
Let’s make a
standard

Where are we and how do we move forwards?

2© 2024 Codasip. All rights reserved.

From CHERI v8 to CHERI-RISC-V

• CHERI v8 imported into CHERI v9 repo in April 2022

• CHERI v9 changes include
• CHERI-MIPS removed
• CHERI-RISC-V now the base architecture
• CHERI-x86 sketch added

• CHERI-RISC-V changes in CHERI v9 include
• Merged register-file only, split option removed
• Mode dependant JALR – JALR.PCC, JALR.MODE
• Although subsequently removed thanks for fast mode switching

• Removal of DDC, PCC offsetting
• Add CGetHigh, CSetHigh for capability creation and querying
• Add per-privilege enables into menvfg, senvcfg CSRs
• Moving to tag clearing to reduce exception sources
• This is not a complete list…..

3© 2024 Codasip. All rights reserved.

From CHERI-RISC-V v9 to the Codasip Demo

• At Codasip we worked independently to fill in gaps in the specification to allow a product
to be built
• There was no CHERI-RISC-V debug specification (Sdtrig/Sdext)
• Not all mnemonics were clearly specified
• E.g. did c.j map to c.cj in capability mode? The semantics don’t change….
• Missing encodings for 16-bit instructions….

• Merging the exception priorities with the standard RISC-V ones
• And various other changes (this is not an exhaustive list)

•We demonstrated the result of this development at the RISC-V summit in Santa Clara,
November 2023

4© 2024 Codasip. All rights reserved.

The Demo at the RISC-V Summit Nov ‘24

• Carl Shaw and Troy Jones
showing the A730-CHERI
prototype detecting a buffer
overrun on the stack

5© 2024 Codasip. All rights reserved.

Getting to the RISC-V Github repo

• At Codasip we started working with Cambridge University on the CHERI-RISC-V
specification after discussion at the RISC-V Summit in Barcelona in June 2023
• Although we were thwarted by emails going to spam for quite some time in both directions!

•We were already working in the background on a different version of the CHERI
specification document
• Extracting well defined features from CHERI v9
• Postponing experimental and less well-defined features
• Defining a stable base architecture

• Written as an implementation spec
• Covers all the necessary questions asked by the implementation and verification teams to allow the

product to be built

6© 2024 Codasip. All rights reserved.

CHERI-RISC-V v0.7.0

• After review with Cambridge, the Codasip CHERI spec document became v0.7.0 on
Github
• See https://github.com/riscv/riscv-cheri/releases/

• The TG was formed in January 2024
• Chair/vice-chair still not confirmed

• And then the real spec work started refining the architecture

• A few examples of the problems we needed to solve are on the next few slides

https://github.com/riscv/riscv-cheri/releases/

7© 2024 Codasip. All rights reserved.

RV32: Old Capability Format

• The RV32 format poses challenges due to limited encoding space
• CHERI v9 has
• 12-bit permissions
• 8-bit mantissa (encoded as 8 for Base, 6 for Top) – 14-bits
• 1-bit flag (Mode)
• 4-bit Otype
• 1-bit Internal Exponent flag

• A few observations
• That’s a lot of permission bits
• Otype has been deferred
• The mantissa is too short for accurate bounds
• Mode doesn’t need a whole bit, it’s only relevant for executable caps
• We want space for future expansion
• No software defined permissions

• So, let’s rework the format

8© 2024 Codasip. All rights reserved.

RV32: Old Permission Bits (12 to 5)

• Divide them into categories, and only allocate 5 in the base extension
• access_system_regs – kept as ASR
• permit_store – kept as W
• permit_load – kept as R
• permit_execute – kept as X
• permit_store_cap – combined into C permission (also requires W)
• permit_load_cap – combined into C permission (also requires R)
• 5-bits allocated

• permit_store_local_cap – separate local/global extension
• global – separate local/global extension
• Will be allocated later

• permit_set_CID – deferred
• permit_unseal – deferred
• permit_seal – deferred
• permit_cinvoke – deferred
• 4-bits saved

9© 2024 Codasip. All rights reserved.

RV32: New Format

• Including Mode we want 6 permission bits,
but in limited combinations, so we encode
this down to 5-bits

•We have a single root capability, but define
different quadrants with only 1 valid for
PCC

•Mode is ¼ bit overall

• Lots of expansion room – 19/32 are
unallocated

10© 2024 Codasip. All rights reserved.

RV32: New Format

• The final encoding has
• 2 software defined permissions
• 5 architectural permissions (6 including the Mode bit)
• With space for more to be added

• 4 reserved bits (for local/global?)
• 1 sealed bit
• T8 gives an extra mantissa bit when the exp is zero, or a 5-bit exp field

11© 2024 Codasip. All rights reserved.

RV32: Fixing AUIPC+JALR

• AUIPC+JALR sequences could in theory be problematic
• Due to the short mantissa, and the calculation method for the representable range: in theory it was

possible for the intermediate result to be unrepresentable, even though the final result from the JALR
is representable
• This would prevent linker relaxation from working
• I don’t think this problem has been seen “in the wild”

• The solution?
• Increase the mantissa length to 10-bits
• Change the representable range definition so that it is much more closely centred on the bounds.

