
Capable VMs
23 Apr 24 - CHERITech '24

Jacob Bramley, Andrei Lascu, Duncan Lowther, Dejice Jacob,
Jeremy Singer, Laurie Tratt and Tom Wallis

Virtual machines (VMs, also known as managed language runtimes) are ubiquitous
components in the modern software stack. They power the web, running in client-side
browsers, server-side applications, and smartphone apps. In any ranking of popular
programming languages, at least half of the top ten languages run on VMs (e.g.
Python, Java, C#, JavaScript, PHP).

A key problem is that VM security has traditionally been a secondary concern
relative to performance. Industrial strength VMs have large, complex code-bases, and
large numbers of hand-crafted optimizations. Not only are they beyond any one
person's ability to understand, but security has tended to be treated reactively: mature,
widely used VMs such as HotSpot (the standard Java VM) regularly have 50-100
CVEs per year.

The CapableVMs project hypothesises that CHERI hardware-enforced capabilities
are the first realistic technique to make VM security proactive.

Why are virtual machines special?

lots of low-level
platform-specific

systems code

multiple interacting
dynamic

components

intensive
allocation and

garbage collection runtime code
generation

Why are virtual machines special?

lots of low-level
platform-specific

systems code

multiple interacting
dynamic

components

intensive
allocation and

garbage collection runtime code
generation

Why are virtual machines special?

lots of low-level
platform-specific

systems code

multiple interacting
dynamic

components

intensive
allocation and

garbage collection runtime code
generation

1. Low-level system-specific code

• CHERIfication
• Specific porting process
• Measure proportion of LoC

alterered
• KDE: 0.026%
• higher for systems code
• 0.18% for MicroPython
• 1% for snmalloc

import dodgylib

tiny1 = bytearray(3)
tiny2 = bytearray(12)

setup 'Oh' raw string
tiny1[0] = 0x4f # O
tiny1[1] = 0x68 # h
tiny1[2] = 0x00 # \0

setup 'Hello' raw string
tiny2[0] = 0x48 # H
tiny2[1] = 0x65 # e
tiny2[2] = 0x6c # l
tiny2[3] = 0x6c # l
tiny2[4] = 0x6f # o
tiny2[5] = 0x00 # \0

print(tiny1.decode('utf-8'))
dodgylib.dodgy(tiny1)
print(tiny2.decode('utf-8'))

root@amarena:~ #
./micropython-hybrid
exploit.py

Oh
HACK!!

import uctypes as uct

def dodgy(x):
 ptr = uct.addressof(x)
 unsafe =
uct.bytearray_at(ptr, 2000)
 i = 0
 while unsafe[i] != 0x65 or
unsafe[i+1] != 0x6c:
 i += 1
 if i > 2000:
 break
 unsafe[i] = 0x41
 unsafe[i+1] = 0x43
 unsafe[i+2] = 0x4b
 unsafe[i+3] = 0x21
 unsafe[i+4] = 0x21
 unsafe[i+5] = 0x00
 return

print(tiny1.decode('utf-8'))
dodgylib.dodgy(tiny1)
print(tiny2.decode('utf-8'))

root@amarena:~ #
./micropython-purecap
exploit.py
Oh
In-address space security
exception (core dumped)

Other findings from MicroPython

•Pointer size assumptions
• don't affect correctness only
• they also have an impact on performance

•Porting to a variety of platforms
•Morello: github.com/glasgowPLI/micropython
•working on CHERIoT RISC-V Ibex core

Why are virtual machines special?

lots of low-level
platform-specific

systems code

multiple interacting
dynamic

components

intensive
allocation and

garbage collection runtime code
generation

2. Multiple interacting components

• compartmentalization (c18n) is lightweight isolation
• hybrid code enables DDC-based isolation
• need a compartment switcher
• need a libc per compartment
• need clever tricks to handle dynamic loading
• overhead - how small should each compartment be?
• compartment per function
• compartment per shared object
• alternative compartment boundaries?

Alternative c18n strategy

•For purecap MicroPython code
•We isolate at FFI boundaries
• e.g. calls to external C libraries
• (work in progress)

Why are virtual machines special?

lots of low-level
platform-specific

systems code

multiple interacting
dynamic

components

intensive
allocation and

garbage collection runtime code
generation

3. Malloc and GC

Complications include:
• finding and tracing the root set
• scanning the full heap
•moving objects

•We have studied BDWGC
•Morello & RISC-V: github.com/capablevms/bdwgc

Observations about purecap GC

• Can't afford to lose capability tags
• conservative -> precise
• overhead reduction!
• issue with sealed caps in userspace code
• issue with coalescing

Why are virtual machines special?

lots of low-level
platform-specific

systems code

multiple interacting
dynamic

components

intensive
allocation and

garbage collection runtime code
generation

4. Runtime code generation

• Several baseline interpreters ported to Morello purecap:
WARDuino, MicroPython, JSC
• Some investigations on runtime code generation:

JSC (& v8)
• This is work-in-progress

Summary

• Our Capable VMs project has demonstrated that

CHERI does provide defence-in-depth against VM-based exploits

Challenges include:
1. how to quantify additional defence?
2. how to measure performance?
3. how to encourage adoption?

