Deprivileging Low-Level GPU Drivers Efficiently with User-Space
Processes and CHERI Compartments

Paul Metzger
University of Cambridge
Cambridge, United Kingdom
paul.metzger@cl.cam.ac.uk

Matthew Naylor
University of Cambridge
Cambridge, United Kingdom
matthew.naylor@cl.cam.ac.uk

Abstract

Device drivers are a prominent source of operating system bugs and
vulnerabilities, due to market pressures on hardware vendors and
access to privileged system resources. OSes increasingly deprivilege
drivers by moving them out of the kernel into user space, but this is
widely understood to come with significant overhead. The perfect
storm concerns GPU drivers, which are very large, complex and
yet highly performance-sensitive. For performance reasons, large
parts of these drivers run with full kernel privileges on major OSes.

We deprivilege a GPU driver by moving it to user space. To avoid
context-switching latency we run interrupt handlers inside eBPF
sandboxes. Additionally, we take away the ability of the GPU driver
to manage its own page tables and move this into an OS-vendor-
vetted component. We create two variants. Firstly, a microkernel-
inspired implementation which runs the driver in a standard Unix
process. Secondly, we move the driver into a CHERI compart-
ment. CHERI allows isolation of distrusting code in sandboxes
without needing MMU-based separation. Compartments safely co-
exist within an address space, but efficiently share data by passing
CHERI capabilities between each other, and incur reduced context-
switching costs. To do this we use ‘co-located processes’, an existing
framework which allows us to run graphics drivers and their appli-
cations as separate OS processes in a shared address space.

Microkernel-like user-space drivers are still often believed to
have high overheads, yet our Unix process-based implementation
increases execution time on average by only 7.9% (geometric mean
of the benchmark suite; max. 48.2%, min. 0.1%) for GPGPU and
by 5.5% (max. 12.6%, min. -0.2%) for graphics workloads, while
providing major security benefits. Despite these low costs, isolating
processes with CHERI compartments, instead of address spaces,
reduces average overheads to 6% (max. 36.6%, min. -0.2%) and 5%
(max. 11.2%, min. 0.01%) respectively.

CCS Concepts

« Security and privacy — Operating systems security.

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 Inter-
national License.

CCS ’25, Taipei, Taiwan

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1525-9/2025/10

https://doi.org/10.1145/3719027.3765036

A. Theodore Markettos
University of Cambridge
Cambridge, United Kingdom
theo.markettos@cl.cam.ac.uk

Robert N. M. Watson
University of Cambridge
Cambridge, United Kingdom
robert.watson@cl.cam.ac.uk

Edward Tomasz Napierata
University of Cambridge
Cambridge, United Kingdom
en322@cl.cam.ac.uk

Timothy M. Jones
University of Cambridge
Cambridge, United Kingdom
timothy.jones@cl.cam.ac.uk

Keywords
Security; User-space driver; GPU; CHERI

ACM Reference Format:

Paul Metzger, A. Theodore Markettos, Edward Tomasz Napierata, Matthew
Naylor, Robert N. M. Watson, and Timothy M. Jones. 2025. Deprivileging
Low-Level GPU Drivers Efficiently with User-Space Processes and CHERI
Compartments. In Proceedings of the 2025 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS ’25), October 13—17, 2025, Taipei,
Taiwan. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/3719027.
3765036

1 Introduction

In recent years, graphics processor (GPU) vendors have reported a
seemingly endless tide of GPU-driver vulnerabilities [6, 31, 48, 68,
72, 89]. GPU drivers consist of a low-level operating system (OS) ker-
nel component and a user-space component, as shown in Figure 1.
The low-level kernel components are untrustworthy for multiple
reasons. They are known to be prone to vulnerabilities due to their
size and complexity. For example, one of the Linux kernel GPU
drivers consists of more than three million lines of code [51, 54].
Low-level GPU drivers are often closed source, which means inde-
pendent security audits are infeasible. Windows applies some basic
quality control via static analysis [7] and driver signing [62], which
provide a low hurdle to clear for driver attacks [34, 35]. Chipset
security updates for some devices, for example smartphones, are
provided only for a short timespan and sometimes with consid-
erable delays [1]. At the same time, low-level GPU drivers are
deployed on millions of devices, including safety- and security-
critical systems like phones, cars and supercomputers [4, 17, 88].
Google indicates that four out of nine Android privilege-escalation
zero-days recorded in 2023 were in GPU drivers [86]. Despite this,
low-level GPU drivers have OS kernel privileges on all major OSes.
It is desirable to deprivilege them to thwart attacks that aim to gain
OS kernel privilege. This is a reason microkernels place drivers
in user-space processes. Sadly, these are sometimes still believed
to have high overheads [14, 38, 59], which is in conflict with the
performance-centred ethos of the GPU market, where even a few
percent difference is newsworthy [47, 92].

We move a low-level GPU driver from the kernel to user space
with low performance costs, and investigate two designs over the
baseline kernel driver (see Table 1):

https://orcid.org/0000-0003-1591-6778
https://orcid.org/0009-0008-4411-2318
https://orcid.org/0009-0000-8242-9991
https://orcid.org/0000-0001-9827-8497
https://orcid.org/0000-0001-8139-8783
https://orcid.org/0000-0002-4114-7661
https://creativecommons.org/licenses/by-nd/4.0
https://creativecommons.org/licenses/by-nd/4.0
https://creativecommons.org/licenses/by-nd/4.0
https://doi.org/10.1145/3719027.3765036
https://doi.org/10.1145/3719027.3765036
https://doi.org/10.1145/3719027.3765036

CCS 25, October 13-17, 2025, Taipei, Taiwan

GPGPU or graphics applications

§ ‘ GPGPU or graphics API calls A’ﬂ GPU kernel or shader code ‘

& | JFunction calls JFunction parameters

g Mesa3D graphics and GPGPU library 5 E

= GPU kernel/ GPGPU or graphics £S ;: a

shader compiler API implementation E o =

TE Direct Rendering Manager (DRM) subsystem ©

3 L g

8 ’ Core DRM T;T Per-vendor low-level GPU drivers g— -
“g Interrupt signals [[Graphics Translation Tables (GTT) _ [Reads & writes

Z | GPU

E’:;; ’ Interrupts ‘ ’ MMU ‘ ’ Memory-mapped I/O ‘

Figure 1: Overview of the Linux and CheriBSD graphics stack.
Applications (yellow boxes) link with the Mesa3D library
(blue) which implements APIs such as OpenGL or OpenCL,
compiles the application’s GPU code (shaders) and calls the
Direct Rendering Manager (DRM) in the OS kernel via ioctl
system calls. DRM combines a generic part (Core DRM, green)
and vendor-provided device-specific low-level drivers (red).
The low-level driver includes interrupt handlers, GPU hard-
ware control via memory-mapped I/O (MMIO) and code to
manage the GPU’s MMU. In this work, we deprivilege the
low-level driver (red) by moving it to user space.

Unix Process Driver. With this design GPU drivers run in standard
user-space processes, except latency-sensitive interrupt handlers,
which run in hardened eBPF sandboxes. Should attackers gain con-
trol over such a driver then they must not have direct access to the
GPU page tables, as they could map arbitrary memory into GPU
address spaces otherwise. Therefore, we move GPU page-table man-
agement code into a separate OS-vendor-vetted kernel component,
and deny user-space drivers access to the MMIO interface of the
GPU’s MMU. To support low-level GPU drivers in user space we
add a small generic framework for these to the kernel. For example,
when GPU interrupts arrive the framework is responsible for wak-
ing up device-specific interrupt handlers in user space and the eBPF
sandboxes. In a production deployment this framework would be
adapted over time to meet the needs of GPU drivers, as is achieved
with Linux’s generic Direct Rendering Manager GPU subsystem.

CHERI Compartment Driver. This driver variant builds on top of
the Unix process driver. To further reduce overheads, we let the GPU
driver process and its client processes safely share address spaces
with CheriBSD’s co-located processes framework. CHERI capabilities
are a hardware-enforced bounded pointer type with strong non-
forgeability, access permissions and the principle that rights can
only ever be reduced, enabling fine-grained memory protection and
sandboxing [97]. Co-located processes spawn with capabilities only
to their own memory regions, and can efficiently share memory by
sending capabilities over inter-process communication (IPC).

Running distrusting co-located processes in the same address
space potentially exposes them to transient-execution attacks. Al-
though microarchitectures normally prevent this between different
address spaces, co-located processes do not have protection from
speculative control-flow attacks. For example, co-located process
A could direct speculative execution of co-located process B into

Paul Metzger et al.

A’s code by training the branch-target predictor, because the mi-
croarchitecture is unaware this is a security boundary. To mitigate
this, we devised a minimally invasive tweak to the architecture to
prevent speculative attacks between co-located processes.

Since we wanted to evaluate CHERI compartmentalisation, we
chose our baseline as a CHERI-enabled system. Our implementa-
tion using standard Unix processes could equally be applied to a
conventional system, albeit losing CHERI security benefits such
as the memory safety and control-flow integrity. The co-located
processes implementation builds on this using the sandboxing prim-
itives that are additionally available using CHERI. At present, the
only CHERI system with a functional GPU driver is the exper-
imental Arm Morello platform. Our baseline therefore uses the
CheriBSD [18, 19] derivative of FreeBSD with the OS kernel com-
piled to make every pointer a capability, and the Panfrost driver for
Arm Mali GPUs, which comes as a kernel module.

We evaluate the overheads of both user-space driver variants
over the Panfrost kernel module of CheriBSD with GPGPU and
graphics benchmarks. The overheads with the classic microker-
nel implementation are negligible for some benchmarks and are
on average 7.9% (geometric mean of the benchmark suite, with
overheads for individual benchmarks ranging from max. 48.2% to
min. 0.1%) for GPGPU and 5.5% (max. 12.6%, min. -0.2%) for graph-
ics benchmarks. The impact of our changes on execution time
depend on application characteristics such as the number of GPU
kernel submissions and the fraction of time spent in computations.
While these overheads are low, co-locating the driver process with
the benchmark processes still reduces the average overheads to
6% (max. 36.6%, min. -0.2%) for GPGPU benchmarks and to 5%
(max. 11.2%, min. 0.01%) for graphics applications.

This paper makes the following contributions:

e We moved a contemporary low-level driver for Arm Mali
GPUs from OS kernel space to user space.

e We built a generic framework that allows low-level GPU
drivers to run in user space.

e We show that the overheads of a low-level GPU driver in
user space with a microkernel-inspired design are low.

e We show that co-locating the driver and its client applica-
tions in the same address space reduces these overheads.

e We show that CHERI can be used for fine-grained access
control to a GPU’s MMIO interfaces by an untrusted driver.

e We outline a mitigation for transient-execution attacks for
isolation of co-located processes, including our driver.

2 Approach
2.1 Threat Model

After discussing the threat model we illustrate the possibilities of
an attacker who can insert malicious code into a OS kernel-level
GPU driver through a supply-chain attack.

We assume an adversary that seeks to execute arbitrary code
with OS kernel privileges by attacking GPU drivers in the kernel.
Two attack routes are available. Firstly, the adversary can exploit
accidental programming mistakes by non-malicious programmers.
For example, improper error checks, type confusions, use-after-
frees and other memory-corruption vulnerabilities [41, 70, 71, 78].

Deprivileging Low-Level GPU Drivers Efficiently with User-Space Processes and CHERI Compartments

o » 8
— @ » @ >
S g Z 2 = 3 o E
Ed S 8§ H S o 2£3%
To =3 = T &, 8 838
29 g8 S59 38 &8
SESF EiiEfiziz
S M PTE P8R OAaS
Security property @) @) ® @ ®
Object bound checks (@ v v v
Contrf)l—ﬂow ® v v Y
integrity
Kernel p<?1nter ® v v v Y
forgery protection
Kernel.private API @ v v v
protection
Kernel Private struct ® v Y Y
protection
Driver API call VV'ith- ®| v v v
out page table switch

Table 1: Security properties of different approaches, with
those we benchmarked in bold. Windows, macOS and Linux
run low-level GPU drivers in-kernel (D). Microkernels run
them in user-space processes, as (3). We compared different
CHERI purecap approaches 2),@,’), where every pointer is
compiled to be a CHERI capability. Our proposed system is
(® with GPU driver and applications co-located.

Secondly, the adversary can insert malicious code into a OS ker-
nel GPU driver through a supply-chain attack before the driver is
deployed. For example, by compromising build systems [50, 79] or
by inserting malicious code into driver sources [9, 33, 74, 79]. We
assume that the attacker can insert code only in OS kernel GPU dri-
vers, which are developed by GPU vendors and are either shipped
by OS vendors or as separate software packages by GPU vendors.
Assuming the OS kernel is compiled with all pointers as capabil-
ities, an attacker can only use capabilities that are directly available
or capabilities that can be transitively reached through those that
are available. This means an attacker cannot access arbitrary OS
kernel or user data. However, code that implements system calls can
reach the credentials of a calling process. On FreeBSD/CheriBSD,
either through the global variable curthread, which contains a
capability to the thread control block of the calling thread, or func-
tion parameters that contain such a capability [49], for example
functions that implement ioctls or other system calls. An attacker
could add the code of Figure 2 to an ioctl() implementation of a
GPU driver with checks that execute the malicious code if certain
parameters are passed to the ioctl, which are not passed to the joctl
in normal operation. The code elevates the privileges of a calling
process to root by overwriting the user ID with zero. OS-internal
kernel APIs were never designed to mitigate an attacker running
inside the OS kernel, and so moving driver code out of the OS kernel
blocks these attacks without having to rearchitect the kernel.

