
Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL), under contract FA8750-10-C-0237. The views, opinions, and/or findings contained in this article/presentation are those of the author(s)/presenter(s) and
should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

DSbD All Hands October 2022
Software porting to CHERI memory safety

Robert N. M. Watson, Simon W. Moore, Peter Sewell, Peter G. Neumann
Hesham Almatary, Ricardo de Oliveira Almeida, Jonathan Anderson, Alasdair Armstrong, Rosie Baish, Peter Blandford-Baker,

John Baldwin, Hadrien Barrel, Thomas Bauereiss, Ruslan Bukin, Brian Campbell, David Chisnall, Jessica Clarke, Nirav Dave, Brooks Davis,
Lawrence Esswood, Nathaniel W. Filardo, Franz Fuchs, Dapeng Gao, Ivan Gomes-Ribeiro, Khilan Gudka, Brett Gutstein,

Angus Hammond, Graeme Jenkinson, Alexandre Joannou, Mark Johnston, Robert Kovacsics, Ben Laurie, A. Theo Markettos,
J. Edward Maste, Alfredo Mazzinghi, Alan Mujumdar, Prashanth Mundkur, Steven J. Murdoch, Edward Napierala, George Neville-Neil,

Kyndylan Nienhuis, Robert Norton-Wright, Philip Paeps, Lucian Paul-Trifu, Allison Randal, Ivan Ribeiro, Alex Richardson, Michael Roe,
Colin Rothwell, Peter Rugg, Hassen Saidi, Thomas Sewell, Stacey Son, Ian Stark, Domagoj Stolfa, Andrew Turner, Munraj Vadera,

Konrad Witaszczyk, Jonathan Woodruff, Hongyan Xia, Vadim Zaliva, and Bjoern A. Zeeb

University of Cambridge, SRI International and Microsoft Research
Wolverhampton, 12 October 2022

https://bit.ly/3VcuZK5

What is the goal of this workshop?

Help and encourage people to port software to CHERI.

2

https://bit.ly/3VcuZK5

Scope of the workshop
The presentation and practice sessions cover:

CHERI C/C++ and CheriBSD/Morello as an example target
environment

They do not cover:
Linux, Android environments and compartmentalisation models

Many ideas from these parts would still apply to Linux and Android.
We can discuss Linux, Android and compartmentalisation models during
the discussion session.

3

https://bit.ly/3VcuZK5

Duplicate content

This presentation includes (but not only!) slides from previous events
(CHERITech22, TAP webinars, …).
Some participants might be familiar with some content.

During the practical part, we can reorganise the room to split it into
separate parts where participants can work on exercises or discuss
their porting issues.

4

https://bit.ly/3VcuZK5

Mistakes ahead(?)

Some participants might disagree with some things I am going to say.
Feel free to interrupt and correct me during or after the workshop.

We plan to use these workshop materials in the future.
If you have any suggestions for improvements, please let me know.

5

https://bit.ly/3VcuZK5

Agenda

6

Start: 1:45 PM

Part I:
presentation

(~50 min)

Work environment setup (VM in Azure with CheriBSD/Morello under QEMU)

CHERI software stack (QEMU, LLVM, GDB, CheriBSD, ports, Poudriere)

Porting issues at compile time (CHERI C/C++ compiler warnings)

Porting issues at run time (CHERI C/C++ debugger support)

Porting issues in CheriBSD ports (CheriABI, hybrid ABI)

Part II: practice

(~40 min)

Example vulnerability

Break: 15 min between 2:45 PM and 3:00 PM

Example CHERI restrictions

Part III:
discussion

(~30 min)

Porting plans, suggestions and other topics

End: 4:00 PM

https://bit.ly/3VcuZK5

Part I: presentation
CHERI software stack, multi-ABI support, porting issues.

7

https://bit.ly/3VcuZK5

Work environment setup: host
Host:
Virtual Machine running FreeBSD 13.1 in Azure.

Pre-installed software:
● tmux
● cheribuild and its dependencies

○ Runs CheriBSD/Morello in QEMU
○ Configured not to automatically update sources (in /cheri/cheribuild/cheribuild.json)
○ Configured to forward a host port 22000 to a guest port 22

Try to SSH into your host using your IP address and password:
ssh -l azureuser -L 127.0.0.1:22000:127.0.0.1:22000 <your-IP-address>

You can execute “sudo su -l” to become root.

