
FlexCap: Exploring Hardware Capabilities in 
Unikernels and Flexible Isolation Oses
CHERITech’24

Pierre Olivier
pierre.olivier@manchester.ac.uk 
 

mailto:pierre.olivier@manchester.ac.uk


2 

Objectives
● Investigate on Morello (real hardware), in the context of specialised 

minimal single address space operating systems (unikernels), the 
following:



3 

Objectives
● Investigate on Morello (real hardware), in the context of specialised 

minimal single address space operating systems (unikernels), the 
following:

● Various approaches to compartmentalisation in CHERI hybrid capability 
mode and the resulting trade-offs in terms of performance, scalability, 
security, and engineering effort



4 

Objectives
● Investigate on Morello (real hardware), in the context of specialised 

minimal single address space operating systems (unikernels), the 
following:

● Various approaches to compartmentalisation in CHERI hybrid capability 
mode and the resulting trade-offs in terms of performance, scalability, 
security, and engineering effort

● The benefits of safe C obtained through the use of CHERI pure capabilities



5 

Objectives
● Investigate on Morello (real hardware), in the context of specialised 

minimal single address space operating systems (unikernels), the 
following:

● Various approaches to compartmentalisation in CHERI hybrid capability 
mode and the resulting trade-offs in terms of performance, scalability, 
security, and engineering effort

● The benefits of safe C obtained through the use of CHERI pure capabilities
● How CHERI can help address one of the fundamental challenges of single 

address space operating systems: multi-process applications support



6 

Outline
1) Unikernels
2) Progress on Unikernel Compartmentalisation
3) Progress on Purecap Unikernels
4) Progress on Support for Multi-Process Applications
5) Conclusion



7 

Outline
1) Unikernels
2) Progress on Unikernel Compartmentalisation
3) Progress on Purecap Unikernels
4) Progress on Support for Multi-Process Applications
5) Conclusion



8 

Unikernels

Application
Libraries

OS interface
used

Linux
distribution

Linux
Kernel

Hypervisor
Hardware

Full-fledged Virtual Machine



9 

Unikernels

Application
Libraries

OS interface
used

Linux
distribution

Linux
Kernel

Hypervisor
Hardware

Full-fledged Virtual Machine Useful software
Software bloat



10 

Unikernels

Application
Libraries

OS interface
used

Linux
distribution

Linux
Kernel

Hypervisor
Hardware

Application
Libraries
OS Layer

Full-fledged Virtual Machine

Unikernel

Useful software
Software bloat



11 

Unikernels
● Unikernel: application + dependencies + thin OS layer

compiled as a static binary running on top of a hypervisor

Madhavapeddy et al., “Unikernels: Library Operating Systems for the Cloud”, ASPLOS’13



12 

Unikernels
● Unikernel: application + dependencies + thin OS layer

compiled as a static binary running on top of a hypervisor
● Single purpose OS: 1 instance runs 1 application

● OS can be specialised for the app (libOS/Exokernel model)
● Lightweight: fast boot time, low memory/disk footprint

● Costs and attack surface reduction
● Single binary and single address space for the OS + application 

● No isolation within the unikernel, system calls are (fast) function calls

Madhavapeddy et al., “Unikernels: Library Operating Systems for the Cloud”, ASPLOS’13



13 

Unikernels + CHERI/Morello
● Single address space nature of unikernels aligns well with the 

protection model suggested by CHERI/Morello



14 

Unikernels + CHERI/Morello
● Single address space nature of unikernels aligns well with the 

protection model suggested by CHERI/Morello
● Today the lack of isolation inside a unikernel instance is concerning



15 

Unikernels + CHERI/Morello
● Single address space nature of unikernels aligns well with the 

protection model suggested by CHERI/Morello
● Today the lack of isolation inside a unikernel instance is concerning
● Motivated us to study bringing the security benefits of CHERI’s 

compartmentalisation/safe C for unikernels while maintaining their 
lightweight and high-performance nature

+



16 

Outline
1) Unikernels
2) Progress on Unikernel Compartmentalisation
3) Progress on Purecap Unikernels
4) Progress on Support for Multi-Process Applications
5) Conclusion



17 

Effort on Compartmentalisation

1Lefeuvre et al., “FlexOS: Towards Flexible OS Isolation”, ASPLOS’22
2Kuenzer et al. “Unikraft: fast, specialized unikernels the easy way”, EuroSys’21

● Basic port of FlexOS1 (compartmentalisation-aware version of the 
Unikraft2 Unikernel) to run bare metal on Morello A64