2.2 Protection Model and Motivation

CHERI is a promising mitigation against many memory-safety
vulnerabilities [45]. A 2025 survey of driver vulnerabilities on An-
droid [55] classified them into out-of-bound (OOB) read and infor-
mation disclosure; OOB write; use-after-free (UAF) and double-free;

CCS 25, October 13-17, 2025, Taipei, Taiwan

struct proc *p = curthread->td_proc;
p->p_ucred->cr_ruid = @; // real user id := root

Figure 2: Sketch of a backdoor that could be inserted into the
ioctl() code of a FreeBSD/CheriBSD kernel GPU driver.

and others (uninitialised variable, null-pointer dereference, denial
of service). Use of CHERI in the kernel would mitigate the first
three classes. Hardware bounds checking prevents OOB read/write,
while CHERI with revocation would prevent UAF and double-free.

In this work, we anticipate that some of these attack classes have
already been blocked by a baseline implementation of CHERI in
the kernel, prompting attackers to adapt in response. For example,
through a shift towards supply-chain attacks and remaining vulner-
ability types. Table 1 provides an overview over the different design
points and their security properties. Current systems such as Win-
dows, macOS, Linux and FreeBSD have the low-level GPU driver
in the kernel, labelled D in the table. Any use of CHERI would
defeat OOB accesses @), while checks on code pointers and return
addresses would defeat many control-flow attacks (®. Additionally
CHERT’s pointer provenance would prevent drivers generating and
accessing pointers to arbitrary data (). However, malicious kernel
drivers are not prevented from calling private kernel APIs (@ and
maliciously accessing kernel data structures (¢). One response is
in-kernel CHERI compartmentalisation but this would be highly
invasive, retrofitting security boundaries to many kernel APIs and
with limited fault recovery. Driver components could instead move
to user space where kernel interfaces are already hardened, but this
incurs a context-switching penalty due to MMU costs (D).

To explore trade-offs we compared three design points with
all pointers compiled as capabilities: the standard kernel driver
@, a driver moved to user space incurring the MMU cost which
communicates via traditional OS primitives (@), and a user-space
driver which avoids page-table switching costs by using co-located
processes and shares data via capability delegation (.

3 Background

3.1 CHERI

CHERI capabilities define a hardware-enforced pointer type. In
application-class systems with 64-bit addressing, capabilities con-
tain a 64-bit integer address alongside metadata including the 64-bit
upper and lower bounds of the memory object, and permissions
(such as read/write/execute). These are stored in-memory in a
128-bit pointer, by encoding the bounds relative to the address
in a compressed form [100]. Such pointers flow between registers
and memory in the usual way, and capabilities naturally point to
data structures containing other capabilities, just as pointers do
in conventional software. Dereferencing of capabilities requires
that memory accesses obey the bounds and permissions, otherwise
a hardware exception is raised. CHERI is expected to add 2-3%
run-time overhead to a production CPU [94].

The CHERI architecture supports the principle of least privilege.
Software is given the minimal rights it needs and nothing more. Its
manifestation is that CHERI-enabled CPUs enforce monotonicity
properties, in which the bounds and permissions of a capability can

CCS 25, October 13-17, 2025, Taipei, Taiwan

Paul Metzger et al.

Addr. Addr. | (D Addr. Addr. Addr. ® Addr. Addr. 5(: Addr. Addr. |(3) Addr. Addr.
space o spacey| 5 | spacea spacefl spacey| 5| spacea space Y | space o spacey | space o space y
< M o< 2 Q
83 2 £ ig g 2 Sig P g | %5< 2 2 l's< 2
=% g < g g, g TIE g S| ag g s a8 g
=9 <} 2 | &~ <] S | & <]] <} S | &S <3
<o = = s o = S &= = Sl O = Q10O =
EE “l 3 = Sl 183 I I =
' EE]] 8] EY 1218 EimE AR EmEE =
5 2 = s 3 £ a8 & S 88 o)
3 & 5| C& :S&
~ L < o~
Time point 1 Time point 2 Time point 3.1 Time point 3.2 Time point 4 Time
System after fork() System during execve(“C”) System loaded proc. C System after A
after execve(“C”) (with sent capability to C
Legend: W/ /M Buffers of process A/B/C ~> Capabilities co-loc. semantics ‘on”)| T~

Figure 3: Creation of a co-located process and communication between co-located processes. Co-location semantics of the
execve() system call was activated before “Time point 1”. @D Process B and address space p are created after Process A calls
fork(). @ After calling execve(“C”) process B and address space B cease to exist. Process C is created and co-located with
process A in address space a. The optional co-location semantics of execve() always co-locates processes with the parent
process. 3 Process A sends a capability to C. Both can now access the encircled memory region. Co-location does not turn
CheriBSD into a single address-space OS. Other processes and address spaces continue to exist, as indicated by “Address space y”.

only be reduced and never increased. For example, if a capability
with certain bounds is passed to a function, there is no way the
function can generate a capability with larger bounds in order to
access beyond the buffer unless it holds another capability with
such rights. To prevent software from arbitrarily modifying capabil-
ities, each capability is protected by an out-of-band validity tag in
registers and one bit per 128-bit word of memory: any manipulation
of a capability with non-capability instructions will clear the tag
bit and it can no longer be dereferenced.

Arm designed the Morello prototype, a modern server CPU with
CHERI extensions, and other industrial designs are appearing [2, 3,
27, 37]. CheriBSD and CHERI-LLVM modify the OS and compiler
so that the FreeBSD kernel and C/C++ applications can be compiled
with capability protection instead of integer memory references.

On current systems, an attacker who has achieved arbitrary code
execution in the OS kernel can access any memory address in the
kernel’s address range since addresses are forgeable. This includes
sensitive data such as network plaintext, page tables and memory-
mapped I/O interfaces of devices. On a CHERI system with an OS
kernel that implements pointers as capabilities instead of integers,
such an attacker is more constrained because they can only access
memory to which they have capabilities. However, an attacker
might still be able to access sensitive data structures. In CheriBSD,
system-call code, such as ioctl handlers in GPU drivers, can reach a
capability to the user and group ID of the calling process, which can
be used to escalate privileges (see Section 2.1). Attackers can also call
sensitive OS kernel functions and execute privileged instructions.
Therefore, we argue to move untrustworthy and complex drivers,
like low-level GPU drivers, to user space from which OS kernel data
structures and APIs are not directly reachable. The access rights of
such drivers could be further constrained with existing sandboxing
frameworks like Capsicum and seccomp [22, 93].

3.2 CHERI Compartmentalisation with
Co-located Processes

Capabilities with read/write permissions enforce object bounds, and
capabilities with execute permissions constrain the valid targets

for branch instructions since the CPU cannot run code for which it
does not hold an executable capability. Together this enables devel-
opment of hardware-enforced compartmentalisation. Software can
be divided into compartments which can run mutually distrusting
code, with minimal rights such that they cannot access data or
execute code outside the set of capabilities they are given [96].

CheriBSD offers two general-purpose CHERI compartmentalisa-
tion frameworks: library compartmentalisation [30] and processes
co-located in a shared address space [64]. We use co-location for
our CHERI compartment variant of the driver, because running
the driver in a process allows it to be shared by multiple client ap-
plications. Co-located processes are Unix processes in all respects,
except that they share an address space. They are separated from
each other by virtue of each co-located process being delegated
only the capabilities appropriate to its own address-space map-
pings, and not those for other processes in the same address space.
CheriBSD’s co-location framework is designed to lower the over-
heads of process-based isolation in general, and is not specific to
drivers. If the subsystem is present for applications, we demonstrate
that additionally user-space GPU drivers can benefit from it.

Figure 3 illustrates co-location with a simplified example. A
new coexecve() system call co-locates the new process with a
process chosen by the caller [65]. Alternatively, a new behaviour of
execve() can be activated system-wide by root on the command
line (Figure 3). If switched on, the execve() system call spawns a
child process in the parent’s address space, instead of their own.
This eases prototyping as processes are co-located without source-
code modification. fork(), rfork() and vfork() are not changed.

CheriBSD’s standard implementation of Unix domain sockets
prevents passing capabilities by invalidating tag bits in messages.
Co-location modifies this by allowing capabilities to pass between
co-located processes via a flag which also confirms that sender and
receiver are in the same address space. Passing a capability to a
memory object this way delegates access rights to the recipient.

A traditional handicap of capability systems is revocation — mak-
ing sure that nobody retains a capability to an object that has been
freed. In CheriBSD, prior work [98, 101] deals with this by quaran-
tining freed objects until a sweeper has scanned memory to clear

Deprivileging Low-Level GPU Drivers Efficiently with User-Space Processes and CHERI Compartments

any dangling references to them, or by using an architectural bar-
rier to vet capability loads on a JIT basis [25]. Temporal safety using
these techniques builds on top of the inherent spatial safety in the
CHERI architecture, and is an optional feature in recent CheriBSD.
Unfortunately at the time of our work the branch of CheriBSD
that supports co-located processes did not support temporal safety.
An additional temporal-safety issue comes up with our work since
co-located processes are mutually distrusting. A capability shared
from one co-located process to another and later freed must be
safely revoked, and we must prevent one co-located process calling
munmap() on a buffer shared with another. We posit that these
are small changes to the code of the revoker to make it co-located-
process aware, and would have minimal performance impact over
the baseline temporally safe CheriBSD given the infrequency of
extra revocations. However we were not able to measure this due
to lack of a temporal-safety subsystem in our baseline OS, which is
an important task for future work.

CHERI theoretically also allows in-OS-kernel compartmentali-
sation, isolating different components within a monolithic kernel.
This differs from isolation with user-space processes since all com-
ponents exist in a single flat address space, instead of manipulating
the MMU when switching between components and paying the
costs of memory-translation churn. However, adding a framework
for such compartments to the OS kernel would increase its size and
complexity and, hence, its attack surface, which is the opposite of
what we want to achieve. Unix processes are a decades old con-
cept with robust implementations. For this reason we choose to
build on top of them instead of adding a new and therefore nec-
essarily less-well-understood concept to the kernel. Additionally,
processes have a well-understood fault model. Previous work has
shown that faulting driver processes can be restarted in some cir-
cumstances [28, 40, 44]. However, we leave investigating to what
degree this is possible with user-space GPU drivers for future work.

3.3 The Software Graphics Stack

3.3.1 Theioctl() System Call. Device-specific functionality is im-
plemented by OS kernel drivers with the general-purpose ioctl()
system call rather than separate system calls. The parameters of
this system call are a file descriptor for a device node, a request
number and either an int or a pointer to a struct that’s defined by
the driver. The struct is used for input and output data. The request
number determines the functionality that will be invoked. This
system call is used extensively by GPU drivers in the OS kernel.

3.3.2 GPU Kernels and Shaders. In the context of the graphics stack,
shaders are programs that run on GPUs and compute the position of
vertices of 3D models, the colour or texture of surfaces, and effects
such as lighting. General-purpose computations are implemented
with GPU kernels, which are also called Compute Shaders by OpenGL
(see Section 3.3.4). We refer to programs that are executed on the
GPU as GPU kernels in the remainder of this paper. GPU kernels
are typically written in specialised languages such as CUDA or
the OpenGL Shading Language (GLSL). OpenGL GPU kernels are
either shipped as GLSL code or in an intermediate representation,
which are JIT compiled. GPU kernels are submitted by CPU code
for execution on the GPU. GPU kernel invocations might then be
scheduled by a software scheduler before being inserted into a

CCS 25, October 13-17, 2025, Taipei, Taiwan

50
é > 30 Pass capabilities pointing Copy messages
= 20 _@-to messages over themselves over
o s 10 Unix domain sockets Unix domain sockets
00 50 100 150 200 250 300 350 400

Message size (bytes)

Figure 4: Total execution time of a micro-benchmark con-
sisting of two processes that send a total of 10,000 messages
back and forth. Neither variant performs serialisation. The
execution time does not increase with the message size if
capabilities that point to messages are passed over Unix do-
main sockets instead of the messages themselves.

hardware queue. The GPU raises an interrupt when a GPU kernel
terminates, either due to successful completion or an error.

3.3.3 GPU Memory Buffers. GPU buffers store compiled GPU ker-
nel programs and input and output data such as matrices or graphics
textures. These buffers are either in dedicated GPU memory or in
main memory, if GPU kernels can directly access main memory.
GPU buffers are mapped into the GPU kernels’ address spaces by
a GPU’s MMU page tables named as Graphics Translation Tables
(GTT) by Intel [43]. GTTs store translations from graphics virtual
addresses issued by GPU kernels on the GPU to physical addresses,
or I/O virtual addresses if they are translated again by an IOMMU.

