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T he lack of memory safety in current software
implementations has led to a long and catas-
trophic history of software vulnerabilities – from

enabling the spread of the Morris Internet Worm in
1988 to making up the majority of critical security vul-
nerabilities in Android, iOS, Windows, and numerous
other contemporary software systems. Many attempts
have been made to replace unsafe C and C++ with
memory-safe and type-safe languages, but these have
made only limited inroads in the most critical soft-
ware Trusted Computing Bases (TCBs), due to the
implied need for total software-stack rewrites. Widely
deployed exploit-mitigation mechanisms – especially
those based on random secrets – have simply engaged
in an expensive arms race with attackers, leading
to successively more sophisticated attack approaches
that bypass those new defenses within a couple of
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years of their deployment.1 This has left C and C++
OS kernels, language runtimes, web browsers, and
server components in a nearly continuous state of
vulnerability – subject to unwinnable “patch and pray”
races with highly capable adversaries.

CHERI, a hardware-software co-design project
started in 2010 by the University of Cambridge and SRI
International, has pursued an alternative strategy: Use
adapted hardware, enable memory-safe variants of
the C and C++ programming languages themselves.2

CHERI extends conventional instruction-set architec-
tures (ISAs) with architectural capability-system fea-
tures – an idea that arose in computer science in the
1970s, but has seen little impact since the 1990s.3

As with research into type-safe languages, past ca-
pability systems have frequently been premised on
clean-slate programming languages and/or software
stacks. With CHERI, our focus has instead been on
clean composition of the architectural capabilities with
conventional ISAs, microarchitectures, the C and C++
programming languages, and de facto standard OS
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designs, enabling memory-safe use of these widely
used languages and their voluminous software stacks.
Our iterative co-design cycle has been driven by
(sometimes competing) demands for architectural and
microarchitectural viability and performance, software
vulnerability mitigation, and minimising potential adop-
tion friction in both hardware and software stacks.

In 2011, our early “soft” CHERI MIPS cores were
implemented on FPGA and able to run a bespoke
assembly-language microkernel demonstrating rudi-
mentary domain switching without compiler support.
Today, in 2024, CHERI-enabled processors have been
developed by Arm, Microsoft, and other companies
and universities, and are able to run rich software
stacks consisting of tens of millions of lines of open-
source, memory-safe C and C++ including complete
UNIX operating systems, windowing systems, and
complex desktop and server applications. Two systems
of particular note are Arm’s Morello and Microsoft’s
CHERIoT, spanning a broad range of microarchitec-
tural scales. Morello is a 7nm, superscalar, multi-
core System-on-Chip (SoC) in which CHERI exten-
sions have been added to the Neoverse N1 processor
widely used in cloud computing environments.4 Mi-
crosoft’s first CHERIoT implementation is a microcon-
troller based on the open-source Ibex core developed
at ETH Zurich and now used in lowRISC’s OpenTitan
hardware root of trust.5 The first CHERI-based com-
mercial products, rather than research prototypes, are
expected to ship within 18 months, with initial impacts
on embedded and Internet of Things (IoT) systems,
and in roots of trust embedded within higher-end SoCs.

The CHERI proposition is a simple one: In re-
turn for modest changes to shipping computer archi-
tecture and microarchitecture, total system memory
safety can be achieved through modest source-code
change and recompilation. CHERI also opens the
door for further forms of safety, including fine-grained
scalable software compartmentalization, which builds
on CHERI memory safety. The successful application
of CHERI to multiple architectural and microarchitec-
tural approaches has validated a key early hypothesis
in our work: As with virtual memory, CHERI is a
model and not just implementation, with its concepts
portable across a broad range of scales and use cases.
With approaching 100MLoC of CHERI-adapted open-
source C and C++ code, including complete operating
systems, desktop environments, and server applica-
tions, another key hypothesis has been validated: That
there is low friction in adapting many critical pieces of
C/C++-language software to the CHERI model.

