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CHERI introduction

 CHERI is a new processor technology that mitigates software security
vulnerabilities

* Developed by the University of Cambridge and SRI International starting in
2010, supported by DARPA

* Arm collaboration from 2014, supported by DARPA; An early experimental FPGA-
Arm Morello CPU, SoC; board announced 2019, with support from UKRI based CHERI tablet prototype
Shipping as of_lan 2022 running the CheriBSD

operating system and

* Microsoft CHERIoT (RISC-V) Ibex core announced Sep 2022 applications, Cambridge, 2013.
Open sourced in February 2023; lowRISC FPGA board announced Sep 2023 : -

* Today’s talk:
* What is CHERI?

* Transition efforts including Arm, Google, Microsoft, and beyond ... High-performance Arm
Morello chip able to run a full

CHERI software stack,

* http://www.cheri-cpu.org/
’ ' = Cambridge, 2022

*  Watson, et al. An Introduction to CHERI, UCAM-CL-TR-941, Sep.2019.
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Capability systems

* The capability system is a design pattern for how CPUs, languages,
OSes, ... can control access to resources

/r‘ cap cnu‘ten *; e, g -7 . ,

L B " » Capabilities are communicable, unforgeable tokens of authority

m * In capability-based systems, resources are reachable only via capabilities

* Capability systems limit the scope and spread of damage from
accidental or intentional software misbehavior

* They do this by making it natural and efficient to implement, in
software, two security design principles:

* The principle of least privilege dictates that software should run with the
minimum privileges to perform its tasks

The CAP computer project ran from * The principle of intentional use dictates that when software holds multiple
1970-1977 at the University of

Cambridge, led by R. Needham, M. privileges, it must explicitly select which to exercise
Wilkes, and D.Wheeler.
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What is CHERI?

 CHERI is a processor architectural protection model
* Composes a capability-system model with hardware and software
* Adds new security primitives to Instruction-Set Architectures (ISAs)
* Implemented by microarchitectural extensions to the CPU and SoC

* Enables new security behavior in software

* CHERI mitigates vulnerabilities in C/C++ Trusted Computing Bases
Arm processor and SoC with CHERI

* Hypervisors, operating systems, language runtimes, browsers, .... extensions, Arm, 2022.

* Fine-grained memory protection deterministically closes many arbitrary code
execution attacks, and directly impedes common exploit-chain tools

* Scalable compartmentalization mitigates many vulnerability classes .. even unknown
future classes .. by extending the idea of software sandboxing

 CHERI-RISC-V research architecture and prototype FPGA implementations

e Arm Morello industrial demonstrator CPU, bo%rd; Microsoft CHERIoT CPU =8 UNIVERSITY OF
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Architectural primitives for software security

Software configures and uses capabilities to continuously
_/ \ enforce safety properties such as referential, spatial, and
temporal memory safety, as well as higher-level security
< . constructs such as compartment isolation

Applications

Systems software

Compilersand toolchain CHERI capabilities are an architectural primitive that

compilers, systems software, and applications use to constrain
Instruction-Set Architecture their own future execution

(ISA)
. . i The microarchitecture implements the capability data type
Microarchitecture | B : :
and tagged memory, enforcing invariants on their
manipulation and use such as capability bounds,
monotonicity, and provenance validity
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An Introduction to CHERI

| - * Watson, et al. An Introduction to CHERI,
Technical Report ] UCAM-CL-TR-941| ’ Sep tember 2019

Number 941

Il UNIVERSITY OF

¥ CAMBRIDGE * Architectural capabilities and the CHERI ISA

Computer Laboratory

e CHERI microarchitecture

An Introduction to CHERI ° ISA for'mal mOdeling and PrOOf

Robert N. M. Watson, Simon W. Moore, . .

Pretter Sewell, ;’eter G. Neumann o SOftware construction W|th CHERI
* Language and compiler extensions
September 2019 ¢ OS eXtenSionS

* Application-level adaptations

NB: Predates public announcement of Morello
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(Lack of) architectural least privilege

e C(Classical buffer-overflow attack

|.  Buggy code overruns a buffer, overwrites return address
with attacker-provided value

2. Overwritten return address is loaded and jumped to,
allowing the attacker to manipulate control flow

* These privileges were not required by the C
language; why allow code the ability to:
* Write outside the target buffer?
* Corrupt or inject a code pointer?

* Execute data as code / re-use code!?
* Limiting privilege doesn’t fix bugs — but
does provide vulnerability mitigation

» Memory Management Units (MMUs) do not enable
efficient, fine-grained privilege reduction

Program

counter

Register file

Virtual
memor

55 UNIVERSITY OF
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Application-level least privilege

Software compartmentalization decomposes software into
isolated compartments that are delegated limited rights

O @ Z Thu05:49 100% B Q =

ol T ] = u ? A~ ®

Potential compartmentalization
boundaries matching reasonable
user expectations for least privilege
can be found in many user-facing apps.

= Memory Safety Crisis

ilities in 2012

ploitation Trends, Microsoft

E.g., a malicious email attachment
should not be able to gain access to
other attachments, messages, folders,
accounts, or the system as a whole.

esponding?

Able to mitigate not only unknown vulnerabilities, but also

i , o its [EH UNIVERSITY OF
as-yet undiscovered classes of vulnerabilities and exploits m;n CAMBRIDGE




Code-centred compartmentalisation

1. fetch @ 2. fetch 3. fetch 4. fetch \
/,’ /,’ ‘.‘“ /,’ ‘.‘“ /,’ BRlTS — e
: @ tandbo Y e o L HTTPauth | [HTTPOET )
E IN— /I; sandbox sandpbox _L',' san ‘f)‘X/,/
é sandbox HTTPS f " —
% sandbox sandbox i:
g SsL
g 5. fetch sandbox
5 * Potential decompositions occupy a compartmentalization space:
° 7 N * Points trade off security against performance, program complexit
Cssi 3
R * Increasing compartmentalization granularity better approximates
URL-specific sandbox . o o o
v B the principle of least privilege ...

* ... but MMU-based architectures do not scale to many processes:
* Poor spatial protection granularity

* Limited simultaneous-process scalability

= * Multi-address-space programming model 1 UNIVERSITY OF
R B
PAcE PIos & CAMBRIDGE




HARDWARE-SOFTWARE
CO-DESIGN FOR CHERI
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Hardware-software-semantics co-design
W * University of Cambridge and SRI International from 2010 supported by DARPA

Architectural mitigation for C/C++ TCB vulnerabilities

* Tagged memory, new hardware capability data type

* Model hybridizes cleanly with contemporary hardware and software designs

* New hardware enables incremental software deployment

* Hardware-software-semantics co-design + concrete prototyping:

* CHERI abstract protection model; concrete ISA instantiations in 64-bit MIPS,
32/64-bit RISC-V (+ Microsoft CHERIoT), 64-bit Armv8-a (Arm Morello)

* Formal ISA models, Qemu-CHERI, and multiple FPGA prototypes
* Formal proofs that ISA security properties are met, automatic testing

e CHERI Clang/LLVM/LLD, CheriBSD, C/C++-language applications

* Repeated iteration to improve {performance, security, compatibility, ..}

B UNIVERSITY OF
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CHERI research and development timeline

Nov. 2012: Sep. 2014: MIT LL red- Sep. 2015: CheriABI
Sandboxed code on | team live Heartbleed pure-capability POSIX Sep. 2020: Arm to
Oct. 2011: Capability CheriBSD: live mitigation demo process environment relealsﬁe Mtl)rello .
microkernel runs FPGA-base Trojan ) Apr. 2016: CHERI Microkernel specification an.
sandbox on FPGA | 2012:LLYM  Mitigation demo MOV, =014, Xpdump:+ Workshop with ARM, Broadcom, IShdevel
P e multiple per-packet 3 ’ executable
| === generates = omai itches d Cambridge, ETH Zurich, GWU,
m CHERI code Dec. 2013: y comain SWilches demo /' 1ipg, Oracle, SR
Xl 2010 CheriBSD d ? June 2019: July 2019: Sep. 2019: ISCF DSbD Sep./Oct. 2020: SRV
ul. : : ; 2
CTSRD Jun. 2012: CCall Jan. 2014: Jun. 2015: CHERI RISC-V CherlBSD experimental CHERI-ARM  Cambridge, Arm,
2 i ti = : Jul. 2016: CHERI ; o temporal CPU, SoC, and board and Linaro open Jan. 2022: Arm ships
proposal CheriBSD capability exception CheriBSD + 128-bit LLVM ; : F microcontroller with Memon safe announced: “Morello” | 1
bmitted context switching CHERI LLVM and CheriBSD run-time linker, CFl oy o e eeRTOS oy : source Morello SReTsnal Honelio
su / for dynamic linking \ software stack CPU, SoC, and board
~ e N
| | L ! 1 £y 2 l | e 1 ! s -
! 12011 12014 \ 12015 12016 12017 12018 12019 12020 1 2021 !
\ 7
: Oct. 2020:
) Nov. 2015:; Jun. 2016: Apnl 2017: ICCD 2018: Jun. 2019: Sep 2019:
—— S CHERIISAv4- CHERIISAVS-  CHERIISAV6 CheriRTOS, CHERIISAVZ - e’ ction to ity
2 o p 128-bit caps, mature Kernel compartments, i formal semantics, ¢
CTSRD project ointers; ISA + PS, 32-bit ISAs CHERI temporal safety,
>HLP ': FF>P GA 2 1 fast domain- CHERI-128, tag reconstruction, CHERI concentrate, 32/& bit 4
begins worl prototype switching code efficiency efficiency, other ISA architecture IEEE S&P 2020 A h;lolr' "
Nov. 2011: May 2012: A instructions improvements sketches POPL 2019: neutrality, temporal Cornucopia m o
FPGA tablet + Cazabmﬁe‘s,MMU i April 2013: multi- Jun. 2015: 128-bit C pointer safety, RISC-V temporal Jun. 2020:
LAW 2010:  CHERI-specific ISA + FPGA. FreeBSD FPGA CheriCloud “candidate 3" ISA + provenance memory safety CHERI C/C++
Capabilities microkernel 65 ook ot protolype FPGA prototype ACM CCS 2015: IEEE Micro Journal: = ICCD 2017: ASPLOS 2019: Programming Guide
revisited Program analysis, Fast ISA-supported Efficient tagged Pure-capability
compartmentalization domain switching memory UNIX userspace .
IEEE TCS 2019: IEEE OAL 2020:.
CHERI ISA modeling
RESOLVE 2012: ISCA2014:  ASPLOS 2015: IEEE S&P 2015: PLDI 2016: ASPLOS 2017: Compressed MICRO 2019: and formal proof
Hybrid MMU/ Hybrid MMU/capability C-language Operating systems, CHERI C-language CHERI-INI ' capabilities Temporal memory-
capability model model + architecture compatibility compartmentalization formal semantics safety feasibility study

Years |-2:Research platform, prototype architecture

Years 2-4: Hybrid C/OS model, compartment model

Years 4-7: Efficiency, CheriABI/C/C++/linker, ARMv8-A
Years 8-12: RISC-V, temporal safety, proof,

Arm Morello, Microsoft CHERI Ibex
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CHERI ISA refinement over |3 years
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Year _|Version |Description |

2010-
2012

2012

2014

2015

2016

2017

2019

2020

2023

ISAvI

ISAv2

ISAv3

ISAv4

ISAv5

ISAvé

ISAv7

ISAv8

ISAv9

RISC capability-system model w/64-bit MIPS
Capability registers, tagged memory
Guarded manipulation of registers

Extended tagging to capability registers
Capability-aware exception handling
Boots an MMU-based OS with CHERI support

Fat pointers + capabilities, compiler support
Instructions to optimize hybrid code
Sealed capabilities, CCall/CReturn

MMU-CHERI integration (TLB permissions)

ISA support for compressed |28-bit capabilities
HW-accelerated domain switching

Multicore instructions: full suite of LL/SC variants

CHERI-128 compressed capability model

Improved generated code efficiency

Initial in-kernel privilege limitations

Mature kernel privilege limitations

Further generated code efficiency

Architectural portability: CHERI-x86, CHERI-RISC-V sketches
Exception-free domain transition

Architectural performance optimization for C++ applications
Microarchitectural side-channel resistance features
Architecture-neutral CHERI protection model

All instruction pseudocode from a formal model

CHERI Concentrate capability compression

Improved C-language support, dynamic linking, sentry capabilities
Elaborated CHERI-RISC-V ISA

64-bit capabilities for 32-bit architectures

Accelerated tag operations for temporal memory safety
MMU temporal memory-safety assist; e.g., capability dirty bit
Optimizations for sentry capabilities

CHERI-RISC-V privileged support, general maturity

Further C-language semantics improvements

CHERI-RISC-V now the reference architecture
CHERI-RISC-V maturity for standardization, including tag stripping
CHERI-x86 userspace sketch maturity

Watson, et al. Capability Hardware Enhanced RISC Instructions: CHERI Instruction-Set
Architecture (Version 9), UCAM-CL-TR-987, September 2023.
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CHERI ISAV7 — June 2019

* Key features:

Technical Report O e
Number 927 * Architecture-neutral CHERI model

BB UNIVERSITY OF
¥¥ CAMBRIDGE

Computer Laboratory i Elaborated CH ERI-RISC-V ISA
Capability Hardware * CHERI Concentrate capability compression (IEEETC
Enhanced RISC Instructions:
CHERI Instruction-Set Architecture 20 I 9)

(Version 7)
* Side-channel resistance features

Robert N. M. Watson, Peter G. Neumann,
Jonathan Woodruff, Michael Roe, Hesham Almatary,

Jonathan Anderson, ohn Baldwin, David Chisnal, * Improved C-language compatibility, dynamic linkage,
Brooks Davis, Nathaniel Wesley Filardo, . " .
Alesandrs Josmos, Ben Lause, A-Theodrs Micktion, performance optimizations (ASPLOS 2019)

Kyndylan Nienhuis, Robert Norton, Alex Richardson,
Peter Rugg, Peter Sewell, Stacey Son, Hongyan Xia

* Experimental features including 64-bit capabilities for 32-
bit architectures (ICCD 2018), temporal safety
June 2019 (IEEE Micro 2019, IEEE SSP 2020)

15 JJ Thomson Avenue
Cambridge CB3 0FD

* All instruction pseudocode derived from Sail formal
models, formally proven properties (IEEE SSP 2020)

(sz/ Ri ) s I8 UNIVERSITY OF

CAMBRIDGE
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CHERI ISAv8 (October 2020)

* Key changes

Technical Report G

Number 951 * Capability compression is now part of the abstract
ﬂ.ﬂ UNIVERSITY OF .
<¥ CAMBRIDGE protection model

Computer Laboratory

bl  Both 32-bit and 64-bit architectural address sizes are
apability Hardware
Enhanced RISC Instructions: Su P PO rted

CHERI Instruction-Set Architecture

ction-Set , .
(Version §) * Various experimental features are now mature:

Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Se ntry Capab i I iti es’ C H E RI - RI SC-V

Michael Roe, Hesham Almatary, Jonathan Anderson, John Baldwin,
Graeme Barnes, David Chisnall, Jessica Clarke, Brooks Davis,
Lee Eisen, Nathaniel Wesley Filardo, Richard Grisenthwaite,

Alexandre Joannou, Ben Laurie, A. Theodore Markettos, o N ew M M U te m Po ral memo ry_ S afet)/ mec h an | sMms

Simon W. Moore, Steven J. Murdoch, Kyndylan Nienhuis,

o Ay o B o2 Somel based on load-side barrier model (ASPLOS 2024)
* CHERI microarchitecture chapter

N * Synchronized with Arm Morello (IEEE MICRO
Journal 2023)

https:/hwwnw.cl.cam.ac.uk/

7
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October 2020
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CHERI ISAV9 (September 2023)

Technical Report B * Most recent specification version

Number 957 . (released about every two years)
QP CAMBRIDGE
Computer Laboratory ° K ey C h a n g e S
Capability Hardware .
Enhanced RISC Instructions:  CHERI-RISC-V is now the reference
CHERI Instruction-Set Architecture arch itectu re

(Version 9)

N CHERI-RISC-V i f
Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, u m e ro u S I m P rove m e nts O r
Michael Roe, Hesham Almatary, Jonathan Anderson, John Baldwin, d d M M
Graeme Barnes, David Chisnall, Jessica Clarke, Brooks Davis, Sta n a r IZatI O n

Lee Eisen, Nathaniel Wesley Filardo, Franz A. Fuchs,
Richard Grisenthwaite, Alexandre Joannou, Ben Laurie,

A. Theodore Markettos, Simon W. Moore, Steven J. Murdoch,
Kyndylan Nienhuis, Robert Norton, Alexander Richardson, ® C H E RI - M I PS rel I I ove d

Peter Rugg, Peter Sewell, Stacey Son, Hongyan Xia
* CHERI-x86 better elaborated

September 2023

* Complete shift to tag stripping from
exception throwing for non-monotonic

United Kingdom
phone +44 1223 763500

capability operations

7 h
|7
)
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CHERI: From research to product

* Starting in 2010, hardware-software co-design using FPGAs, open-source
software, created a CHERI-MIPS CPU + software stack at Cambridge and SRI

* Arm collaboration from 2014, supported by DARPA; Arm Morello CPU, SoC;
board announced 2019, with support from InnovateUK; Shipped in Jan 2022

* High-performance 2.5GHz, multicore, out-of-order prototype CPU design
* Microsoft CHERIoT RISC-V CPU open sourced Feb 2023
* 3-stage pipeline for small embedded / loT / root-of-trust; based on |bex
* lowRISC FPGA board for CHERIoT announced Sep 2023; ship date in 2024
* SCI SoC using CHERIoT announced Nov 2023; ship date in 2024
* Codasip CHERI RISC-V CPU announced in Nov 2023; ship date in 2024

* /-stage in-order processor line targeted at high-end embedded B UNIVERSITY OF

&¥ CAMBRIDGE
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Architectural primitives for software security

Software configures and uses capabilities to continuously n
Applications / \ enforce safety properties such as referential, spatial, and
temporal memory safety, as well as higher-level security
< constructs such as compartment isolation
Systems software BN
. . N
Solipicisnd s CHERI capabilities are an architectural primitive that
compilers, systems software, and applications use to constrain

Instruction-Set Architecture their own future execution

(ISA) N

| L

The microarchitecture implements the capability data type
and tagged memory, enforcing invariants on their
manipulation and use such as capability bounds,

monotonicity, and provenance validity

Microarchitecture
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CHERI design goals and approach

* De-conflate memory virtualization and protection
* Memory Management Units (MMUs) protect by location (address)
* CHERI protects existing references (pointers) to code, data, objects

* Reusing existing pointer indirection avoids adding new architectural
table lookups

* Architectural mechanism that enforces software policies

* Language-based properties — e.g., referential, spatial, and temporal
integrity (C/C++ compiler, linkers, OS model, runtime, ...)