Low-level GPU drivers can separately use the CPU’s MMU to
map GPU buffers into processes’ address spaces to populate GPU
buffers with input data or to read output data.

3.34 OpenGL. This is a graphics API for interaction with GPUs,
used by games and other graphics software [85]. It includes func-
tions to create GPU buffers, compile GPU kernels, pass input data
to them, and execute them. While the Vulkan API is increasingly
popular, only OpenGL is currently supported by the GPU driver of
our evaluation platform. The Mesa3D library is an OpenGL imple-
mentation that is commonly used on Linux and on some BSDs.

3.3.5 Direct Rendering Manager (DRM). This OS kernel subsystem
consists of a device-specific part that contains all low-level GPU
drivers and the so-called “Core DRM” part which consists of generic
code. DRM was ported from Linux to CheriBSD to support the Pan-
frost driver [11]. Core DRM includes a scheduler for GPU kernels,
synchronisation primitives and GPU buffer-management code.

4 Exploratory Investigation

Moving GPU drivers from the kernel to user space introduces costs
of additional context switches, Inter-Process Communication (IPC)
and serialisation. Therefore, we carried out small-scale investiga-
tions of performance and security of shared address spaces.

4.1 Communication Latency

Additional data copies that are not required with a kernel driver are
performed by IPC primitives or during IPC serialisation. If we were
to let application and GPU driver processes share an address space
and isolate them with CHERI, then we could safely pass a bounded
pointer instead. Figure 4 illustrates the performance benefits of

CCS 25, October 13-17, 2025, Taipei, Taiwan

this. One variant uses standard Unix processes with private address
spaces, which means that the messages are copied. In the other
variant the two processes are co-located in a shared address space
and send capabilities that point to the messages without creating
copies of the messages. Co-located processes send capabilities to
each other over Unix domain sockets, enabling sharing of memory
objects and even graphs of memory objects without having to copy
them. Due to some limitations with our implementation, we believe
there is scope to reduce the 40 ms fixed cost, but the difference due
to sending only a small fixed-size capability, instead of potentially
much larger messages, would remain.

4.2 Measuring Context-Switching Costs

The costs of context switches have risen because of mitigations
against transient-execution attacks. One mitigation technique is
to invalidate the branch-predictor state during context switches.
This way, malicious processes cannot influence the output of the
branch-direction predictor or the branch-target buffer (BTB) dur-
ing the execution of potential victim processes. The effects of this
on Morello can be seen in Figure 5. The number of mispredicted
branches and misspeculated instructions is significantly higher if
the address-space identifier (ASID) is changed during a context
switch. This indicates that Morello’s microarchitecture invalidates
the branch-predictor state when the ASID changes. The costs are
application dependent and here the cycle count is 12% higher with
separate address spaces (dark red bars), and so separate ASIDs,
than with shared address spaces and shared ASIDs (green bars) (see
Figure 5).

4.3 Improved Transient-Execution Mitigation
for Co-located Processes

Branch-predictor invalidation prevents transient-execution attacks
but is expensive since all the branch-predictor history is lost. We
propose an alternative approach via a small addition to the ex-
perimental Morello architecture to allow safe speculation more
efficiently in co-located address spaces.

Control flow on high-performance processors is divided into
two phases. First, the processor speculatively executes operations
that are not yet confirmed. Later, the operations may be confirmed
and committed to the CPU state. The former need not follow the
architectural model as long as the latter does. We must however
not allow speculation to breach security boundaries. For example
the branch predictor should not allow speculation into code we
do not have rights to execute. Non-CHERI processors do not have
bounds for committed execution, only the process model via the
MMU. Transient-execution mitigations prevent speculation out of
the process, and BTB flushes on ASID changes ensure no aliasing
of speculative data from one process to another.

In CHERI architectures, the Program Counter Capability (PCC)
augments the PC with execution bounds for committed instructions,
which must lie within the PCC bounds in order to commit their
results. We can conceptualise similarly the speculation bounds to
describe which instructions may be safely speculatively executed
in advance of being committed, and consider how to define them.
In Morello’s experimental microarchitecture, as we understand,
speculation is not bounded by PCC — i.e. it is possible to speculate

Paul Metzger et al.

I Separate address spaces
Processes share an address space but do not share an ASID
Processes share an address space and share an ASID

- 25M
= 20M —
15M
IOM a
-]
O

. (\ PR

00 \\; ’x\‘ S e
O €00 2 &6 N <@ e &Y x& X
\os“ SR S Re &\) ?5\ e s;c,\ TEL c

Count
O = DD W W
oo
OOOOOOOO

Figure 5: The number of mispredicted branches and misspec-
ulated instructions is higher with per-process ASIDs (red)
than with shared ASIDs (green). These measurements indi-
cate that Morello invalidates the branch-predictor state when
the ASID changes during a context switch. The measurements
are taken with a vector-addition micro-benchmark imple-
mented with OpenGL Compute Shaders. Two processes are
launched: our GPU driver and the micro-benchmark. If co-
located, they can share an ASID. The number of mispredicted
branches and misspeculated instructions is higher with sep-
arate ASIDs. This negatively impacts the cycle count and has
secondary effects like cache pollution caused by misspecu-
lated instructions. Error bars are 99% confidence intervals.

branches outside the bounds of the current compartment. There-
fore when changing between co-located processes we must either
change the ASID without modifying the page mapping (paying the
BTB flush cost unnecessarily), or not, allowing unsafe speculation.

An obvious option would be to use the PCC bounds as specula-
tion bounds; we are not allowed to speculate outside the current
committed execution context. This is a strict policy, but may limit
performance. For example, we might launch a leaf function with
PCC bounds only for that function, which means we cannot specu-
late any instructions outside that function.

We propose decoupling the execution bounds and the specula-
tion bounds. An additional privileged control register, the Specu-
lative PC Bounds for EL0 (SPCBELO) allows the OS to explicitly
set the bounds in which user-mode (EL0) speculation is allowed.
This provides the microarchitect with metadata of the security con-
text which enables them to implement safer speculation. SPCBEL0
allows the OS context-switching code or similar runtime environ-
ment to choose any granularity between the current PCC and the
full Unix process. For example, as long as we prevent interleaving
of co-located processes in the virtual address space, the runtime
may choose the speculative bounds to the whole of a co-located
process. Code running there would be unable to speculate into an-
other co-located process, while a domain transition would switch
SPCBELO to the bounds of the new co-located process.

Allowing control of SPCBELO permits the runtime to adjust the
speculation security/performance trade-off according to design
goals. The architecture may also allow tying SPCBELO to PCC for
the tightest constraint, to avoid regularly having to manipulate
SPCBELO. The microarchitecture enforces that any branch outside
these bounds is never speculated. The OS context-switching code
is configured to update the Speculation PC Bounds when switch-
ing from one co-located process to another. Additionally, at the

Deprivileging Low-Level GPU Drivers Efficiently with User-Space Processes and CHERI Compartments

[[] Components to be shipped by GPU vendors
[[] Components to be shipped by OS vendors
[[] Components to be shipped by OS vendors in collaboration with GPU vendors

OpenGL application processes
l Mesa3D OpenGL library

Q
g x P
= Unix domain sockets| 23
= Low-level GPU driver process 20.9
5 | ||GPU kernel ||GPU buffer || Device || Device User space = E
submission || creation info init ||interrupt handlers|| |= ©

,, . O
e LT INodes in/dev/_________1"__

« & | Device specific F Generic framework for GPU [eBPF interrupt
OE GTT code Cgﬁ; “|user space drivers & Core DRM handlers

Figure 6: Our implementation and the parties that would ship
the components. Our driver can be configured to either run
co-located with its client applications in the same address
space or as Unix process with a private address space. Each
use Unix domain sockets. Driver and clients exchange capa-
bilities pointing to messages in the co-located configuration.
The eBPF interpreter is hardened.

point of changing SPCBELO the pipeline is flushed to ensure any
uncommitted instructions take heed of the new value.

This causes speculative execution to be bounded to the current
in-address-space co-located process, rather than the set of MMU
mappings denoted by the ASID. Inside the bounds, the common
case, speculation proceeds as normal. Execution outside the bounds
can proceed without speculation, allowing debuggers and similar
tools to still function albeit at reduced speed. Microarchitecturally,
when loading from the BTB we need to do an additional bounds
check on whether the target is within the SPCBEL0 bounds and if
not make the value unavailable. This check can happen in parallel
with the PCC bounds check so as not to impact critical-path timing.

We cannot add this proposed register to the Morello silicon
design (as it is proprietary to Arm and would cost many millions of
dollars to respin), which limits the scope of our evaluation. However
our model suggests we can potentially mitigate the cost of BTB
flushing with the penalty of just a pipeline flush per context switch.
We have simulated it by including an Instruction Synchronisation
Barrier (ISB) in our benchmarks to effect a pipeline flush.

5 Design and Implementation

We move the Panfrost GPU driver out of the CheriBSD kernel into
a standard Unix process and, building on that, we create a second
driver variant with CheriBSD’s framework for co-located processes.
Both drivers have the same design and implementation, the only
difference being that the co-located driver and applications that use
it securely share a common virtual address space (i.e. a shared page-
table map) by being isolated from each other with CHERI, instead
of separate address spaces (see Section 3.2). Co-located processes,
including the driver and applications, retain the attributes of distinct
Unix processes (such as metadata, user/group, etc), but are launched
so that they share an address space and page-table map.

With both driver variants, applications and benchmarks run un-
modified, and use the existing user-space graphics stack (Mesa3D).
They utilise an LD_PRELOAD shim to intercept system calls from
Mesa3D and redirect them to the driver. The user-space GPU dri-
ver contains low-level GPU functions including buffer and GPU

CCS 25, October 13-17, 2025, Taipei, Taiwan

kernel management, except for GPU MMU code, which we handle
separately. To provide the necessary support for such drivers we
design and build a generic OS kernel framework for GPU user-space
drivers. Figure 6 provides an overview over the graphics stack with
our driver. The following sections describe the implementation in
detail, including the components shown in Figure 6.

5.1 GPU Driver Process

The code moved to user space consists of a GPU interrupt handler,
device initialisation code, ioctls for GPU kernel submission, GPU
buffer creation and device-information queries (see Figure 6). Func-
tions that implement the ioctls in the original driver are invoked
through messages sent over Unix domain sockets. The messages
contain the ioctl parameters as in the original implementation;
specifically the ioctl request number that indicates the function
to be executed and the ioctl argument struct which contains ioctl-
specific input and output data. Our LD_PRELOAD shim intercepts
these ioctls and forwards them to functions that handle the com-
munication with the driver process instead. A further message is
used to pass any output data, including return values, to the client
application. The OpenGL library calls Core DRM ioctls directly
with nodes in /dev/dri/, as with the original driver.

The contents of GPU buffers are not transferred over the ioctl
interface of the Panfrost kernel module or, in the case of our driver,
over messages. With the kernel module and our driver, GPU buffers
can be mapped into the address space of the application where the
OpenGL library can directly access them.

The GPU kernel submission function enqueues GPU kernel jobs
into a generic software scheduler (see Section 5.3). The scheduler
enqueues a GPU kernel into the GPU’s hardware queue through
a function that has knowledge of the GPU’s memory-mapped I/O
(MMIO) interface. The GPU buffer-creation code computes buffer
alignments and rounds buffer sizes to Panfrost’s preferred 2MiB
regions. Examples for device-information queries are product num-
ber and shader-core count. The GPU kernel interrupt handler is
invoked when a GPU kernel completes execution or if a fault oc-
curs during GPU kernel execution. The interrupt handler in user
space is woken up by our generic framework, discussed in Sec-
tion 5.3. Device-initialisation code is executed once when the driver
is started. For example, it checks if the GPU model has known issues
and configures the hardware accordingly.

5.2 Graphics Translation Tables

GTTs are managed by low-level GPU drivers. However we cannot
allow an untrustworthy driver free access to them, as it could make
arbitrary GPU mappings of sensitive data in other processes and
use a GPU kernel to copy it to an exfiltration process. Therefore,
low-level user-space GPU drivers must not have direct control over
the GPU page tables. We propose that OS vendors ship and vet this
code and that this code is provided to them by the GPU vendors.
Since page-table manipulation is a small part of a GPU driver, this
amounts to a limited vetted TCB in the OS kernel.

A malicious driver must not be able to map arbitrary parts of
main memory into a GPU address space through calls to such a
GTT component. This type of attack is not possible with ours. Only
two functions create new entries in GPU page tables: the page-fault

CCS 25, October 13-17, 2025, Taipei, Taiwan

interrupt handler and a function that creates all GPU page-table
mappings for a GPU buffer ahead of time so that no page faults
occur when a program on the GPU uses the buffer. Both functions
create page-table entries only for page frames allocated to back
GPU buffers and can therefore not be misused to map arbitrary
main memory into a GPU address space. Additionally, the GTT
component cannot be directly called into by user-space code. Only
our generic framework calls functions in the GTT component.