In this article, we introduce the CHERI model,
implementations, and early results. We also explore

the current status of the research and productization.
With increasing experience with large-scale hardware
implementations and software adaptations, we are able
to draw strong conclusions about the potential for
adoptability of the CHERI technology.

BACKGROUND: MEMORY
[UN]SAFETY

The rich history of memory unsafety could fill tomes.
It is noteworthy, first, that the idea of unsafety is
very old, dating from the 1970s, and also remarkably
portable across languages and architectures. While C
and C++ make such unsafety a natural programming
style, a lack of memory safety can arise even in type-
safe memory-safe language as a results of compiler
bugs (e.g., as seen recently with Rust) or a language
runtime written in an unsafe language (e.g., as seen
with most Javascript runtimes).6 CHERI is hardly the
first attempt to introduce notions of memory safety into
the C and C++ languages – earlier efforts fall into four
(inevitably overlapping) categories:

• Debugging and mitigation techniques that either
detect memory-safety violations or exploitation
attempts enabled by memory-safety vulnerabili-
ties (e.g., LLVM AddressSanitizer).

• Static analysis and proof techniques intended to
statically detect and help eliminate unsafe pro-
grams, limiting them to a subset of behaviors that
are safe (e.g., Coverity or the seL4 microkernel).

• Revised C and C++-like languages – either
subsets, perhaps mechanically checked, of the
existing languages, or new languages that re-
semble C and C++ (e.g., Cyclone).

• Longer-term improvements in C/C++ that in-
troduce both primitives for memory safety and
ownership, or simply stylizations, encouraging
memory-safe programming within the language
(e.g., MISRA and recent work on C++ memory
safety).

For the purposes of our work, we have considered
C/C++ memory safety to have the following language-
level aspects:

1) Referential safety – a superset of pointer integrity
that protects the integrity and provenance validity
of pointers against various forms of corruption
(e.g., partial memory overwrite) or misuse (e.g.,
inappropriate integer arithmetic on a pointer).

2) Spatial safety, which prevents a pointer intended
to be used with one current in-memory object
from being used to access another current object
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– e.g., as a result of buggy pointer arithmetic.
3) Temporal safety, which prevents a pointer in-

tended to be used with one current in-memory
object from being used to access past (or future)
objects that have used (or will use) the same
storage – e.g., a memory store via a pointer
passed to free() that, as a result of memory
reuse, now accesses a new object returned to
another context by malloc().

These concepts apply to a range of object types in
C and C++: OS memory mappings, local and global
variables, heap memory allocations, thread-local stor-
age, and so on. The literature is rife with examples
of violations of these properties leading to informa-
tion leakage or data corruption, and frequently also
enabling arbitrary code execution by an attacker.

Note that, amongst these properties, there are
some important omissions that appear amongst key
memory-safety vulnerabilities. Perhaps most important
is that of uninitialized values, in which a failure to
initialize a value before using it can allow visibility
of earlier values present in prior allocations. This is
omitted from the list of CHERI properties because
reasonable solutions to the problem are well known
within current software practice – zeroing memory
mappings before first use, heap allocators returning
zeroed memory, and compiler analysis passes that
zero local variables before first use if improperly initial-
ized. In security analyses of CHERI (e.g., by MSRC),
it has been taken for granted that those initialization
mitigations will continue to be used, and in general they
complement the protections provided by CHERI.

Another key consideration in memory safety is not
just protection of programmer-visible constructs, such
as memory allocations, but also those constructs that
are invisible to the programmer and yet are essential
to the operation of the program. These sub-language
pointers, such as return addresses, the frame pointer,
GOT pointers, and other aspects of the sub-language
that so greatly enable exploitation, have been the
target for numerous mitigation techniques from stack
canaries onwards.

Another concern in C memory safety is the bound-
ary between memory safety and type safety. We seek
to address only the former, although some protec-
tion of types is required to enable memory safety.
The idea of general, dynamically enforced type safety,
rather than memory safety, is challenging not least
because it is not clear what can be achieved along-
side for existing deployed C-language programs. For
example, object oriented programming styles within C
frequently involve casts between pointers types that

are, from a language perspective, unrelated. However,
clear differentiation of pointer and integer types, and
between executable and non-executable pointers, is
an essential part of memory safety. Overall, we feel
that limiting our scope to memory safety has yielded
significant security wins while also avoiding substantial
compatibility issues – and yet certain vulnerabilities
(e.g., programmer confusion regarding function pointer
signatures) cannot be addressed by CHERI as a result.