* New software abstractions — e.g., software compartmentalization

(confined objects for in-address-space isolation, ...)

B UNIVERSITY OF
P CAMBRIDGE
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Pointers today

o
£ { virtual address (64 bits
o

64-bit

* Implemented as integer virtual addresses (VAs)

* (Usually) point into allocations, mappings
* Derived from other pointers via integer arithmetic
* Dereferenced via jump, load, store Allocation

* No integrity protection — can be injected/corrupted

* Arithmetic errors — out-of-bounds leaks/overwrites

* Inappropriate use — executable data, format strings \;i;tual
address
» Attacks on data and code pointers are highly effective, often space

achieving arbitrary code execution
2 5 UNIVERSITY OF

&9 CAMBRIDGE




CHERI enforces protection semantics for pointers

- A\ Globals | | /\ Stack |

* Integrity and provenance validity ensure that valid pointers are derived from other valid pointers via valid
transformations; invalid pointers cannot be used

Control flow

Integrity and

. Permissions
provenance validity

Bounds

* Valid pointers, once removed, cannot be reintroduced solely unless rederived from other valid pointers

* E.g, Received network data cannot be interpreted as a code/data pointer — even previously leaked pointers
* Bounds prevent pointers from being manipulated to access the wrong object

* Bounds can be minimized by software — e.g., stack allocator, heap allocator, linker
* Monotonicity prevents pointer privilege escalation — e.g., broadening bounds
* Permissions limit unintended use of pointers; e.g.,VWAX for pointers

* These primitives not only allow us to implement strong spatial and temporal memory protection, but
also higher-level policies such as scalable software compartmentalization =8 UNIVERSITY OF

23 4P CAMBRIDGE




| -bit
tag

128-bit
capability

A

|

permissions

CHERI 128-bit capabilities

Virtual address space

Memory
. allocation

otype Bounds compressed relative to address C

|

. lowerbound |
64-bit virtual address (

Capabilities extend integer memory addresses

Metadata (bounds, permissions, ...) control how they may be used

Guarded manipulation controls how capabilities may be manipulated;
e.g., provenance validity and monotonicity

Tags protect capability integrity/derivation in registers + memory

58 UNIVERSITY OF
CAMBRIDGE
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CHERI 128-bit capabilities

* CHERI capabilities are a new architectural data type extending integer addresses

* Capability metadata (bounds, permissions, ...) control how a capability may be used

* Capability tags protect the integrity + safe derivation of capabilities in registers and memory

8]
Fe L
% — Urpezelaned |
E E permissions otype Bounds compressed relative to address C Pointer address Memory
Cb 9 : N al ZT;ion
a % 64-bit virtual address } "
v (-L—ovte::)c:r:--
Capabili;cy width Virtual address space
GPRs extended to 129 bits — - :
$pc $pcc v
d d -
$ra $c31 v
- |-bit tags
$al $c4 | - Capability Y. added to
$a0 $c3 v DRAM
Capability-extended integer registers Tagged physical memory B UNIVERSITY OF
oo CAMBRIDGE

S
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CHERI 128-bit capabilities L ‘
i

Bounds compressed
relative to address

Virtual address (64 bits

| -bit
tag

permissions otype

| 28-bit
capability
A

S—

CHERI capabilities extend pointers with:

e Tags protect capabilities in registers and memory

. Dereferencing an untagged capability throws an exception

. . - Allocation
. In-memory overwrite automatically clears capability tag ————————.

Bounds limit range of address space accessible via pointer

* Floating-point compressed 64-bit lower and upper bounds

» Strengthens larger allocation alignment requirements
Virtual

address
* Permissions limit operations — e.g., load, store, fetch space

* Out-of-bounds pointer support essential to C-language compatibility

S/lgtl. Sealing: immutable, non-dereferenceable capal)zi(!ities — used for non-monotonic transitiongs-

International
NS

S
Ssl= ©
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Merged capability register file + tagged memory
(as found in Morello and CHERI-RISC-V; MIPS used a split register file)

Capability width
I

$pc $pcc v
$ra $c31 v R d d |-
|f|:::| | DDC Iv|
Capabilit
$al $c4 h Control and P -
§a0 $c3 v status registers
(CSRs)

General-purpose register file (GPRs) Physical memory

* 64-bit general-purpose registers (GPRs) are extended with 64 bits of metadata and a |-bit validity tag
* Program counter (PC) is extended to be the program-counter capability ($PCC)

* Default data capability ($DDC) constrains legacy integer-relative ISA load and store instructions
 Tagged memory protects capability-sized and -aligned words in DRAM by adding a I-bit validity tag

* Various system mechanisms are extended (e.g., capability-instruction enable control register, new TLB/PTE
permission bits, exception code extensions, saved exception stack pointers and vectors become capabilities, etc.)
38 UNIVERSITY OF
CAMBRIDGE
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e
CHERI-RISC-V formal ISA model

* CHERI RISC-V ISA model extends RISC-V formal ISA specification, in Sail
* Sail RISC-V ISA specification developed by UCam + SRl
* Selected as official RISC-V spec by the Foundation

 Sail is a custom first-order imperative language for expressing ISA specifications, usable by
engineers but with static type checking of bitvector lengths etc.

* The Sail spec is inlined in versions of the unprivileged and privileged RISC-V manuals
 Sail auto-generates a C emulator, theorem-prover definitions,and SMT definitions
* Machinery for configuring model WRT YAML from compliance group

* Readable, precise definition of ISA behavior, usable as test oracle for testing hardware
against and for software bring-up, and providing prover definitions if you want more
rigorous reasoning

* Paper on earlier CHERI-MIPS L3 modelling and proof work at IEEE SSP 2020

* Most recently completed monotonicity proofs for the Arm Morello architecture

28 UNIVERSITY OF
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ISA formal modelling and verification

Rigorous engineering for hardware security: ESOP 2022
Formal modelling and pro
and implementj

Verified Security for the Morello

Kyndylan Nienhuis*, Alexandre Joannou*, Thomas Bauer Capablllty-enhanced Prototype Arm A_I'Chltecture
Matthew Naylor*, Robert M. Norton*, Simon W. Moore*,
and Peter §

*University of Cambridge TARM Limited t

Thomas Bauereiss'™®, Brian Campbell?®, Thomas Sewell}®,
Alasdair Armstrong!, Lawrence Esswood!, Ian Stark?, Graeme Barnes?,

IEEE SSP 2020 Robert N. M. Watson', and Peter Sewell!

! University of Cambridge, Cambridge, UK
first.lastAcl <cam.ac-uk

* Formal ISA models CHERI-MIPS, CHERI-RISC-V, and Morello

* Formal proof of compartmentalization for CHERI-MIPS, Morello
@B UNIVERSITY OF
CAMBRIDGE




CHERI MICROARCHITECTURE AND
PROTOTYPES

@8 UNIVERSITY OF
P CAMBRIDGE




Architectural primitives for software security

\
Software configures and uses capabilities to continuously
Applications / \ enforce safety properties such as referential, spatial, and
temporal memory safety, as well as higher-level security
< constructs such as compartment isolation

Systems software s\ -
C il d Ichai .

ompilers and toolchain CHERI capabilities are an architectural primitive that

compilers, systems software, and applications use to constrain

their own future execution

Instruction-Set Architecture

(ISA) /

The microarchitecture implements the capability data type
and tagged memory, enforcing invariants on their
manipulation and use such as capability bounds,
monotonicity, and provenance validity

Microarchitecture
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CHERI hardware research prototypes

* Oiriginal research based on our home-grown pipelined BERI MIPS core
(CHERI-MIPS)

* We have transitioned our CHERI research to extended versions of open-
source off-the-shelf BSV RISC-V cores (CHERI-RISC-V)

* CHERI-Piccolo 3-stage pipeline, 32-bit, no MMU

¢ CHERI-FIute 5-stage pipeline, 32- or 64-bit, MMU Our primary research
+ CHERI-Toooba  Superscalar, 64-bit, MMU S

* Novel microarchitectural contributions include capability compression
model, tagged memory implementation techniques

* All of our CPU designs are open source

* We also provide a QEMU full-system and userlevel simulators for CHERI-
RISC-V

B UNIVERSITY OF
» CAMBRIDGE
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Example microarchitecture: CHERI-Piccolo microcontroller
I = tag storage
capability arithmetic Changes to the Piccolo core (RISC-V 3-stage pipeline):
e capability arithmetic
* capability load/store operations with bounds checking
CHERI-Piccolo core capability exceptions * extended exception model
* PC becomes a capability (PCC)
» default data capability (DDC)

* new control/status registers

A ISR * merged integer & capability register file
capability registers

capability load/store

new registers:
PCC, DDC, CSRs

Memory subsystem:

e AXl user-field added to transport tag bits & data width
L1 I-cache LI D-cache doubled

e caches extended to include tags

DRAM controller Tag Controller DRAM cha nges:
* New tag controller uses a hierarchical tag table to
off-chip DRAM efficiently store tag bits backed by top of DRAM

33 mlm UNIVERSITY OF
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Microarchitectural tag storage for off-the-shelf DRAM

Efficient Tagged Memory

Alexandre Joannou™®, Jonathan Woodruff*, Robert Kovacsics®, Simon W. Moore*, Alex Bradbury*, Hongyan Xia*,
Robert N. M. Watson*, David Chisnall*, Michael Roe*, Brooks Davis’, Edward Napierala®,
John BaldwinT, Khilan Gudka®*, Peter G. NeumannT, Alfredo Mazzinghi*,
Alex Richardson*, Stacey Sonf, A. Theodore Markettos*

*Computer Laboratory, University of Cambridge, Cambridge, UK TSRI International, Menlo Park, CA, USA
Website: www.cl.cam.ac.uk/research/comparch Website: www.sri.com

Abstract—We characterize the cache behavior of an in-memory patterns sufficiently to inform implementations or further
tag table and demonstrate that an optimized implementation optimizations.
can typically achieve a near-zero memory traffic overhead. Both For simplicity, we identify three points in the tagging design

industry and academia have repeatedly demonstrated tagged . . . =4 NI 1P N
p~wory asa_key mechanism to e~ “le enforce=ent of pe=er- ~SPace: N0 tag, a single-bit+ag (SB™\ or a p~dti-b’ tag /" BT) )
T g “luds s v ¥ T < @t v’ ¥ A b

* Published in the IEEE International Conference on Computer Design
(ICCD) 2017

* Shift from flat to hierarchal tag table to hold tags in DRAM
* Exploit inconsistent density of tags in physical memory

<o * Reduces DRAM access overhead for a variety of workloads  gm universITY OF
Srtl CAMBRIDGE
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Compressing capability bounds

CHERI Concentrate:
Practical Compressed Capabilities

Jonathan Woodruff, Alexandre Joannou, Hongyan Xia, Anthony Fox, Robert Norton, Thomas Bauereiss,
David Chisnall, Brooks Davis, Khilan Gudka, Nathaniel W. Filardo, A. Theodore Markettos, Michael Roe,
Peter G. Neumann, Robert N. M. Watson, Simon W. Moore

Abstract—We present CHERI Concentrate, a new fat-pointer compression scheme applied to CHERI, the most developed
capability-pointer system at present. Capability fat pointers are a primary candidate to enforce fine-grained and non-bypassable
security properties in future computer systems, although increased pointer size can severely affect performance. Thus, several
proposals for capability compression have been suggested elsewhere that do not support legacy instruction sets, ignore features
critical to the existing software base, and also introduce design inefficiencies to RISC-style processor pipelines. CHERI Concentrate
improves on the state-of-the-art region-encoding efficiency, solves important pipeline problems, and eases semantic restrictions of
comprs ~ad encodi= allowing,it* “tect aful gy softw star” We pree~ “the fire* “qtita¥  analve comr” tapr  ty
'49 »” i

* Published in IEEE Transactions on Computers,April 2019
* Efficient compressed capabilities for 32-bit and 64-bit processors
* Reduces size of capabilities from 4x machine word size to 2x
* Large reduction in cache overheads
* Efficiently fits into a RISC pipeline with negligible impact on clock frequency

* Maintains all security and software compatibility properties 7B UNIVERSITY OF
» CAMBRIDGE




Arm Morello (2022)
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LA o Bt ] The Arm Morello Evaluation Platform-
BROBDRIRBREAGGNY. ¢ Valldatlng CHERI'baSed Security in a
High-performance System

Richard Grisenthwaite, Arm Ltd, Cambridge, UK
‘Graeme Barnes, Arm Ltd, Cambridge, UK

Robert N. M. Watson, University of Cambridge, Cambridge, UK
Simon W. Moore, University of Cambridge, Cambridge, UK
Peter Sewell, University of Cambridge, Cambridge, UK
Jonathan Woodruff, University of Cambridge, Cambridge, UK

Abstract— issues are ity ties, with conventional
architectures and the C/Ct+ codebase chronically prone to exploitable errors. The CHERI research
project has explored a novel architectural approach to ameliorate such issues using unforgeable
‘hardware capabiliies to implement pointers.

Morello is an Arm experimental platform for evaluation of CHERI in the Arm architecture context, to
explore its potential for mass-market adoption. This paper describes the Morello Evaluation Platform;

covering ; the hardware extensions, their
potential for fine-grainet y sofety and software P
; their impact on the of the high out-oforder

multi-processor Arm Morello processor; and the software enablement program by Arm, University of
Cambridge, and Linaro. Together, this allows a wide range of researchers in both industry and
academia to explore and assess the Morello plotform.

Introduction

Arm believes that security is the greatest challenge that computing needs to address to meet ts full
potential. Arm technology is used in py g every
access to data and communications, and by extracting information and meaning from that data. This
transformation continues in our society wherever the application of computing resources can make
people’s lives easier and more connected. Unfortunately, this increasing refiance on computing has
created unprecedented opportunities for criminals, as can be seen in the ever-growing cost of
cybercrime. In addition, the growing reliance of national infrastructure on technology means that
computer security is part of National Security. Given this context, seems likely that the boundaries of
the computing revolution will be determined by the security of our computing systerns.

There is ample evidence that memory safety issues such as buffer overflows and use-after-free have
been a persistent source of vulnerabilities for many years, and this continues in many ecosystems

1,2. While languages such as Rust offer the prospect of more inherent memory safety, the reality is
that there is a huge body of C and G+ code being used, written, and adapted every day, and there
are many undetected vulnerabilities waiting to be exploited. Arm has introduced the Memory
Tagging Extensions in recent years to provide a mechanism to help identify memory safety ssues,
and these have demonstrated that ordinary code has a great number of latent memory safety errors.
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$225M government, academia, and industrial

research program led by UK Research and
Innovation (UKRI)

* Announced partners:Arm, Google, Microsoft

* 15+ UK universities with research grants

» 70+ funded business incubation projects
Baseline for design: Neoverse NI core

* 2.5GHz quad-core, superscalar

* Implements CHERI extensions

* Runs full CHERI-enabled software stacks

» Definitely a prototype, but a very powerful one!