An alternative might use an IOMMU to allow the OS kernel
to enforce memory-access protection downstream of an attacker-
controlled GTT. However not all systems have IOMMUs, or the
IOMMU may be controlled by a hypervisor that prevents the guest
OS kernel using it. Our GTT management operates independently
from any IOMMU layer that may or may not be available.

5.3 Generic Framework for GPU User-Space
Drivers

This OS kernel subsystem manages interrupt handlers and allows
reuse of generic OS kernel code for GPU drivers. While this adds a
small amount of additional security-critical code to the kernel, it
is independently auditable and shared between drivers so allows
removal of much more. We added ioctls so that user-space GPU
drivers can use Core DRM functionality that would otherwise not
be available through already-existing ioctls.

Upcalls to User Space. Core DRM components call low-level GPU
drivers via device-specific function pointers. This is not possible
with user-space drivers because OS kernel code cannot directly call
functions in user space. Therefore, we built an upcall mechanism
with per-function /dev device nodes. User-space functions that, on
a conceptual level, can be called from the OS kernel, run in their own
threads, and block in the read system call on their /dev node until
OS kernel code invokes their execution by waking them up. We use
the read system call to pass input data to the function in user space.
Outputs are returned to the OS kernel through per-function ioctls.
The same mechanism is used for user-space interrupt handlers.

Interrupt Handlers. Interrupts are high priority and need timely
handling. Current practice executes interrupt handlers in the OS
kernel because it is too slow to dispatch them to user space. There-
fore, we split interrupt handlers and make use of eBPF, a sandboxing
technique popularised by the Linux kernel that lets users attach
their own code to OS kernel hooks [21]. eBPF only expresses a
limited set of operations and is not Turing complete. eBPF pro-
grams are analysed statically for security issues by a verifier before
they are either just-in-time compiled or executed by a bytecode
interpreter. For example, eBPF programs must not use uninitialised
variables. Our Generic Framework does initial acknowledgment
of the interrupt in an eBPF sandbox and records the nature of the
interrupt and then dispatches the remaining handling to user space
via upcalls. The GPU kernel interrupt handler of our user-space dri-
ver is implemented this way. We add an eBPF bytecode interpreter,
heavily based on uBPF [8], which is also used by Microsoft in the
eBPF-for-Windows project [60]. Our interpreter is considerably
more constrained than the Linux eBPF implementation to harden
it against attacks. We use CHERI to bound the memory area that
an eBPF bytecode interpreter can access to the memory-mapped
I/O interface of the device. eBPF Maps and eBPF Helper Functions

Paul Metzger et al.

are not supported. Maps are buffers that are shared by user-space
code and eBPF programs and helper functions are a fixed set of
compiled functions. Our interpreter allows bytecode programs to
return an integer to the code that started them. The only exception
are interrupt handlers that are associated with the GTT. These are
part of the GTT component and are executed natively.

ioctl System Calls. Low-level GPU drivers in the OS kernel call
Core DRM code through function calls. This is not possible with
low-level user-space drivers because user-space code cannot di-
rectly call OS kernel functions. Therefore, our Generic Framework
offers DRM functionality to user space through ioctls. We hardened
this ioctl interface against attacks. We compiled a subset of the
Common Weakness Enumeration (CWE) with weaknesses that are
relevant to our API. We then designed the ioctl interface to avoid
the weaknesses in this list. For example, some Core DRM functions
that are called by the original Panfrost driver return pointers. Our
ioctl interface never exposes OS kernel addresses to user space
because this could be used to circumvent Kernel Address-Space
Layout Randomisation (KASLR), if enabled. Instead our interface
passes unique per-process integer identifiers to user space to refer
to OS kernel objects. The ioctls fall into four categories:

Initialisation. This ioctl sets up interrupt handlers. The driver in
user space configures which interrupts have a user-space handler
in addition to the eBPF handler and sets the eBPF interrupt-handler
byte code. It also sets the names of the /dev device nodes that are
created for upcalls to user-space interrupt handlers.

Synchronisation. DMA fences are a synchronisation primitive
to coordinate accesses to buffers that are shared between multiple
devices or between a device and the CPU. DMA fences can be one
of signalled, not signalled or in an error state. In the context of DRM,
they are, for example, attached to GPU buffer objects and so-called
sync objects. Sync objects let user-space code wait on DMA fences
and sync object handles can be sent to other processes. For example,
they can be used to wait for a GPU kernel to run to completion.
Using code from Core DRM we added ioctls to create new DMA
fences, signal fences, acquire references to DMA fences that are
attached to DRM objects and to attach DMA fences to DRM objects.
DRM objects for which we have added these ioctls include GPU
buffers and sync objects.

GPU Kernel Submission. DRM includes a GPU kernel scheduler
including run queues, dependency tracking and priority manage-
ment. Some modern GPUs use a firmware scheduler with which
the user-space driver could submit jobs directly over the MMIO
interface. The GPU of our evaluation platform does not have a
firmware scheduler. Therefore, we need to do an extra roundtrip
to the DRM scheduler in the OS kernel and back to user space. We
added ioctls to submit GPU kernels to the DRM scheduler.

GPU Buffers. Multiple DRM components are concerned with
GPU buffers. For example, DRM has abstractions for GPU buffers,
a facility to create user-space handles for GPU buffers, and GPU
address-space management components. We offer ioctls to: create a
GPU buffer and return a user-space handle; map GPU buffers into
the address space of the calling process so that programs on the
CPU can write to and read from these buffers; fill a GPU buffer with
zeroes with the CPU; reserve buffers for exclusive access and to
release them; wait for exclusive access to be released.

Deprivileging Low-Level GPU Drivers Efficiently with User-Space Processes and CHERI Compartments

5.4 GPU MMIO Interface

Memory-Mapped I/O (MMIO) serves as the control interface for
the hardware. CPU reads and writes into the GPU’s MMIO space
serve to configure and control the GPU. Often MMIO interfaces
are built for the silicon designer’s convenience rather than in a
security-conscious way. For example, on early NVIDIA GPUs there
were multiple ‘indirect’ ways to access registers and video RAM
through different apertures to allow access from legacy operating
systems [23] — these could allow an attacker a backdoor even if the
direct route was blocked. Similarly attackers found an exposed de-
bug MMIO interface in Apple GPUs [52]. Hence sensitive registers
of the MMIO interface cannot be exposed to the user-space driver.

Our design approaches this as follows. First, we identify which
regions of MMIO registers are ‘safe’ for the driver and which are
unsafe. Ideally this would be done by the silicon vendor and stored
in the Device Tree as an authoritative record. Next, we map the
GPU’s MMIO space into the user-space driver process. However,
this driver requires capabilities to be able to access this region. The
Generic Framework gives it a list of capabilities to regions of safe
registers which it needs to do its work. Other registers are com-
pletely walled off from the driver. For example, there would be no
need to access NVIDIA’s legacy apertures. If there are any registers
that are needed but aren’t safe to be delegated to the driver in this
way, they require an additional function in the privileged GTT-
management component to offer an API by which the driver can
request the privileged component make changes on its behalf. The
byte-granularity of capabilities allows fine subdivision of MMIO
registers, minimising such points of conflict, but this mechanism
allows safe handling of the remainder. A roundtrip cost would be
incurred similar to the cost we incur when setting up GTT entries.

With our specific prototype, making this division is difficult be-
cause we do not have documentation for the Mali GPU. The Panfrost
driver authors reverse engineered the GPU and it only has a cryptic
header file of register names with no descriptions of their func-
tions. Thus we have no information about side-effects or indirect
access. We can however broadly separate registers into setup, fea-
ture identification (e.g. product ID), performance counters, power
management, GPU kernel management and GTT management.
Since the driver has sole use of the GPU, the first five categories are
those by which the driver can control the GPU but does not gain
any privilege to attack the rest of the system. However the GTT
page-table base registers are examples of registers that the driver
cannot have access to, and these lie at the top of the GPU’s MMIO
space. To restrict access, at startup the Generic Framework maps
the MMIO into the driver address space and generates a capability
whose bounds include most of the MMIO registers but excludes the
GTT registers. This is then passed to the user-space driver. During
execution, the requests we make to set up GTT entries are examples
of asking the privileged component to intermediate on the driver’s
behalf, and these are captured in our benchmarks.

5.5 Multiple-Client Applications

Both driver variants support dozens of client applications running
concurrently. We run the Xorg display server, on top of which runs
the KDE desktop environment including graphical widgets, then
the user can launch multitasking graphical applications as they

CCS 25, October 13-17, 2025, Taipei, Taiwan

would in a standard desktop session. In the co-location case all of
these applications that depend on Xorg are co-located inside a single
shared address space. Non-Xorg applications (e.g. SSH sessions) run
in separate address spaces as normal. To achieve this, dependants of
Xorg are started as processes co-located with Xorg and the driver.

In the baseline setup with the kernel module, only a graphics
application itself calls into the kernel (i.e. into DRM or the ker-
nel module) for its graphics operations. This allows kernel-side
metadata to be conveniently associated with the calling process.
However, to perform the graphics operations of a single client with
the user-space driver either the client itself or the user-space driver
call into the kernel (i.e. into DRM or the Generic Framework). This
means that kernel-side metadata for this client needs to be associ-
ated with two processes instead of one: the graphics application
and the user-space driver. Regardless of whether the kernel module
or our user-space driver is used, graphics applications open a DRM
device file in /dev/dri/. This file descriptor is used when calling
into the kernel for graphics operations and is there associated with
the metadata. The first time a graphics application invokes the user-
space driver, the file descriptor is sent by the LD_PRELOAD shim to
the driver process with Unix domain socket control messages. From
then on, this descriptor is used by the graphics application and by
the driver when it serves requests of this application. The driver
receives multiple such file descriptors from different clients and,
therefore, associates descriptors with process IDs (PIDs). For this,
we added a flag to Unix domain sockets that causes the OS kernel
to insert the PID of the sending process inline into messages.

The driver could be extended in future so that multiple instances
of it can run simultaneously in different address spaces. Access to
MMIO interfaces and shared memory would need synchronisation
primitives. We leave this for future work.

5.6 Generality

All of Windows, macOS/iOS, Linux, Android and FreeBSD use a
user-space/kernel split for their GPU drivers and, while platforms
differ, the work done by these drivers is similar. We expect our Unix
process-based design to be portable to other OSes as it does not use
CheriBSD-specific features like co-location. CheriBSD’s Panfrost
and Core DRM were ported from Linux, and both systems use Mesa,
which should simplify a Linux port. Our high-level architecture
accords with the current GPU driver architecture on Linux/Android
which already provides a generic driver framework as Core DRM,
albeit for in-kernel drivers. We have less visibility for closed-source
OSes but expect a similar subsystem may be constructed.

Safe co-location requires a CHERI CPU. While currently not
widely deployed, a commercial offering of a Linux-capable CHERI
CPU has recently emerged [27]. Our design using Unix processes
without co-location would apply to non-CHERI systems, but would
lack CHERI’s memory protection within the driver (e.g. protection
from buffer overflows) and fine-grained access control to MMIO
registers. Safe MMIO registers that do not share a page with un-
safe ones could be mapped into the driver’s address space. The
mechanism described in Section 5.4 for unsafe registers needed by
the driver could be used for the remaining ones. Run-time checks
within the in-kernel interrupt handler sandboxes could limit access
to specific parts of the GPU’s MMIO interface.

CCS 25, October 13-17, 2025, Taipei, Taiwan

Our approach does not depend on the Panfrost driver or Mali-
GPU-specific features. While we cannot inspect closed-source dri-
vers, based on open-source Linux ones we expect our approach to
be applicable to other GPUs and their potentially larger drivers. Ad-
ditional code comes from more complex hardware (especially large
numbers of register definitions) and more subsystems to manage
it, but the shape of the drivers are similar to our evaluation sys-
tem. They typically also have an MMU, buffer and job-management
ioctls, interrupts and an MMIO interface. GPU drivers are typi-
cally developed by the hardware vendor who has knowledge of the
necessary internals, such as MMIO functionalities.

