whét Weknow about the xz Utils backdoor
that almost infected the world

Malicious updates made to a ubiquitous tool were a few weeks away from going mainstream.
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What (nearly) went wrong with liblzma?
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What (nearly) went wrong with liblzma?
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Read-only GOTs protect cross-library control flow
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What (nearly) went wrong with liblzma?

GOT overwritten with
malicious targets

libsystemd.so
GOT

ifunc resolver runs
liblzma.so

GOT




The ifunc is not the problem

Any library can
change GOT
permissions

Any library can
tamper with

any other data
/

)




What happens when a supply-chain
attacker compromises your program?




Game Over



Supply secUfity réquires
boundaries around reused code
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A Whatis acompartment?
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|Isolation Is
easy, sharing is
hard

CHERI is designed to enable safe
sharing!



https://www.flickr.com/photos/28591409@N06/14062132771/
https://creativecommons.org/licenses/by/3.0/

Compartments interact only via capabilities

v Call other compartments via call gates
— Access shared resources (e.g. MMIO regions) only via memory
=3 capabilities



CHERIoT provides layered security

Fine-grained Compartments

auditing

Limited blast .
CHERI Foundations
Rich policy Protected No buffer No use after | No pointer | Control-flow
enforcement ;Zcer(;tz overflows free injection integrity




Sealing enables software capabilities

Allocator
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User

compartment

Sealed !
capability to \l

object
Allocator
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Sealing enables software capabilities
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Sealing enables software capabilities

Call (via call gate
User ( gate) Allocator
compartment compartment

Unsealed capability

Allocator
guota
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CHERIOT linker reports
describe contents and ot e eher ot tenee et compar e,

¢ ".text",

| n te ra Ct I O n S ¢ "b69e004de8chbaece30f71f5f4d929f57ed0e21401f4130ee31e108b40c93b2688",

I 2:3-10)

* Code and data hashes

* Exported functions {

¢ "build/cheriot/cheriot/release/Firewall.compartment",

* Imported funCtlonS s ".init_array",
¢ "e3b0c44298fclcl49afbf4c8996fb92427ae41e4649b934ca495991b7852b855",

* MMIO regions

* Sealed objects }
1,
* Thread stack sizes : ".Firewall_code",
: {
: "eb6f4833e07c93b357411bc5328e8681c5e5ee2ba65e141f9d2894¢c978e195407"

* Thread entry points

3

: "__export_Firewall__Z21lethernet_driver_startv",
: true,
¢ "enabled",
¢ "Function",
: 0,
: 208

s
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CHERIoT-Audit consumes JSON with Rego

Firmware integrators write policies
===l cheriot-audit checksthem

\/ Can also inspect compartment status



Case study: CHERIoT
Network -Stack



Possible vectors
OpenMQTT for supply-chain

attacks
BearSSL OpenSNTP

FreeRTOS+TCP NetAPI




No compartment except the
firewall may access the ethernet
device directly

data.compartment.mmio_allow_list(ethernetDevice, {"Firewall"})



The TCP/IP compartment’s
Incoming frame APl is exposed
only to the Firewall compartment

data.compartment.compartment_call_allow_list("TCPIP",
"ethernet_receive_frame.*", {"Firewall"})



data.network_stack.all_connection_capabilities

What compartments can H ncapability": {

connect where? tconnection_typens "UDP!,

"host": '"pool.ntp.org",

"port": 123
}s
"owner'": '"SNTP"
s o

"capability": {
"connection_type": "TCP",
"host": ''cheriot.demo",
"port'": 8883

b,

"owner": "mqgtt_demo"

} ]



What happens
when a
supply-chain
attacker
compromises
the TCP/IP
stack?

They cannot call user code

They cannot allocate more memory
than their quota

They cannot control the firewall

They can tamper with packets to and
from the network

They can (currently) lie about DNS
responses



Summary

See https://cheriot.org for more information!

Memory safety is just
the start

V Sealing is essential for
rich abstractions

»®

P

CHERI memory safety is
a building block for
compartmentalisation

Compartmentalisation
Is a key part of supply-
chain security


https://cheriot.org/

