MANCHESTER
1824

The University of Manchester

FlexCap: Exploring Hardware Capabilities in
Unikernels and Flexible Isolation Oses

CHERITech’24

Pierre Olivier
pierre.olivier@manchester.ac.uk

mailto:pierre.olivier@manchester.ac.uk

Objectives

« Investigate on Morello (real hardware), in the context of specialised
minimal single address space operating systems (unikernels), the
following:

Objectives

« Investigate on Morello (real hardware), in the context of specialised
minimal single address space operating systems (unikernels), the
following:

« Various approaches to compartmentalisation in CHERI hybrid capability
mode and the resulting trade-offs in terms of performance, scalability,
security, and engineering effort

Objectives

« Investigate on Morello (real hardware), in the context of specialised
minimal single address space operating systems (unikernels), the
following:

« Various approaches to compartmentalisation in CHERI hybrid capability
mode and the resulting trade-offs in terms of performance, scalability,
security, and engineering effort

« The benefits of safe C obtained through the use of CHERI pure capabilities

Objectives

« Investigate on Morello (real hardware), in the context of specialised

minimal single address space operating systems (unikernels), the
following:

« Various approaches to compartmentalisation in CHERI hybrid capability
mode and the resulting trade-offs in terms of performance, scalability,
security, and engineering effort

« The benefits of safe C obtained through the use of CHERI pure capabilities

 How CHERI can help address one of the fundamental challenges of single
address space operating systems: multi-process applications support

Outline

1) Unikernels
2) Progress on Unikernel Compartmentalisation

)
)

3) Progress on Purecap Unikernels

4) Progress on Support for Multi-Process Applications
)

5) Conclusion

Outline

1) Unikernels
2) Progress on Unikernel Compartmentalisation

3) Progress on Purecap Unikernels
4) Progress on Support for Multi-Process Applications
)

5) Conclusion

Full-fledged Virtual Machine

Hypervisor

Hardware

Full-fledged Virtual Machine

[1Useful software
[] Software bloat

Hypervisor

Hardware

Unikernels
Full-fledged Virtual Machine

Unikernel

> B

Hypervisor

Hardware

« Unikernel: application + dependencies + thin OS layer
compiled as a static binary running on top of a hypervisor

Madhavapeddy et al., “Unikernels: Library Operating Systems for the Cloud”, ASPLOS’13 11

« Unikernel: application + dependencies + thin OS layer
compiled as a static binary running on top of a hypervisor

» Single purpose OS: 1 instance runs 1 application

« OS can be specialised for the app (libOS/Exokernel model)

« Lightweight: fast boot time, low memory/disk footprint
« Costs and attack surface reduction

« Single binary and single address space for the OS + application

« No isolation within the unikernel, system calls are (fast) function calls

Madhavapeddy et al., “Unikernels: Library Operating Systems for the Cloud”, ASPLOS’13 12

Unikernels + CHERI/Morello

» Single address space nature of unikernels aligns well with the
protection model suggested by CHERI/Morello

13

Unikernels + CHERI/Morello

» Single address space nature of unikernels aligns well with the
protection model suggested by CHERI/Morello

» Today the lack of isolation inside a unikernel instance is concerning

14

Unikernels + CHERI/Morello

» Single address space nature of unikernels aligns well with the
protection model suggested by CHERI/Morello

» Today the lack of isolation inside a unikernel instance is concerning

» Motivated us to study bringing the security benefits of CHERI’s
compartmentalisation/safe C for unikernels while maintaining their
lightweight and high-performance nature

-+
T arm

Morello Program

15

Outline

1) Unikernels

2) Progress on Unikernel Compartmentalisation

3) Progress on Purecap Unikernels

4) Progress on Support for Multi-Process Applications
5) Conclusion

16

Effort on Compartmentalisation

 Basic port of FlexOS! (compartmentalisation-aware version of the
Unikraft? Unikernel) to run bare metal on Morello A64

Lefeuvre et al., “FlexOS: Towards Flexible OS Isolation”, ASPLOS’22 17
2Kuenzer et al. “Unikraft: fast, specialized unikernels the easy way”, EuroSys'21