6 Evaluation

6.1 Experimental Setup

Arm Morello is currently the only CHERI system with a GPU. It
is a research prototype with four cores that are based on the Arm
Neoverse N1 microarchitecture and the Armv8.2-A architecture
but extended with 128-bit capabilities according to the CHERI ar-
chitectural model [37]. It has an Arm Mali G76 GPU that shares
main memory with the CPU. The GPU is unaware of capabilities
and clears their tags when writing to memory. The CPU does not
support SMT and DVES is deactivated. A side effect of our upcall
mechanism is that the user-space driver makes better use of multi-
core CPUs than the original Panfrost driver, because it is split up
into multiple threads. Therefore, only a single core is enabled for a
fair comparison. We use CheriBSD (22.11) as it is the only stable OS
for Morello with a working graphics stack. We use version 13.0.0
of the Arm CHERI Clang compiler [63] and Mesa3D 21.3.8. For our
user-space drivers we use the same compiler flags that CheriBSD
uses for the Panfrost kernel module. CheriBSD’s ‘co-located pro-
cesses” branch reuses Unix domain-socket control messages to send
and receive capabilities — the standard data-transfer path would
be slightly more efficient and could have been reused with more
engineering. For a fair comparison we also use control messages to
transfer data with the ‘classic Unix process’ variant of the driver.
To collect data with the CHERI-compartment variant of our dri-
ver we activate the co-location semantics of execve() (discussed
in Section 3.2), which, in our experience, does not require applica-
tion changes. For example, if a shell starts our driver and a graphics
application then all three processes are co-located in one address
space without modifications. To let graphics applications send ca-
pabilities to the co-located graphics driver we only modify the
LD_PRELOAD shim (see start of Section 5) that intercepts ioctls.
We use the Phoronix Desktop Graphics benchmark suite and a
subset of the widely used Rodinia GPGPU benchmarks [13, 73].
We hand converted the GPGPU benchmarks to OpenGL Com-
pute Shaders because Morello’s GPU has no working open-source
OpenCL stack. We chose which benchmarks to port based on their
submission rates with OpenCL on a system with an Intel i7-5775C
CPU and a Nvidia RTX 3060 Ti GPU. These rates are shown in
Figure 7. With our user-space port of the driver, we modified code
paths for GPU kernel submission by applications to the driver, as
well as GPU kernel scheduling and GPU buffer creation. Therefore,
the lower the GPU kernel submission rate the lower the expected
overheads because the modified code paths are executed less often.
We ported the benchmarks in the order shown in Figure 7 starting

Paul Metzger et al.

& ~ 150K

Q
< 3 125K
< g 50K
g5 251<
g2
D3 équﬁQ D RN rooﬁ ¢ @& S
&€ QX' o q&‘c&o &\% &K&g&%&% &a‘&\(_og;& z%%_\}b

&cfa W IS SIS G VS
S @ Q,Q"’(‘e@& S
v SR

Figure 7: GPU kernel submission rates with the OpenCL Ro-
dinia benchmarks. This data informed which benchmarks
we ported to OpenGL Compute Shaders. Some bars are too
small to be visible. Each data point is the mean of 20 samples.

with Gaussian until the submission rates of multiple successive
benchmarks were so low that the overheads with our user-space
drivers over the OS kernel module are negligible. This point is
reached with Backprop and Pathfinder (see Section 6.2). To test our
conjecture we also ported LavaMD, which is on the far end of the
tail in Figure 7. We compiled the GPGPU benchmarks with the -03
compiler flag. The Phoronix Desktop Graphics suite contains the
Glmark2 benchmarks, three games (OpenArena, Tesseract and Xo-
notic) in demo mode without user input, the scientific application
ParaView and two Unigine game-engine demos.

Some graphics benchmarks were however unavailable. The Unig-
ine benchmarks require an OpenGL extension not supported by
Panfrost. Traces of Xonotic at high graphics settings and ParaView
Manysphere crash the baseline Panfrost kernel module. Glmark2’s
Terrain benchmark crashes our driver with its standard settings
and to avoid this we turned off its “tilt-shift” post-processing.

Precompiled aarch64 binaries are not suitable because secure
co-location requires that all pointers are compiled to capabilities
(purecap binaries, which may need code modification [95]). Com-
piling the relatively simple GPGPU benchmarks and Glmark2 to
purecap binaries is fine. However, as purecap versions of the many
dependencies of the more complex games and the scientific appli-
cation in the Desktop Graphics suite are not available, we chose a
different approach. We prerecorded OpenGL traces of the Phoronix
graphics benchmarks except Glmark2 with the widely used Api-
trace tool on an Intel i7-1265U machine with integrated GPU and
replayed them on Morello and CheriBSD [16, 26, 39]. We configured
the recording machine so that the applications use OpenGL, GLSL
versions and OpenGL extensions that are supported by Panfrost as
if they were run directly with Panfrost and Morello’s GPU. We did
not use Xorg during data collection with the graphics benchmarks
to reduce noise in the measurements. Apitrace rendered to an off-
screen buffer and we compiled Glmark2 with its “drm-gl” build flag
that allows it to render on-screen without Xorg.

Morello has a mobile GPU and if necessary we set the resolution
of the graphics benchmarks so that they run with at least 30 frames
per second (FPS). Some modern games target this frame rate and
animations are fluid [58]. The Glmark2 benchmark suite (v2023.01),
OpenArena (v0.8.8), ParaView, Tesseract (2014-05-12) and Xono-
tic (v0.8.6), ran with the resolutions 1920x1080, 800x600, 640x480,
640x480, 800x600, respectively. We could not adjust the settings of
ParaView Wavelet Contour in this way and it ran with 5.46FPS with
the Panfrost kernel module. We used v5.4.1 of ParaView because

Deprivileging Low-Level GPU Drivers Efficiently with User-Space Processes and CHERI Compartments CCS 25, October 13-17, 2025, Taipei, Taiwan

Driver in classic Unix process with private address space N Co-located driver process
10

H3D CFD Dwt2D LUD NN NW SRAD SC Geo. mean

(in %)

0.0 — ‘—

LMD PF

Overheads

=AW R U
[=lelele i)
(=N
T o
O

Gau Myo ~ BP BFS

Figure 8: Overheads with our user-space variants of the low-level driver over the OS kernel module with the Rodinia GPGPU
benchmarks. The co-located driver process shares an address space with the benchmark applications. Benchmarks with bold
red names execute GPU kernels synchronously and benchmarks with green names asynchronously (see Section 6.2). The
benchmarks are Gaussian (Gau), Myocyte (Myo), Backprop (BP), Breadth-first search (BFS), Hotspot3D (H3D), LavaMD (LMD),
Pathfinder (PF), CFD solver (CFD), 2D discrete wavelet transform (Dwt2D), LU decomposition (LUD), Nearest Neighbour (NN),

Needleman-Wunsch (NW) and Streamcluster (SC). Each data point is the mean of 50 samples.

H
~ S
(52 e}

5.0
25 .

BP CFD Gau LMD Myo NW SRAD
BFS Dwt2D H3D LUD NN PF

compute and data
copies (subm./ms)

Ratio of kernel
subm. to time in

Figure 9: Ratio of GPU kernel submissions to time spent in
GPU and CPU computations and copies from and to GPU
data buffers. GPU kernel submission counts are measured
with OpenCL as described in Section 6.1. This should be the
same with our ports as each OpenCL kernel submission is
instead an OpenGL submission. Measurements are subject
to limitations of the OpenGL driver; GPU kernel execution
time was measured by instrumenting the benchmark code.
Ratios of Pathfinder and LavaMD are so small that they are
not visible. Each data point is the average of ten samples.

the newest version requires a higher OpenGL version than Panfrost
supports. When we compiled Apitrace and Glmark2 we used the
“release” build type of the CMake and Meson build systems.

We introduce overheads in the GPU buffer-creation code path
of the low-level driver, among other places. However, the Mesa3D
OpenGL library tries to avoid executing this code path. The library’s
GPU buffer allocator has a list of unused GPU buffers and tries to
serve requests for new buffers with this list first and if that is not
possible falls back to the buffer-creation code. Buffer objects that are
longer than two seconds in this list are destroyed by the allocator
so that the OS kernel can reuse the page frames. We increased this
threshold to ten seconds with the graphics benchmarks, to reduce
the impact of our changes in the buffer-creation code path. This
increased their memory footprint by no more than 2.1%. For a fair
comparison, we increased the threshold also when we collected
data with the OS kernel module and the graphics benchmarks.

Some benchmarks benefit from the slower GPU kernel submis-
sion paths with the user-space driver. We attribute this to a quirk
in the GPU buffer allocator mentioned above. Buffers are allocated
to GPU kernels when they are submitted by the application and
before they are enqueued into the GPU scheduler’s work queue.
The overheads in the GPU kernel submission path slightly reduce
the GPU kernel submission rate, while the rate with which the
GPU executes kernels remains the same. This in turn means that

fewer GPU buffers are allocated because fewer GPU kernels wait
in the GPU scheduler queue. This should decrease the pressure on
the GPU’s TLBs. Sadly, CheriBSD’s Panfrost port does not include
performance counters to measure this. This accidental interaction
masks the overheads that we would like to measure. Therefore, we
avoid this benefiting the user-space drivers by changing the affected
GPGPU benchmarks to wait after each GPU kernel submission for
it to run to completion, so the number of GPU buffers created does
not depend on the length of the submission code paths.

6.2 Overheads With GPGPU Benchmarks

Figure 8 shows overheads with the driver in a classic Unix pro-
cess and in a process co-located with the benchmark in a shared
address space. The geometric mean overheads are 7.9% with the
Unix process and 6% with the co-located process. Gaussian and My-
ocyte are affected the most with over 20% overheads but co-location
reduces this significantly. The other benchmarks have overheads
below 9% and some less than 2%. The overheads with co-location
are consistently lower.

We use simplified models for the execution times tx s and tyyg of
the benchmarks with the Panfrost OS kernel module and the user-
space driver to explain why some are more affected than others.

tkm = s X'tscp +tcgpu +tccpu + tcGB

tus ~ s X (tscp + tous) + tcgpu + tccpu + teGB
The execution time with the OS kernel module is approximately
the number of GPU kernel submissions s times the execution time
tscp spent in the GPU kernel submission code of the driver plus
the execution time tcgpy spent in computations on the GPU, the
execution time tccpy spent in computations on the CPU and the
execution time tcGp spent in copies from and into GPU buffers. The
formula for the execution time with the user-space drivers captures
the overheads of moving the low-level driver to user space with the
term toys. It is evident that the impact toys has on the execution
time depends on the other terms. The lower tcgpy, tccpy and
tcgp are and the higher s is the higher is the impact of tor7s. This
suggests that the higher the ratio m of GPU kernel
submissions to time spent in computations on the GPU and CPU
and in GPU buffer data copies the higher are the overheads in
Figure 8. Figure 9 shows these ratios for each benchmark. Gaussian
and Myocyte have the highest ratios and are the benchmarks with
the highest overheads (see Figure 8). Backprop, Hotspot3D, LavaMD
have the lowest ratios and also have the lowest overheads. This

CCS 25, October 13-17, 2025, Taipei, Taiwan

[IDriver GPU kernel submission lAdditional code for user-space
[JGPU kernel execution driver

CPU [] [] [] CPU[]] [l |
Gru [[[cGru [[[
1 I l .

End t End t
(a) GPU kernel submission and ex- (b) GPU kernel submission and
ecution with a low-level GPU dri- execution with the low-level GPU
ver OS kernel module and with- driver in user space and without
out overlapping GPU kernel sub- overlapping GPU kernel submis-
mission and execution. sion and execution.

CPU[[] CPULILIN
GPU [] GPU [[

] b] >

End t End t

(c) Same as in Figure 10a but with (d) Same as in Figure 10b but with
execution and submission over- execution and submission over-
lapped. Only the first submission lapped. Only the first submission
contributes to the execution time. contributes to the execution time.

Figure 10: Moving GPU drivers from the OS kernel to user
space adds code (red boxes) on the GPU kernel submission
code paths (blue boxes), e.g. for IPC. This figure illustrates
how this code and GPU kernel execution (green boxes) can
be overlapped so that it contributes less to execution time.

150 I Total ioctls

50
NW _ SRAD
NN PF SC

OBP CFD Gau LMD _Myo
BFS Dwt2D H3D LUD

Increase in
system calls
(in %)

Figure 11: Increase in total system calls and ioctl system calls
with the classic Unix process driver over the Panfrost OS
kernel module. The increase in system calls with Pathfinder
is marginal and thus not visible. We measured the system
calls performed by the benchmark application and the user-
space driver. Each data point is the average of 20 samples.

suggests that the more time a benchmark spends in the GPU kernel
submission code of the GPU driver the higher the overheads of
moving the driver to user space.

Some applications can hide the execution time costs of GPU
kernel submission code by overlapping kernel execution with it —
see Figure 10. The submission of a kernel and the execution of a
previously submitted kernel can be overlapped if the output of the
previous kernel is only used as input for another GPU kernel and
not for computations on the CPU after the kernel submission. For
example, an iterative algorithm that uses the output of one iteration
as the input of the next iteration can overlap kernel execution and
submission. Figure 8 colour codes which benchmarks execute ker-
nels asynchronously. The benchmarks with the highest overheads
execute kernels synchronously and do not hide the overheads of
kernel submission code and the additional code introduced on the
kernel submission path.

Some of our overheads are caused by additional system calls.
We moved device-specific low-level GPU driver code out of the OS
kernel into user space but left dependencies, like Core DRM, in the

Paul Metzger et al.

kernel (see Section 5.3). The user-space driver interacts with these
dependencies through ioctl and other system calls, whereas the ker-
nel module calls into them directly with function calls, which have
lower overheads. Figure 11 shows the increase in ioctl and system
calls. The overheads in Figure 8 have no clear correlation with by
how much the number of system calls made increases. For example,
Gaussian has the highest overhead but only the third highest in-
crease in system calls, and Hotspot3D has a negligible overhead but
the fifth highest increase in system calls and the highest increase in
ioctl calls. As explained above, how our changes in the GPU kernel
submission code path (represented by tpy7s) impact the overall exe-
cution time depends on the ratio between GPU kernel submissions
and time spent in data transfers and computations.