CHERI C and C++ exist within a large space of
works on C and C++ memory safety, but particularly
focus in the following areas, that in combination set
them apart from prior work:7

• A focus on deterministic closing of vulnerabili-
ties through dynamic memory safety – without
basing the work on secrets (that may be leaked
or brute forced) or probabilistic techniques. Most
currently deployed memory-safety mitigations
are secrets-based and/or probabilistic.

• A focus on minimizing disruption to the vast
majority of the C/C++ corpus, requiring recom-
pilation but little or no change. Studies we have
performed have found %LoC change counts as
low as 0.02%LoC, seen in a sizeable open-
source desktop software stack.8 While simple
mitigations such as stack canaries or ASLR
have little impact on the programming model,
more historic work on memory safety (such as
Cyclone or even MISRA) can be very disruptive
to current software.

• Willingness to depend on modest changes to
hardware architecture and microarchitecture to
enable certain properties (e.g., strong atomicity
and software non-bypassability of provenance
validity). There has been an important thread
of new architecture exploit mitigations, such as
pointer hashing and memory version tagging,
that reflect minor and incrementally adoptable
changes. CHERI, however, proposes a more
significant revision of the underlying architecture
to enable strong memory safety – not least, that
recompilation is required.

CHERI: A CONTEMPORARY
CAPABILITY MACHINE

CHERI learns from a long history of capability archi-
tectures, and also other tagged memory systems such
as Lisp machines, in introducing a dedicated hardware
type to represent rights: The architectural capability.
Capabilities double the natural pointer size (typically
32- or 64-bit) to add additional metadata (compressed
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bounds, permissions, and sealing information), and
carry a 1-bit tag that tracks the valid provenance of a
value from one or more initial capability roots created
at processor reset (see Figure 1). Capability values
may be held in registers – typically extended general-
purpose integer registers – or in memory. Capability
values and their accompanying tags are carried atomi-
cally through the system. In memory, tags are asso-
ciated with capability-sized, capability-aligned blocks
of memory. Permissions on capabilities enable various
architectural operations such as load, store, instruction
fetch, and loading/storing tagged values.

New instructions are used to load, store, inspect,
manipulate, and use capability values (e.g., for loading
and storing via), which enforce guarded manipulation.
In particular, the ISA ensures that properties such
as monotonic non-increase of rights – e.g., that the
bounds on a capability cannot be made more broad.
Operations that might violate guarded manipulation
clear a capability value’s tag, which will prevent further
use of the capability – preventing both violations of
capability rules in register-to-register operations and
via memory operations.

As implemented in our original MIPS prototype,
CHERI duplicates the suite of load, store, and jump in-
structions to introduce capability-relative variants; e.g.,
‘load 32-bit integer via capability’ to complement ‘load
32-bit integer via 64-bit integer’. However, the load-
store opcode footprint within most ISAs is a signifi-
cant fraction of opcode space that should not (and
in some cases cannot) be doubled. Instead, Morello
and CHERI-RISC-V introduce a new ‘capability mode’
in which most integer-relative opcodes are reused
for capability-relative accesses, with mode transitions
during jumps. This reduces the opcode footprint for
adding CHERI to an ISA down to a much smaller
number of register-to-register capability instructions, as
well as a small number of new instructions to load,
store, and jump to capabilities.

Compressed bounds reflect a practical tradeoff:
Notionally, fat pointers require a lower bound, an ad-
dress, and an upper bound, each of which takes the
space of a full address in the architecture. Doubling the
size of the pointer in CHERI already risks significant
performance overhead in software with high pointer-
size dynamic access rates; quadrupling is simply non-
viable for our target use cases. Bounds compression is
a long researched technique that exploits redundancy
between the address and its bounds – assuming that
the value is within bounds. CHERI extends existing
practice to improve microarchitectural efficiency, to
adopt a floating-point style approach, and also support
(to some extent) out-of-bounds pointers that occur in

C code. Bounds compression does require increased
alignment of bounds, with implications for allocation
alignment and padding.

