
Exploring Memory-Safety Techniques
on a SIMT-style RISC-V GPGPU

Matthew Naylor
University of Cambridge

23 April 2024

CAPcelerate Project (DSbD)

Is memory safety an issue for GPGPUs?

__device__ void overread () {
 int data = 0xda1a;
 int secret = 0xc0de;
 int* ptr = &data;
 printf("%x\n", ptr[1]);
}

A study from AMD Research looked at 175
applications from standard benchmark suites
and found 13 kernels with buffer overflows*
[Erb et al. 2017]

*Incomplete: uses canaries, on global buffers only

Memory safety bugs have been found in several
GPU applications and benchmark suites using
Oclgrind* [Price et al. 2015]

* Slow: an interpreter for SPIR (LLVM IR variant)
* Finds data races, sync issues, as well as mem safety issues

Tool Completeness Overhead

Oclgrind Good Poor

cuda-memcheck Good Poor

clArmour Poor Good

GMOD Poor Good

Buffer overflows on GPUs can lead to:

➢ data corruption on the stack and heap
➢ control-flow hijacking
➢ code injection
➢ arbitrary code execution

[Di et al. 2016, Miele 2016, Park et al. 2021]

Are these types of bugs exploitable?

CHERI on GPGPUs?

CHERI on GPGPUs: Challenges

Problem 1: Adding CHERI to an existing GPU
instruction set & toolchain would be a major effort
(at least for a small research project).

Problem 2: Massively threaded GPUs depend
on a small amount of architectural state per
thread, which CHERI would potentially double.

Recent development: RISC-V GPUs

“It does not involve any instruction set extension
or compiler change” [Collange 2017]

What is SIMT?

Execute multiple hardware threads (a warp) in
lockstep (where possible) exploiting regularity
between them, e.g.

➢ control-flow regularity
➢ memory-access regularity
➢ value regularity

Seminal work on value regularity

Seminal study [Collange 2009] reports:

➢ 27% of register reads yield the same value for
each thread in a warp (uniform vectors)

➢ 44% yield values separated by a constant stride
(affine vectors)

Where does value regularity come from?

In data-parallel programming, each thread typically:

➢ uses its thread index within a block
➢ and its block index within a grid

to determine which part of the input to read and which
part of the output to write. For threads in a warp:

➢ the thread index is affine
➢ and the block index is uniform
➢ and uniform/affine vectors often propagate

CHERI on GPGPUs

Idea 1: Completely reuse existing CHERI ISA and
toolchain in a SIMT-style RISC-V GPGPU.

➢ RISC-V also an existing target for Rust
➢ RISC-V also likely to support MTE at some point

We can reuse various existing CPU solutions to
memory safety on GPGPUs

CHERI on GPGPUs

Idea 2: Exploit value regularity to reduce register
storage cost of CHERI.

 for (i = threadIdx.x; i < len; i += blockDim.x)
 sum += input[i];

➢ After compilation, each thread in the block may
hold a different pointer into the input array

➢ But this pointer will likely have the same
bounds, permissions, etc. in each thread

Should we build on top of Simty [Collange 2017]
or Vortex [Tine et al. 2021]?

➢ Simty was not reporting benchmark results
➢ Vortex was reporting poor benchmark results
➢ Neither were supporting shared local memory
➢ Neither were exploiting value regularity

We decided to develop our own: SIMTight.

Which RISC-V GPGPU to use?

What is SIMTight?

➢ Single RV32IMAxCHERI streaming multiprocessor
➢ 64 warps and 32 threads per warp (2048 threads)
➢ Fully synthesisable (high perf. density on FPGA)
➢ Ships with CUDA-like library and 14 benchmarks

(C++ and Rust versions of both)
➢ C++ benchmarks run purecap without modification

SIMTight exploits value regularity

SIMTight detects uniform and affine vectors in
hardware and exploits them:

➢ Register file and cache compression
(reducing on-chip storage)

➢ Parallel affine and vector pipelines
(improving throughput)

➢ Entirely microarchitectural
(no ISA or compiler changes)

Results

Register file storage requirements

Reduces integer register file storage by 68%
(178KB per SM) for a geomean 1% cycle overhead

Instruction throughput

➢ Baseline IPC often approaches warp size (32)
➢ Parallel pipelines reduce runtime by 20%

geomean at low hardware cost

Register file compression with CHERI

➢ Rarely need vectors of capability meta-data
➢ Compressing cap metadata reduces storage

requirement of CHERI by 90%: 26KB per SM
rather 270KB

➢ Storage overhead of CHERI is 31%

CHERI runtime and area overheads

➢ Geomean 3% cycle overhead
➢ Geomean 5% wall-clock overhead
➢ Area cost ~ 1 pipelined divider per vector lane

Rust overheads

➢ Both compilers based on LLVM 18.1.3
➢ Geomean 52% cycle overhead
➢ (No area overhead, of course)

Rust bounds checking costs

Rust bounds checks on local and global buffers
introduce a geomean 29% runtime overhead

Future Work

Logic area overhead of CHERI

This has been a challenge in SIMTight:

➢ Hard to avoid a bounds check per lane
➢ Not just one bounds check per lane, but two
➢ Bounds must be decompressed
➢ Sharing decompression cost not easy: uniform

compressed bounds does not imply uniform
decompressed bounds

MTE (Memory Tagging Extension)

➢ On CPUs, drawbacks of MTE occur due to large
numbers of small buffers, leading to colour
reuse and fine granules (4 tag bits per 16 bytes)

➢ But GPGPU code typically uses a small number of
large buffers

➢ MTE’s simple bounds check should have very low
area cost per vector lane

Expressiveness

➢ Rust and MTE support memory safety within a
compute kernel

➢ But other mechanisms are needed to isolate
untrusted code, e.g.
● multitasking of mutually distrusting compute kernels
● calling untrusted code in a third-party library

➢ CHERI can do both, but so far unexplored

Closing remarks

With a RISC-V GPGPU, we can easily reuse
various CPU memory-safety solutions.

On GPGPUs:
➢ Runtime overhead of CHERI is low, much

lower than Rust
➢ Storage overhead of CHERI is much lower

than expected
➢ Logic area overhead of CHERI is notable

CAPcelerate (EP/V000381/1)
Funded by the Digital Security by Design (DSbD) Programme

delivered by UKRI to support the DSbD ecosystem.

References

[Erb et al. 2017] Dynamic buffer overflow detection for GPGPUs
[Price et al. 2015] Oclgrind: an extensible OpenCL device
simulator
[Di et al. 2016] A Study of Overflow Vulnerabilities on GPUs
[Miele 2016] Buffer overflow vulnerabilities in CUDA: a preliminary
analysis
[Park et al. 2021] Mind control attack: Undermining deep learning
with GPU memory exploitation
[Collange 2017] Simty: generalized SIMT execution on RISC-V
[Collange 2009] Dynamic Detection of Uniform and Affine Vectors
in GPGPU Computations
[Tine et al. 2021] Vortex: Extending the RISC-V ISA for GPGPU
and 3D-Graphics