Roughly a thousand chips manufactured for use

by research + development labs
UNIVERSITY OF
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Microsoft CHERIoT core (2023)

CHERIoT: Complete Memory Safety for Embedded Devices

Saar Amar* David Chisnall' Tony Chen
saaramar5@gmail.com David.Chisnall@cl.cam.ac.uk I rosoft.com
Microsoft Microsoft Microsoft

Tel Aviv, Israel

Cambridge, UK

Redmond, Washington, USA

Nathaniel Wesley Filardo* Ben Laurie Kunyan Liu*
nwf20@cam.ac.uk benl@google.com kunyanliu@microsoft.com
Microsoft Google Microsoft
Cambridge, UK London, UK San Diego, California, USA
Robert Norton® Simon W. Moore Yucong Tao
robert.nor com Simon l.cam.ac.uk Yucong. Tao@microsoft.com
Microsoft University of Cambridge Microsoft

Cambridge, UK

Robert N. M. Watson
robert.watson@cl.cam.ac.uk
University of Cambridge
Cambridge, UK

ABSTRACT
The ubiquity of embedded devices is apparent. The desire for in-
creased functionality and connectivity drives ever larger software
stacks, with components from multiple vendors and entities. These
stacks should be replete with isolation and memory safety tech-
nologies, but existing solutions impinge upon development, unit
power, scalability, and/or real-time constraints, limiting their
adoption and production-grade deployments. As memory safety
vulnerabilities mount, the situation is clearly not tenable and a new
approach is needed.

To slake this need, we present a novel adaptation of the CHERIT

cos

capability , co-designed with a field, security-
centric RTOS. It is scaled for embedded systems, is capable of
d software and provides affor-

dances for full inter-compartment memory safety. We highlight
central design decisions and offloads and summarize how our pro-
totype RTOS uses these to enable memory-safe, compartmentalized
applications. Unlike many state-of-the-art schemes, our solution
deterministically (not probabilistically) eliminates memory safety

‘while level We

the power, | ance, and area

impacts, run microbenchmarks of key facilities, and exhibit the

“These authors made significant contributions to the design and implementation

without which the project would not have been possible.

*Work conducted while at Microsoft.

‘This work s licensed under a Creative Commons Attribution International
4.0 License

MICRO 23, October 28-November 01, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0329-4/23/10.
hitps://doi.org/10.1145/3613424.3614266

Cambridge, UK

Mountain View, California, USA

Hongyan Xia®*
Jerryxia32@gmail.com
Arm Ltd,
Cambridge, UK

y of an end-to-end IoT application. The
shows that full memory safety for compartmentalized embedded
systems is achievable without violating resource constraints or real-
time guarantees, and that hardware assists need not be expensive,
intrusive, or power-hungry.

ACM Reference Format:

Saar Amar, David Chisnall, Tony Chen, Nathaniel Wesley Filardo, Ben
Laurie, Kunyan Liu, Robert Norton, Simon W. Moore, Yucong Tao, Robert
N. M. Watson, and Hongyan Xia. 2023. CHERIoT: Complete Memory Safety
for Embedded Devices. In 56th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO °23), October 28-November 01, 2023, Toronto,
ON, Canada. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145
3613424.3614266

1 INTRODUCTION

The attack surface of embedded devices is no longer limited to
physical attacks, in an increasingly connected world. From con-
sumer electronics (smart watches, WiFi chips) to security-critical
devices (self-driving vehicles, aviation and smart grids) and more
recently IoT applications, physical isolation is rarely the boundary
in modern day embedded devices. With the increase of connectiv-
ity comes combinatorial growth of the attack surface. Sadly, the
resource constraints and the low-level programming environment
‘mean solving even the most basic problem of memory safety still
poses as a monumental challenge. Worse, the gap between the at-
tack surface area and the level of defense widens further when such
embedded devices are deployed into complicated multi-tasking sce-
narios with a Real-Time Operating System (RTOS) and multiple
software stacks from different vendors.

Even though researchers have disclosed an alarming number
of memory vulnerabilities in recent years [6, 11, 15, the lessons
learned from desktop and server systems do not directly translate
to embedded systems. Page table techniques, sanitizers, dynamic

* Production CHERI-extended Ibex microcontroller
* Small-scale microcontroller used in OpenTitan, etc.
e CHERI-RISC-V tuned for small microcontrollers

* Clean-slate memory-safe, compartmentalized embedded OS
for high-risk applications

* Open sourced in February 2023

* RISC-V embedded standardization candidate

e Collaboration across Microsoft Research, MSRC, Azure
ilicon, and Azure Edge + Platform

* lowRISC Sunburst FPGA board reference platform
* Published in IEEE MICRO 2023

UNIVERSITY OF
CAMBRIDGE
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lowRISC-desighed/manufactured

low-cost FPGA prototyping
platform for CHERIoT

Open consultation on board
design and requirements

Anticipated ship date in 2024
Supported by UKRI / DSbD

58 UNIVERSITY OF
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Codasip (announced 2023)

e Commercial CHERI-
RISC-V core based on
existing RISC-V IP +

PressReIease- - tooling Product
Codasip delivers processor

security to actively prevent the

@
.. COdaSIp Products Solutions Codasip Labs  Resources  Company

* Codasip is contributing
heavily to the CHERI-
RISC-V standardization

most common cyberattacks

31 October, 2023 effo rt
Introducing fine-grained memory protection with the first
. . . L] L]
commercial implementation of CHERI Y RIS< V CO re basel I ne IS
-
Munich, Germany, 31 October 2023 - Codasip, the leader in RISC-V Custom Compute, today announced the
first commercial imp! i

lementation of CHERI, the advance d security mechanism the semiconductor industry

ipelined, multi
o as the result of research aime undamental design choices in hardware an P I P e I n e 9 u tl C 0 re 9
l | .
now for the first time be available in a commercial offering, enabling secure-by-design products. Codasip's M M e n a b I d d S Ig n
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-
RISC-V CHERI SIG and TG

* Ambition: Standardize CHERI use with the RISC-V ISA, given multiple
companies building prototypes and products

* SIG created in October 2022, SIG chair is Alex Richardson (Google), co-
chair Simon Moore (Cambridge)

* TG created in January 2024, same acting chairs

* SIG has been meeting every two weeks for over a year working through use
cases, implications for different microarchitecture, various RISC-V
standardization considerations

* First draft specification on verge of being released for community
discussion, review, extension

* First CHERI-RISC-V products won’t conform as standard not complete, but
working hard with industrial partners (e.g., Codasip, Google) to ensure useful

convergence
B UNIVERSITY OF
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HOW SOFTWARE WORKS ON CHERI
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Architectural primitives for software security

\
Software configures and uses capabilities to continuously
Applications / \ enforce safety properties such as referential, spatial, and
temporal memory safety, as well as higher-level security
< constructs such as compartment isolation
Systems software

C il d Ichai .

ompilers and toolchain CHERI capabilities are an architectural primitive that

compilers, systems software, and applications use to constrain

their own future execution

Instruction-Set Architecture

(ISA) /

L

The microarchitecture implements the capability data type

and tagged memory, enforcing invariants on their

manipulation and use such as capability bounds,
monotonicity, and provenance validity

Microarchitecture

&% CAMBRIDGE
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Two key applications of the CHERI primitives

. Efficient, fine-grained memory protection for C/C++
* Strong source-level compatibility, but requires recompilation
* Deterministic and secret-free referential, spatial, and temporal memory safety
* Retrospective studies estimate %3 of memory-safety vulnerabilities mitigated
* Generally modest overhead (0%-5%, some pointer-dense workloads higher)
2. Scalable software compartmentalization
* Multiple software operational models from objects to processes
* Increases exploit chain length: Attackers must find and exploit more vulnerabilities

* Orders-of-magnitude performance improvement over MMU-based techniques
(<90% reduction in IPC overhead in early FPGA-based benchmarks)

B UNIVERSITY OF
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CHERI C/C++ MEMORY PROTECTION
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Early questions:

* Efficient fine-grained architectural memory protection enforces:
Provenance validity: Q: Where do pointers come from!?
Integrity: Q: How do pointers move in practice!?
Bounds, permissions: Q: What rights should pointers carry?

Monotonicity: Q: Can real software play by these rules!?

B UNIVERSITY OF
» CAMBRIDGE
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More recent questions: CHERI implications for software!?

* But also higher-level protection properties:

Heap temporal memory safety Q: Do applications use — or compare
pointers after free (e.g., for lockless
algorithms)?

Safety for custom allocators  Q: Can application-specific allocators also
benefit from spatial and temporal safety?

Robustness for code generation Q: Can software that intentionally
introduces new code — kernels, run-time
linkers, language runtimes — benefit!

Safe isolation and communication Q: Can mutually distrusting software
modules communicate safely across
strong boundaries!?

B UNIVERSITY OF
P CAMBRIDGE
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What do we mean by C/C++ memory safety?

Complex question, as while memory unsafety is clearly present, neither language
defines what memory safety could mean

* Our thoughts from over a decade working on CHERI:

* Memory safety for C/++ is (pragmatically) anything that would have defended
you from memory-safety vulnerabilities

ore cp e o Useful
* Vulnerability mitigation deterministically coerces bugs that are currently deﬁni;:js tor
vulnerabilities back into bugs — i.e., you would no longer urgently patch them | cheric/c++
. o . : : : . defenses, but
+ Exploit mitigation interferes with attack techniques exploiting a lack of | = . 0

memory safety comparing to

° ° ° e 0 ° Other memOI" =
* Deterministic mitigation means that defenses always work regardless of Y

fet
information leakage, attempts to brute force, and so on te;;n?q{,es
* Our ambition for CHERI C/C++ memory safety is to mitigate the vast majority
(>70%) of memory-safety vulnerabilities with full determinism
UNIVERSITY OF

% CAMBRIDGE



-
A space of C memory-protection models

C does not define a memory-protection model

*  We have therefore had to (organically) grow one

n
>

Library
compartmentalization * Optimization goals have been:
@ >patial safety + *  Works well with CHERI (changing CHERI allowed, subject to PPA)

temporal heap safety

*  %LoC source-code modification rates
* ABI/ code-generation / optimization model alignment with status quo
* Dynamic performance overhead (e.g., cycles)

@ °Spatial safety wisub- * Vulnerability mitigation (ideally deterministic)
object bounds

Security — e.g., %past vulnerabilities mitigated
Yy 8 /0P g

Spatial . . . .
C Ry * There is a rich space of potential memory-protection models
safety
P * Points combine (or not) different protection options
II ,"
for” > * E.g., Sub-object bounds, heap/stack temporal safety, ..

Other dimensions  Adaptation friction — e.g., %LoC change
such as dynamic

performance, PPA,

CHERI alignment, ...

Today’s trade-off point hits around 70% of memory-safety vulnerabilities

* Compartmentalization shifts adversary model to arbitrary code execution
48 B UNIVERSITY OF
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Memory-safe CHERI C/C++

UCAM-CL-TR-947
ISSN 1476-2986

Technical Report

Number 947

B UNIVERSITY OF
<¥ CAMBRIDGE

Computer Laboratory

CHERI C/C++ Programming Guide

Robert N. M. Watson, Alexander Richardson,
Brooks Davis, John Baldwin, David Chisnall,
Jessica Clarke, Nathaniel Filardo,
Simon W. Moore, Edward Napierala,
Peter Sewell, Peter G. Neumann

June 2020

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/hwww.cl.cam.ac.uk/
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Capabilities used to implement all pointers
Implied — Control-flow pointers, stack pointers, GOTs, PLTs, ...
Explicit — All C/C++-level pointers and references

Strong referential, spatial, and heap temporal safety

Minor changes to C/C++ semantics; e.g.,
* All pointers must have well defined single provenance
* Increased pointer size and alignment
* Care required with integer-pointer casts and types

¢ Memory-copy implementations may need to preserve tags

Watson, et al. CHERI C/C++ Programming Guide,
UCAM-CL-TR-947, June 2020

I8 UNIVERSITY OF
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Memory protection for the language and the language runtime

* Capabilities are refined by the kernel, run-time linker,
Language-level memory safety compiler-generated code, heap allocator, ...

: i e Protection mechanisms:
Pointers to heap Pointers to

allocations Function * Referential memory safety
pointers Pointers to .
Pointers to stack memory mappings

allocations Pointers to TLS Pointers to sub-

variables objects * Applied automatically at two levels:

— T~ T~ "+ Language-level pointers point explicitly at stack and

heap allocations, global variables, ...

global variables

Spatial memory safety + privilege minimization

* Temporal memory safety

Vararg array
C?OT pointers PLT entry * Sub-language pointers used to implement control flow,
Return  Pointers pointers linkage, etc.
addresses C++v-table  EF.aux arg * Sub-language protection mitigates bugs in the language
Stack pointers int runtime and generated code, as well as attacks that cannot be
pointers pointers mitigated by higher-level memory safety
Sub-language memory safety * (e.g., union type confusion)

58 UNIVERSITY OF
CAMBRIDGE
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CHERI-based pure-capability process memory

Memory
Code Stack
Thread P < EI \d
register Rl 4 < ]
file ] I 4 RN p N (P >
oo L | i \ R Implied
L~ ! ! ',' captable N ,,' Heap pointer
: : : ‘/ " ulaee
]
i Globals /
[N —_—
.\.‘;‘ T~ P Explicit
! pointer
L NULL

* Capabilities are substituted for integer addresses throughout the address space

* Bounds and permissions are minimized by software including the kernel, run-time
linker, memory allocator, and compiler-generated code

* Hardware permits fetch, load, and store only through granted capabilities

* Tags ensure integrity and provenance Vall(sjllt)' of all pointers "B UNIVERSITY OF

CAMBRIDGE
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-
RISC-V vs. CHERI-RISC-V generated code

get_unix_time_riscv: get_unix_time_cheririscv:
addi sp, sp, -32 cincoffset csp, csp, -32
struct timezone tz; sd ra, 24(sp) csc cra, 16(csp)
addi a0, sp, 8 cincoffset cal0, csp, O
.LBBO_1: csetbounds ca0O, caO, 16

ebats i iRl inies el auipc al, %pcrel hi(tz) .LBBO_1:

{ . addi al, al, %pcrel lo(.LBBO 1) auipcc cal, %captab_pcrel hi(tz)
struct timeval tv; call gettimeofday clccal, %pcrel lo(.LBBO_1) (cal)
gettimeofday (8tv, &tz); (expands to auipc, possibly cld, cjalr) .LBBO_2: ' .
return tv.tv_sec; 1d a0, 8(sp) auipcc ca2, %captab_pcrel hi(gettimeofday)

} 1d ra, 24(sp) clcca2, 3%pcrel lo(.LBBO_2) (ca2)

addi sp, sp, 32 cjalr cra, ca2

ret cld a0, O(csp)
clc cra, 16(csp)
cincoffset c¢sp, csp, 32

* The general code structure is unchanged except that:

cret
I.  Adjust stack address/capability

 The integer stack pointer becomes a capability stack pointer 2. save rewurn addvess/capability

3.  Create address/capability to local ‘tv’

* The pointer to a local stack allocation becomes capability 4. Generate address/capability to global ‘tz’
* Compiler-specified bounds are set on the local variable pointer before use | 3. call gettimeofday()
-
. . .l . 6.  Load return value from ‘tv’
* The loaded jump target is a capability rather than an integer address 7. Load return address/capability
a 8.  Restore stack address/capability
= 9.  Return
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CheriBSD:A pure-capability operating system

* Complete memory- and pointer-safe FreeBSD C/C++ kernel + userspace
* OS kernel: Core OS kernel, filesystems, networking, device drivers, ...
* System libraries: crt/csu, ld-elf.so, libc, zlib, libxml, libssl, ...
* System tools and daemons: echo, sh, Is, openssl, ssh, sshdq, ...
* Applications: PostgreSQL, nginx, WebKit (C++)

* Valid provenance, minimized privilege for pointers, implied VAs
* Userspace capabilities originate in kernel-provided roots
* Compiler, allocators, run-time linker, etc., refine bounds and perms

* Trading off privilege minimization, monotonicity, APl conformance

* Typically in memory management — realloc(), mmap() + mprotec
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Pure-capability UNIX process environment

CheriABI: Enforcing Valid Pointer Provenance and
Minimizing Pointer Privilege in the POSIX C
Run-time Environment

Brooks Davis” Robert N. M. Watson T Alexander Richardson
brooks.davis@sri.com robert.watson@cl.cam.ac.uk alexander.richardson@cl.cam.ac.uk
Peter G. Neumann® Simon W. Moore John Baldwin¥

peter.neumann@sri.com simon.moore@cl.cam.ac.uk john@araratriver.co
David Chisnalls Jese*ca M larkel N-hanj*” Vesls Sile o1
J o !