18 

Effort on Compartmentalisation

1Lefeuvre et al., “FlexOS: Towards Flexible OS Isolation”, ASPLOS’22
2Kuenzer et al. “Unikraft: fast, specialized unikernels the easy way”, EuroSys’21

● Basic port of FlexOS1 (compartmentalisation-aware version of the 
Unikraft2 Unikernel) to run bare metal on Morello A64

● Development of compartmentalisation abstractions leveraging hybrid 
mode (for compatibility) with protection domains defined by DDC/PCC



19 

Effort on Compartmentalisation

1Lefeuvre et al., “FlexOS: Towards Flexible OS Isolation”, ASPLOS’22
2Kuenzer et al. “Unikraft: fast, specialized unikernels the easy way”, EuroSys’21

● Basic port of FlexOS1 (compartmentalisation-aware version of the 
Unikraft2 Unikernel) to run bare metal on Morello A64

● Development of compartmentalisation abstractions leveraging hybrid 
mode (for compatibility) with protection domains defined by DDC/PCC

● Development of two methods of cross-compartment data sharing 
trading off engineering effort/scalability to many 
compartments/security



20 

Effort on Compartmentalisation

1Lefeuvre et al., “FlexOS: Towards Flexible OS Isolation”, ASPLOS’22
2Kuenzer et al. “Unikraft: fast, specialized unikernels the easy way”, EuroSys’21

● Basic port of FlexOS1 (compartmentalisation-aware version of the 
Unikraft2 Unikernel) to run bare metal on Morello A64

● Development of compartmentalisation abstractions leveraging hybrid 
mode (for compatibility) with protection domains defined by DDC/PCC

● Development of two methods of cross-compartment data sharing 
trading off engineering effort/scalability to many 
compartments/security

● Performance, security and engineering effort evaluation of the 
prototype with 2 popular applications



21 

Compartmentalisation:
Cross-Compartments Data Sharing
● Method 1: pass shared data as 

capabilities

comp1‘s
memory

comp2‘s
memory

call

access
● Pros: security, scalability to high 

numbers of compartment
● Cons: engineering 

effort/scalability to large 
compartments



22 

Compartmentalisation:
Cross-Compartments Data Sharing
● Method 1: pass shared data as 

capabilities
● Method 2: overlapping DDCs

comp1‘s
memory

comp2‘s
memory

call

access
● Pros: security, scalability to high 

numbers of compartment
● Cons: engineering 

effort/scalability to large 
compartments

comp1’s DDC
comp2’s DDC

Shared area

● Pros: low engineering effort
● Cons: security, scalability to 

many compartments



23 

Unikraft/FlexOS on Morello

https://unikraft.org/blog/2022-12-01-unikraft-on-morello 

https://unikraft.org/blog/2022-12-01-unikraft-on-morello


24 

Compartmentalisation: Evaluation
Shared data as capabilities:
● With carefully selected 

functions overhead is low 
(Libsodium: 0.1%-12.2%)



25 

Compartmentalisation: Evaluation
Shared data as capabilities:
● With carefully selected functions 

overhead is low (Libsodium: 0.1%-
12.2%)

Overlapping DDC:
● Performance overhead same 

order of magnitude to MPK and 
lower than EPT on FlexOS (SQLite)

● Runs faster than same benchmark 
on Linux with user/kernel 
isolation (SQLite)



26 

Outline
1) Unikernels
2) Progress on Unikernel Compartmentalisation
3) Progress on Purecap Unikernels
4) Progress on Support for Multi-Process Applications
5) Conclusion



27 

Purecap Unikraft
● We ported Unikraft Unikernel OS to run bare metal on Morello in 

purecap mode
● Updates made to the platform code (boot process), memory allocator, and 

various other low-level subsystems (pointer arithmetics)
● We ported

libsodium and
SQLite to run on
top of purecap
Unikraft



28 

Beyond Bare Metal
● A custom OS on bare metal is limited by the lack drivers for I/O
● Ported Unikraft to run on top of the bhyve hypervisor and to use the 

virtio-net paravirtualised network driver
● Ported Redis

Morello Hardware
Purecap Unikraft

App
Morello VM

Purecap Unikraft
App

Morello Hardware
CHERIBSD

Bhyve

NIC

VirtIO



29 

Beyond Bare Metal



30 

Outline
1) Unikernels
2) Progress on Unikernel Compartmentalisation
3) Progress on Purecap Unikernels
4) Progress on Support for Multi-Process Applications
5) Conclusion



31 

SASOses & POSIX fork()
● Support for multi-process applications (i.e. POSIX fork()) is a well-

know design limitation of single address space OSes (SASOSes)
● Existing solutions for unikernels1,2 spawn 1 unikernel per process and 

implement IPCs in the hypervisor
● This break the fundamental ”single address space“ nature of SASOSes, loose 

some benefits
● How can we support fork() within a single address space?

