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Virtual machines (VMs, also known as managed language runtimes) are ubiquitous 
components in the modern software stack. They power the web, running in client-side 
browsers, server-side applications, and smartphone apps. In any ranking of popular 
programming languages, at least half of the top ten languages run on VMs (e.g. 
Python, Java, C#, JavaScript, PHP).

A key problem is that VM security has traditionally been a secondary concern 
relative to performance. Industrial strength VMs have large, complex code-bases, and 
large numbers of hand-crafted optimizations. Not only are they beyond any one 
person's ability to understand, but security has tended to be treated reactively: mature, 
widely used VMs such as HotSpot (the standard Java VM) regularly have 50-100 
CVEs per year.

The CapableVMs project hypothesises that CHERI hardware-enforced capabilities 
are the first realistic technique to make VM security proactive. 
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1. Low-level system-specific code

• CHERIfication
• Specific porting process
• Measure proportion of LoC 

alterered 
• KDE: 0.026%
• higher for systems code
• 0.18% for MicroPython
• 1% for snmalloc



import dodgylib

tiny1 = bytearray(3)
tiny2 = bytearray(12)

# setup 'Oh' raw string
tiny1[0] = 0x4f  # O
tiny1[1] = 0x68  # h
tiny1[2] = 0x00  # \0

# setup 'Hello' raw string
tiny2[0] = 0x48  # H
tiny2[1] = 0x65  # e
tiny2[2] = 0x6c  # l
tiny2[3] = 0x6c  # l
tiny2[4] = 0x6f  # o
tiny2[5] = 0x00  # \0

print(tiny1.decode('utf-8'))
dodgylib.dodgy(tiny1)
print(tiny2.decode('utf-8'))

root@amarena:~ # 
./micropython-hybrid 
exploit.py 

Oh
HACK!!



import uctypes as uct

def dodgy(x):
    ptr = uct.addressof(x)
    unsafe = 
uct.bytearray_at(ptr, 2000)
    i = 0
    while unsafe[i] != 0x65 or 
unsafe[i+1] != 0x6c:
        i += 1
        if i > 2000:
            break
    unsafe[i] = 0x41
    unsafe[i+1] = 0x43
    unsafe[i+2] = 0x4b
    unsafe[i+3] = 0x21
    unsafe[i+4] = 0x21
    unsafe[i+5] = 0x00
    return

print(tiny1.decode('utf-8'))
dodgylib.dodgy(tiny1)
print(tiny2.decode('utf-8'))

root@amarena:~ # 
./micropython-purecap 
exploit.py 
Oh
In-address space security 
exception (core dumped)





Other findings from MicroPython

•Pointer size assumptions
• don't affect correctness only
• they also have an impact on performance

•Porting to a variety of platforms
•Morello:  github.com/glasgowPLI/micropython
•working on CHERIoT RISC-V Ibex core
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2. Multiple interacting components

• compartmentalization (c18n) is lightweight isolation
• hybrid code enables DDC-based isolation
• need a compartment switcher
• need a libc per compartment
• need clever tricks to handle dynamic loading
• overhead - how small should each compartment be?
• compartment per function
• compartment per shared object
• alternative compartment boundaries?



Alternative c18n strategy

•For purecap MicroPython code
•We isolate at FFI boundaries
• e.g. calls to external C libraries
• (work in progress)
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3. Malloc and GC

Complications include:
• finding and tracing the root set
• scanning the full heap
•moving objects

•We have studied BDWGC
•Morello & RISC-V:  github.com/capablevms/bdwgc



Observations about purecap GC

• Can't afford to lose capability tags
• conservative -> precise
• overhead reduction!
• issue with sealed caps in userspace code
• issue with coalescing
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4. Runtime code generation

• Several baseline interpreters ported to Morello purecap: 
WARDuino, MicroPython, JSC
• Some investigations on runtime code generation: 

JSC (& v8)
• This is work-in-progress



Summary

• Our Capable VMs project has demonstrated that

CHERI does provide defence-in-depth against VM-based exploits

Challenges include:
1. how to quantify additional defence?
2. how to measure performance?
3. how to encourage adoption?


