David Chisnall

SCIl Semiconductor

Protecting supply chains with CHERI

@srecnca

Whét Weknow about the xz Utils backdoor
that almost infected the world

Malicious updates made to a ubiquitous tool were a few weeks away from going mainstream.

DAN GOODIN - 4/1/2024, 7:55 AM

What (nearly) went wrong with liblzma?

ld-linux.so

ssh
GOT

libsystemd.so
GOT

liblzma.so
GOT

What (nearly) went wrong with liblzma?

ld-linux.so

ssh
GOT

Read-only GOTs protect cross-library control flow
libsystemd.so

GOT

liblzma.so
GOT

What (nearly) went wrong with liblzma?

GOT overwritten with
malicious targets

libsystemd.so
GOT

ifunc resolver runs
liblzma.so

GOT

The ifunc is not the problem

Any library can
change GOT
permissions

Any library can
tamper with

any other data
/

)

What happens when a supply-chain
attacker compromises your program?

Game Over

Supply secUfity réquires
boundaries around reused code

Inerabil

{8
z_

N

AN .
A Whatis acompartment?

Code

|Isolation Is
easy, sharing is
hard

CHERI is designed to enable safe
sharing!

https://www.flickr.com/photos/28591409@N06/14062132771/
https://creativecommons.org/licenses/by/3.0/

Compartments interact only via capabilities

v Call other compartments via call gates
— Access shared resources (e.g. MMIO regions) only via memory
=3 capabilities

CHERIoT provides layered security

Fine-grained Compartments

auditing

Limited blast .
CHERI Foundations
Rich policy Protected No buffer No use after | No pointer | Control-flow
enforcement ;Zcer(;tz overflows free injection integrity

Sealing enables software capabilities

Allocator
compartment

User

compartment

Sealed !
capability to \l

object
Allocator
guota

15

Sealing enables software capabilities

7
/7

Allocator
guota

16

Sealing enables software capabilities

Call (via call gate
User (gate) Allocator
compartment compartment

Unsealed capability

Allocator
guota

17

CHERIOT linker reports
describe contents and ot e eher ot tenee et compar e,

¢ ".text",

| n te ra Ct I O n S ¢ "b69e004de8chbaece30f71f5f4d929f57ed0e21401f4130ee31e108b40c93b2688",

I 2:3-10)

* Code and data hashes

* Exported functions {

¢ "build/cheriot/cheriot/release/Firewall.compartment",

* Imported funCtlonS s ".init_array",
¢ "e3b0c44298fclcl49afbf4c8996fb92427ae41e4649b934ca495991b7852b855",

* MMIO regions

* Sealed objects }
1,
* Thread stack sizes : ".Firewall_code",
: {
: "eb6f4833e07c93b357411bc5328e8681c5e5ee2ba65e141f9d2894¢c978e195407"

* Thread entry points

3

: "__export_Firewall__Z21lethernet_driver_startv",
: true,
¢ "enabled",
¢ "Function",
: 0,
: 208

s

1

ON is not“for

.’I

SH AR

L

' Uage Qoo
Rego policy lang

. .ect SORE DOCS
Part of the OpenPolicyAgent proj
* Par

Introduction
Philosophy

Policy Language

g

Why use Rego?
Learning Rego
The Basics

es JSON
Consumes JSON, produc
[J

Composite Values
Variableg
References

S i
le module

mposab

* Supports comp

Negation

Universg| Qua”t‘ﬂcat\cn
(FOR ALL)
Modules
Futurg Ke\.f\.ﬂmrds
Some

Every Keyworg
With Keywo
Defaut
Else

rd
€yWord
Keyworg
Ouerators

Builtiy Functiong

Exarnp\e Daty
Mexadata
Schem

0
Policy Language

Edit

i i ins
OPAis purpose bult for reasoning about information represented in

. s
Uctured docu ents € data that your service a d ts users
oublish car bei Spected and tra sformed us gOPAS ative query

anguage Rego.
What is Rego?

Rego was inspired by Datalog, wh

ich is a wel| understood, decageg old query language, Rego extends Datalog to Support structyreq
document mogls suchas JSON,

Rego queries are assertiong

On data stored jn OPA. T
Violate the EXpected state of

hese queries ¢an be used to define policies that enumerate instances of data that
the system,

The exampleg Inthis section tryto Tépresent the hegt Practices, Ag Such, they Make usg of keywordg that
standarg Keywords in QPA V1

Will become
0, but haye been introducegq 9radually, See the docs on future keyworgs for more information.

S easy to féad ang Writ
Regofocuses Provij
gpowen‘ulsu ort f
unamblguou& Pport for referencmg Nesteq document and ensunng that Querigs are corrg tang
Clan

Regn is declaratiyg Olicy ath IS can foq, q
Queries arg Simp d mor i I " i

& ;

onise iy s - Querigg Shoug be EXecuteq The:

€ other 5 lic i
Pplicationg Which Upp 'Tdeclaranve langyg, 9
95, OPA jg abletg

20

CHERIoT-Audit consumes JSON with Rego

Firmware integrators write policies
===l cheriot-audit checksthem

\/ Can also inspect compartment status

Case study: CHERIoT
Network -Stack

Possible vectors
OpenMQTT for supply-chain

attacks
BearSSL OpenSNTP

FreeRTOS+TCP NetAPI

No compartment except the
firewall may access the ethernet
device directly

data.compartment.mmio_allow_list(ethernetDevice, {"Firewall"})

The TCP/IP compartment’s
Incoming frame APl is exposed
only to the Firewall compartment

data.compartment.compartment_call_allow_list("TCPIP",
"ethernet_receive_frame.*", {"Firewall"})

data.network_stack.all_connection_capabilities

What compartments can H ncapability": {

connect where? tconnection_typens "UDP!,

"host": '"pool.ntp.org",

"port": 123
}s
"owner'": '"SNTP"
s o

"capability": {
"connection_type": "TCP",
"host": ''cheriot.demo",
"port'": 8883

b,

"owner": "mqgtt_demo"

}]

What happens
when a
supply-chain
attacker
compromises
the TCP/IP
stack?

They cannot call user code

They cannot allocate more memory
than their quota

They cannot control the firewall

They can tamper with packets to and
from the network

They can (currently) lie about DNS
responses

Summary

See https://cheriot.org for more information!

Memory safety is just
the start

V Sealing is essential for
rich abstractions

»®

P

CHERI memory safety is
a building block for
compartmentalisation

Compartmentalisation
Is a key part of supply-
chain security

https://cheriot.org/