1Zhang et al., “KylinX: A Dynamic Library Operating System for Simplified and Efficient Cloud 
Virtualization“, ATC’18
2Lupu et al., “Nephele: Extending Virtualization Environments for Cloning Unikernel-Based Vms“, 
EuroSys’23



32 

SASOses & POSIX fork()
● Key idea: emulate processes with threads



33 

SASOses & POSIX fork()
● Key idea: emulate processes with threads

● Locate the memory (code & data) relevant to each emulated process 
(EP) in a specific area

● Upon fork, COW that space somewhere else and create another 
thread

Memory of
thread (EP) 1

Memory of
thread (EP) 2

fork(): COW



34 

SASOses & POSIX fork()
● Key idea: emulate processes with threads

● Locate the memory (code & data) relevant to each emulated process (EP) 
in a specific area

● Upon fork, COW that space somewhere else and create another thread
● Challenges: inter-emulated process isolation, memory references

Memory of
thread (EP) 1

Memory of
thread (EP) 2

fork(): COW

Relative
refs

Absolute refs



35 

SASOses & POSIX fork()
● CHERI-powered solutions:



36 

SASOses & POSIX fork()
● CHERI-powered solutions:

● Assume PIE to maximise relative memory references, and fixup 
absolute references on-demand during the COW by scanning 
tagged memory to track pointers



37 

SASOses & POSIX fork()
● CHERI-powered solutions:

● Assume PIE to maximise relative memory references, and fixup 
absolute references on-demand during the COW by scanning tagged 
memory to track pointers

● Inter-emulated processes isolation based on purecap, becomes a 
twofold problem:
1)Ensure no capability leak between parent and child (i.e. properly fixup all absolute 

references during COW)
2)Segregate and isolate the kernel’s memory from the emulated processes as it is 

now an ambient authority



38 

SASOses & POSIX fork()
● CHERI-powered solutions:

● Assume PIE to maximise relative memory references, and fixup absolute 
references on-demand during the COW by scanning tagged memory to track 
pointers

● Inter-emulated processes isolation based on purecap, becomes a twofold 
problem:
1)Ensure no capability leak between parent and child (i.e. properly fixup all absolute references 

during COW)
2)Segregate and isolate the kernel’s memory from the emulated processes as it is now an 

ambient authority
● Solutions in the process of being implemented



39 

Outline
1) Unikernels
2) Progress on Unikernel Compartmentalisation
3) Progress on Purecap Unikernels
4) Progress on Support for Multi-Process Applications
5) Conclusion



40 

Conclusion
● We look at various aspects of single address 

space OSes running on top of Morello:
● Hybrid compartmentlisation
● Safe C/purecap
● Support for multiprocess applications

● Please come check out our poster on 
fork() support in SASOSes today

● And our PLOS’23 paper:
J. Kressel, H. Lefeuvre, P. Olivier, Software 
Compartmentalization Trade-Offs with 
Hardware Capabilities, PLOS’23

● https://flexcap-project.github.io/ 

https://flexcap-project.github.io/

	Slide: 1
	Slide: 2 (1)
	Slide: 2 (2)
	Slide: 2 (3)
	Slide: 2 (4)
	Slide: 3
	Slide: 4
	Slide: 5 (1)
	Slide: 5 (2)
	Slide: 5 (3)
	Slide: 6 (1)
	Slide: 6 (2)
	Slide: 7 (1)
	Slide: 7 (2)
	Slide: 7 (3)
	Slide: 8
	Slide: 9 (1)
	Slide: 9 (2)
	Slide: 9 (3)
	Slide: 9 (4)
	Slide: 10 (1)
	Slide: 10 (2)
	Slide: 11
	Slide: 12 (1)
	Slide: 12 (2)
	Slide: 13
	Slide: 14
	Slide: 15
	Slide: 16
	Slide: 17
	Slide: 18
	Slide: 19 (1)
	Slide: 19 (2)
	Slide: 19 (3)
	Slide: 20 (1)
	Slide: 20 (2)
	Slide: 20 (3)
	Slide: 20 (4)
	Slide: 21
	Slide: 22