* Received best paper award at ASPLOS, April 2019

* Complete pure-capability UNIX OS userspace with spatial memory safety
* Usable for daily development tasks
* Almost vast majority of FreeBSD tests pass
* Management interfaces (e.g. ioctl), debugging, etc., work

<5 * Large, real-world applications have been ported: PostgreSQL and WebKit g
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Heap temporal memory safety

Cornucopia: Temporal Safety for CHERI Heaps
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Abstract—Use-after-free violations of temporal memory safety While use-after-free heap vulnerabilities are ultimately due
continue to plague software systems, underpinning many high- o application misuse of the malloc() and free() interface,
imract exploits. The CHERI capshility system. shows great omplet~ <anitiza*  of * vast” ¢y @ de’ e,/ ‘wen
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* |EEE Symposium on Security and Privacy (“Oakland”), May 2020

* Hardware and software support for deterministic temporal memory
safety for C/C++-language heaps using capability revocation

* Hardware enables fast tag searching using MMU-assisted tracking of

tagged values, tag controller and cache
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Abstract

Violations of temporal memory safety (“use after free”,

“UAF~) continue to pose a significant threat to software secu-

rity. The CHERI capability architecture has shown promise
as a technology for C and C++ language reference integrity
and spatial memory safety. Building atop CHERI, prior works

CHERIvoke and Cornucopia - have tantalized heap tempo
ral safety as well. However, these efforts have sizable CPU

and DRAM traffic overheads and significant “stop-the-world"

pause times.

We present Annona, a re-designed drop-in replacement im-

plementation of CHERI temporal safety, using a novel archi
tectural feature - a per-page capability load barrier, added in
Arm'’s Morello protorype core and CHERI-RISC-V - 10 nearly
eliminate application pauses. We analyze the performance
of Annona as well as (re-implementations of) Cormucopia
and CHERIvoke on Morello, using the CHERI-compatible
SPEC CPU2006 INT workloads to assess its impact on batch
workloads and using ¢
workload. We find that Annona achieves its goals: appli
cations no longer experience significant revocation-induced
world-stopped periods, the system incurs no additional wall-
or CPU-time cost relative to Cornucopia, and, pleasanily, this
new approach reduces the fotal DRAM traffic used by revoca
tion by @ median of 12% across SPEC CPU2006 benchmarks
and by over S0% for pgbench

ch as a representative interactive

1. Introduction

Programming languages, broadly, offer an object-centric (let
us not say “oricnted”) model of memory. New objects, which
are unrelated to existing objects, are allocated on demand,
used, and then released (implicitly and/or explicitly depend-
ing on the language). Lowering the language's model to the
underlying architecture, most often built around a coherent,

Robert N. M. Watson
University of Cambridge

integer-indexed array of memory words, is generally not fully-

abstract; it becomes possible to, for example,

+ confuse integers, object references, and memeory indices that
do ot point to valid objects (such as those used internally by
the memory allcoator), risking reference integrity violations;

+ access adjacent objects, reaching beyond the bounds of a
referenced object, violating spatial safety;

cess an object after its life ended (“use-after-free”, “UAI

or after the underlying memory has been reparposed (“use-

after-reallocation”, “UAR”), violating temporal safery

These affordances beyond the programmer’s intent continue
to pose significant threat to software security [11, 25], and
a wide variety of languages, compilation approaches, and
runtime strategies have emerged in response.

The CHERI [40] capability architecture, summarized in
$2.1, has shown promise as a technology for C and C++ lan-
guage reference integrity and spatial safety, with overheads
acceptable for general-purpose computing [39]. Strategies for
beap temporal safety atop CHERI have emerged, most notably
CHERIvoke [44] and its successor Cornucopia [17], and have
hinted at viability of a sweeping revocation approach (§2.2).
However, while Comucopia’s aggregate overheads may be
tolerable for high-security workloads, its sizable application
pause times (“stop-the-world" phases) still likely limit its use
10 non-interactive high-security workloads.

Targeting this shortcoming, we exploited recent exten-
sions to the CF 1 architecture and built Annona,” a drop-
in replacement for Comucopia’s in-kemel component. The
key architectural feature is a per-page capability load bar-
rier (§3.2), supporting a fast global enablement (§4.1). An-
ona uses this, in tandem with an improved form of Cor-
nucopia’s capability dirty tracking (§4.2), to replace Comu-

Anmoaa was a divine personificatio
frequently shows holding a comucopia.

of grain supply so Rome and was

Cornucopia heap temporal safety (IEEE SSP 2020), is
a GC-inspired, quarantining technique

* The kernel virtual-memory subsystem tracks “capability dirty”
pages

* A long“stop-the-world” phase - as much as 30 milliseconds
measured in practice

Cornucopia Reloaded (ASPLOS 2024) moves to a GC-
inspired “load-barrier”

* VM invariant is that accessible pages have already undergone
revocation

* Depend on |-bit capability generation added to VM PTEs,
implemented by Morello

* Stop-the-world pauses |0s of microseconds

Enabled by default in CheriBSD 23.1 |
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Ongoing temporal memory-safety deployment

* Shipped in CheriBSD 23.11 release
* Experimenting with larger-scale software, such as desktop stack
* Enabled by default in 23.11 to gain exposure; easy to disable
* Looking for increased experience:
* Semantic impact on any applications vs. bugs/vulnerabilities discovered
* Acceptability of performance behavior, optimization opportunities
* Use in higher-level allocators — e.g.,APR, Chromium, etc.

* Support for strong isolation needed for compartmentalization

Enabling safe inter-compartment communication via shared memor
T UNIVERSITY OF

&Y CAMBRIDGE
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Formal Mechanised Semantics of CHERI C: Capabilities,
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Abstract

Memory safety issues are a persistent source of security
vulnerabilities, with conventional architectures and the C
codebase chronically prone to exploitable errors. The CHERI
research project has shown how one can provide radically im-
proved security for that existing codebase with minimal mod-
ification, using unforgeable hardware capabilities in place of
machine-word pointers in CHERI dialects of C, implemented
as adaptions of Clang/LLVM and GCC. CHERI was first pro-
totyped as extensions of MIPS and RISC-V; it is currently
being evaluated by Arm and others with the Arm Morello ex-
perimental architecture, processor, and platform, to explore
its potential for mass-market adoption, and by Microsoft in
their CHERI0T design for embedded cores.

There is thus considerable practical experience with
CHERI C implementation and use, but exactly what CHERT
C’s semantics is (or should be) remains an open question.
In this paper, we present the first attempt to rigorously and

p ively define CHERI C semantics, discuss key se-
mantics design questions relating to capabilities, provenance,
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and undefined behaviour, and clarify them with semantics in
multiple complementary forms: in prose, as an executable se-
mantics adapting the Cerberus C semantics, and mechanised
in Cog.

This establishes a solid foundation for CHERI C, for those
porting code to it, for compiler implementers, and for future
semantics and verification.

ACM Reference Format:

Vadim Zaliva, Kayvan Memarian, Ricardo Almeida, Jessica Clarke,
Brooks Davis, Alexander Richardson, David Chisnall, Brian Camp-
bell, Tan Stark, Robert N. M. Watson, and Peter Sewell. 2024. For-
mal Mechanised Semantics of CHERI C: Capabilities, Undefined
Behaviour, and Provenance. In 28th ACM International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems. Volume 1 (ASPLOS "24), April 27-May 1, 2024,
La Jolla, CA, USA. ACM, New York, NY, USA, 16 pages. https

‘doi.org/10.1145/3617232.3624859

1 Introduction

Memory safety bugs continue to be a major source of se-
curity vulnerabilities, despite much research on software
bug-finding and mitigation approaches. For example, they
are responsible for most of those addressed by Microsoft
security updates or impacting Chromium [19, 29]. They are
a particular concern for the large codebases in C and C++
that comprise the infrastructure that we all depend on. Al-
ternative memory-safe languages offer promise, but these
C/C++ codebases will clearly be an ongoing challenge for
the foreseeable future.

* Research paper on a formal semantics and
behaviour of CHERI C:

 CHERI C Semantics Design Questions
e CHERI C executable semantics

* Validation and Experimental Comparison

* Considers topics such as,“VWhat are
compiler optimizations allowed to do
when they recognize undefined behavior
such as out-of-bounds accesses”

UNIVERSITY OF
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CHERI C compatibility: CheriBSD Code Changes

Files modified
flles total cha nged

Kernel 11,861 6,095k 6,961 0.18
e Core 7,867 705 9.0 3,195k 5,787 0.18
* Drivers 3,994 191 4.8 2,900k 1,174 0.04
Userspace 16,968 649 3.8 5,393k 2,149 0.04
* Runtimes (excl. libc++) 1,493 233 15.6 207k 989 0.48
* libc++ 227 17 7.5 114k 133 0.12
* Programs and libraries 15,475 416 2.7 5,186k 1,160 0.02
Notes:

=  Numbers from cloc counting modified files and lines for identifiable C, C++, and assembly files

= Kernel includes changes to be a hybrid program and most changes to be a pure-capability program
* Also includes most of support for CHERI-MIPS, CHERI-RISC-V, Morello
* Countincludes partial support for 32 and 64-bit FreeBSD and Linux binaries.
* 67 files and 25k LoC added to core in addition to modifications

* Most generated code excluded, some existing code could likely be generated

58 UNIVERSITY OF
4P CAMBRIDGE




-
Pure-capability CheriBSD kernel

* Full UNIX operating-system kernel compiled with CHERI C
* Roughly 2.4MLoC core kernel excluding device drivers

* Referential safety for all explicit and implied pointers

* Spatial safety for mappings, stack and heap allocations, globals; with sub-object
bounds

* Temporal memory safety is not yet supported, work is being planned.

* 1.4% LoC change, 7.7% files changed

* Includes support for hybrid kernel with CheriABI userspace, which requires
capability annotations for system-call arguments

* We will have better data on a pure purecap kernel soon, stripping
hybrid support, which should substantially reduce %LoC change

B UNIVERSITY OF
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Pure-capability CheriBSD kernel:Vulnerabities

* Security analysis based on retrospective vulnerability study over 22 years
* 56% of total vulnerabilities (I |3 of 200) are memory-safety; of these:

* 54% mitigated through referential and spatial safety (implemented); of these, 8% of |
memory safety w/sub-object

* 72% mitigated if including heap temporal memory safety (white-board design)

|

* 26% unmitigated are uninitialized values; at least 5% of memory safety would likely
be mitigated by LLVM stack initialization

%s are of memory
safety vulnerabilities

* Handful of unmitigated vulnerabilities: stack temporal safety,VM vulnerabilities, ...

* | FTE for ~2.5 years for MIPS, RISC-V, and Morello; most time on common code

* Be aware of selection bias in vulnerability discovery — e.g., KASAN finding use-after-
free vulnerabilities with fuzzing, but not subobject bounds overflows

B UNIVERSITY OF
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struct example {
int ex int;
char ex arr[1l6];
int ex secret;

}i C
&%ﬁoo
// Example allocation "\\\<3?
struct example *p;
p = malloc(sizeof (*p)); .. E?!R?!.t?.i.’.i.’:)'P {
............ -
________ »
// Narrow bounds on ex_arr e
char *arrp = p->ex_arr; ""--‘-c‘:-’c-li;’c\b'\\'\t\/ art?® e

// Overflowing copy triggers T
// bounds violation .-
memcpy (arrp, src, 20); -7

ex int

ex arr[l6]

A\

¥ ex_secret

-
Pure-capability CheriBSD kernel: Sub-object bounds

max address

* Sub-object bounds are an optional compilation mode for CHERI C

62

* Additional protection at slightly greater friction due to containerof ()
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Pure-capability CheriBSD kernel: Sub-object bounds

* Automatic bounds narrowing does not cause porting problems in most of the cases:
* Core kernel requires changes to ~80 files (13% of the core kernel files)
* Changes consist of simple annotations, magnitude of changes is small.

* Detecting sub-object bounds incompatibilities can only be done at run-time.
Limited by test coverage.

* Kernel drivers are known to have poor test coverage. Likely that additional
changes will be required here.

* Kernel uses "subobject-safe"” policy for bounds narrowing:
* Enforces sub-object bounds everywhere except for array indexing

* In practice this does not affect the ability to mitigate past vulnerabilities

B UNIVERSITY OF
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Capability graph visualization and analysis

64

Pointers are now directly visible in
hardware — in memory, ISA-level traces,
and so on

* We can directly analyze capability delegation
with CHERI

New extraction tools scan virtual
addresses spaces and binaries to enable:

* Visualization
* Validation
* Debugging and optimization

Allows direct analysis of attacker-
visible resources and attack surfaces
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START END PRT ro rw rx TrwX TOTAL DENSITY FLAGS TP PATH
©x101000 0x110000 ————-— (%} (7} (7} (%} (7} 90.00 ————— — print-pointer
9x110000 9x111000 r—xR- (%} (7} 0 0 (7} ©.00 CN——— vn print-pointer(.plt)
9x111000 0x120000 ————-— (7} (7} 0 (%) (7} 90.00 ———— —— print-pointer
9x120000 ©0x122000 r——R- 9 6 6 (%] 21 .24 C———— vn print-pointer(.got)
9x122000 0x131000 ————-— 0 0 0 0 0 90.00 ————— — print—-pointer
©0x131000 0x132000 Tw—-RW 1 5 8 (%] 14 0.16 ————— sw print—-pointer(.bss)
0x40131000 0x40139000 r——R- 0 0 0 0 0 ©.00 CN——— vn ld-elf.so.1
0x40139000 0x40148000 ————— 0 (%] 0 0 0 .00 ————— —— ld-elf.so.1
0x40148000 0x40162000 r—xR- 0 (%] 0 0 0 ©.00 CN——— vn ld-elf.so.1
0x40162000 0x40171000 ————— 0 (%] 0 0 0 .00 ————— —— ld-elf.so.1
Ox40171000 Ox40174000 1rw—RW 462 89 5 0 556 6.37 C———- vn ld-elf.so.1(.got)
Ox40174000 0x40183000 ————— 0 ] 0 0 0 .00 ————— —— ld-elf.so.1
©x40183000 0x40184000 rw—RW 32 7 %) %) 39 0.45 C———— vn ld-elf.so.1l
0x40184000 0x40186000 rw—RW 3 36 21 11 71 .81 ———— sw ld-elf.so.1(.bss)
0x40186000 0x4018e000 rw—RW 0 316 4 10 330 3.78 ————— sw unknown
0x4018e000 0x4018f000 ————— 0 (%] 0 0 0 0.00 CN——— gd Guard
0x40190000 0x40221000 r——R- 0 %] 0 0 0 ©.00 CN——— vn libc.so.7
0x40221000 0x40230000 ————— 0 %] 0 0 0 ©.00 CN——- gd libc.so.7
Ox40230000 0x4035e000 r—xR- 0 ] 0 0 0 ©.00 CN——— vn libc.so.7(.plt)
Ox4035e000 0x4036e000 ————— 0 %] 0 0 0 ©.00 CN——— gd libc.so.7
Ox4036e000 Ox4038a000 1r——R—- 3643 699 537 0 4879 55.92 C———- vn libc.so.7(.got)
Ox4038a000 0x40399000 ————— 0 ] 0 0 0 ©.00 CN——- gd libc.so.7
0x40399000 Ox403a4000 1rw—-RW 127 49 1151 0 1327 15.21 C———- vn libc.so.7
Ox403a4000 0x407ddeee rw-RW 1 269 4 0 274 3.14 ———— sw libc.so.7
0x407ddo0e Ox407fe@00 1rw—-RW 0 6 0 0 6 0.07 ————— sw unknown
Ox407fe000 0x40805000 ————— 0 (%] 0 0 0 0.00 CN——— gd Guard
0x40805000 0x40815000 rw—RW %) 57 %) %) 57 0.65 ————— sw unknown
©x40815000 0x40a15000 rw—RW %) 210 %) %) 210 2.4 ————-— sw unknown
Ox60000000 0x60200000 rTrw—RW 1 140 %) %) 141 1.62 ———— sw unknown
Ox80000000 Ox80600000 rw—-RW 0 22 0 0 22 0.25 ————— sw unknown
Oxffffbffeeeee oOxffffbff80000 rw—-RW 1 28 1 1 31 0.36 ————— sw unknown
oxffffbff80000 oOxfffffff6e0000 ——m—— 0 (%] 0 0 0 90.00 ————— gd Guard
OxXFFfffff60000 OxFfffffff80000 rw—RW 7 640 101 0 748 8.57 ——-D- sw Stack
OxXTFFffFffFffFfoo0 Ox100000000PPRO 1T—X—— (%) (%) 0 () (%) 0.0 ————— ph unknown



pp.db — total

number of caps: 6480

CAP_LOC
0x403709b0O
0x403709b0O
0x403709b0O
0x403731e0
0x403731e0
0x40373410
0x40373410
0x40376e10
0x40376e10
O0x4037ffa0
0x40386280
0x40386390
0x403863a0
0x40386410
0x40386420
0x40386480
0x40386490
0x403865b0O
0x403865c0O
0x403865d0O
0x403865e0
0x40387chbo
0x40387ccoO
©0x40387cdo
0x40387ce0
0x403992d0O
0x403992e0
0x403992f0
0x403992f0
0x403%9a0e0@
0x4039a180
0x4039b510
0x4039b510
0x4039bdceo
0x4039bdco
0x4039bel0
0x4039c490
0x4039c490
0x4039c4ab
0x4039c4ab
0x4039c4bo
0x4039c4bo
0x4039c4f0O
0x4039f570
0x4039f570
0x4039f5a0
0x40391890
Ox4039Fa40