CHERI is designed to be sympathetic to contem-
porary microarchitecture, which is highly decentralized
and highly concurrent. CHERI capabilities do not intro-
duce new indirection, and similarly do not require the
introduction of global tables, eschewing new types of
stalls, dependencies, and synchronization – in contrast
to page tables and TLB entries. This allows, for exam-
ple, checking of capabilities during loads and stores
to take place during address calculation, allowing only
a calculated, authorized address to be carried forward
through memory access. This design choice facilitates
integration into a broad range of microarchitectures
including complex out-of-order designs. However, while
some types of protection arise naturally from this
structure (such as spatial safety through bounds and
permission checks), the lack of indirection and tables
makes other types of protection more challenging (e.g.,
temporal safety). The design point selected for CHERI
comes with many other trade-offs, which can be eval-
uated in terms of metrics reflecting microarchitectural
and architectural impact, static and dynamic perfor-
mance, vulnerability mitigation, and software impact.
Not all CHERI implementations need pick exactly the
same tradeoff point.

In addition to these largely processor-focused de-
sign choices, there are also concerns about where and
how to store tags. In CHERI, the memory subsystem
carries tags with the physical data cache lines they pro-
tect – e.g., across all levels of cache, coherency traffic,
and so on. This requires modest changes to carry
and appropriately clear tags during certain types of
memory accesses. However, there is also the question
of where tags are stored in memory themselves. For
small designs with SRAM, storing tags inline is entirely
viable. For larger memory systems, especially those
using external DRAM, two options present themselves:
Storing tag values in existing metadata storage in
DRAM, such as in error-correcting coded bit storage;
and introducing a ‘tag controller’ that stores tag data in
lookaside tables in DRAM, to be ‘glued’ back together
with data before entering the memory subsystem.

ARM MORELLO AND MICROSOFT
CHERIOT CORES

Announced in 2019 and 2022 respectively, Arm’s
Morello and Microsoft’s CHERIoT processors are the
first publicly available, industrially developed CHERI-
enabled processor cores. As case studies they rep-
resent two quite different points in the contemporary
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FIGURE 1. In-memory layout of 128-bit CHERI capability and its tag bit

microprocessor design space:

• Arm’s Morello is a CHERI-extended version
of the multi-core, superscalar 64-bit Neoverse
N1 Armv8-A processor that is the foundation
for Arm-based offerings in cloud environments
such as AWS. Morello is fabricated using 7nm
technology, and supports between 16GiB and
64GiB of DRAM. Morello is able to store CHERI
tags either in ECC bits already present in DRAM,
or using an integrated tag controller and cache.
This and other design choices in Morello reflect
its experimental goals, enabling cross-evaluation
of multiple design choices.

• Microsoft’s CHERIoT Ibex, in contrast, is a
CHERI-extended version of the embedded 3-
stage pipelined 32-bit Ibex RISC-V core origi-
nally developed by ETH Zurich and now main-
tained by lowRISC as part of the OpenTitan
project. Initial expected use cases are in roots
of trust, IoT devices, and low-power embed-
ded control systems. SCI Semiconductor ex-
pects to ship embedded SoCs incorporating the
CHERIoT Ibex using 22nm technology from late
2024. CHERIoT is able to support tags – both
for CHERI and also optimized revocation (see
below) inline within SRAM in the SoC design.

That the CHERI model is able to span such diverse
platforms has definitively validated a key hypothesis
of the CHERI project: That a single capability-based
protection model can be used for fine-grained memory
safety and scalable compartmentalization across a
broad range of scales.