6.3 Overheads with Graphics Applications

Figure 12 shows the overheads with the Phoronix Desktop Graph-
ics benchmark suite [73]. The geometric mean overhead with the
classic Unix process variant of the user-space driver is 5.5% and
with the co-located driver 5%. The overheads are lower with the
co-located driver than with the classic Unix process variant for 36
out of 38 benchmarks. All benchmarks run with at least 35 frames
per second (FPS), except Paraview wavelet contour, which runs
with 5.5 FPS and could not be adjusted to run with higher FPS (see
Section 6.1). Most benchmarks run with more than a hundred FPS.

6.4 Code Size

The Panfrost kernel driver in CheriBSD consists of 3209 lines of
code (LoC). Our Generic Framework has 2669 LoC, the eBPF in-
terpreter has 1020 LoC, our user-space driver has 2790 LoC and
the GTT component has 822 LoC. The co-location code requires
1017 additional or modified LoC. Co-location code and the Generic
Framework would be shared by all GPU drivers in a deployment. We
applied a uniform code-style (the LLVM style) with clang-format
to eBPF, our Generic Framework, the GTT component, our user-
space driver and Panfrost before counting LoC. Blank lines and
comments are not included in the LoC. While other GPU drivers can
be more complex they have similar components (see Section 5.6).

7 Related Work

Windows NT 3.1 to 3.51 implemented graphics drivers in user
space and its performance problems are well known, not helped by
needing up to six changes of CPU mode for every system call [15].
After this salutory experience NT 4 moved graphics drivers into the
kernel [75], and popular wisdom has suggested that GPU drivers
are too performance critical to run entirely in user space ever since.
Running less critical drivers in user space has been a recurrent
theme since NT [12, 29, 53, 84]. No mainstream OS considered
GPU drivers due to their complexity and performance require-
ments. macOS runs some non-GPU drivers in user space using
DriverKit [5]. However a hardware vendor complained about lower
performance [81]. Inspecting an M1 Mac Mini running macOS 15.0
we found only USB and networking drivers using DriverKit. Win-
dows [61] and Linux run higher-level GPU functions in user space,
but low-level drivers are not included. This does not address our
threat model as an attacker can still insert malicious code into the
remaining kernel component or exploit vulnerabilities in it.

Deprivileging Low-Level GPU Drivers Efficiently with User-Space Processes and CHERI Compartments

CCS ’25, October 13-17, 2025, Taipei, Taiwan

15
i Driver in classic Unix process with private address space I Co-located driver process
=10
122
<
S
L
-
5 I | I I] | al | i
S | | u - L i N
1 2 ° o 1 & &1 4 A.51 23 25y &0 0§
> N g 8 9O & X I
buffer bulld bump condlt desk— effect func Z;e N loop §° & s admg § & texture Y§‘ SEES &
top 2d S] & e A& F A9)
| S N /) TEELT 8
A <

Glmark?2

Figure 12: Overheads with both user-space driver variants over the OS kernel module with the Phoronix Desktop Graphics
benchmark suite. Glmarkz2, in its standard configuration (i.e. when no parameters are passed to it), uses some benchmarks
multiple times with different parameters. These benchmark instances are numbered in the order in which they are executed
by Glmark?2. For example, the “buffer” benchmark is executed with three different sets of parameters. The slowdowns with
ParaView wavelet contour are so low that they are not visible. Each data point is the mean of at least 15 samples.

User-space drivers are a primary feature of microkernels. Zircon
and Genode have user-space GPU drivers [24, 36]. However, both
isolate drivers with private address spaces and do not consider
CHERI. Neither has publicised overheads over in-kernel designs.
Interrupt handlers run in user space and the kernel has no sand-
boxes for them as we do. Memory-mapped I/O (MMIO) registers are
mapped into driver processes, which limits access control to page
granularity. In contrast, CHERI allows for finer-grained control.

The Glider technical report [83] reduces the kernel-level GPU
driver by moving resource management, such as work submission
and buffer management, into a user-space library using User-Mode
Linux (UML). The GPU hardware is assigned to only a single appli-
cation at a time and timesliced between processes, with a context
switcher switching MMIO control registers, GPU cache states and
potentially MMU/IOMMU configurations. To enforce scheduling
decisions and prevent applications from interfering with each oth-
ers’ private GPU buffers, resource isolation must remain in the
kernel. We similarly manage GPU page-table isolation in the kernel
but compute resource isolation is handled in user space. Since no
application has direct access to the GPU, our shared user-space
driver allows applications on multiple CPUs to concurrently submit
work, which is not possible in Glider without GPU support for hard-
ware virtualisation. For interrupt delivery, we avoid Glider’s polling
mechanism and instead use upcalls and in-kernel sandboxes.

Other work has moved non-GPU drivers completely or partially
into user-space processes. Sawmill Linux runs a Linux file system
and part of the network stack in the user space of a L4 microker-
nel [32]. SUD and Qiang et al. run unmodified drivers in processes
by using UML, which runs a second kernel in user space [10, 77].
NetBSD’s rump kernels can run drivers and their dependencies in
user space [46]. In contrast to works that move an entire driver
to user space, Microdrivers and Schwahn et al. leave performance
sensitive code in the kernel [29, 84]. With these approaches, drivers
are from the kernel’s perspective user-space processes, but other
isolation techniques exist. For example, LXD, LVD and Ksplit build
on top of each other, using Intel VT-x virtualisation extensions to
isolate kernel logic [42, 66, 67]. Qubes and VirtuOS isolate kernel
components with Xen VMs [69, 82]. Nexus OS monitors interactions

between user-space drivers and devices, with the ability to block op-
erations [99]. Nooks uses among others the MMU and function-call
interposition to create in-kernel isolation domains [87].

IPC overhead is a key concern for some designs. A number
of strategies [59, 90], have considered MMU-based techniques to
reduce IPC overhead, or with custom hardware [20]. While others
[20, 90] consider networking, they do not cover graphics drivers.

For dedicated use cases, drivers can be subsumed into the appli-
cation [56, 57, 80] with toolkits such as SPDK [102]. This benefits
performance by removing boundaries, but is no good if the de-
vice needs to be shared between multiple clients. It is also possible
to delegate hardware virtualisation features (e.g. virtual network
cards), to specific clients, giving the illusion of full control [76, 91].
Sugar isolates the browser WebGL stack from the kernel, by giving
browser processes-exclusive access to a vGPU and running the
driver in a library with UML [103]. Such approaches aren’t scalable
beyond a handful of clients. In our case, we can co-locate the driver
with as many clients as needed, including the windowing system.

8 Conclusion

GPU drivers are untrustworthy yet they have OS kernel privileges
on a myriad of systems, some security and safety critical. Deprivi-
leging low-level GPU drivers with a microkernel-inspired design
prevents attackers from gaining OS kernel privileges. We move a
GPU driver from the kernel to user space with classic Unix pro-
cesses and co-located processes. In lieu of separate address spaces,
CHERI can be used to isolate co-located processes from each other,
reducing context switching and communication costs.

Some systems of the 90s have given microkernels and microkernel-
like designs sadly a reputation for having high overheads. We con-
tribute to a body of evidence that paints a more positive and nu-
anced picture as our Unix process-based GPU driver introduces
low overheads on average, which can be further reduced on CHERI
systems, by co-locating the driver with its client applications.

Acknowledgments and Resources

An artifact related to this publication is available in the repository
at https://doi.org/10.5281/zenodo.16987522.

https://doi.org/10.5281/zenodo.16987522

CCS 25, October 13-17, 2025, Taipei, Taiwan

This work was supported by the UK EPSRC under the CAPceler-
ate (EP/V000381/1) and Chrompartments (EP/X015963/1) projects,
both part of the Innovate UK project Digital Security by Design
(DSbD) and the DSbDtech initiative. This work was supported in
part by the DSbD Technology Platform Prototype (105694), the EP-
SRC CHaOS Grant (EP/V000292/1) and UKRI3001: CHERI Research
Centre. This work was also supported in part by Arm and Google.

Distribution Statement A: Approved for public release. Distri-
bution is unlimited. This work was supported in part by the De-
fense Advanced Research Projects Agency (DARPA) and the Air
Force Research Laboratory (AFRL) under contracts HR0011-22-C-
0110 (“ETC”) and FA8750-24-C-B047 (“DEC”). The views, opinions,
and/or findings contained in this report are those of the authors
and should not be interpreted as representing the official views or
policies, either expressed or implied, of the Department of Defense
or the U.S. Government.

References

(]

[2

B3

ey
=

=
)

(13

(14]

=
il

™
=

Abbas Acar, Giiliz Seray Tuncay, Esteban Luques, Harun Oz, Ahmet Aris, and
Selcuk Uluagac. 2024. 50 Shades of Support: A Device-Centric Analysis of
Android Security Updates. In NDSS.

Thomas Aird, Hesham Almatary, Andres Amaya Garcia, et al. 2025. RISC-V
Specification for CHERI Extensions (Draft). Retrieved April 09, 2025 from
https://riscv.github.io/riscv-cheri/

Saar Amar, David Chisnall, Tony Chen, Nathaniel Wesley Filardo, Ben Laurie,
Kunyan Liu, Robert Norton, Simon W. Moore, Yucong Tao, Robert N. M. Watson,
and Hongyan Xia. 2023. CHERIoT: Complete Memory Safety for Embedded
Devices. In MICRO. ACM.

Tanya Amert, Nathan Otterness, Ming Yang, James H. Anderson, and F. Donel-
son Smith. 2017. GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed.
In RTSS. IEEE.

Apple, Inc. 2025. DriverKit: Develop device drivers that run in user space. Retrieved
April 9, 2025 from https://developer.apple.com/documentation/driverkit

Arm Developer. 2024. Mali GPU Driver Vulnerabilities. (2024). Retrieved
July 17, 2024 from https://developer.arm.com/Arm?%20Security%20Center/Mali%
20GPU%20Driver%20Vulnerabilities

Thomas Ball, Ella Bounimova, Byron Cook, Vladimir Levin, Jakob Lichtenberg,
Con McGarvey, Bohus Ondrusek, Sriram K. Rajamani, and Abdullah Ustuner.
2006. Thorough Static Analysis of Device Drivers. In EuroSys. ACM.

Big Switch Networks, Inc. 2024. uBPF. Retrieved April 29, 2024 from https:
//github.com/iovisor/ubpf

Nicholas Boucher and Ross Anderson. 2023. Trojan Source: Invisible Vulnera-
bilities. In USENIX Security. USENIX.

Silas Boyd-Wickizer and Nickolai Zeldovich. 2010. Tolerating Malicious Device
Drivers in Linux. In ATC. USENIX.

Ruslan Bukin. 2021. The Panfrost Driver. FreeBSD Journal (July/August 2021), 21—
26. https://freebsdfoundation.org/wp-content/uploads/2021/08/The-Panfrost-
Driver.pdf

Shakeel Butt, Vinod Ganapathy, Michael M. Swift, and Chih-Cheng Chang.
2009. Protecting Commodity Operating System Kernels from Vulnerable Device
Drivers. In ACSAC. ACM.

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer,
Sang-Ha Lee, and Kevin Skadron. 2009. Rodinia: A Benchmark Suite for Hetero-
geneous Computing. In IISWC. IEEE.

Haibo Chen, Xie Miao, Ning Jia, et al. 2024. Microkernel Goes General: Perfor-
mance and Compatibility in the HongMeng Production Microkernel. In OSDL
USENIX.

J. Bradley Chen, Yasuhiro Endo, Kee Chan, David Maziéres, Antonio Dias, Margo
Seltzer, and Michael D. Smith. 1995. The Measured Performance of Personal
Computer Operating Systems. In SOSP. ACM.

Lewis Crawford and Michael O’Boyle. 2019. Specialization Opportunities in
Graphical Workloads. In PACT. IEEE.

William J. Dally, Stephen W. Keckler, and David B. Kirk. 2021. Evolution of the
Graphics Processing Unit (GPU). IEEE Micro 41, 6 (2021).

Brooks Davis, Robert N. M. Watson, Alexander Richardson, et al. 2019. CheriABI:
Enforcing Valid Pointer Provenance and Minimizing Pointer Privilege in the
POSIX C Run-time Environment. In ASPLOS. ACM.

CheriBSD Developers. 2024. CheriBSD. Retrieved June 20, 2024 from https:
//www.cheribsd.org/

Dong Du, Zhichao Hua, Yubin Xia, Binyu Zang, and Haibo Chen. 2019. XPC:
Architectural Support for Secure and Efficient Cross Process Call. In ISCA. ACM.

[21]
[22]

[23

[24]

[25]

[26]

[27

[28

[29]

[30

[31

[32

[33

[34]

[35]

[36

[37

[38]

[39

[40

[41]

[42

[43

[44

[45

[46]

[47

Paul Metzger et al.

eBPF project. 2024. What is eBPF? Retrieved April 29, 2024 from https://ebpf.
io/what-is-ebpf/

Jake Edge. 2015. A seccomp overview. (Sept. 2015). Retrieved June 20, 2024
from https://lwn.net/Articles/656307/

Envytools. [n.d.]. PCI BARs and other means of accessing the GPU. Retrieved
October 28, 2024 from https://envytools.readthedocs.io/en/latest/hw/bus/bars.
html

Norman Feske. 2025. Genode Operating System Framework 25.05 Founda-
tions. Retrieved August 7, 2025 from https://genode.org/documentation/genode-
foundations-25-05.pdf Section 3.4.7 discusses of IRQs and MMIO.