Effort on Compartmentalisation

 Basic port of FlexOS! (compartmentalisation-aware version of the
Unikraft? Unikernel) to run bare metal on Morello A64

e Development of compartmentalisation abstractions leveraging hybrid
mode (for compatibility) with protection domains defined by DDC/PCC

Lefeuvre et al., “FlexOS: Towards Flexible OS Isolation”, ASPLOS’22 18
2Kuenzer et al. “Unikraft: fast, specialized unikernels the easy way”, EuroSys'21

Effort on Compartmentalisation

 Basic port of FlexOS! (compartmentalisation-aware version of the
Unikraft? Unikernel) to run bare metal on Morello A64

e Development of compartmentalisation abstractions leveraging hybrid
mode (for compatibility) with protection domains defined by DDC/PCC

e Development of two methods of cross-compartment data sharing
trading off engineering effort/scalability to many
compartments/security

Lefeuvre et al., “FlexOS: Towards Flexible OS Isolation”, ASPLOS’22 19
2Kuenzer et al. “Unikraft: fast, specialized unikernels the easy way”, EuroSys'21

Effort on Compartmentalisation

 Basic port of FlexOS! (compartmentalisation-aware version of the
Unikraft? Unikernel) to run bare metal on Morello A64

e Development of compartmentalisation abstractions leveraging hybrid
mode (for compatibility) with protection domains defined by DDC/PCC

e Development of two methods of cross-compartment data sharing
trading off engineering effort/scalability to many
compartments/security

e Performance, security and engineering effort evaluation of the
prototype with 2 popular applications

Lefeuvre et al., “FlexOS: Towards Flexible OS Isolation”, ASPLOS’22 20
2Kuenzer et al. “Unikraft: fast, specialized unikernels the easy way”, EuroSys'21

Compartmentalisation:

Cross-Compartments Data Sharing

« Method 1: pass shared data as

capabilities call
—
comp2's
memory
|
access

e Pros: security, scalability to high
numbers of compartment

e Cons: engineering
effort/scalability to large
compartments 21

Compartmentalisation:

Cross-Compartments Data Sharing

e Method 1: pass shared data as e Method 2: overlapping DDCs
capabilities call
___— — Shared area
I comp1l’s comp?2’s I I . I
memory memory
7y | P >
access < , » comp2’s DDC
compl's DDC
* Pros: security, scalability to high . .
numbers of compartment e Pros: low engineering effort
« Cons: engineering e Cons: security, scalability to
effort/scalability to large many compartments
compartments 22

Unikraft/FlexOS on Morello

Activitles [Terminal +

[P ———" allitalr@espease: =
flle Edit, View Search Terminal Help
Powered by
0. .0 = —
e T T R I
e o0 ST T S ey
jodo soul | L1) 1T Dy i
i AR Vel e i)
Phogba '0.18, 0~¢33b527- custon
i!lln worldl

https://unikr.org/blog/2022-12-01—unikraf't-on-morelIo

https://unikraft.org/blog/2022-12-01-unikraft-on-morello

Compartmentalisation: Evaluation

opops i
Shared data as capabilities: o 3 6035 2607s
. = 2.5
e With carefully selected s 2
functions overhead is low 315
(Libsodium: 0.1%-12.2%) 3 0;
o 0.
I 0 |
Baseline (no bin2hex chacha20_ store32_1le all
compartments) & encrypt_ &

hex2bin bytes store64_be

24

Compartmentalisation: Evaluation

[X KJ [’J; 3.5
Shared data as capabilities: é’ 35— EnTs
= 2.5
» With carefully selected functions <
overhead is low (Libsodium: 0.1%% 15
12.2%) g
. = 0.5
Overlapping DDC: 2
Perf head Baseline (no bin2hex chacha20_ store32_1le all
e Ferrormance overnead same compartments) & encrypt_ &
order of magnitude to MPK and 250 220.4% 227.8%