However, just as the baseline ISAs (Armv8-A and
RISC-V) vary between such points in the CPU design
space, so do the CHERI extensions. Whereas Morello
must address design questions such as the composi-
tion of hardware virtualization extensions with CHERI,
CHERIoT finds challenges in scaling down bounds and
permissions to fit within smaller 64-bit capabilities.

At these two points in the spectrum, a key de-

sign difference lies in the implementation of tempo-
ral safety, despite both relying on quarantine-based
batched sweeping revocation. CHERIoT is able to
optimize for very small memory sizes that are more
realistic to sweep frequently, and uses additional tags
to track memory line generations. In contrast, Morello
supports much larger memories with a multicore de-
sign, and makes use of virtual-memory extensions to
track capability flow and virtual page generations to
implement a load-barrier technique.9

Overall, and excitingly, CHERI memory protection
for C and C++, as well as its enablement of com-
partmentalization, remains consistent across scales,
in terms of reasonable microarchitectural implications
and also a portable programmer model. Both imple-
mentations have supported the conclusion that CHERI
is viable in production microarchitecture.

MEMORY-SAFE CHERI C AND C++
DIALECTS

Perhaps the most critical question to answer is: What
does (or could) memory safety for C and C++ even
mean?10 Some aspects fall out naturally from an anal-
ysis of the most essential vulnerabilities:

• Accesses to all forms of allocated object –
whether global variables, heap allocations, stack
allocations, and so on – should conform to spa-
tial and temporal safety.

• Pointers should be protected from corruption and
mis-manipulation, including rudimentary type
checking to ensure that code is not writable,
pointers cannot be modified by integer arithmetic
gadgets, and code pointers in particular are not
subject to errant and unintended manipulation.

However, other aspects are more nuanced. For
example, in C, it is not just complete memory allo-
cations that require spatial safety; sometimes, sub-
objects (such as arrays embedded within structures)
require narrower bounds. This comes with greater
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FIGURE 2. Die photo from the 7nm Arm Morello System-on-Chip (SoC), showing the four cores, GPU, and caches.

potential adoption friction, as the containerof()

construct, which calculates a pointer to a container
object from a pointer to its member, is frequently used
in, for example, C intrusive linked-list macros.

CHERI C and C++ are not simply “memory-safe
C” and “memory-safe C++”: They are also implemen-
tations of C and C++ specifically intended to target a
CHERI capability implementation of the pointer type.
This also imposes changes visible in the language:

• Pointer types, as well as types able to store
pointers (such as intptr_t) are now double the
natural address size of the architecture. Tags
require that they must also be naturally aligned.
This changes the layout and alignment require-
ments of data structures, which can require
changes to some programs – such as to offsets
and assertions in JITs, and in custom memory
allocators.

• Most existing integer types can no longer hold
pointers while maintaining valid provenance.
Types such as long and intmax_t are sufficient to
hold the addresses from pointers, but not their
metadata. For most code, this is undisruptive,
but we have observed several language run-
times using types other than intptr_t for pointer
storage.

• Memory-copy implementations intended to copy

pointers must now propagate tags, requiring
them to be implemented with a pointer-enabled
type such as intptr_t. Surprising functions turn
out to be memory-copy routines, such as sort
functions used to sort C data structures contain-
ing pointers.

Some aspects of CHERI C and C++ memory safety
map naturally into the direct use and manipulation of
capabilities. For example, changes to the compiler to
implement pointer types using architectural capabilities
are relatively straightforward, although the compiler
frontend can require some amount of “plumbing” to
ensure that pointer types do not become integer types
during optimization (for example). Memory allocators
can easily use compiler builtins to set bounds on
allocations they perform – and modified alignment and
padding requirements are also adapted to as other
similar alignment and padding requirements already
exist.