Add “-o IdentityAgent=none” to ssh if you use ssh-agent with many keys (error: “Too many authentication failures”).

8

https://bit.ly/3VcuZK5

Work environment setup: emulator

Start CheriBSD/Morello under QEMU on your host (takes ~3.5 min):
/cheri/cheribuild/cheribuild.py run-morello-purecap

You can use a serial console but we will use SSH.

Do not close a terminal with QEMU running as it would terminate
CheriBSD/Morello.
Consider using tmux (pre-installed on your VM to prevent that).

9

https://bit.ly/3VcuZK5

Work environment setup: guest
Guest (slow!):
QEMU VM with CheriBSD/Morello 22.05p1; 1 vCPU, 2GB RAM,180GB storage.

Pre-installed software and source code:
● Packages: llvm-base, gdb-cheri, tmux, sudo, vim, nano, and other but irrelevant here
● Poudriere
● Examples from the presentation part in ~/examples (check for updates: git -C ~/examples pull)
● Exercises from the practical part in ~/exercises (check for updates: git -C ~/exercises pull)
● CheriBSD ports in ~/cheribsd-ports

Try to SSH into your guest once you are connected to your host:
ssh -l cheriuser -p 22000 127.0.0.1

The password for cheriuser is “cheriuser”.
You can execute “sudo su -l” to become root. The password for root is “root”.

Add “-o IdentityAgent=none” to ssh if you use ssh-agent with many keys (error: “Too many authentication failures”).

10

https://bit.ly/3VcuZK5

Work environment setup: questions?
SSH into your host using your IP address and password:

notebook % ssh -l azureuser -L 127.0.0.1:22000:127.0.0.1:22000 <your-Azure-VM-IP-address>

Start CheriBSD/Morello under QEMU on your host (takes ~3.5 min), preferably with tmux to prevent killing a session:
azure % /cheri/cheribuild/cheribuild.py run-morello-purecap

SSH into your guest once you are connected to your host:
notebook % ssh -l cheriuser -p 22000 127.0.0.1

The password is “cheriuser”.

Update examples and exercises:
cheri % git -C ~/examples pull (https://github.com/kwitaszczyk/cheri-workshop-exercises)
cheri % git -C ~/exercises pull (https://github.com/kwitaszczyk/cheri-workshop-examples)

Add “-o IdentityAgent=none” to ssh if you use ssh-agent with many keys (error: “Too many authentication failures”).

11

https://bit.ly/3VcuZK5

CPU

Instruction-Set Architecture (ISA)

CHERI (hardware-)software stack

12

Compilers and toolchain

Systems software

Applications

Arm Morello SoC, CHERI-RISC-V on FPGA,
QEMU-CHERI (Morello, CHERI-RISC-V)

Morello ISA,
CHERI-RISC-V ISA

CHERI LLVM for CHERI C/C++
(Morello, CHERI-RISC-V),

GDB-CHERI (Morello, CHERI-RISC-V)

CheriBSD (Morello, CHERI-RISC-V),
Android (Morello), Linux (Morello)

KDE, Wayland, WebKit, OpenSSH, nginx, PostgreSQL, …
~9K CHERI packages and ~23K non-CHERI packages

https://bit.ly/3VcuZK5

How to experiment with CHERI
(after this workshop)

Run an instance of CheriBSD/Morello in QEMU:
cheribuild.py --include-dependencies run-morello-purecap

https://github.com/CTSRD-CHERI/cheribuild

Try CHERI training exercises for developers,
red teams, and bug bounties:

https://ctsrd-cheri.github.io/cheri-exercises/

Talk to the CHERI community:
https://ctsrd-cheri.github.io/cheribsd-getting-started/support
/

13

https://github.com/CTSRD-CHERI/cheribuild
https://ctsrd-cheri.github.io/cheri-exercises/
https://ctsrd-cheri.github.io/cheribsd-getting-started/support/
https://ctsrd-cheri.github.io/cheribsd-getting-started/support/

https://bit.ly/3VcuZK5

cheribuild: fetch, build and run CHERI software

14

Run CheriBSD/Morello with the pure-capability world:
$ /cheri/cheribuild/cheribuild.py run-morello-purecap
$ /cheri/cheribuild/cheribuild.py run-morello-purecap --pretend