Morello 208.2%

200
119.9% 119.9%
96.3%
50
0

FlexOS FlexOS Linux FIexOS FlexOS Linux
(CHERI2) (CHERI3) (PT2) (MPK3) (EPT2) (PT2)

lower than EPT on FlexOS (SQLite)

e Runs faster than same benchmark
on Linux with user/kernel
isolation (SQLite)

=
a
o

Slowdown Compared To
Baseline (%)
H
o
o

Outline

1) Unikernels
2) Progress on Unikernel Compartmentalisation

3) Progress on Purecap Unikernels
4) Progress on Support for Multi-Process Applications

5) Conclusion

26

Purecap Unikraft

o We ported Unikraft Unikernel OS to run bare metal on Morello in
purecap mode

« Updates made to the platform code (boot process), memory allocator, and
various other low-level subsystems (pointer arithmetics)

e We ported
libsodium and Purecap Slowdown Vs A64
SQLite tO run on g ;3 64'5 Benchmark | Avg. Avg.
AB4 P
tJOP- kOf ?turecap -§ £Q cycles c;czlzzap
NIKra c% 40 SQLite 2.6M 4.2M

X 30 Libsodium | 130.2M | 139M
g 20
(&)
S 10 6.8
o

SQLite Libsodium

Beyond Bare Metal

e A custom OS on bare metal is limited by the lack drivers for /0

e Ported Unikraft to run on top of the bhyve hypervisor and to use the

virtio-net paravirtualised network driver

e Ported Redis

App

Purecap Unikraft

=)

App

Purecap Unikraft

[Woelow |]

Bhyve

CHERIBSD

OIHIA

Beyond Bare Metal

CRIT: [libredis_server] Server config file /redis.conf

1:C @1 Jan 1970 00:00:00.091 # 0000000000000 Redis is starting 0080000000000

1:C @1 Jan 1970 0P0:00:00.0893 # Redis version=5.0.6, bits=64, commit=c5ee3442, modified=1, pid=1, just started
1:C @1 Jan 1970 P0:00:00.094 # Configuration loaded

CRIT: [libredis_server] Pre init server

CRIT: [libredis_server] post init server

Redis 5.0.6 (cbee3442/1) 64 bit

Running in standalone mode
Port: 6379
PID: 1

http://redis.io

Jan 1970 00:00:00.113 # Server initialized
Jan 1970 00:00:00.114 * Ready to accept connections

Outline

1) Unikernels
2) Progress on Unikernel Compartmentalisation

3) Progress on Purecap Unikernels
4) Progress on Support for Multi-Process Applications

5) Conclusion

30

SASOses & POSIX fork()

e Support for multi-process applications (i.e. POSIX fork()) is a well-
know design limitation of single address space OSes (SASOSes)

e Existing solutions for unikernels!? spawn 1 unikernel per process and
implement IPCs in the hypervisor

 This break the fundamental "single address space” nature of SASOSes, loose
some benefits

 How can we support fork() within a single address space?

1Zhang et al., “KylinX: A Dynamic Library Operating System for Simplified and Efficient Cloud
Virtualization®, ATC'18

2Lupu et al., “Nephele: Extending Virtualization Environments for Cloning Unikernel-Based Vms*, 31
EuroSys’'23

SASOses & POSIX fork()

* Key idea: emulate processes with threads

32

SASOses & POSIX fork()

* Key idea: emulate processes with threads

* Locate the memory (code & data) relevant to each emulated process
(EP) in a specific area

* Upon fork, COW that space somewhere else and create another
thread

fork(): COW

_
Memory of
thread (EP) 1

33

SASOses & POSIX fork()

* Key idea: emulate processes with threads

* Locate the memory (code & data) relevant to each emulated process (EP)
in a specific area

* Upon fork, COW that space somewhere else and create another thread

* Challenges: inter-emulated process isolation, memory references

fork(): COW
_

Memory of
thread (EP) 1

A
Absolute refs Relative
0 refs 34

SASOses & POSIX fork()

* CHERI-powered solutions:

35

SASOses & POSIX fork()

* CHERI-powered solutions:

* Assume PIE to maximise relative memory references, and fixup
absolute references on-demand during the COW by scanning
tagged memory to track pointers

36

SASOses & POSIX fork()

* CHERI-powered solutions:

* Assume PIE to maximise relative memory references, and fixup
absolute references on-demand during the COW by scanning tagged
memory to track pointers

* Inter-emulated processes isolation based on purecap, becomes a
twofold problem:
1)Ensure no capability leak between parent and child (i.e. properly fixup all absolute
references during COW)

2)Segregate and isolate the kernel's memory from the emulated processes as it is
now an ambient authority

37

SASOses & POSIX fork()

* CHERI-powered solutions:

* Assume PIE to maximise relative memory references, and fixup absolute
references on-demand during the COW by scanning tagged memory to track
pointers

* Inter-emulated processes isolation based on purecap, becomes a twofold
problem:

1)Ensure no capability leak between parent and child (i.e. properly fixup all absolute references
during COW)

2)Segregate and isolate the kernel's memory from the emulated processes as it is now an
ambient authority

* Solutions in the process of being implemented

38

Outline

1) Unikernels
2) Progress on Unikernel Compartmentalisation
)

3) Progress on Purecap Unikernels
4) Progress on Support for Multi-Process Applications

5) Conclusion

39

Conclusion

» We look at various aspects of single address
space OSes running on top of Morello:

: . . L) Software Compartmentalization Trade-Offs
* HYbrld compa rtmentlisation m with Hardware Capabilities
L] Safe C / pu reca p John Alistair'Ilf;;:els;zi,E E;ng]ﬁﬁ:}:;zfierre Olivier
Manchester, UK
» Support for multiprocess applications Abstract i e

C mpartme tallzat ion is a form of defen: ﬂwared Software cumpartmental mt foti
hich an application is broken down ed b IS .

» Please come check out our poster on o

is one of the way s toen-

SFork Supportlng Complex Multl-

fork() support in SASOSes today o] oy Process Applications in a Single
] Address Space OS

° And our PLOS, 23 pa per: i John Alistair Kressel, Hugo Lefeuvre, Pierre Olivier

works The University of Manchester

J. Kressel, H. Lefeuvre, P. OIiVier, SOﬂware ’“ITI{Single Address Space OSes (SASOS) Problem: Lack of for|
Compartmentalization Trade-Offs with o arge s et

H a rd Wa re Ca p a bi I iti es 9 P LO S ! 2 3 g;j:r ng:g'ses) :;\::igs Ag:éizs Most existing solutions_ treat OS as

entire OS [2,3]

i Page| [— Pa—

1 1 1 can by Ta1ble] 4 'i T Application
 https://flexcap-project.github.io/ = —
thatp — Address Space Addre;sSSpa
space Page| L] Singl oS
ccsa Tag le s_«— p'dee o a gpyﬂ

. Table H i
ware; L ypervisor
cati \

Page|
_— gabl o) P X Loses single address space performa

.- O - s A

https://flexcap-project.github.io/

	Slide: 1
	Slide: 2 (1)
	Slide: 2 (2)
	Slide: 2 (3)
	Slide: 2 (4)
	Slide: 3
	Slide: 4
	Slide: 5 (1)
	Slide: 5 (2)
	Slide: 5 (3)
	Slide: 6 (1)
	Slide: 6 (2)
	Slide: 7 (1)
	Slide: 7 (2)
	Slide: 7 (3)
	Slide: 8
	Slide: 9 (1)
	Slide: 9 (2)
	Slide: 9 (3)
	Slide: 9 (4)
	Slide: 10 (1)
	Slide: 10 (2)
	Slide: 11
	Slide: 12 (1)
	Slide: 12 (2)
	Slide: 13
	Slide: 14
	Slide: 15
	Slide: 16
	Slide: 17
	Slide: 18
	Slide: 19 (1)
	Slide: 19 (2)
	Slide: 19 (3)
	Slide: 20 (1)
	Slide: 20 (2)
	Slide: 20 (3)
	Slide: 20 (4)
	Slide: 21
	Slide: 22