Other aspects require considerably more work.11

For example, the kernel virtual-memory subsystem
must not only maintain tags (e.g., across copy-on-
write and swapping), but now must also assist with
efficient revocation by tracking capability flow. There
are also interesting semantic challenges: For example,
to what extent should debuggers using ptrace() be able
to inject pointers into target processes?
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CHERI C and C++ are not without limitations, and
perhaps most critical of are the constraints on temporal
memory safety imposed by our decision not to intro-
duce indirection and tables. Quarantining and sweep-
ing revocation is not without cost, and for some system
designs, quarantined memory can also significantly
impact free memory. Further, this technique, while suit-
able for memory mappings and heap allocations, is not
applicable to stack allocations due to their frequency.
While stack use-after-free is not all that common in C,
use-after-scope and similar vulnerabilities occur more
frequently in C++. And, unlike with uninitialized values,
there are not obvious compiler-based techniques that
complement CHERI.

On the whole, our experience is that software falls
into one of three categories:

• OS kernels, language runtimes, or parts of the
C/C++ runtime (such as the run-time linker) re-
quire modest but non-trivial adaptation to enable
capability use in their own implementations and
for the software that they host.

• 1980s C code that predates intptr_t and, for
better or worse reasons, confuses pointer and
integer types. This may require changes to use
intptr_t – and in some cases can cause measur-
able friction, which arises through greater %LoC
change, but is not usually technically challenging
to resolve.

• Almost all other more contemporary C and C++
code requires little or no change. This has in-
cluded quite significant pieces of software in-
cluding the Wayland display server, git version
control system, and significant portions of KDE.

In our 2021 desktop pilot study, we adapted roughly
6MLoC of appliction-level C and C++ code to CHERI
memory safety in three staff months. This required an
average of 0.026% LoC change across the full corpus.
This rate of change is substantially lower than the 1.4%
LoC change for the FreeBSD kernel, which required
significantly greater capability awareness.

Changes of particular interest in lower-level aspects
of the C runtime include adaptation of the run-time
linker to initialize capabilities in the GOT and PLT, and
to the heap allocator to set bounds, rederive pointers
on free() rather than reach outside of bounds to find
metadata, and interface with common temporal safety
code for quarantining and revocation.

Through programs such as Innovate’s Digital Se-
curity by Design (DSbD), which co-funded creation of
Morello, over 40 companies have trialed CHERI C/C++.
The results have been extremely positive, with low
overheads to learn about CHERI C/C++ and adapt

software to them, as well as multiple reports of dis-
covered vulnerabilities when adapting code to memory
safety. This latter effect was not expected: CHERI was
designed to mitigate vulnerabilities, not to act as a
debugging tool. However, it appears to prove quite ef-
fective at this; we hypothesize that this is because of its
performance as compared to common memory-safety
debugging tools such as ASAN, permitting larger-scale
testing with memory safety.

A RICH MEMORY-SAFE C/C++
ECOSYSTEM

Morello has provided a high-productivity environment
for CHERI software experimentation at scale. The
CheriBSD/Morello operating system (version 23.11)
ships with:

• A referentially and spatially safe version of the
FreeBSD OS kernel, as well as a referentially,
spatially, and temporally safe version of the
FreeBSD userspace.

• Roughly 10,000 memory-safe third-party soft-
ware packages, which can be contrasted with
roughly 24,000 “aarch64” (CHERI-unaware 64-
bit Arm) software packages also supported on
the platform. There is considerable variability
in understanding regarding the quality of the
10,000 packages – some come with extensive
test suites that pass with flying colors (e.g., Qt),
and are used daily by our team, whereas others
are known to compile but little more.

• Features such as userlevel library compart-
mentalization (built on memory safety) and
CHERI-enabled guests virtual machines (using
an adapted version of FreeBSD’s bhyve hyper-
visor).

Adapted packages include software such as the
KWin Wayland compositor, KDE Plasma desktop en-
vironment, nginx web server, Postgres database, git
version control tool, and thousands of other open-
source components (including all library dependencies
for those we have named). Notable omissions include
several essential language runtimes such as the Open-
JDK and V8 Javascript runtime (although this is the
target of ongoing development), the MySQL database,
and web browsers such as Firefox and Chromium due
to language runtime dependencies. These are, how-
ever, supported via CHERI’s ability to support legacy
– in this case 64-bit Arm – binaries, permitting a
complete desktop or server environment even if not
all components are yet adapted for memory safety.