Get information on usage and available targets:
$ /cheri/cheribuild/cheribuild.py --help
$ /cheri/cheribuild/cheribuild.py --help-hidden |

grep cheribsd-morello-purecap

https://bit.ly/3VcuZK5

cheribuild: JSON configuration support

15

Use JSON configuration files for multiple branches and scenarios:
$ ln -s /cheri/cheribuild/cheribuild.py /cheri/cheribuild/foo-cheribuild.py
$ /cheri/cheribuild/foo-cheribuild.py run-morello-purecap --pretend

cheribuild will try to use:
1. file.json specified with --config-file=file.json
2. (prefix-)cheribuild.json alongside (prefix-)cheribuild.py
3. ~/.config/(prefix-)cheribuild.json

We will use /cheri/cheribuild/cheribuild.json .

https://bit.ly/3VcuZK5

Cross-compiling is hard
Cross-compiling requires to:
● Use appropriate binutils with a compiler, a preprocessor, etc.

○ Code can assume binutils names or paths (e.g., cc)
● Set appropriate build system flags (e.g., --host and --build in configure)
● Set appropriate compiler flags to build for a target

○ Code can overwrite flags (e.g., LDFLAGS)
● Point a build system to a location with a sysroot
● Point a build system to a location with dependencies

○ Code can assume library paths (e.g., /usr/lib/libz.so)
● Install in a location that can be used by other software to look for

dependencies

16

https://bit.ly/3VcuZK5

Utilities to cross-compile for CHERI
There are two main utilities that you can use to simplify cross-compiling
for CHERI:

1. cheribuild can be easily extended with Python classes that specify
build flags, compiler flags and location of dependencies.

2. QEMU user mode allows to emulate a native build environment in
chroot or jail without the need to configure a build system to use
custom toolchain and paths, and benefit from using native build
utilities (e.g., FreeBSD ports).

17

https://bit.ly/3VcuZK5

cheribuild: cross-compiling

18

You can easily add new targets to cross-compile third-party software, e.g.
/cheri/cheribuild/pycheribuild/projects/cross/rsync.py
/cheri/cheribuild/pycheribuild/projects/cross/kde.py

Helper classes to easily use make, autotools, cmake, meson:
/cheri/cheribuild/pycheribuild/projects/cross/crosscompileproject.py

List available software to cross-compile:
$ /cheri/cheribuild/cheribuild.py --list-targets | grep purecap$

https://bit.ly/3VcuZK5

QEMU-CHERI: system mode vs user mode
There are two modes in upstream QEMU:

1. System mode allows to emulate a full operating system with
processes running under it.

2. User mode allows to emulate processes without emulating a full
operating system. CPU instructions are emulated but system calls
are handled by a host kernel rather than an emulated kernel.

Both of these modes are implemented in QEMU-CHERI for Morello
and CHERI-RISC-V.

19

https://bit.ly/3VcuZK5

QEMU-CHERI: system mode

20

● CHERI-RISC-V and Morello are supported;

● SMP does not work in practice: all vCPUs are emulated using a single
host thread;

● Multi-threaded capability tag implementation exists for CHERI-RISC-V in
a separate branch but might not be tested for Morello;

● We will not be able to use complex third-party software with
dependencies but we can reproduce these examples on Morello
hardware;

● Use cheribuild.py -p to find a QEMU command to customize it, e.g.
change or add a disk.

https://bit.ly/3VcuZK5

QEMU-CHERI: BSD CheriABI user mode (1/2)

21

● CheriBSD/CHERI-RISC-V and CheriBSD/Morello are supported;

● Requires FreeBSD as a host not older than emulated CheriBSD;

● Developed to build software for CheriBSD and not run and evaluate
software against CHERI;

● Tags are not validated due to CHERI tags and SoftMMU
implementation. However, it can and should be fixed in the future;

● Can be used with Poudriere to build larger code scopes;

● We managed to build ~9K CheriABI packages this way.

https://bit.ly/3VcuZK5

QEMU-CHERI: BSD CheriABI user mode (2/2)
● Implemented in the qemu-cheri-bsd-user QEMU-CHERI branch;