Nathaniel Wesley Filardo, Brett F. Gutstein, Jonathan Woodruff, et al. 2024. Cor-
nucopia Reloaded: Load Barriers for CHERI Heap Temporal Safety. In ASPLOS.
ACM.

Jose Fonseca. 2025. apitrace. Retrieved October 15, 2024 from https://apitrace.
github.io

Tora Fridholm. 2025. Codasip launches complete exploration platform to accelerate
CHERI adoption. Retrieved August 20, 2025 from https://codasip.com/press-
release/2025/04/29/codasip- prime-launch/

Vinod Ganapathy, Arini Balakrishnan, Michael M. Swift, and Somesh Jha. 2007.
Microdrivers: A New Architecture for Device Drivers. In HotOS. USENIX.
Vinod Ganapathy, Matthew J. Renzelmann, Arini Balakrishnan, Michael M.
Swift, and Somesh Jha. 2008. The Design and Implementation of Microdrivers.
In ASPLOS. ACM.

Dapeng Gao and Robert N. M. Watson. 2023. Library-based Compartmentalisa-
tion on CHERL In PLARCH Workshop.

Sergiu Gatlan. 2021. AMD fixes dozens of Windows 10 graphics driver se-
curity bugs. Bleeping Computer (Nov. 2021). Retrieved April 09, 2025
from https://www.bleepingcomputer.com/news/security/amd-fixes-dozens- of-
windows- 10-graphics-driver-security-bugs/

Alain Gefflaut, Trent Jaeger, Yoonho Park, Jochen Liedtke, Kevin J. Elphinstone,
Volkmar Uhlig, Jonathon E. Tidswell, Luke Deller, and Lars Reuther. 2000. The
SawMill multiserver approach. In ACM SIGOPS European Workshop. ACM.
Danielle Gonzalez, Thomas Zimmermann, Patrice Godefroid, and Max Schifer.
2021. Anomalicious: Automated Detection of Anomalous and Potentially Mali-
cious Commits on GitHub. In ICSE-SEIP. IEEE.

Dan Goodin. 2022. How a Microsoft blunder opened millions of PCs to
potent malware attacks. Ars Technica (Oct. 2022). Retrieved April 09,
2025 from https://arstechnica.com/information-technology/2022/10/how-a-
microsoft-blunder-opened-millions-of-pcs- to-potent-malware- attacks/

Dan Goodin. 2023. Microsoft signing keys keep getting hijacked, to the de-
light of Chinese threat actors. Ars Technica (Aug. 2023). Retrieved April 09,
2025 from https://arstechnica.com/security/2023/08/facing-failure-after-failure-
microsofts-driver-signing-program-fails- yet-again/

Google. 2025. Zircon. Retrieved August 7, 2025 from https://fuchsia.dev/fuchsia-
src/concepts/kernel See https://fuchsia.dev/fuchsia-src/concepts/drivers/
mapping-a-devices-memory-in-a-driver and https://fuchsia.dev/fuchsia-src/
reference/kernel_objects/interrupts for a discussion of IRQs and MMIO.
Richard Grisenthwaite, Graeme Barnes, Robert N.M. Watson, Simon W. Moore,
Peter Sewell, and Jonathan Woodruff. 2023. The Arm Morello Evaluation Plat-
form — Validating CHERI-based Security in a High-Performance System. IEEE
Micro 43, 3 (2023).

Jinyu Gu, Xinyue Wu, Wentai Li, Nian Liu, Zeyu Mi, Yubin Xia, and Haibo Chen.
2020. Harmonizing Performance and Isolation in Microkernels with Efficient
Intra-Kernel Isolation and Communication. In ATC. USENIX.

Ayub A. Gubran and Tor M. Aamodt. 2019. Emerald: Graphics Modeling for
SoC Systems. In ISCA. ACM.

Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew S. Tanen-
baum. 2006. MINIX 3: A Highly Reliable, Self-Repairing Operating System. ACM
SIGOPS Operating Systems Review 40, 3 (July 2006).

Jann Horn. 2023. Qualcomm Adreno/KGSL: unchecked cast of vma->vm_file-
>private_data in kgsl_setup_dmabuf useraddr(). Retrieved October 23, 2024 from
https://project-zero.issues.chromium.org/issues/42451565 CVE-2023-21665.
Yongzhe Huang, Vikram Narayanan, David Detweiler, Kaiming Huang, Gang
Tan, Trent Jaeger, and Anton Burtsev. 2022. KSplit: Automating device driver
isolation. In OSDI. USENIX.

Intel. 2023. Intel Iris Xe and UHD Graphics Open Source Programmer’s Reference
Manual For 2020-2021 11th Generation Intel Xeon, Core, Celeron, Pentium Gold
Processors based on the "Tiger Lake" Platform Volume 6: Memory Views. See p. 4.
Hiroo Ishikawa, Alexandre Courbot, and Tatsuo Nakajima. 2008. A Framework
for Self-Healing Device Drivers. In SASO (SASO). IEEE.

Nicolas Joly, Saif ElSherei, and Saar Amar. 2020. Security Analysis of CHERI
ISA. Retrieved July 9, 2025 from https://github.com/microsoft/MSRC-Security-
Research/blob/master/papers/2020/Security %20analysis%200f%20CHERI%
20ISA.pdf

Antti Kantee. 2010. Rump Device Drivers: Shine On You Kernel Diamond. In
AsiaBSDCon.

Aaron Klotz. 2022. New Intel Driver Delivers Up To 8 Percent Performance
Uplift On Arc GPUs. Tom’s Hardware (Nov. 2022). Retrieved April 09, 2025

https://riscv.github.io/riscv-cheri/
https://developer.apple.com/documentation/driverkit
https://developer.arm.com/Arm%20Security%20Center/Mali%20GPU%20Driver%20Vulnerabilities
https://developer.arm.com/Arm%20Security%20Center/Mali%20GPU%20Driver%20Vulnerabilities
https://github.com/iovisor/ubpf
https://github.com/iovisor/ubpf
https://freebsdfoundation.org/wp-content/uploads/2021/08/The-Panfrost-Driver.pdf
https://freebsdfoundation.org/wp-content/uploads/2021/08/The-Panfrost-Driver.pdf
https://www.cheribsd.org/
https://www.cheribsd.org/
https://ebpf.io/what-is-ebpf/
https://ebpf.io/what-is-ebpf/
https://lwn.net/Articles/656307/
https://envytools.readthedocs.io/en/latest/hw/bus/bars.html
https://envytools.readthedocs.io/en/latest/hw/bus/bars.html
https://genode.org/documentation/genode-foundations-25-05.pdf
https://genode.org/documentation/genode-foundations-25-05.pdf
https://apitrace.github.io
https://apitrace.github.io
https://codasip.com/press-release/2025/04/29/codasip-prime-launch/
https://codasip.com/press-release/2025/04/29/codasip-prime-launch/
https://www.bleepingcomputer.com/news/security/amd-fixes-dozens-of-windows-10-graphics-driver-security-bugs/
https://www.bleepingcomputer.com/news/security/amd-fixes-dozens-of-windows-10-graphics-driver-security-bugs/
https://arstechnica.com/information-technology/2022/10/how-a-microsoft-blunder-opened-millions-of-pcs-to-potent-malware-attacks/
https://arstechnica.com/information-technology/2022/10/how-a-microsoft-blunder-opened-millions-of-pcs-to-potent-malware-attacks/
https://arstechnica.com/security/2023/08/facing-failure-after-failure-microsofts-driver-signing-program-fails-yet-again/
https://arstechnica.com/security/2023/08/facing-failure-after-failure-microsofts-driver-signing-program-fails-yet-again/
https://fuchsia.dev/fuchsia-src/concepts/kernel
https://fuchsia.dev/fuchsia-src/concepts/kernel
https://fuchsia.dev/fuchsia-src/concepts/drivers/mapping-a-devices-memory-in-a-driver
https://fuchsia.dev/fuchsia-src/concepts/drivers/mapping-a-devices-memory-in-a-driver
https://fuchsia.dev/fuchsia-src/reference/kernel_objects/interrupts
https://fuchsia.dev/fuchsia-src/reference/kernel_objects/interrupts
https://project-zero.issues.chromium.org/issues/42451565
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20CHERI%20ISA.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20CHERI%20ISA.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20CHERI%20ISA.pdf

Deprivileging Low-Level GPU Drivers Efficiently with User-Space Processes and CHERI Compartments

[48

‘o
2

v
—

=
2

o
&,

(63

[64

[65

(66

(68

[69

[70

[71

[72

from https://www.tomshardware.com/news/new-intel-driver-delivers-up-to-
8-percent-performance-uplift-on-arc-gpus

Aaron Klotz. 2024. Nvidia publishes eight security flaws patched by new drivers
— update to fix the issues. Tom’s Hardware (Feb. 2024). Retrieved April 09, 2025
from https://www.tomshardware.com/pc-components/gpus/nvidia-publishes-
eight-security-flaws- patched-by-new-drivers-update-to- fix-the-issues
Joseph Kong. 2012. FreeBSD Device Drivers: A Guide for the Intrepid. No Starch
Press.

Piergiorgio Ladisa, Henrik Plate, Matias Martinez, and Olivier Barais. 2023. SoK:
Taxonomy of Attacks on Open-Source Software Supply Chains. In S&P. IEEE.
Michael Larabel. 2022. AMD Graphics Driver Surpassing 4 Million Lines Of
Code In Linux 5.19, NVIDIA Opens Up At 1 Million. (May 2022). Retrieved
April 11, 2024 from https://www.phoronix.com/news/ AMDGP U-4-Million
Boris Larin. 2023. Operation Triangulation: The last (hardware) mystery.
(Dec. 2023). Retrieved April 09, 2025 from https://securelist.com/operation-
triangulation-the-last-hardware-mystery/111669/

Ben Leslie, Peter Chubb, Nicholas Fitzroy-Dale, Stefan Gétz, Charles Gray, Luke
Macpherson, Daniel Potts, Yue-Ting Shen, Kevin Elphinstone, and Gernot Heiser.
2005. User-Level Device Drivers: Achieved Performance. Journal of Computer
Science and Technology 20, 5 (Sept. 2005).

Linux Foundation. [n. d.]. The Linux Kernel Archives. https://www.kernel.org/
Lukas Maar, Florian Draschbacher, Lorenz Schumm, Ernesto Martinez Garcia,
and Stefan Mangard. 2025. The Doom of Device Drivers: Your Android Device
(Most Likely) has N-Day Kernel Vulnerabilities. In USENIX Security. USENIX.
Ilias Marinos, Robert N.M. Watson, and Mark Handley. 2014. Network stack
specialization for performance. In SIGCOMM. ACM.

Ilias Marinos, Robert N.M. Watson, Mark Handley, and Randall R. Stewart. 2017.
Disk|Crypt|Net: rethinking the stack for high-performance video streaming. In
SIGCOMM. ACM.

Steve Marschner and Peter Shirley. 2022. Fundamentals of Computer Graphics
(fifth ed.). CRC Press. See Section 22.4 regarding frame rates.

Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, and Haibo Chen. 2019. SkyBridge:
Fast and Secure Inter-Process Communication for Microkernels. In EuroSys.
ACM.

Microsoft. 2021. Making eBPF work on Windows. (May 2021). Retrieved April
29, 2024 from https://cloudblogs.microsoft.com/opensource/2021/05/10/making-
ebpf-work-on-windows/

Microsoft. 2024. WDDM overview. (Aug. 2024). Retrieved April 09, 2025
from https://learn.microsoft.com/en-us/windows-hardware/drivers/display/
windows-vista-display-driver-model-design- guide

Microsoft. 2025. Driver code signing requirements. (March 2025). Retrieved
April 09, 2025 from https://learn.microsoft.com/en-us/windows-hardware/
drivers/dashboard/code-signing-reqs

Morello Project. [n.d.]. The CHERI LLVM Compiler Infrastructure. Retrieved
April 09, 2025 from https://git.morello- project.org/morello/llvm-project
Edward Tomasz Napierata. 2024. “coexecve()” System Call Code. Retrieved
March 13, 2025 from https://github.com/CTSRD-CHERI/cheribsd/blob/cocalls/
sys/kern/kern_exec.c#L.264-1312

Edward Tomasz Napierala and The FreeBSD Project. 2024. “execve()” Man Page.
Retrieved March 17, 2025 from https://github.com/CTSRD-CHERI/cheribsd/
blob/cocalls/lib/libc/sys/execve.2 Also explains the ‘coexecve()’ system call.
Vikram Narayanan, Abhiram Balasubramanian, Charlie Jacobsen, et al. 2019.
LXDs: Towards Isolation of Kernel Subsystems. In ATC. USENIX.