CAP_LOC_SYM (TYPE)
sys_errlist (OBJECT)
__hidden_sys_errlist (OBJECT)
sys_errlist (OBJECT)
sys_signame (OBJECT)
sys_signame (OBJECT)
sys_siglist (OBJECT)
sys_siglist (OBJECT)
__nsdefaultsrc (OBJECT)
__nsdefaultsrc (OBJECT)
__Jje_arena_dalloc_junk_small (OBJECT)
__Jje_extent_hooks_default (OBJECT)
__je_large_dalloc_junk (OBJECT)
__je_large_dalloc_maybe_junk (OBJECT)
__je_nstime_monotonic (OBJECT)
__je_nstime_update (OBJECT)
__je_prof_dump_open (OBJECT)
__Jje_prof_dump_header (OBJECT)
__Jje_rtree_node_alloc (OBJECT)
__je_rtree_node_dalloc (OBJECT)
__je_rtree_leaf_alloc (OBJECT)
__je_rtree_leaf_dalloc (OBJECT)
__Jje_witness_lock_error (OBJECT)
__Jje_witness_owner_error (OBJECT)
__je_witness_not_owner_error (OBJECT)
__je_witness_depth_error (OBJECT)
__dso_handle (OBJECT)
__default_hash (OBJECT)
__thr_jtable (OBJECT)
__thr_jtable (OBJECT)
_citrus_NONE_stdenc_ops (OBJECT)
_citrus_stdenc_default (OBJECT)
_CurrentRunelLocale (OBJECT)
_CurrentRunelLocale (OBJECT)
h_errlist (OBJECT)
h_errlist (OBJECT)
_res_opcodes (OBJECT)
__stdinp (OBJECT)
__stdinp (OBJECT)
__stdoutp (OBJECT)
__stdoutp (OBJECT)
__stderrp (OBJECT)
_stderrp (OBJECT)
__sglue (OBJECT)
tzname (OBJECT)
tzname (OBJECT)
__libc_interposing (OBJECT)
svc_auth_null_ops (OBJECT)

9e opt dunk (OBJECT)

CAP_INFO

Ox401e52c8[rRE, —0x401e52c8]
Ox401e52c8[rRE, —9x401e52c8]
Ox401e52c8[ rRE, —9x401e52c8]
Ox401e7ef8[rRE, —Ox40l1e7ef8]
Ox401e7ef8[rRE, —90x401e7ef8]
Ox401e7ef8[ rRE, —O0x401e7ef8]
Ox401le7ef8[ rRE, —Ox401e7ef8]
Ox401e6804[ TRE, —9x401e6804]
Ox401e6804[ TRE, —9x401e6804]
Ox4030FFf49[ rxRE, —9x40190000]
O0x4032Ff59d[ rxRE, —©9x40190000]
0x40338callrxRE, —-0x40190000]
O0x40338cad[rxRE, —9x401900001]
0x4033c37d[ rxRE, —9x401900001]
0x4033c385[rxRE, —9x401900001]
Ox4033c869[rxRE, —9x40190000]
0x4033c8e5[rxRE, —90x401900001]
O0x4033T4d9[ rxRE, —9x401900001]
O0x4033Ff50d[ rxRE, —9x401900001]
Ox4033Ff519[ rxRE, —9x401900001]
0x4033f54d[ rxRE, —9x40190000]
Ox403561b9[ rxRE, —9x401900001]
Ox40356251[rxRE, —9x401900001]
Ox40356285[ rxRE, —9x401900001]
Ox403562b9[ rxRE, —9x401900001]
0x403992dO[ rwRWE, -0x403992d0 ]
0x40237a0d[ rxRE, —9x40190000]
0x4023cdel[rxRE, —9x40190000]
0x4023cdel[ rxRE, —9x40190000]
Ox40260d29[ rxRE, —9x401900001]
0x4039a0e@[ rWRWE , —9x403%9a0e01]
Ox401leadb@[ rwRWE, —-0x401eadbo]
Ox401leadb@[ rwRWE, —9x40l1eadb0]
Ox401e592e[ rRE, —O0x401e592¢e]
Ox401e592e[ rRE, —0x401e592¢e]
Ox401e489c[rRE, —©0x401e489c]]
O0x4039bT20[ rwRWE, —0x4039bT201]
©x4039bFf20[ rWRWE , —9x4039bf201]
Ox4039cOTfO[ rwRWE, -O0x4039bT201]
Ox4039cOTfO[ rwRWE, -0x4039bT201]
0x4039c2cO[ rwRWE, —0x4039bT20]
0x4039c2cO[ rwRWE, —-0x4039bT201]
©0x4039c4cO[ rWRWE, —9x4039c4c0O]
Ox4039Ff560[ rWRWE, -0x403915601]
Ox4039Ff560[ rWwRWE, -0x403915601]
Ox402ca3c5[rxRE, —9x40190000]
0x402d8541[rxRE, —9x40190000]
O0x401e148F[ rRE . —Ox401e148F 1]

CAP_

SYM
SYM
SYM
SYM
SYM
SYM
SYM
SYM
SYM
SYM
SYM
SYM
SYM
SYM
SYM
SYM
SYM
SYM
SYM
SYM
SYM
SYM
SYM
SYM
SYM

__dso_handle (OBJECT)

SYM
NOT
NOT
NOT
NOT
NOT
NOT
NOT
NOT
NOT
NOT
NOT
NOT
NOT
NOT
NOT
NOT
NOT
NOT
NOT
NOT
NOT
NOT
NOT
NOT
NOT

(TYPE)
FOUND
FOUND
FOUND
FOUND
FOUND
FOUND
FOUND
FOUND
FOUND
FOUND
FOUND
FOUND
FOUND
FOUND
FOUND
FOUND
FOUND
FOUND
FOUND
FOUND
FOUND
FOUND
FOUND
FOUND
FOUND

SYM NOT FOUND
SYM NOT FOUND
SYM NOT FOUND
SYM NOT FOUND

_citrus_NONE_stdenc_ops (OBJECT)
_DefaultRunelLocale (OBJECT)
_DefaultRunelLocale (OBJECT)

SYM
SYM
SYM
SYM
SYM
SYM
SYM
SYM
SYM
SYM
SYM
SYM

NOT
NOT
NOT
NOT
NOT
NOT
NOT
NOT
NOT
NOT
NOT
NOT

FOUND
FOUND
FOUND
FOUND
FOUND
FOUND
FOUND
FOUND
FOUND
FOUND
FOUND
FOUND

sys_accept (FUNC)

SYM NOT FOUND
SYM NOT FOUND



MSRC: Security analysis of CHERI C/C++

SECURITY ANALYSIS OF CHERI ISA

Nicolas Joly, Saif ElSherei, Saar Amar — Microsoft Security Response Center (MSRC)

INTRODUCTION AND SCOPE

The CHERI ISA extension provides memory-protection features which allow historically memory-unsafe programming languages such
as Cand C++ to be adapted to provide strong, compatible, and efficient protection against many currently widely exploited
vulnerabilities.

CHERI requires addressing memory through unforgeable, bounded references called capabilities. These capabilities are 128-bit
extensions of traditional 64-bit pointers which embed protection metadata for how the pointer can be dereferenced. A separate tag
table is maintained to distinguish each capability word of physical memory from non-capability data to enforce unforgeability.

In this document, we evaluate attacks against the pure-capability mode of CHERI since non-capability code in CHERI's hybrid mode
could be attacked as-is today. The CHERI system assessed for this research is the CheriBSD operating system running under QEMU as
it is the largest CHERI adapted software available today.

CHERI also provides hardware features for application compartmentalization 115. In this document, we will review only the memory
safety guarantees, and show concrete examples of exploitation primitives and techniques for various classes of vulnerabilities.

SUMMARY

CHERI’s ISA is not yet stabilized. We reviewed the current revision 7, but some of the protections such as executable pointer sealing
is still experimental and likely subject to future change.

The CHERI protections applied to a codebase are also highly dependent on compiler configuration, with stricter configurations
requiring more refactoring and qualification testing (highly security-critical code can opt into more guarantees), with the strict sub-
allocation bounds behavior being the most likely high friction to enable. Examples of the protections that can be configured include:

o Pure-capability vs hybrid mode

e Chosen heap allocator’s resilience

e Sub-allocation bounds compilation flag

e Linkage model (PC-relative, PLT, and per-function .captable)
e Extensions for additional protections on execute capabilities
e Extensions for temporal safety

However, even with enabling all the strictest protections, it is possible that the cost of making existing code CHERI compatible will be
less than the cost of rewriting the code in a memory safe language, though this remains to be demonstrated.

We conservatively assessed the percentage of vulnerabilities reported to the Microsoft Security Response Center (MSRC) in 2019
and found that approximately 31% would no longer pose a risk to customers and therefore would not require addressing through a
security update on a CHERI system based on the default configuration of the CheriBSD operating system. If we also assume that
automatic initialization of stack variables (InitAll) and of heap allocations (e.g. pool zeroing) is present, the total number of
vulnerabilities deterministically mitigated exceeds 43%. With additional features such as Cornucopia that help prevent temporal
safety issues such as use after free, and assuming that it would cover 80% of all the UAFs, the number of deterministically mitigated
vulnerabilities would be at least 67%. There is additional work that needs to be done to protect the stack and add fined grained CFI,
but this combination means CHERI looks very promising in its early stages.
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Microsoft Security Response Center (MSRC)

tudy analyzed all 2019 critical security vulnerabilities

Metric:“Poses a risk to customers — requires a
software update”

log post and 42-page report

Concrete vulnerability analysis for spatial safety
Abstract analysis of the impact of temporal safety

Red teaming of specific artifacts to build CHERI
experience

Potential adversarial techniques post-CHERI

Recently shifted from CHERI-MIPS to
CHERI-RISC-V and Arm Morello
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INTRODUCTION AND SCOPE

The CHERI ISA extension provides memory-protection features which allow historically memory-unsafe programming languages such
as Cand C++ to be adapted to provide strong, compatible, and efficient protection against many currently widely exploited
vulnerabilities.

CHERI requires addressing memory through unforgeable, bounded references called capabilities. These capabilities are 128-bit
extensions of traditional 64-bit pointers which embed protection metadata for how the pointer can be dereferenced. A separate tag
table is maintained to distinguish each capability word of physical memory from non-capability data to enforce unforgeability.

In this document, we evaluate attacks against the pure-capability mode of CHERI since non-capability code in CHERI's hybrid mode
could be attacked as-is today. The CHERI system assessed for this research is the CheriBSD operating system running under QEMU as
it is the largest CHERI adapted software available today.

CHERI also provides hardware features for application compartmentalization 115. In this document, we will review only the memory
safety guarantees, and show concrete examples of exploitation primitives and techniques for various classes of vulnerabilities.

SUMMARY

CHERI’s ISA is not yet stabilized. We reviewed the current revision 7, but some of the protections such as executable pointer sealing
is still experimental and likely subject to future change.

The CHERI protections applied to a codebase are also highly dependent on compiler configuration, with stricter configurations
requiring more refactoring and qualification testing (highly security-critical code can opt into more guarantees), with the strict sub-
allocation bounds behavior being the most likely high friction to enable. Examples of the protections that can be configured include:

o Pure-capability vs hybrid mode

e Chosen heap allocator’s resilience

e Sub-allocation bounds compilation flag

e Linkage model (PC-relative, PLT, and per-function .captable)
e Extensions for additional protections on execute capabilities
e Extensions for temporal safety

However, even with enabling all the strictest protections, it is possible that the cost of making existing code CHERI compatible will be
less than the cost of rewriting the code in a memory safe language, though this remains to be demonstrated.

We conservatively assessed the percentage of vulnerabilities reported to the Microsoft Security Response Center (MSRC) in 2019
and found that approximately 31% would no longer pose a risk to customers and therefore would not require addressing through a
security update on a CHERI system based on the default configuration of the CheriBSD operating system. If we also assume that
automatic initialization of stack variables (InitAll) and of heap allocations (e.g. pool zeroing) is present, the total number of
vulnerabilities deterministically mitigated exceeds 43%. With additional features such as Cornucopia that help prevent temporal
safety issues such as use after free, and assuming that it would cover 80% of all the UAFs, the number of deterministically mitigated
vulnerabilities would be at least 67%. There is additional work that needs to be done to protect the stack and add fined grained CFI,
but this combination means CHERI looks very promising in its early stages.
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Microsoft Security Research Center (MSRC) study analyzed all
2019 Microsoft critical memory-safety security vulnerabilities

* Metric:"Poses a risk to customers — requires a software
update”

* Vulnerability mitigated if no security update required
Blog post and 42-page report

* Concrete vulnerability analysis for spatial safety

* Abstract analysis of the impact of temporal safety

* Red teaming of specific artifacts to gain experience

CHERI,“in its current state, and combined with other mitigations,
it would have deterministically mitigated at least two
thirds of all those issues”

https://msrc-blog.microsoft.com/2020/10/1 4/s§3curity-analysis-of—cheri-isa/
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https://msrc-blog.microsoft.com/2020/10/14/security-analysis-of-cheri-isa/

Security Analysis of CHERI ISA

Security Research & Defense / By MSRC Team / October 14, 2020 /
Memory Corruption, Memory Safety, Secure Development, Security Research

Is it possible to get to a state where memory safety issues would be deterministically mitigated? Our quest to mitigate memory
corruption vulnerabilities led us to examine CHERI (Capability Hardware Enhanced RISC Instructions), which provides memory
protection features against many exploited vulnerabilities, or in other words, an architectural solution that breaks exploits. We’ve
looked at how CHERI would break class-specific categories of vulnerabilities and considered additional mitigations to put in place to
get to a comprehensive solution. We’ve assessed the theoretical impact of CHERI on all the memory safety vulnerabilities we
received in 2019, and concluded that in its current state, and combined with other mitigations, it would have
deterministically mitigated at least two thirds of all those issues.

We've reviewed revision 7 and used CheriBSD running under QEMU as a test environment. In this research, we’ve also looked for
weaknesses in the model and ended up developing exploits for various security issues using CheriBSD and gtwebkit. We've
highlighted several areas that warrant improvements, such as vulnerability classes that CHERI doesn’t mitigate at the architectural
level, the importance of using reliable and CHERI compliant memory management mechanisms, and multiple exploitation primitives
that would still allow memory corruption issues to be exploited. While CHERI does a fantastic job at breaking spatial safety
issues, more is needed to tackle temporal and type safety issues.

Your feedback is extremely important to us as there’s certainly much more to discover and mitigate. We're looking forward to your
comments on our paper.

Nicolas Joly, Saif EISherei, Saar Amar — Microsoft Security Response Center (MSRC)

- https://msrc-blog.microsoft.com/2020/10/14/security-analysis-of-cheri-isa/
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Ease of adoption compared to high-level languages

Language Approximate open-source LoC* Memory safe

C 10,317,799,775 X — v with CHERI
C++ 2,937,552,905 X — v with CHERI
Java 2,614,800,470 V4
Rust 39,538,172 v

Worth pondering: In the past 6 months, the CHERI project has
adapted more lines of open-source code to memory safety than the

Rust project has created in its entire history.
* Synopsys Black Duck Open Hub: https://www.openhub. net/Ianguage Stats taken|3 December 2023
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https://www.openhub.net/languages

Could we achieve practical memory safety™
for multi-BLoC C/C++ software stacks within
4 years without a ground-up rewrite!

*There’s a very long discussion to have about what “memory-safe C/C++” means, but Microsoft’s
practical definition of ”deterministically mitigates security vulnerabilities” seems a good place to start.
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How should people ask for memory safety?

* Transition appears to be even harder than developing the technology in the
first place

* One key challenge is how people can ask for memory safety

* Poorly satisfied by today’s mitigation techniques — stack canaries, PAC,ASLR,

* Well satisfied by “up and coming” technologies such as CHERI, Rust, etc.

* How can you request (and be satisfied that you will receive) memory safety on
your government procurement form!?

* Will require engagement with technical and procedural aspects of the problem
* Host a series of workshops focused on both ..? Your thoughts very welcome!
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e
How does CHERI relate to other

non-C/C++ memory-safety technologies!?