We continue to work to expand the memory-safe
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FIGURE 3. Memory-safe KDE Plasma desktop environment running on an Arm Morello board.

software corpus, both to experimentally validate our
hypotheses about CHERI memory safety, and also
to build develop an increasingly usable memory-safe
software ecosystem.

EVALUATING SECURITY IMPACT
Evaluating security is a challenging problem that does
not lend itself to simple metrics. To date, we have relied
on four forms of security argument in our work on
CHERI:

Analytic or experimental approaches that enu-
merate and consider potential vulnerabilities and
attack vectors: A CWE-centric analysis is productive,
but most such analysis is performed at the whiteboard;
and there may be disconnects between a language-
level view and that of compiler code generation, espe-
cially with respect to optimization.

Retrospective vulnerability analyses that ex-
plore how CHERI would have impacted past vulner-
abilities: Not only have we performed our own stud-
ies (e.g., in the 2021 desktop study), but there have
also been independent studies (e.g., as performed by
Microsoft looking at all of their 2019 critical security
vulnerabilities). The notion of mitigation is itself non-
trivial; for example, with respect to determining threat
models when composing libraries and applications,
and also whether deterministically crashing is sufficient
to consider a vulnerability mitigated. However, the re-
sults have been compelling: MSRC reported an over
two-thirds deterministic mitigation rate for memory-
safety vulnerabilities with the deployment of CHERI
referential, spatial, and temporal memory safety.

Formal proof of architectural security prop-

erties: Formal modeling of the Morello and CHERI-
MIPS ISAs has supported formal verification (machine-
checked mathematical proof) that the ISAs enforce key
properties, such as correctness of capability bounds
comparison and isolation of arbitrary code by compart-
mentalization mechanisms12, and formal semantics for
CHERI C has clarified its security properties13.

Penetration testing exercises, ideally performed
with a strong attacker awareness of the CHERI
model so that attack strategies can take this into
account: These exercisers have primarily been per-
formed externally, and include an activity by MSRC
to consider the impact of CHERI on WebKit JSC
with CHERI-aware attackers, as well as a DARPA-
sponsored, crowd-sourced penetration activity.14 The
former lent considerable insight and informed our de-
cision to use sealed capabilities for all control-flow
pointers, and the latter identified two software TCB
vulnerabilities that a non-prototype implementation will
need to avoid.

EARLY RESULTS FROM ARM
MORELLO

Assessing the performance impact of new architectural
features is challenging for many reasons, including:

• Research tools such as microarchitectural simu-
lators (e.g., Gem5) and simplified FPGA imple-
mentations have limited fidelity and may permit
considerable indiscretion in terms of realism for
prototype changes.

• Even complete microarchitectural prototypes de-
veloped at considerable expense, and fabricated
as test chips (such as Morello) will be first-
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generation implementations that lack the benefit
of a multi-year optimization cycle. This is espe-
cially tricky where there may be disproportionate
degrees of optimization within a design – e.g., if
you extend the Neoverse N1, designed for 64-bit
addresses, CHERI aspects of the design will be
substantially less mature than the implementa-
tion of the 64-bit baseline.

• Compiler optimization for new architecture and
microarchitecture can take years to com-
plete, as running rich workloads requires high-
performance implementations.

• Even if overheads are known and well char-
acterized, the degree to which an overhead is
acceptable is far more a marketing and financial
consideration than a technical one. This is espe-
cially true as many dynamic overheads may be
mitigated through additional area or power, and
the acceptability of area and power changes is
similarly fraught.

Despite these limitations, it is important to charac-
terize overhead to the extent possible, and significant
effort is being invested to assess the performance (and
other) impacts of CHERI on a variety of microarchi-
tectures. Arm Morello is of particular interest as it is
able to, for the first time, allow us to run very large
software stacks on a CHERI-extended system. The key
conclusions to date have been:15

• The Armv8.2-A ISA was extended with CHERI
support without difficulty, although there remains
considerable room for quantitative optimization
around instruction and opcode selection.