Vikram Narayanan, Yongzhe Huang, Gang Tan, Trent Jaeger, and Anton Burtsev.
2020. Lightweight kernel isolation with virtualization and VM functions. In
VEE. ACM.

Lily Hay Newman. 2024. Google Researchers Found Nearly a Dozen Flaws in
Popular Qualcomm Software for Mobile GPUs. Wired (Aug. 2024). Retrieved
April 09, 2025 from https://www.wired.com/story/google-android-red-team-
qualcomm-gpu-flaws/

Ruslan Nikolaev and Godmar Back. 2013. VirtuOS: an operating system with
kernel virtualization. In SOSP. ACM.

NIST. 2021. CVE-2021-28663 Detail. Retrieved October 23, 2024 from https:
//mvd.nist.gov/vuln/detail/CVE-2021-28663

NIST. 2021. CVE-2021-28664 Detail. Retrieved October 23, 2024 from https:
//nvd.nist.gov/vuln/detail/CVE-2021- 28664

Lindsey O’Donnell. 2019. Intel Windows 10 Graphics Drivers Riddled With
Flaws. Threat Post (March 2019). Retrieved April 09, 2025 from https://threatpost.
com/intel-windows- 10-graphics-drivers/142778/

OpenBenchmarking.org and Larabel, Michael. 2020. Phoronix Desktop Graphics
Test Suite. Retrieved October 14, 2024 from https://openbenchmarking.org/
suite/pts/desktop-graphics

Sean Peisert, Bruce Schneier, Hamed Okhravi, et al. 2021. Perspectives on the
SolarWinds Incident. IEEE Security & Privacy 19, 2 (2021).

Keith Pleas. 1996. Windows NT 4.0. Windows IT Pro (April 1996).

Ian Pratt and Keir Fraser. 2001. Arsenic: A User-Accessible Gigabit Ethernet
Interface. In INFOCOM. IEEE.

Weizhong Qiang, Kang Zhang, and Hai Jin. 2016. Reducing TCB of Linux Kernel
Using User-Space Device Driver. In Algorithms and Architectures for Parallel

[78

[79

[80

(81

[82

[83

[84

[85

[86

[87

[88]

[89

[90

[o1

[92]

[93

[94

[95

[96

[97

[98

[99]

[100

[101

[102

[103

CCS 25, October 13-17, 2025, Taipei, Taiwan

Processing. Springer.

Qualcomm. 2021. Qualcomm January 2021 Security Bulletin. Retrieved
October 23, 2024 from https://docs.qualcomm.com/product/publicresources/
securitybulletin/january-2021-bulletin.html See subsection on CVE-2020-11261.
Red Hat, Inc. 2024. CVE-2024-3094 Detail. Retrieved September 04, 2024 from
https://nvd.nist.gov/vuln/detail/ CVE-2024-3094 Backdoor in XZ library.

Luigi Rizzo. 2012. netmap: A Novel Framework for Fast Packet I/O. In ATC.
USENIX.

RME Audio. [n.d.]. RME Drivers explained - DriverKit vs. Kernel Extension.
Retrieved October 22, 2024 from https://rme-audio.de/driverkit-vs-kernel-
extension.html

Joanna Rutkowska and Rafal Wojtczuk. 2010. Qubes OS Architecture. https:
//qubes-os.org/attachment/doc/arch-spec-0.3.pdf

Ardalan Amiri Sani, Lin Zhong, and Dan S. Wallach. 2014. Glider: A GPU
Library Driver for Improved System Security. Technical Report 2014-11-14, Rice
University (2014).

Oliver Schwahn, Stefan Winter, Nicolas Coppik, and Neeraj Suri. 2018. How
to Fillet a Penguin: Runtime Data Driven Partitioning of Linux Code. IEEE
Transactions on Dependable and Secure Computing 15, 6 (2018).

Mark Segal and Kurt Akeley. 2022. The OpenGL® Graphics System: A Specifi-
cation (Version 4.6 (Core Profile)-May 5, 2022).

Maddie Stone, Jared Semrau, and James Sadowski. 2024. We’re All in this To-
gether: A Year in Review of Zero-Days Exploited In-the-Wild in 2023. Google
Project Zero (March 2024). https://storage.googleapis.com/gweb-uniblog-
publish-prod/documents/Year_in_Review_of_ZeroDays.pdf

Michael M. Swift, Brian N. Bershad, and Henry M. Levy. 2003. Improving the
reliability of commodity operating systems. In SOSP. ACM.

Devesh Tiwari, Saurabh Gupta, George Gallarno, Jim Rogers, and Don Maxwell.
2015. Reliability Lessons Learned From GPU Experience With The Titan Super-
computer at Oak Ridge Leadership Computing Facility. In SC. ACM.

Bill Toulas. 2022. NVIDIA releases GPU driver update to fix 29 secu-
rity flaws. Bleeping Computer (Nov. 2022). Retrieved April 09, 2025
from https://www.bleepingcomputer.com/news/security/nvidia-releases- gpu-
driver-update- to-fix-29-security-flaws/

Lluis Vilanova, Marc Jorda, Nacho Navarro, Yoav Etsion, and Mateo Valero.
2017. Direct Inter-Process Communication (dIPC): Repurposing the CODOMs
Architecture to Accelerate IPC. In EuroSys. ACM.

Thorsten von Eicken, Anindya Basu, Vineet Buch, and Werner Vogels. 1995.
U-Net: A User-Level Network Interface for Parallel and Distributed Computing.
In SOSP. ACM.

Tom Warren. 2023. Nvidia boosts Starfield performance with GPU dri-
ver update. The Verge (Sept. 2023). Retrieved April 09, 2025 from
https://www.theverge.com/2023/9/12/23870123/nvidia- starfield-performance-
resizable-bar-new-gpu-drivers

Robert N.M. Watson, Jonathan Anderson, Ben Laurie, and Kris Kennaway. 2010.
Capsicum: practical capabilities for UNIX. In USENIX Security. USENIX.
Robert N.M. Watson, Jessica Clarke, Peter Sewell, et al. 2023. Early performance
results from the prototype Morello microarchitecture. Technical Report UCAM-
CL-TR-986. University of Cambridge, Computer Laboratory. doi:10.48456/tr-986
Robert N.M. Watson, Ben Laurie, and Alex Richardson. 2021. Assess-
ing the Viability of an Open-Source CHERI Desktop Software Ecosys-
tem. https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/20210917- capltd-
cheri-desktop-report-version1-FINAL.pdf See page 9, among others, regarding
adapting software to CHERIL.

Robert N.M. Watson, Jonathan Woodruff, Peter G. Neumann, et al. 2015. CHERI:
A Hybrid Capability-System Architecture for Scalable Software Compartmen-
talization. In S&P. IEEE.

Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, et al. 2020. Capa-
bility Hardware Enhanced RISC Instructions: CHERI Instruction-Set Architecture
(Version 8). Technical Report UCAM-CL-TR-951. University of Cambridge, Com-
puter Laboratory. doi:10.48456/tr-951

Nathaniel Wesley Filardo, Brett F. Gutstein, Jonathan Woodruff, et al. 2020.
Cornucopia: Temporal Safety for CHERI Heaps. In S&P. IEEE.

Dan Williams, Patrick Reynolds, Kevin Walsh, Emin Giin Sirer, and Fred B.
Schneider. 2008. Device Driver Safety Through a Reference Validation Mecha-
nism. In OSDI. USENIX.

Jonathan Woodruff, Alexandre Joannou, Hongyan Xia, et al. 2019. CHERI
Concentrate: Practical Compressed Capabilities. IEEE Trans. Comput. 68, 10
(2019).

Hongyan Xia, Jonathan Woodruff, Sam Ainsworth, et al. 2019. CHERIvoke: Char-
acterising Pointer Revocation using CHERI Capabilities for Temporal Memory
Safety. In MICRO. ACM.

Ziye Yang, James R. Harris, Benjamin Walker, et al. 2017. SPDK: A Development
Kit to Build High Performance Storage Applications. In CloudCom. IEEE.
Zhihao Yao, Zongheng Ma, Yingtong Liu, Ardalan Amiri Sani, and Aparna
Chandramowlishwaran. 2018. Sugar: Secure GPU Acceleration in Web Browsers.
In ASPLOS. ACM.

https://www.tomshardware.com/news/new-intel-driver-delivers-up-to-8-percent-performance-uplift-on-arc-gpus
https://www.tomshardware.com/news/new-intel-driver-delivers-up-to-8-percent-performance-uplift-on-arc-gpus
https://www.tomshardware.com/pc-components/gpus/nvidia-publishes-eight-security-flaws-patched-by-new-drivers-update-to-fix-the-issues
https://www.tomshardware.com/pc-components/gpus/nvidia-publishes-eight-security-flaws-patched-by-new-drivers-update-to-fix-the-issues
https://www.phoronix.com/news/AMDGPU-4-Million
https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/
https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/
https://www.kernel.org/
https://cloudblogs.microsoft.com/opensource/2021/05/10/making-ebpf-work-on-windows/
https://cloudblogs.microsoft.com/opensource/2021/05/10/making-ebpf-work-on-windows/
https://learn.microsoft.com/en-us/windows-hardware/drivers/display/windows-vista-display-driver-model-design-guide
https://learn.microsoft.com/en-us/windows-hardware/drivers/display/windows-vista-display-driver-model-design-guide
https://learn.microsoft.com/en-us/windows-hardware/drivers/dashboard/code-signing-reqs
https://learn.microsoft.com/en-us/windows-hardware/drivers/dashboard/code-signing-reqs
https://git.morello-project.org/morello/llvm-project
https://github.com/CTSRD-CHERI/cheribsd/blob/cocalls/sys/kern/kern_exec.c#L264-L312
https://github.com/CTSRD-CHERI/cheribsd/blob/cocalls/sys/kern/kern_exec.c#L264-L312
https://github.com/CTSRD-CHERI/cheribsd/blob/cocalls/lib/libc/sys/execve.2
https://github.com/CTSRD-CHERI/cheribsd/blob/cocalls/lib/libc/sys/execve.2
https://www.wired.com/story/google-android-red-team-qualcomm-gpu-flaws/
https://www.wired.com/story/google-android-red-team-qualcomm-gpu-flaws/
https://nvd.nist.gov/vuln/detail/CVE-2021-28663
https://nvd.nist.gov/vuln/detail/CVE-2021-28663
https://nvd.nist.gov/vuln/detail/CVE-2021-28664
https://nvd.nist.gov/vuln/detail/CVE-2021-28664
https://threatpost.com/intel-windows-10-graphics-drivers/142778/
https://threatpost.com/intel-windows-10-graphics-drivers/142778/
https://openbenchmarking.org/suite/pts/desktop-graphics
https://openbenchmarking.org/suite/pts/desktop-graphics
https://docs.qualcomm.com/product/publicresources/securitybulletin/january-2021-bulletin.html
https://docs.qualcomm.com/product/publicresources/securitybulletin/january-2021-bulletin.html
https://nvd.nist.gov/vuln/detail/CVE-2024-3094
https://rme-audio.de/driverkit-vs-kernel-extension.html
https://rme-audio.de/driverkit-vs-kernel-extension.html
https://qubes-os.org/attachment/doc/arch-spec-0.3.pdf
https://qubes-os.org/attachment/doc/arch-spec-0.3.pdf
https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/Year_in_Review_of_ZeroDays.pdf
https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/Year_in_Review_of_ZeroDays.pdf
https://www.bleepingcomputer.com/news/security/nvidia-releases-gpu-driver-update-to-fix-29-security-flaws/
https://www.bleepingcomputer.com/news/security/nvidia-releases-gpu-driver-update-to-fix-29-security-flaws/
https://www.theverge.com/2023/9/12/23870123/nvidia-starfield-performance-resizable-bar-new-gpu-drivers
https://www.theverge.com/2023/9/12/23870123/nvidia-starfield-performance-resizable-bar-new-gpu-drivers
https://doi.org/10.48456/tr-986
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/20210917-capltd-cheri-desktop-report-version1-FINAL.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/20210917-capltd-cheri-desktop-report-version1-FINAL.pdf
https://doi.org/10.48456/tr-951

	Abstract
	1 Introduction
	2 Approach
	2.1 Threat Model
	2.2 Protection Model and Motivation

	3 Background
	3.1 CHERI
	3.2 CHERI Compartmentalisation with Co-located Processes
	3.3 The Software Graphics Stack

	4 Exploratory Investigation
	4.1 Communication Latency
	4.2 Measuring Context-Switching Costs
	4.3 Improved Transient-Execution Mitigation for Co-located Processes

	5 Design and Implementation
	5.1 GPU Driver Process
	5.2 Graphics Translation Tables
	5.3 Generic Framework for GPU User-Space Drivers
	5.4 GPU MMIO Interface
	5.5 Multiple-Client Applications
	5.6 Generality

	6 Evaluation
	6.1 Experimental Setup
	6.2 Overheads With GPGPU Benchmarks
	6.3 Overheads with Graphics Applications
	6.4 Code Size

	7 Related Work
	8 Conclusion
	References