CHERI C/C++ Rust
* Requires new, multi-vendor hardware rollout * Requires rewrite of all source code in a new
programming language
* Modest changes even to large software packages * Extensive use of “unsafe Rust” can undermines
(Often around ~0.02 %LoC) safety for TCBs and in some use cases

Requires more significant changes to specific
packages — e.g., kernels, language runtimes

* The rollout can be done incrementally .. Once * The rollout can be done incrementally .. On
there is new hardware current hardware

* Dynamic enforcement prevents run-time * Most memory-safety bugs eliminated at compile
exploitation — but means that crashes may occur time, supporting design changes to prevent bugs

« Compartmentalization avoids trust in the » Strong trust in compiler,and no model for
compiler, handles code generated by adversaries handling code generated by an adversary

58 UNIVERSITY OF
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But what if we put Rust and CHERI together?

* Research question: Is the whole greater than the sum of the parts?
* Lots of reasons to imagine that this might be true, including:

* Enable a fully memory-safe software ecosystem without 100% software
rewrite

* Reduce total trust in the Rust compiler, enabling downloadable precompiled
Apps, device driver sandboxing, ...

* Enforce basic spatial and temporal memory protection for unsafe Rust

* Use CHERI sub-language protection with Rust to reduce exposure to
compiler bugs, new exploit techniques

* Contain vulnerabilities in C/C++ libraries and other system TCBs
* But ..All of these ideas unimplemented and unevaluated
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What is software compartmentalization?
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CheriFreeRTOS components and the application execute
in compartments. CHERI contains an attack within
TCP/IP compartment, which access neither flash nor the
internals of the software update (OTA) compartment
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Fine-grained decomposition of a larger
software system into isolated
modules to constrain the impact of
faults or attacks

Goals is to minimize privileges
yielded by a successful attack, and
to limit further attack surfaces

Usefully thought about as a graph of
interconnected components,
where the attacker’s goal is to
compromise nodes of the graph
providing a route from a point of entry
to a specific target
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Software compartmentalization at scale

CHERI contains attack within compartment,
I preventing access to other data

g Memory Safety Crisis

~82% of exploited vulnerabilities in 2012 @ \
Software Vulnerabilty Explowtation Trends, Microsoft N n ‘ \
How are processors responding? ~82% of exploited vulnerabilities in 2012
Software Vulnerabiy Exploitation Trends, Microsoft
LN ]

How are processors responding?

* Current CPUs limit:
* The number of compartments and rate of their creation/destruction
* The frequency of switching between them, especially as compartment count grows
* The nature and performance of memory sharing between compartments

* CHERI is intended to improve each of these — by at least an order of magnitude
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CHERI-based compartmentalization

Shared virtual address space
Domain-specific Domain-specific Domain-specific Heap .
captables + PLTs stacks globals allocations Protectlon
domain A
Register
Protection fle —_ ‘,‘—"
domain “ o ======-- >
A o — ¢ Implie
. ?oin .
N /f Flexible set of
o 24 Shared s
crod ( ~~~~~ i heap shared resources
s... ~~~~~ . : o\
domaing=<w o< e® #o» Explicrt
resourc,esT a2, . e - a® nointer
| ] == g
,,,,, ‘...,‘lll\lllll
Filgister SO L ; J’--___ ,
Protection e, __-fle=T T __--- 'H “ RGN 2
. Lese[---" heap
domain SOt
B [ === = Protection
Domain B

* Isolated compartments can be created using closed graphs of capabilities,

combined with a constrained non-monotonic domain-transition mechanism
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Compartmentalization scalability

* CHERI dramatically improves compartmentalization scalability

e More compartments Early benchmarks show a |-to-2
order of magnitude performance
* More frequent and faster domain transitions - inter-compartment

communication improvement
compared to conventional
- designs

* Faster shared memory between compartments

* Many potential use cases — e.g., sandbox processing of each image in a
web browser, processing each message in a mail application

* Unlike memory protection, software compartmentalization requires
careful software refactoring to support strong encapsulation, and
affects the software operational model

58 UNIVERSITY OF
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Operational models for CHERI compartmentalization

* An architectural protection model enabling new software behavior
* As with virtual memory, multiple operational models can be supported
* E.g.,with an MMU: Microkernels, processes, virtual machines, etc.

* How are compartments created/destroyed? Function calls vs. message
passing? Signaling, debugging, ...?

* We have explored multiple viable CHERI-based models to date, including:
Isolated dynamic libraries  Efficient but simple sandboxing in processes
UNIX co-processes Multiple processes share an address space

* Improved performance and new paradigms using CHERI primitives

Both will be available in CheriBSD/Morello
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Proposed operational models:
Isolated libraries and UNIX co-processes

Isolated dynamically linked libraries
* New API loads libraries into in-process sandboxes. Prototype
* Calling functions in isolated libraries performs a domain transition,[ to appear in
with overheads comparable to function calls. g‘TgBSD
* Simple model eschews asynchrony, independent debugging, etc. ;gdlages in
UNIX co-processes
* Multiple processes share a single virtual address space, separated Prototype
using independent CHERI capability graphs. to appear in
* CHERI capabilities enable efficient sharing, domain transition. ";‘:JE‘::BSD
* Rich model associates UNIX process with each compartment. release
B UNIVERSITY OF
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Example: Robust shared libraries

Kernel

Process X rights Process Y rights
A I\

==

Userspace domain switcher

Jump-based Exception-based
intra-address-space  F= -~ ,’h\ N, 3 inter-address-space
CHERI domain switch : TN MMU context switch
"Sandbox | . Sandbox i '

: : l ;
I\ _____________ J N e e e e e e s
User process X User processY

* User compartments exist within individual UNIX processes (“robust shared libraries”™):
* CHERI isolates compartments within each address spaces
* Compartment switcher is itself a trusted userspace library
* Compartments have strict subset of OS rights of the process
* Intra-process domain switches take no architectural exceptions and do not enter the kernel

* Multiple processes + IPC required if differing OS right sets needed
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Shared library compartmentalization (1/3)

Kernel

_m—

@gtr;ed by run-tim@

e ———

Capability-based M Awmmmmmee N
intra-address-space =’ =, { N N\
CHERI domain switch ‘. LN
I I ]
; : [ Shared i
: Program | ! : i
| . ! : library i
: binary . i :
I ; s i
I ! - I
: i \ y
\ /' S ———— ’

—————————————

User process

Run-time linker limits shared libraries to
accesses enabled by ELF

Adversary model assumes arbitrary code
execution within library

Run-time linker delegates capabilities for linked
functions, globals via GOT/PLT

Domain transitions implemented by trampolines
interposed on inter-object calls / returns

Running prototype on Arm Morello

Low measured overheads in early experiments
(e.g., ~1% for image decompression sandboxing)

Released in CheriBSD 22.12 in December

Debugging, tracing, and performance
enhancements in CheriBSD 23.10
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Shared library compartmentalization (2/3)

Library | | | Library 2 . Librar.y comp.al.*tmentalizat.ion ipserts
PLT pointers now point — domain-transition trampolines into
o ac shims rather than at inter-library calls and returns
= the library directly P
o intertofF,  ~---_ . NNTINT .
mﬂ‘ e T * PLT entries are initialized with sealed
: T trampoline capabilities that provide
|6 ................................................................................... ||| \\x Strong encaPSUIation
1
o '} \\ * Per-target trampolines are used for
— : Ml branch-prediction reasons (still more
': D oy I F, tradeoffs to explore here)
................................................................................... . ynamically y
i generated shims { B * A single “return trampoline” provides a
) \ ! branch-predictable reverse transition
ks \ / path
v Shim Fp r
X e * Trampolines perform a number of
F | operations relating to capability
ohim Fr register setup/clearing, setting up
return path, stack changes, etc.
Return shim
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Shared library compartmentalization (3/3)

Abstract

stack model

E
Q2
0
5
E TCB frame
s |
0.0
2\ =
a

Library B,
3 FunctionY
5
i @

uJnjaJ 3|qisiA~Idwwed3odd

Concrete stack * Domain transitions on inter-

implementation

T, TCB stack

library calls + returns

* Inter-domain frames protect
control flow between domains

Library A/T, stack

* Stack temporal safety is

TCB frame

hard, so we approximate

TCB frame

 Per-thread trusted stack

TCB frame

tracks domain transitions
Library B/T, stack
* Reentrant per-thread, library

A

FunctionY, stack pOO|S

v * CHERI sealing mechanism

protects code transitions, data
pointers from corruption
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From shared libraries to kernel modules

Kernel

Jump-based
intra-address-space 4 \ \
CHERI domain switch S

Kernel
Main module

kernel

A

* Can this userspace model work in the
kernel as well? The kernel is actually:

* Integrated main binary with kernel
run-time linker

* Collection of kernel modules
implementing drivers, services, ...

* The same model likely applies, with
suitable adaptation to the kernel run-
time environment

* We are developing an early prototype
implementing this model
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Example: CHERI co-process model

Kernel
Process X rights Process Y rights
A I\

MWitcher I

N
1
|
1
1
1
1
1
1
\

7’

ump-based intra-address- .
" | <pace CHERI domain A I
. Sandbox ! P . Sandbox !
| : switch also switches kernel i :
. (process X) : notion of active process . (processY) :
! ! 1 1
N e /’ N 4

User processes X andY with shared virtual address space
* CHERI isolates multiple processes within a single virtual address space
* Kernel-provided trusted compartment switcher runs in userspace (actually a microkernel)
* CHERI-based inter-process memory sharing + domain switching
* A compartment’s OS rights correspond to the owning process
* Inter-process context switches take no architectural exceptions and do not enter the kernel

* CHERI can be pitched as improving IPC performance while retaining a (largely)
SRl conventional process model
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CHERITRANSITION
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Morello and CHERI-RISC-V

* We are pursing two CHERI adaptations to post-MIPS ISAs:

* 2014  Joint with Arm, an experimental adaptation of 64-bit ARMv8-A
Arm Morello multicore SoC, development board, etc.
(announced Oct. 2019; experimental SoC shipped 2022)

« 2017  An experimental adaptation of 32/64-bit RISC-V
(open-source research processors on FPGA)

* Complete elaborations of the full hardware-software stack for each ISA:
* All aspects of the architectures (e.g.,ARMv8-AVM features, etc.)
* Formal models + proofs, hardware implementations, compilers, OSes
* Potential for transition through both paths
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CHERI target architectures

Architecture CHERI challenges

64-bit MIPS 1990s RISC architecture Our legacy research architecture.
(CHERI baseline) Poor code density and addressing modes:
harder to differentiate ‘essential’ CHERI costs;
few transition opportunities with MIPS

64-bit ARMv8-A Mature and widely Feature-rich; exception-adverse; rich address
deployed load-store modes; constrained opcode space; hardware
architecture page tables; virtualization features; ecosystem

32-bit and Open RISC ISA in active Limited addressing modes (expects micro-op

64-bit RISC-V  development fusion); hardware page tables; only partially
(MIPS + 10 years?) standardized; features missing (e.g., hypervisor);

immature software stack
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What'’s the smallest variety of CHERI?

Microsoft Security Response Center o — o Production-q uality CHERI-RISC-V-
extended |Ibex core

* Small-scale microcontroller used in

What's the smallest variety of CHERI? OPenTltan and other use cases

Security Research & Defense [ By Saar Amar [ September 6, 2022 .

* Clean-slate memory-safe, compartmentalized
The Portmeirion project is a collaboration between Microsoft Research Cambridge, Microsoft OS
Security Response Center, and Azure Silicon Engineering & Solutions. Over the past year, we

have been exploring how to scale the key ideas from CHERI down to tiny cores on the scale of

the cheapest microcontrollers. These cores are very different from the desktop and server- ° Wi I I be O Pe n _SO u r.ce h ardwa r.e an d SOftW& re

class processors that have been the focus of the Morello project.

Microcontrollers are still typically in-order systems with short pipelines and tens to hundreds ° C H E RI RI SC V tU n ed fo r. S mal I

of kilobytes of local SRAM. In contrast, systems such as Morello have wide and deep

pipelines, perform out-of-order execution, and have gigabytes to terabytes of DRAM hidden m ic roco ntrOI Ie rs

behind layers of caches and a memory management unit with multiple levels of page tables.
There are billions of microcontrollers in the world and they are increasingly likely to be . . .
e RISC-V embedded standardization candidate

connected to the Internet. The lack of virtual memory means that they typically don't have

any kind of process-like abstraction and so run unsafe languages in a single privilege domain.

This project has now reached the stage where we have a working RTOS running existing o C o I Iabo rati O n ac ro s S M ic ros Oft Res ea rc h ’

C/C++ components in compartments. We will be open sourcing the software stack over the

coming months and are working to verify a production-quality implementation of our M S RC ) AZU re SI I I CO n ) an d AZU re Edge +

proposed ISA extension based on the lowRISC project'’s Ibex core, which we intend to

contribute back upstream. PI atfo rm

I/ﬁl https://msrc-blog.m|crosoft.com/2022/09/(g|6/whats-the-smalIest-varlety-of-cherll =8 UNIVERSITY OF
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RISC-V CHERI Special Interest Group (SIG)

* Created in early October 2022, SIG acting chair is Alex Richardson
(Google)

* Preparing to create first standardization task group pursuing:
* 64-bit CHERI-RISC-V building on SRI/Cambridge’s ISA

* Once IP issues are resolved, can proceed with second task group:
* Microcontroller CHERI building on Microsoft’s recent work

* Significant ISA refinement and need for high-quality reference
implementation of higher-end 64-bit design
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CHERI-x86 seedling

* Explore application of CHERI to the widely used x86 architecture
* Initial prototype ISA developed and formally modeled
* Focused on compiler targeted (“userlevel”) instruction set

* Automatically generated test suite from formal model to enable
potential future simulator and hardware implementation

* Early low-level toolchain support; compiler support now
beginning

* Proof-of-concept prototype allows design-space exploration prior
to industrial engagement
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CHERI-ARM research since 2014

* Since 2014, in collaboration with Arm, we have been pursuing joint research to
experimentally incorporate CHERI into ARMv8-A:

* Develop CHERI as an architecture-neutral and portable protection model
implemented in multiple concrete architectures

* Refine and extend the CHERI architecture — e.g., capability compression, tagging
uarch, domain transition, and temporal safety

* Apply concept of architecture neutrality to the CHERI-enabled software stack,
including compiler, OS, and applications

* Expand software: large-scale application experiments, OS use, debuggers, ...
* Extend work in formal modeling and proofs to an industrial-scale architecture
* Solve arising practical {hardware, software, ...} problems as part of the research

* Build evidence, demonstrations, SV templates to support potential CHERI adoption
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ISCF: Digital Security by Design (UKRI)

* S-year Digital Security by Design UKRI program: £70M UK gov. Rl
funding, £1 17M UK industrial match, to create CHERI-ARM Bebbith (B

CoreSight™ multicore debug and trace

demonstrator SoC + board with proven ISA

Core 1

* Leap supply-chain gap that makes adopting new architecture difficult
. . . . . . o Armv8-A (v8.2)

— in particular, validation of concepts in microarchitecture, a2/t i CoU

architecture, and software “at scale”

* Support industrial and academic R&D (EPSRC, ESRC, InnovateUK) StaNAvERRARLGe

Asynchronous Bridges

* Baseline CPU is Neoverse NI; reuses existing SoC/board designs

1x 256-bit AMBA® 5 CHI Direct-Connect

* Collaborative review distillation of CHERI ISAv8; experimental
additions relating to temporal safety, compartmentalization

microarchitectural design choices for software-based evaluation 2 e el
=y o= I

: . . . e
* Science designed allowed: Multiple architectural + :gﬂ '
=01

* 2020 emulation models; 2022 Morello board shipped!
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Digital Security by
Design

Richard Grisenthwaite
SVP Chief Architect and Fellow

‘Richard.Grisehthwaite@arm‘.com



STRATEGY

Challenges with creating substantially new architecture ?ﬁe%amh

and Innovation

Required to justify

New
New
Software Hardware
Models

o g

Required to develop
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Why is Arm interested in the CHERI architecture e serm

98

UK Research

Arm had been working with UoCambridge on CHERI for some 4-5 years and Innovation

Big step to addressing security based on strong fundamental principles

Addresses spatial memory safety robustly and some ideas for temporal safety
- Memory safety issues reported to be involved with ~70% of vulnerabilities (Matt Miller, BlueHat IL, 2019)

Has scope to be the foundation of a new mechanism for compartmentalisation
- Potentially far cheaper than using translation tables

Interesting scope to address temporal safety issues as well as spatial ones....