• Morello has achieved its goal in enabling a large
software ecosystem and research community,
including approaching 100MLoC of memory-
safe C and C++ code, and also allowing dozens
of universities and over 40 companies to engage
with CHERI.

• The Morello design met or exceeded its goals for
frequency optimization, permitting the creation
of a 2.5GHz 7nm design and achieving a low
area overhead (<6% in the core cluster of the
SoC, consisting of CPU cores and caches). Key
concerns lay in integration with the MMU, ex-
panded bus widths, capability bounds compres-
sion, and tag-related changes, all of which were
overcome.

• Design tradeoffs arising from an abbreviated
prototyping period (one year) for Morello mean
that performance results fall into two categories:
(1) best available performance measured on the
SoC or using revised RTL running on FPGA

cluster; and (2) estimate performance for future
microarchitectures taking into account optimiza-
tion lessons:

– With respect to (1), using an FPGA imple-
mentation with post-tapeout re-tuning (e.g.,
of store-queue sizes), and compensating
through ABI change for a microarchitec-
tural issue affecting capability bounds pre-
diction, the best measured overhead for a
CHERI-adapted, spatially protected subset
of SPECint 2006 running on Morello was
5.7%.

– With respect to (2), measured using a 128-
bit pointer compilation to the 64-bit ISA on
the Neoverse N1 microarchitecture, the es-
timated overhead range for a more mature
implementation was between 1.82% and
2.98%.

It is worth noting that these performance results
are also constrained by our limited work on compiler
optimization to date; further improvements should be
possible.

Detailed presentation and explanation of these re-
sults can be found in the report Early performance
results from the prototype Morello microarchitecture,
published by Arm and the University of Cambridge.15

FUTURE WORK
We have been working on CHERI for over 13 years,
performing a long-term hardware-software-semantics
co-design cycle that has led to a memory-safety model
that is architecturally and micro-architecturally viable
across a range of processor designs and ISAs, enables
strong memory protection within the C and C++ pro-
gramming languages, and achieves low performance
overheads. There are significant efforts in flight to
achieve initial commercial deployment of CHERI within
“vertically integrated systems” – for example, in roots-
of-trust within larger SoC designs. We hope to see
CHERI-based commercial implementations in use in
2024-2025. However, much remains to be done both
in terms of concluding aspects of the research and also
achieving broader transition. Perhaps most critical are:

• Continuing to refine our understanding of mem-
ory safety for C and C++ – in terms of meaning
and also evaluation at scale.

• Pushing beyond memory safety to CHERI-
enabled software compartmentalization, which
strengthens the adversary model from “imperfect
programmer” to “malicious programmer”.
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FIGURE 4. Early SPECint 2006 performance results running over Morello RTL on an FPGA cluster. Microarchitectural re-tuning
has improved performance relative to the taped out Morello SoC, but estimated performance using 128-bit pointer compilation
on the same microarchitecture suggests that substantial further optimization is possible.

• Continuing to pursue performance results and
improvements as experience is gained with
CHERI in industrial microarchitectures.

• Standardizing CHERI-RISC-V, our integration of
CHERI with the open-source RISC-V ISA.

• Fleshing out the growing open-source software
ecosystem to include further software, includ-
ing firmware, additional OSes, software libraries,
language runtimes, and applications.

• Exploring potential opportunities to compose
CHERI with memory- and type-safe program-
ming languages, such as Rust, which bring their
own notions of memory safety, adversary mod-
els, strengths, and weaknesses.

CONCLUSION

After over a decade of research and the investment
of hundreds of research and engineering staff years,
CHERI is demonstrating strong viability as a technol-
ogy to rapidly deploy memory safety in the large extant
C/C++ software corpus – estimated at over 12bn lines
of open-source code alone. With multiple commer-
cial implementations in flight, dozens of companies
and universities exploring trial deployments, and an
increasingly rich software stack, there is growing ev-
idence that the risky approach of hardware-software-
semantics co-design and more disruptive architectural
changes may be able to achieve transition. To learn
more, we invite you to visit the CHERI project website:
cheri-cpu.org.
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