Instead of only guaranteeing 1/8 above or below (due to a 3-bit subtraction) it now does a full 10-bit
subtraction
• Thanks to Peter Rugg for proving the result
• We also do the same for RV64, just to be consistent

12© 2024 Codasip. All rights reserved.

Illegal address handling: background

• This one was particularly tough to solve, but we’re happy with the solution.

• For VM cores implementing Sv48 or Sv39 it is highly desirable to trim the PC and other
address registers to save considerable area.
• Less so for Sv57

• If the upper bits (i.e. [63:39] for Sv39 don’t match) then the address is invalid, and so
we can store an invalid flag and only 39-bits of address.

•When expanding the address there’s no guarantee that it will be the same as the
original invalid address, RISC-V only requires that they are both invalid, and so will both
cause an access fault.

13© 2024 Codasip. All rights reserved.

Illegal address handling: the rub!

• Here’s the problem
• The address changes, which for a CHERI machine is very very bad
• The new address might be unrepresentable, meaning that replacing the address without specific checks might

cause a tagged capability with unexpected properties
• It’s possible that the original address was in bounds, and the new address is out of bounds
• The reverse is also possible, the address may change from out of bounds to in bounds
• The address must have been representable before, but may not be after

•What we don’t want to do is spend expensive hardware on a case which is guaranteed to
cause an exception
• No more bounds check, representable range check logic please

• Note that Legacy Mode must cause an access fault for compatibility

14© 2024 Codasip. All rights reserved.

Illegal address handling: the solution

•We need to distinguish between a CHERI core running non-CHERI software, which must
cause an access fault, and running CHERI software where we can take a CHERI fault
• If the capability metadata is infinity (no CHERI configuration has been done) then simply update the

address and this will trigger an access fault
• The new address is guaranteed to be representable and in-bounds

• If the capability metadata is not infinity then take a CHERI invalid address fault, and do not proceed
further
• This covers branch targets, jump targets, load/store addresses

• This has a very useful property – it means that bounds which are in the invalid address
space now have no use – so do not need to be compared against.
• This means that we need 39-bit comparators for Sv39 or 48-bit for Sv48 instead of 64-bit.
• CHERI just got a bit cheaper in area and power

15© 2024 Codasip. All rights reserved.

Other changes?

• There are many other changes since CHERI v9

• We’re trying to make adoption of CHERI-RISC-V easier

• CSRs / SCRs for example:
• Removal of SCR space, and map them into the CSR space
• MTVEC (Legacy Mode) is MTVECC (Capability Mode) at the same address
• New CSRs like DDC are allocated into CSR space
• For a while we used aliased addresses but decided to lower the cost

• Duplicate Mnemonics
• JALR/CJALR, LC/CLC etc.
• We removed the duplicates, to ease the burden on the toolchain and assembly writers.

• Minimising ISA
• Removing instructions which can be emulated with small numbers of other instructions except where deemed performance critical

• Easy Mode Switching
• Easily switch into one mode and back again with MODESW, which can be executed in the decoder.
• Previously it was necessary to install a new cap in PCC with the M-bit flipped

16© 2024 Codasip. All rights reserved.

What extensions do we have?

Extension Status Description

ZcheriPurecap Stable – bug fixes only Base architecture for a CHERI purecap machine

ZcheriLegacy Stable – bug fixes only Implies ZcheriPureCap. Adds legacy RISC-V support

Zabhlrsc Stable – bug fixes only Byte/half LR/SC support (independent of CHERI)

Zstid Software prototyping Secure thread ID for compartmentalisation, the Thread ID is extended to
capabilities with CHERI

ZcheriPTE Research, in spec Implies ZcheriPureCap. Revocation support by supporting cap accessed and
dirty in page tables

ZcheriMultiLevel Research, need PR Support for locally/globally accessible capabilities with multiple levels

ZcheriTransitive Research, need PR Support for reducing capability permissions on loading

ZcheriTraceTag Research, Need PR Support for data capability trace with tags

ZcheriSanitary Research, Need PR Support for cleaning capabilities on compartment switching

ZcheriSystem Research, Need PR Support for exposing compartment IDs to the system (a better WorldGuard)

17© 2024 Codasip. All rights reserved.

Getting to RVA23 Compatibility

•We’re currently building RVA22+CHERI, but we want to get to RVA23+CHERI, which has
some challenges

• Vector+CHERI
• Kind of simple – check every unmasked byte of every load/store against the bounds
• The devil is in the detail though for complex sequenced load/stores
• Consider adding VLC/VSC to load/store full vector registers including caps, and an associated VCMV to move a

whole vector register to support Vector capability memcpy

• Vector+Hypervisor
• We haven’t analysed this one yet, so have no comment on the implications
• If you have ideas then please get in touch

18© 2024 Codasip. All rights reserved.

Code Size Reduction

• Zcmt – table jump
• Already in the CHERI-RISC-V spec

• Zcmp – push/pop
• I think these are straight-forward but haven’t written up how to do them
• The data-width doubles, and only RV32 is of interest, so effectively use the RV64 stack layout for RV32-

CHERI-RISC-V

19© 2024 Codasip. All rights reserved.

That’s all folks
• Collaborate with us: https://github.com/riscv/riscv-cheri
• Join the TG and the bi-weekly meeting
• Tell us what’s missing and help fill in the gaps
• Help drive CHERI to world domination

https://github.com/riscv/riscv-cheri