● With the qemu-cheri-bsd-user cheribuild branch:
$ sudo ./cheribuild.py \

--allow-running-as-root \
--run-user-shell/jail \
--run-user-shell/jail-extra-args mount.devfs \
--run-user-shell/interpreter /libexec/ld-cheri-elf.so.1 \
run-user-shell-riscv64-purecap

22

https://bit.ly/3VcuZK5

CHERI LLVM for Morello: packages

23

Users can install CHERI LLVM for Morello on CheriBSD with:
$ sudo pkg64 install llvm-base

llvm-base installs default toolchain binutils for the native ABI.

llvm-base requires llvm that installs default LLVM toolchain binutils.

llvm requires llvm-morello that installs CHERI LLVM for Morello.

https://bit.ly/3VcuZK5

CHERI LLVM for Morello: clang flags (1/3)

24

-march= specifies the target ARM architecture (ISA):
● morello

○ Morello with behaviour specified by -mabi.
-mabi= specifies the target ABI:
● aapcs (default);

○ Legacy AArch64 ABI with possible annotated pointers as capabilities;
○ ARM Architecture Procedure Call Standard.

● purecap.
○ Pure-capability ABI with all pointers as capabilities.

Explicitly set -mabi to your case as its default value might be changed to
match the native ABI in the future.

https://bit.ly/3VcuZK5

CHERI LLVM for Morello: clang flags (2/3)

25

-Xclang -morello-vararg= specifies the varargs ABI:
● legacy (default on 22.05p1 but incompatible with 22.05p1)
● new (default in upstream and the next release)

○ For the hybrid ABI, pass varargs capabilities indirectly;
○ For CheriABI, pass varargs capabilities on the stack.

Explicitly set -Xclang -morello-vararg=new when using clang.
However, note that this flag might be removed in the future.

https://bit.ly/3VcuZK5

CHERI LLVM for Morello: clang flags (3/3)

26

ABI support is part of our research.

ABIs and compiler flags might change in the future,
especially when it comes to compartmentalisation.

For example, compartmentalisation might require to:
● Indicate what run-time linker a binary should use
● Indicate what libraries should a binary be linked with

to make use of compartmentalisation model.

https://bit.ly/3VcuZK5

CHERI LLVM for Morello: CC/CXX/CPP execution

27

For the native ABI (CheriABI in our case):
$ {cc,c++,cpp} -o helloworld-nativeabi helloworld.c

For CheriABI (the pure-capability ABI):
$ {clang,clang++,clang-cpp} -march=morello -mabi=purecap -Xclang -morello-vararg=new [...]

For the hybrid ABI:
$ {clang,clang++,clang-cpp} -march=morello -mabi=aapcs -Xclang -morello-vararg=new [...]

https://bit.ly/3VcuZK5

CHERI LLVM for Morello: printing addresses/capabilities

28

Format Meaning CheriABI: void * Hybrid ABI: void * Hybrid ABI: void * __capability

%p
Expect a pointer.

Print an address.
Prints an address. Prints an address.

Emits a warning:
expects a pointer.

Prints an address.

%#p
Expect a pointer.

Print a pointer.
Prints a capability. Prints an address.

Emits a warning:
expects a pointer.

Prints an address.

%lp
Expect a capability.

Print an address.
Prints an address.

Emits a warning:
expects a capability.

Disallowed.

Prints an address.

%#lp
Expect a capability.

Print a pointer.
Prints a capability.

Emits a warning:
expects a capability.

Disallowed.

Prints a capability.

https://github.com/CTSRD-CHERI/cheri-c-programming/wiki/Displaying-Capabilities

https://bit.ly/3VcuZK5

GDB-CHERI: disassembler

GDB-CHERI 8.3 cannot disassemble capability instructions:
(gdb) disassemble
Dump of assembler code for function main:
=> 0x0000000000110acc <+0>: .inst 0x028203ff ; undefined

GDB-CHERI 12 can disassemble capability instructions and
will be delivered as a package for CheriBSD 22.10.

