
Professor Robert N. M. Watson
Professor Simon W. Moore

Franz A. Fuchs

CHERITech’24 - Welcome
The William Gates Building

University of Cambridge
23 April 2024

Welcome!

• The CHERI project kicked off in this building in late
2010 with the generous support of DARPA

• Since joined by Arm, Google, Microsoft, and of
course funders such as InnovateUK, and others in
supporting a massive expansion of scope and
interest

• We thank these and other sponsors for their
support for this event!

• Capability systems are, of course, an old idea, even
if our application of the concept is very
contemporary. Do make sure you take a look at the
CAP Computer in The Street, completed in 1977!

The CAP computer project ran from
1970-1977 at the University of
Cambridge, led by R. Needham, M.
Wilkes, and D. Wheeler.

Some administrative things

• You are in Lecture Theatre 1 (LT1), which will be where all of our
talks are

• Just outside is The Street, where we will have poster sessions,
coffee, and lunch

• Bathrooms can be found off The Street, opposite the stairs
• If you need help with a taxi or similar matters, the building’s

Reception can surely lend a hand
• There are no planned fire drills today … …

Enunciating visions for CHERI adoption

• CHERI is a very challenging technology to transition
• Hardware and software R&D cycles that differ enormously
• Supply-chain challenges make deploying any disruptive change hard
• Evaluating and selling security to generalist markets very difficult

• But the potential wins are also huge
• Achieve strong memory safety without ground-up rewrite of all software

(nearly infinitely expensive, and so will not happen in less than 30 years)
• Enable compartmentalized software designs capability of resisting arbitrary

code execution, software supply-chain adversaries

• To succeed, we need to identify and engage with
• Clearly enunciated visions for use and deployment
• Both technical and non-technical obstacles to use and adoption

TLP:CLEAR

8

TLP:CLEAR

products. Threat models consider a product’s specific use-case and enables development
teams to fortify products. Finally, senior leadership should hold teams accountable for
delivering secure products as a key element of product excellence and quality.

Secure-by-Design Tactics

The Secure Software Development Framework (SSDF), also known as National Institute of
Standards and Technology’s (NIST) SP 800-218, is a core set of high-level secure software
development practices that can be integrated into each stage of the software development
lifecycle (SDLC). Following these practices can help software producers become more
effective at finding and removing vulnerabilities in released software, mitigate the potential
impact of the exploitation of vulnerabilities, and address the root causes of vulnerabilities to
prevent future recurrences.

The authoring agencies encourage the use of Secure-by-Design tactics, including principles
that reference SSDF practices. Software manufacturers should develop a written roadmap to
adopt more Secure-by-Design software development practices across their portfolio. The
following is a non-exhaustive list of illustrative roadmap best practices:

• Memory safe programming languages (SSDF PW.6.1): Prioritize the use of memory safe
languages wherever possible. The authoring agencies acknowledge that other memory
specific mitigations, such as address space layout randomization (ASLR), control-flow
integrity (CFI), and fuzzing are helpful for legacy codebases, but insufficient to be
viewed as secure-by-design as they do not adequately prevent exploitation. Some
examples of modern memory safe languages include C#, Rust, Ruby, Java, Go, and
Swift. Read NSA’s memory safety information sheet for more.

• Secure Hardware Foundation: Incorporate architectural features that enable fine-
grained memory protection, such as those described by Capability Hardware Enhanced
RISC Instructions (CHERI) that can extend conventional hardware Instruction-Set
Architectures (ISAs). For more information visit, University of Cambridge’s CHERI
webpage.

• Secure Software Components (SSDF PW 4.1): Acquire and maintain well-secured
software components (e.g., software libraries, modules, middleware, frameworks,) from
verified commercial, open source, and other third-party developers to ensure robust
security in consumer software products.

• Web template frameworks (SSDF PW.5.1): Use web template frameworks that
implement automatic escaping of user input to avoid web attacks such as cross-site
scripting.

• Parameterized queries (SSDF PW 5.1): Use parameterized queries rather than including
user input in queries, to avoid SQL injection attacks.

• Static and dynamic application security testing (SAST/DAST) (SSDF PW.7.2, PW.8.2):

CISA | NSA | FBI | ACSC | NCSC-UK | CCCS | BSI | NCSC-NL | CERT NZ | NCSC-NZ

Disclaimer: This document is marked TLP:CLEAR. Disclosure is not limited. Sources may use TLP:CLEAR when information
carries minimal or no foreseeable risk of misuse, in accordance with applicable rules and procedures for public release.
Subject to standard copyright rules, TLP:CLEAR information may be distributed without restriction. For more information on
the Traffic Light Protocol, see http://www.cisa.gov/tlp/.

TLP:CLEAR

 TLP

Shifting the Balance of Cybersecurity Risk:
Principles and Approaches for Security-by-
Design and -Default
Publication: April 13, 2023

Cybersecurity and Infrastructure Security Agency

NSA | FBI | ACSC | NCSC-UK | CCCS | BSI | NCSC-NL | CERT NZ | NCSC-NZ

NCSC, CISA, NSA, FBI, and U.S.-ally cybersecurity agencies recommend CHERI

5

April 2023

6

From drumbeat to standardisation
• An idea gaining increasing currency to help answer the question:

“How can consumers ask for systems with memory safety?”
• Complex path including technical consensus building (“what is memory

safety?”) and vast tricky tradeoffs and potential pitfalls
• Want an inclusive definition across methodologies: At least (perhaps

multiple) of CHERI, Rust, formal methods, … but accept:
• Differing capabilities, adoption tradeoffs, adversary models, limitations

• Reward early adoption (exploit mitigations) while motivating ratcheting
up of ambition over time (e.g., from PAC to CHERI)
• From secrets-based/probabilistic to deterministic protection
• Mature adversary models including attackers with arbitrary code execution

• Be aware that this discussion is coming ..
• May go nowhere, but likely essential to produce the supply-chain pull to get

beyond widely lauded but actually token Rust deployments with limited impact

CHERI Alliance CIC

• A UK-based Community Interest Corporation (CIC)
• Provide a space enabling companies, universities, and governments

to pool resources to promote and enable CHERI
• CIC now created legally, and in framework development
• Planned Autumn launch with initial membership
• Support efforts across CHERI-enabled architectures, such as:
• Common marketing material
• Standardisation and certification activities
• Software ecosystem enablement
• Efforts such as memory-safety standardization

• Your feedback and participation very much invited!

CheriBSD 2024.05 software release coming soon
Reference design for CHERI integration into a
mainstream, open-source OS and application stack

Approaching 100MLoC of memory-safe,
compartmentalised C/C++ on a shipping prototype
Arm Morello board today:

● CheriBSD kernel with DRM + Panfrost drivers
● CheriBSD userspace with libraries and tools
● OpenGL, Wayland display server
● Desktop: Plasma, KDE base applications including

Dolphin, Okular, Kate, Konsole, …
● Server: nginx, Postgres, gRPC, …
● “Ubiquitous” Library compartmentalization of all

memory-safe userlevel components
● Complete software development environment including

Clang/LLVM, Git, GDB, Ghidra, …
● Roughly 10K memory-safe third-party software

packages, and 20K aarch64 packages

Some more complex, un-adapted applications (e.g.,
Chromium, OpenJDK) running with 64-bit Arm support
9

Demonstration
CheriBSD 2024.05 development snapshot running on Arm Morello desktop system

10