Many of the Arm software vendors are similarly interested in the possibilities of CHERI

- Microsoft, Google and others have expressed strong interest in exploring the concept...
- ... but lots of questions about the real-world performance costs and usage models
- ...understanding the intended usage models is important to refine the architectural features

But is a novel thing to do with additional costs to the system and software
- Adding a 129t tag bit has a lot of impacts to the memory system
- it is an ABI change, so non-trivial costs for compatibility for some uses

2019 Arm Limited a r m
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|P POSItIOn UK Research

and Innovation

* Today’s CPU architectures have largely the same basic functionality
- “Similar but different” approaches to most aspects of system architecture
- Small scale optimisations exist

* This position very beneficial for the porting of system software
- Anything that fundamentally changes the system software architecture is likely to be ignored

* Arm believes that this reality needs to continue with capabilities
- Implication is that we’d like the world’s leading architectures to adopt capabilities
- The Digital Security by Design program

99 2019 Arm Limited a r m
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Arm Morello specification

10

a r m Arm® Architecture Reference

Manual Supplement Morello
for A-profile Architecture

Document number DDI0606

Copyright © 2020 Arm Limited or its affilates. All rights reserved.

INDUSTRIAL
STRATEGY

UK Research
and Innovation
Experimental application of CHERI ISAv8 to ARMvV8-A

Much richer base ISA .. Much longer spec - 2,155
pages excluding additional material!

Describes ISA as implemented in Arm Morello FVP
and processor/SoC

Includes recent features such as sentry and load-side
barrier support

arm



The Morello Board ?ﬁ o
esearc

An Industrial Demonstrator of a Capability architecture and Innovation

Uses a prototype capability extension to the Arm Architecture
- Prototype is a “superset” of what could be adopted into the Arm architecture

Use of a superset of the architecture is very unusual

- Also unrealistic as a commercial product — there will be some frequency effects
- However, there are tight timescales so architecture is nearly complete now

The superset of the architecture will allow a lot of software experimentation
- Various different mechanisms for compartmentalisation
- Collection of features for which the justification is unclear
- Techniques for holding the capability tag bit

Architecture will have formally proved security properties (with UoC and UoE)

Morello Board will be the ONLY physical implementation of this prototype architecture

- Learnings from these experiments will be adopted into a mainstream extension to the Arm architecture
« NO COMMITMENT TO FULL BINARY COMPATIBILITY TO THE PROTOTYPE ARCHITECTURE
— But successful concepts are expected to be carried forward into the architecture and can be reused there
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STRATEGY

Morello Board overview (subject to change) ?ﬁe%amh

and Innovation

Quad core bespoke high-end CPU with prototype capability extensions

- Backwards compatibility with v8.2 AArch64-only

- Based on Neoverse N1 core
— Multi-issue out-of-order superscalar core with 3 levels of cache
« Build in 7nm process

- Targeting clock frequency around 2GHz

* Reasonable performance GPU and Display controller
- Standard Mali architecture core — not extended with capability
« Supports Android

* PCle and CClx interfaces including to FPGA based accelerators
* FPGA for peripheral expansion

e SBSA compliant system

* 16GB of System Memory (expandable to 32GB — thc)
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INDUSTRIAL

Morello Board: Capability Hardware Prototype PIatforrr*

UK Research
and Innovation

Silicon implementation of a Capability Hardware CPU Instruction Set Architecture

* Implements Morello Profile for A-class
Prototype Architecture

« Two clusters each of two Rainier CPUs

CorelLink GIC-600

1 1
MMU-600

- Interconnect and Memory Controller
support for tagged memory

- Two channel DDR4 DRAM interface
- PCle Gen3 and Gen4 x16 interface

« CCIX (Cache Coherent Interconnect
for Accelerators) interface

Rainier Rainier

CMN-Skeena (CoreLink CMN-600 based)

CoreLink NIC-400 ValiD3s

- Mid-range GPU, display processor -- DMC-Bing [§DMC-Bing
DMC-620 based DMC-620 based ll
and HDMI OUtpUt IOFPGA DDR4-2667 HDMI|

° O N Sta N d d rd UATX fO m fa CtO r boa rd Supporting Arm system IP: GIC-600 (Generic Interrupt Controller), MMU-600 (10 MMU), Dynamic

Memory Controller derived from DMC-620, SoC-600 (SoC Debug and Trace), Coherent Mesh Network
derived from CMN-600, NIC-400 (Non-coherent interconnect)

Supporting 3™ party system IP/hardware: PCle/CCIX Root Complex (PHY and controller), DDR4/3 PHY,
DDR4 memory, 10 FPGA

2019 Arm Limited . Open-source software stack a r m
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Arm Morello Programme: Architectural security goals

and known limitations (July 2023)

* Framing security direction and disclaimers:

Technical Report FClSEN 14762986
* Architectural security aims and experimental
D validation
Arm Morello Programme. e Constraints of the Armv8.2-A baseline ISA

Architectural security goals
and known limitations

* Limitations of the experimental software stack
Robert N. M. Watson, Graeme Barnes,

Jesica Clarks, Rihard Grisntvai, * Limitations on the hardware threat model

Jonathan Woodruff

* Important to understand what Morello can do — and
cannot; e.g.,

* Has enabled 50+MLoC CHERI C/C++ code corpus

July 2023

* No expectation to resist Spectre or Rowhammer
S o 58 UNIVERSITY OF
Demationa) https://www.cl.cam.ac.uk/techreports?UCAM-CL-TR-982.pdf » CAMBRIDGE
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Early performance results from the prototype
Morello microarchitecture (September 2023)

7

Technical Report

UCAM-CL-TR-986
ISSN 1476-2986

Number 986

September 2023

i

B8 UNIVERSITY OF

Computer Laboratory

Early performance results from the
prototype Morello microarchitecture

Robert N. M. Watson, Jessica Clarke,
Peter Sewell, Jonathan Woodruff,
Simon W. Moore, Graeme Barnes,

Richard Grisenthwaite, Kathryn Stacer,

Silviu Baranga, Alexander Richardson

15 J] Thomson Avenue
Cambridge CB3 OFD
United Kingdom

phone +44 1223 763500

https:/www.cl.cam.ac.uk/

International
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Performance analysis of SPECint 2006 on Morello

* Reminder: Morello is prototype architecture and microarchitecture;
no production optimization cycle possible on DSbD timeline

* Baseline Morello microarchitecture “as shipped”

* Modified Morello designs on FPGA addressing discovered
limitations / re-tuning parameters

“Benchmark ABI” and “P128” code models to improve
predictions for future mature microarchitecture

Best available spatial safety overhead on Morello prototype
microarchitecture, with refinements, for SPECint 2006: 5.7%

Worst projected spatial safety overhead on anticipated
mature microarchitecture for SPECint 2006: 1.8% - 3.0%

I8 UNIVERSITY OF
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Early performance results from the
prototype Morello microarchitecture

1. Introduction
2. Headline results
2.1. Architectural integration
2.2. Software ecosystem enablement
2.3. Microarchitectural objectives
2.4. Dynamic performance
2.4.1. Essential overheads

2.4.2. Initial measured performance
results

2.4.3. Next steps
3. Performance methodology

3.1. Baseline and comparison
framework

3.2. Morello microarchitectural
limitations

3.3. ABIs, code generation, and
compilation

4. Performance analysis of SPECint 2006
4.1. SPECint 2006 benchmark suite

4.2. Specific hardware and software
configurations

4.3. Initial results
5. Caveats

6. Future work

Open *https:/jctsrd-cheri.github.io/morello-early-performance-results/

ctsrd-cheri.github.io

Initial measured performance results on
Morello and ABI variations

In this section, we present high-level performance results running SPECint 2006, an industry-
standard benchmark suite, on both unmodified and modified Morello microarchitectures,
comparing several code-generation models allowing us to analyze the performance of memory-safe
CHERI pure-capability code. All measurements were made on a consistently configured FPGA
platform that offers strong performance fidelity, and used the ‘train’ rather than 'ref workload due
to on-FPGA execution times. All Morello configurations operated at a fixed frequency during
benchmarks’, with execution time measured in clock cycles for the purposes of calculating
overheads. More detailed hardware, toolchain, and software compilation and configuration
information, further results from additional configurations, and limitations of this work (including
the specific SPECint subset used, compilation choices, implications of using the ‘train’ workload, and
why), may be found in Section 3.

54 baseline

%overhead compared i
o

headline-resultsfinitial-measured

h + ©

Early performance results from the prototype
Morello microarchitecture (live website)

* Live version of the website will be
updated as understanding improves

* Currently in sync with TR, but will
see further updates in coming
months (see Version History)

* Looking at topics such as the impact of
dynamic linking

* Complements Benchmarking
Guidance section in Getting
Started with CheriBSD

https://ctsrd-cheri.github.io/morello-early-performance-results/cover/index.html

106
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-
UK EPSRC DSbD research program 2020-2023

EPSRC
Competition

* £10M Research funding
* £7M from ISCF/DSbD
* £3m from DCMS

* The EPSRC call covered 3 areas:

* Capability enabled hardware
proof and software verification

* Impact on system software and
libraries

* Future implications of
capability enabled Hardware

* Projects starting July-Oct

Selected Projects

AppControl: Enforcing Application Behaviour through Type-Based Constraints

Dr Wim Vanderbauwhede (University of Glasgow)

CapableVMs — Capable Virtual Machines

Dr Laurence Tratt (King’s College London) & Dr Jeremy Singer (University of Glasgow)

CAPcelerate: Capabilities for Heterogeneous Accelerators
Dr Timothy Jones (University of Cambridge)

CapC: Capability C semantics, tools and reasoning
Dr Mark Batty (University of Kent)

CAP-TEE: Capability Architectures for Trusted Execution
Dr David Oswald (University of Birmingham)

CHaOS: CHERI for Hypervisors and Operating Systems
Dr Robert Watson (University of Cambridge)

CloudCAP: Capability-based Isolation for Cloud-Native Applications
Prof Peter Pietzuch (Imperial College London)

HD-Sec: Holistic Design of Secure Systems on Capability Hardware
Professor Michael Butler (University of Southampton)

SCorCH: Secure Code for Capability Hardware

Dr Giles Reger (The University of Manchester)
Prof Daniel Kroening (University of Oxford)

107

a

Department for
Digital, Culture
Media & Sport

9 EPSRC projects
funded across 10 UK
universities

Several InnovateUK
industrial projects
supporting
exploration,
evaluation,
demonstration

5 UNIVERSITY OF
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DSbD Technology Access Programme

 Digital Security by Design (DSbD) runs the Technology Access
Programme (TAP) for UK-based companies to experiment with
CHERI and Morello

e We have collaborated with ~35 companies that have been porting
their products or prototyping new projects on Morello boards

o Several of these companies reported that, using Morello, they
found vulnerabilities in their code and analysed past vulnerabilities

against CHERI

B UNIVERSITY OF
» CAMBRIDGE
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DSbD TAP Cohort |-4

35 participating UK
organisations across
four cohorts, as of
November 2023.

Programme scale so far:

* +15 million lines of code ported to
Morello by Cohorts 1,2, 3 and 4

* 32 networking and learning events

* Multi-sector and cross-discipline
involvement

Source: Digital Catapult, DSbD TAP Showcase booklet
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DSbD TAP Cohort |-4: example projects

* Cohort |, RealVNC: Memory-safe remote access VNC client and server

* Cohort 2, CAN-PHANTOM: Memory-safe CAN-based vehicle
immobiliser based on libusb from CheriBSD

* Cohort 3,]JET Connectivity: Memory-safe 5g-enabled base station

* Cohort 4, rtegrity: Memory-safe and compartmentalised user-space
storage stack based on SPDK and DPDK

B UNIVERSITY OF
» CAMBRIDGE




CHERI REFERENCE SOFTWARE STACK
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Why port the CHERI stack to Morello!?

* Validate the Morello architecture (functional, sufficient)
* Evaluate the Morello implementation (performance, energy use, ...)

* Provide reference software semantics (spatial and temporal safety,
compartmentalization, POSIX integration, OS kernel use, ...) that will be applicable to
other adaptations

* Act as a template and prototyping platform for at-scale industrial and academic

demonstration, including providing adaptations of common software dependencies
(e.g., widely used libraries)

* Provide a platform for future software research, asking questions about what
we can use CHERI for in {operating systems, compilers, language runtimes,
applications, ...}

* Enable a growing academic and industrial community around CHERI and
Morello, including dozens of UK universities and companies associated with DSbD

B UNIVERSITY OF
P CAMBRIDGE




o
Caution: Research software!

* The baseline compiler toolchain and OS stack are themselves research
e This means unknown risks, hard-to-predict schedules, and inevitable direction changes
* Application Binary Interface (ABI) stability
* ABIs are a key research area; there are 2x Morello ABls, and there will be [many?] more
* This limits long-term binary compatibility guarantees for compiled software (for example)
* Software performance optimization with a limited corpus
* Right now, we're just happy things are working, but we will get beyond that soon!
* Supporting a large and diverse audience of consumers with different objectives
* Engineering constraints limit objectives and support (e.g., software updates)
* Software adaptation workload
* Some code ports trivially (e.g., Qt/KDE stack) and other code doesn’t (e.g., JITs)

58 UNIVERSITY OF
CAMBRIDGE
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-
CHERI prototype software stack on Morello

« Complete open-source software stack from bare metal up: compilers,
toolchain, debuggers, hypervisor, OS, applications — all demonstrating CHERI

* Rich CHERI feature use, but fundamentally incremental/hybridized deployment

Open-source application suite (KDE Plasma, Wayland, WebK:it, Python, OpenSSH, nginx, ...)

CheriBSD/Morello (funded by DARPA and UKRI)
(Morello and CHERI-RISC-V)

* FreeBSD kernel + userspace, application stack

* Kernel spatial and referential memory protection

* Userspace spatial, referential, and temporal memory protection
* Co-process compartmentalization (development branch)

* Linker-based compartmentalization
* Morello-enabled bhyve Type-2 hypervisor ( Baseline CHER|

Android (Arm) Linux (Arm)
(Morello only) (Morello only)

* ARMV8-A 64-bit binary compatibility for legacy binaries Cs'?aT/gc/:';er;m

Morello

CHERI Clang/LLVM compiler suite, Morello GCC, LLD, LLDB, GDB 4\ adapratonby

Arm + Linaro

58 UNTVERSITY OF
CAMBRIDGE
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(At least) two code generation / ABI targets
* Hybrid code is primarily aarch64 but with

More capability use > selected capability use:
* Kernel: Mostly aarch64 with
capability use for system-call arguments,
Hybrid CheriABI context switching, virtual memory, signals

* Userspace: Runs off-the-shelf armé4

aarché4c userspace wi programs without modification
ubiquitous capability u

aarch64 + selected
capability use
userspace

* Pure-capability code implements all data
e L e -- and control-flow pointers with capabilities:

* Kernel and userspace both spatially and

Pure-capability or Hybrid kernel i
referentially space

* In the future userspace temporally safe

58 UNIVERSITY OF
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-
FreeBSD base, ports/packages

WVell
Base Base FreeBSD OS including kernel and key adapt:d to
libraries, shells, daemons, and command-line tools CHERI
Ports Build infrastructure + FreeBSD adaptation patches Early
— roughly 30,000 mainstream open-source prototype
libraries, runtimes, and application
Packages  Prebuilt binary packages built from ports, installed and Early
managed using the pkg(8) package manager prototype
We provide a full set of ~20K-30K aarch64 (non-CHERI) packages to run on
CheriBSD/Morello to use while the CheriABI collection matures. = UNIVERSITY OF

&¥ CAMBRIDGE



Maturing CHERI software artifacts
Feature  |Status  |Availabiliy |

3rd-party packages (Hybrid)
3rd-party packages (CheriABI)

Morello GPU device drivers

Benchmark ABI support
(+3rd-party packages)

Userlevel heap temporal safety
Linker-based compartmentalization

bhyve (Type-2) hypervisor

Co-process compartmentalization

7N

International

23K memory-unsafe software packages
with strong functionality expectations

| IK memory-safe software packages with
mixed functionality expectations

Memory-safe kernel and user drivers,

Support for modified code generation
addressing Morello bounds prediction

Prototype implements strong temporal safety,
developed with Microsoft; testing required

Introduces strong encapsulation boundaries
around UNIX libraries with no modification

Prototype boots pure-capability guest OS,
validation required

Prototype runs some compartmentalized
software (e.g., OpenSSL); APl co-design

117

Since May 2022 (22.05 release)

Since May 2022 (22.05 release)
Up from 9k packages in 23.11

Since December 2022 (22.12 release)
Shipping in 23.1 1

(roughly the same packages as CheriABI)
Shipping in 23.1 1 (pretty experimental)

Since 22.12 (very experimental);
Significant improvements in 23.1 1|

Shipping in 23.11 (very experimental)

Planning to ship in 2024

58 UNIVERSITY OF
CAMBRIDGE




-
Ease of adoption compared to high-level languages

Language Approximate open- Memory safe Memory safe with
source LoC* CHERI

C 10,317,800,000 X v
C++ 2,937,550,000 X v
Java 2,600,000,000 V4 v
Rust 39,500,000 v v

In the past 6 months, the CHERI project has converted more lines of
open-source code to memory safety than the Rust project has

created in its entire history.
* Synopsys Black Duck Open Hub: https: //www openhub.net/languages

58 UNIVERSITY OF
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https://www.openhub.net/languages

Could we achieve practical memory safety*
for C/C++ desktop/server/embedded stacks within
4 years without a total software rewrite!

*There’s a very long discussion to have about what “memory-safe C/C++” means, but Microsoft’s
practical definition of ”deterministically mitigates security vulnerabilities” seems a good place to start.

B UNIVERSITY OF
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Getting Started with CheriBSD

* Introduces CheriBSD

* Steps you through installation on a
Morello board using a USB stick
image that you can download

Starting the boot

* Describes third-party package
system and pkgé64/pkgb4c

bsdinstall

stall usesthe libdialog textinterface library. Be aware that you will sometimes need to ‘ ‘ ’ , . .
use the space bar, and not enter key, to select menu options, which many users find .
nnnnnnnn . ustrates nelio wor compliation
Select Install at the first menu by hitting Enter. I I | °

D ib me k .

€SCribes some Known Issues
If you intend only to use the serial console, and not video console, select the default keymap by

* Explains how to get support

58 UNIVERSITY OF
CAMBRIDGE
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https://ctsrd-cheri.github.io/cheribsd-getting-started/

e
Adversarial CHERI Exercises and Missions

* CHERI training exercises for developers,
Adversarial CHERI Exercises and Missions I"ed teamS, and bug bOuntieS

* Adversarial missions where we want to
Acknowledgements u n d e rSta n d eXP I O itati O n b ette r

* CHERI software adaptation

* Assume a strong level of knowledge about
C, code generation, exploitation

* (E.g.,GOTs, PLTs, ROP, and JOP)
* Targets Morello and CHERI-RISC-V

https://ctsrd-cheri.github.io/cheri-exercises/

58 UNIVERSITY OF
CAMBRIDGE
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-
CHERI software stack support channels

* cheri-cpu.slack.com Slack
* Visit the CHERI website to request an invitation email/link

* Forthcoming mailing lists (not yet live)

* cl-cheribsd-announce Low-traffic announcement
* cl-cheribsd-discuss General discussion and support
* cl-cheribsd-security Report security issues

* Sundry issue trackers in the github.com/CTSRD-CHERI organization

* Not just “How do | get the software to work”, but also to assist with
experimental design, interpreting results, and seeking

improvements
T UNIVERSITY OF

&P CAMBRIDGE
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How to obtain and install the CHERI software stack

README.md p,

cheribuild.py - A script to build CHERI-related
software (requires Python 3.5.2+)
This script automates all the steps required to build various CHERI-related software. For example cheribuild.py

[options] sdk will create a SDK that can be used to compile software for the CHERI CPU and cheribuild.py
[options] run-riscv64-purecap will start an instance of CheriBSD built for RISC-V in QEMU.

cheribuild.py also allows building software for Arm's adaption of CHERI, the Morello platform, however not all

targets are supported yet.

Supported operating systems

cheribuild.py has been tested and should work on FreeBSD 11 and 12. On Linux, Ubuntu 16.04, Ubuntu 18.04
and OpenSUSE Tumbleweed are supported. Ubuntu 14.04 may also work but is no longer tested. macOS 10.14
and newer is also supported.

Pre-Build Setup

macOS

When building on macOS the following packages are required:

brew install cmake ninja libarchive git glib automake autoconf coreutils llvm make wget pixman f

brew install arichardson/cheri/samba

#1 intend to r e morellc VP mod you will al need the follow

quartz socat dtc

brew install homebrew/cask/docker homebrew/cask/x;

Ubuntu

If you are building CHERI on a Debian/Ubuntu-based machine, please install the following packages:
apt-get install libtool pkg-config clang bison cmake ninja-build samba flex texinfo libglib2.0-¢

Older versions of Ubuntu may report errors when trying to install libarchive-tools . In this case try using apt-
get install bsdtar instead.

RHEL/Fedora

If you are building CHERI on a RHEL/Fedora-based machine, please install the following packages:

dnf install libtool clang-devel bison cmake ninja-build samba flex texinfo glib2-devel pixman-de

Basic usage

If vou want to start up a QEMU VM runnina CheriBSD run cheribuild.pv run-riscv64-purecap -d (-d means

One build tool to rule them all: cheribuild

https://github.com/CTSRD-CHERI/cheribuild

Builds, installs, and/or runs:
 QEMU CHERI-RISC-V and Morello, Morello FVP
* CheriBSD/CHERI-RISC-V and Morello disk images
* Small suite of adapted third-party applications

Up and running with one command (CHERI-RISC-V):

Jcheribuild.py --include-dependencies run-riscve4-purecap

UNIVERSITY OF
CAMBRIDGE
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CHERI/MORELLO DESKTOP STUDY
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2021 desktop pilot study results

Developed:

* 6 million lines of C/C++ code compiled
for memory safety; modest dynamic testing

CHERI — Software stack status update ' * Thl_'ee compartmenta.lization
whiteboard case studies in Qt/KDE

Robert N. M.Watson, Simon W. Moore, Peter Sewell, Peter G. Neumann
Hesham Almatary, Jonathan Anderson, Alasdair Armstrong, Peter Blandford-Baker, John Baldwin, Hadrien Barrel, Thomas Bauereiss,
Ruslan Bukin, David Chisnall, Jessica Clarke, Nirav Dave, Brooks Davis, Lawrence Esswood, Nathaniel W, Filardo, Franz Fuchs, .
Dapeng Gao, Khilan Gudka, Brett Gutstein, Alexandre Joannou, Mark Johnston, Robert Kovacsics, Ben Laurie, A Theo Markettos, Eva I u atl O n re S u Its o
). Edward Maste, Alfredo Mazzinghi, Alan Mujumdar, Prashanth Mundkur, Steven ). Murdoch, Edward Napierala, George Neville-Neil, el = °
Robert Norton-Wright, Philip Paeps, Lucian Paul-Trifu, Allison Randal, Ivan Ribeiro, Alex Richardson, Michael Roe, Colin Rothwell,
Peter Rugg, Hassen Saidi, Peter Sewell, Thomas Sewell, Stacey Son, Domagoj Stolfa, Andrew Turner, Munraj Vadera, Konrad Witaszczyk,

Jonathan Woodruff, Hongyan Xia, and Bjoern A. Zeeb

B —— * 0.026% LoC modification rate across
full corpus for memory safety

EE UNIVERSITY OF )
LI AN @AY opt /cheri-exercises/buffer

« 73.8% mitigation rate across full corpus,
using memory safety and
compartmentalization

opt/cheri-exercises/buffer

- root@morello:~/cheri-exercises/src/exercises # s
README . md buffer-overflow-heap cheri-tags control-flow-pointer

—E g -adapt»c buffer-overflow-stack cheriabi debug-and-disassemble

buffer-overflow-global cheri-allocator compile-and-run pointer-injection

root@morello:~/cheri-exercises/src/exercises # [] i ‘ Useful Observation tO be made abOUt memory
safety: Not enough to address the de facto
threat model of quite a few libraries ...

BB UNIVERSITY OF
&¥ CAMBRIDGE
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2022.12 Morello memory-safe desktop software stack

Roughly 30MLoC on a shipping Arm Morello
% w w w .  board today, with memory-safe:

[ NewTab  [T] Split View

aJating an Open-Source Desktop for A...roject 10027440 Q2 Review Meeting (3).pdf — Okular <2> v A X

Bookmarks Tools Settings Help

[ Text Selection Yellow Highlighter A 9 of 23 v f¥] Zoomout ) 1

o * CheriBSD kernel with DRM + Panfrost drivers

935

WP2: Graphics platform memory safety (Bukin) (1/2)

(Objective and approach unchanged since Q1)

Cambridge has developed a memory-safe baseline OS, CheriBSD. Capltd 938
is adapting the userspace graphics platform and desktop 941 . . . .
T e e e * CheriBSD userspace with libraries, OpenSSH, ...

1 947 947
. 947 947 947
Cambridge - Kernel  DRM framework + Panfrost drivers . 943 935 935

WP2 addresses the low-level software graphics platform

Capltd - Userlevel Mesa (OpenGL), Wayland, Plasma, Qt, KDE g 941 935 935 M
: 941 935 035 ° O G L W I d d I
it i penGL,Wayland display server
o Cambridge: Developed additional memory-safe DPU, HDMI, SCMI 941 935 935
drivers. DRM bug fixes. Merged for inclusion in CheniBSD 22.11 941 935 935

o Caplid and Google: Adapted further KDE components for memory
safety including Kate editor, Okular PDF viewer. CheriBSD ports
created, packages generated for inclusion in CheriBSD 22.11 1 935 935

om0 mm—— oo oo * Plasma, KDE base applications including Dolphin,

871 1009 1009

1069 10w 10w Okaular, Konsole.
958 935 935 9
1038 1039 1039 10

969 935 935 9

941 935 935

Home — Dolphin v A - & S 4 71039 1“$ 1039 16 . . . .
LI @on Q = - e Also shipping in December 2022 with:
i ; 7: Wed Nov 36 16:28:16 UTC

Name A Size Modified . s/workspace/CheriBSD-pipeli
e 0 y ’ ns/workspace/CheriBSD-pipel
T " AP arm64
B Put robert@cheri-blossom:~ $ sy
e ) hw.model: Research Morello § ° arc Ore O-aware e ugger
Bl Templates lay ) robert@cheri-blossom:~ $ []
-—
B Vide
' desktop-environment.sh

* 9K CheriABI packages, 20K aarché64 (“legacy”)
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Now on to the grand challenges

* We are now within reach of an exciting — and historically highly vulnerable —
application corpus to which we can apply CHERI protections

* Memory-safe desktop applications at scale — especially those that contain one
or more language runtimes:

* Web browsers
 Mail readers
e Office suites

* Extending this to fine-grained compartmentalization as software prototypes
mature — library compartmentalization, coprocesses, further models, ...

* For example: UKRI- and Google-funded efforts around the Chromium web
browser at Capltd, Kings College London, Arm, and Cambridge
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Memory Safety Grand challenge: Google Chromium

~
-~
/ ~s

* “The real thing™: / ” Rt Ny
! o Sso
] ~
. . . C Co Ssy
* Foundation for Google Chrome, Microsoft Edge, Microsoft Teams, / Sor O Mpars Yld e T,
Electron, ... ‘oo Wy, €neyy; /
"l St g Uizg |
. . ~~~~ IS 4
* Over 35MLoC, >190 library dependencies g P i .. Sajg, -

-
@ Settings ~,
9 hf’

* V8§, an intimidatingly real language runtime

oooooooooooooo

* Code from numerous diverse origins and in countless forms of
idiomatic C and C++

* Vast wealth of past vulnerabilities to use in evaluation %
* Performance critical components \
* Memory-safety and compartmentalization objectives i
* ~9 staff months so far, most effort went into V8 adaptation

* V8 now running test suite with complete JIT support
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CONCLUSION
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Some potential software research areas

* Clean-slate OSes and languages * Virtualization
Current research has focused on incremental CHERI adoption Can memory protection usefully harden hypervisors? Can we
within current software and languages. How would we design new compartmentalize hypervisors? Can CHERI offer a better
OSes, languages, etc., assuming CHERI as an ISA baseline? mechanism for virtualizing code than an MMU?
 Compilers,language runtimes, and JITs * Debuggers and tracing
How can we mitigate the performance overheads of more Debugging/tracing tools rely on high levels of privilege to
pointer-dense executions, such as with language runtimes? Are operate. How can we reduce their privilege to mitigate
vulnerabilities in code generated by compilers and JIT susceptible vulnerabilities in these tools? With stronger architectural
to mitigation using CHERI? How does CHERI break or potentially semantics, is new dynamic analysis possible?

improve current compiler analyses and optimization?
] i * Software compartmentalization tools
* Further C/C++ protections with CHERI

Granular software compartmentalization offers vulnerability

We have focused on spatial, referential, and temporal memory mitigation through privilege reduction and strong encapsulation.
safety for C/C++. But the CHERI primitives could assist with How should current applications be refactored, and new
data-oriented protections, garbage collection, type checking, etc. applications be designed, to accomplish maintainable and more
Could these improve security, and at what performance cost? secure software!?
* Safe and managed languages * Security evaluation and adversarial research
Languages such as Java, Rust, C#, OCaml, etc., offer strong safety What is the impact of CHERI on known vulnerabilities and
properties, but frequently depend on C/C++ runtimes and FFl- attack techniques? How does a CHERI-aware attacker change
linked native code. Can CHERI provide stronger foundations for their behavior? Could formal models and proofs support
higher-level language stacks? stronger security arguments for CHERI?
R 130 B UNIVERSITY OF
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Conclusion

* New architectural primitives require rich HW and SWV evaluation:
* Primitives support many potential usage patterns, use cases
* Applicable uses depend on compatibility, performance, effectiveness
* Best validation approach: full hardware-software prototype
* Co-design methodology: hardware <> architecture < software
http://www.cheri-cpu.org/

* Watson, et al. An Introduction to CHERI, Technical Report UCAM-CL-
TR-941, Computer Laboratory, September 2019.

* Watson, et al. Capability Hardware Enhanced RISC Instructions:
CHERI Instruction-Set Architecture (Version 8), UCAM-CL-TR-951,
October 2020.

* Watson, et al. CHERI C/C++ Programming Guide, UCAM-CL-TR-947,

June 2020. 5 E UNIVERSITY OF
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Lessons learned: Split vs. merged register files

$pc $pcc v $ddc \v $pc $pcc v
EPCC

$ra $c31 v Merge $ra $c31 v | |v|

. ’ register | d:b | BRE |V|
pointers
LI $c4 i files $al $c4 LY Special registers
$a0 $c3 - $a0 $c3 v
Integer register file Capability register file Merged register file

CHERI-MIPS has split register files following coprocessor conventions

... but new register files add control logic, increasing area overhead

Instead merge register files along the lines of 32-bit — 64-bit extension

Key design choice in CHERI-RISC-V: Implement both approaches, evaluate
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From hybrid-capability code to pure-capability code
* n64 MIPS ABI: hybrid-capability code

* Early investigation — manual
Pure-capability annotation and C semantics

Hybrid-capability
userspace userspace ] ] ] ]
* Many pointers are integers (including

g . syscall arguments, most implied VAs)

Hybrid-capability CheriABI shim
* CheriABI: pure-capability code

* More recently — fully automatic use
of capabilities wherever possible

Largely conventional MIPS OS kernel
with CHERI-enabled userspace

] MIPS code * All pointers, implied virtual addresses
Hybrid-capability code are capabilities (inc. syscall arguments)
Pure-capability code . . . s

P  Now investigating pure-capability kernel
5 UNIVERSITY OF
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OS changes required for CheriABI

(A grand tour of low-level OS behavior)

Hybrid ABI = MIPS ABI + ... CheriABI = Hybrid ABI + ...

* Kernel support for tagged memory,  Kernel support for pure-capability userspace
capability context switching, etc. .
. * C start-up/runtime (CSU/CRT) changes
* Tag-preserving libc: memory copy, memory N o -
move, sort, ... * Initial process state: reduced initial capability

* Bounds-aware malloc(), realloc(), free(), ... registers, ELF aux args, sigcode, etc.

« setjmp(), longjmp(), sigcontext / signal * Pointer arguments/return values for syscalls

delivery, pthreads updates for capabilities are now capabilities, ...
 Run-time linkage for capability-based * Review and fix tag preservation,
references to globals, code, vtables, etc. integer/pointer provenance and casts

(bounds, permissions, ...) * Run-time linkage for globals, code, vtables, etc.

* Debugging APIs such as ptrace() (bounds, permissions, ...)

B UNIVERSITY OF
P CAMBRIDGE




Evaluating memory-protection compatibility

Approach: Prototype (1) “pure-capability” CHERI C/C++ compiler (Clang/LLVM) and
(2) full OS (FreeBSD) that use capabilities for all explicit or implied userspace pointers

Goal: Little or no software modification (BSD base system + utilities)
Small changes to source files for 34 of 824 programs, 28 of 130 libraries.
Overall: modified ~200 of ~20,000 user-space C files/header

integrity, prov. & alignment conventions features

BSD headers | 6 0 2 0
83 36 4 41 22
24 9 | ¥ 2

Goal: Software that works (BSD base + utilities test suites)

—_mm
Pure capability 3301 (90%) 122 246 3669
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Evaluating memory-protection impact

* Adbversarial / historical vulnerability analysis
v’ Pointer integrity, provenance validity prevent ROP, JOP
v’ Buffer overflows: Heartbleed (2014), Cloudbleed (2017)
v Pointer provenance: Stack Clash (2017)

* Existing test suites — e.g., BOdiagsuite (buffer overflows)

_E_mm- o

mips64
CheriABI 0 279 289 291
LLVM Address Sanitizer (asan) on x86 0 276 286 286

* Davis, et al. CheriABIl: Enforcing Valid Pointer Provenance and Minimizing
Pointer Privilege in the POSIX C Run-time Environment, ASPLOS 2019.

* Key evaluation concern: reasoning about a CHERI-aware adversary
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