29

https://bit.ly/3VcuZK5

CHERI LLVM for Morello: llvm-mc

30

Disassemble machine code:
$ echo "0xff 0x03 0x82 0x02" |

llvm-mc -mattr=+morello --disassemble

Construct an object file:
$ echo ".4byte 0x028203ff" |

llvm-mc -mattr=+morello -filetype=obj |
hexdump -C

https://bit.ly/3VcuZK5

CHERI LLVM for Morello: llvm-objdump

31

Disassemble a file:
$ objdump -D -j .text /libexec/ld-elf.so.1
$ llvm-objdump -D -j .text --mattr=+morello /libexec/ld-elf.so.1

Disassemble machine code from stdin:
$ echo ".4byte 0x028203ff" |

llvm-mc -mattr=+morello -filetype=obj |
llvm-objdump -D -j .text --mattr=+morello -

https://bit.ly/3VcuZK5

GDB-CHERI: shell disassemble

(gdb) disassemble
Dump of assembler code for function main:
=> 0x0000000000110acc <+0>: .inst 0x028203ff ; undefined
(...)

(gdb) x/4wx $pcc

(gdb) shell ~/examples/disassemble word1 word2 word3 word4

32

Author: Jessica Clarke, University of Cambridge

https://bit.ly/3VcuZK5

GDB-CHERI: capability information
GDB can decode capabilities and print their properties:
(gdb) info register x1 c1
x1 0xfffffff7feb8 281474976186040
c1 0xdc5d40007ec0feb80000fffffff7feb8 0xfffffff7feb8 [rwRW,0xfffffff7feb8-0xfffffff7fec0]

<address> [<permissions>,<base>-<top>] (<attr>)
top is upper bound plus 1

https://github.com/CTSRD-CHERI/cheri-c-programming/wiki/Displaying-Capabilities

33

https://bit.ly/3VcuZK5

GDB-CHERI: tag information
GDB-CHERI 8.3 does not print if a tag is valid for capability registers and
in-memory capabilities.

For capability registers, you can use the (fake) tag_map register:
(gdb) p/x $tag_map & (1 << 2)

For in-memory capabilities, use debug symbols and printf(3) (%#p).

GDB-CHERI 12 can print tag information for capability registers and
in-memory capabilities.

34

https://bit.ly/3VcuZK5

Porting issues at compile time: loss of provenance

35

compiler-warnings.c:3:3: warning: cast from provenance-free integer type to pointer type
will give pointer that can not be dereferenced [-Wcheri-capability-misuse]
 *(char *)x = 'A';
 ^

A developer must use an appropriate data type to indicate its intentions: what value is
stored in a variable. In this case: x should use a data type indicating it can store a pointer.

https://bit.ly/3VcuZK5

Porting issues at compile time: ambiguous provenance
compiler-warnings.c:13:44: warning: binary expression on capability types 'unsigned __intcap'
and 'uintptr_t' (aka 'unsigned __intcap');

it is not clear which should be used as the source of provenance; currently provenance is
inherited from the left-hand side [-Wcheri-provenance]

 newptr = (void *)(((uintptr_t)ptr1 & 0x3) | (uintptr_t)ptr2);
                    ~~~~~~~~~~~~~~~~~~~~~~~ ^ ~~~~~~~~~~~~~~~

CHERI capabilities can be created using exactly one other capability.
A developer must indicate in a complex expression which capability is a source capability to 
construct a new one.

36



https://bit.ly/3VcuZK5

Porting issues at compile time: underaligned capability

compiler-warnings.c:21:4: warning: alignment (8) of 'struct (unnamed struct at 
compiler-warnings.c:19:2)' is less than the required capability alignment (16) 
[-Wcheri-capability-misuse]
        } obj __attribute__((aligned(8)));

Each in-memory capability has an associated tag that corresponds to a 
capability-aligned address.
A developer must align data so that capabilities within them are aligned to a 
capability size.

37



https://bit.ly/3VcuZK5

Porting issues at run time: misaligned copying

38
https://github.com/CTSRD-CHERI/sqlite/commit/02fc6085e57f52f08148c985ce846b2490607dc8



https://bit.ly/3VcuZK5

Porting issues at run time: partial capability copying

39

https://github.com/CTSRD-CHERI/perl5/commit/84d6100a67c1775e73865990cddb00bc7e4975d6



https://bit.ly/3VcuZK5

Porting issues at run time: assumed pointer size

40
https://github.com/CTSRD-CHERI/perl5/commit/f964f8e74e0e0d4c82087da9c139e0c6f44869df



https://bit.ly/3VcuZK5

Porting issues at run time: incorrect {,u}intptr_t definition

41

https://github.com/CTSRD-CHERI/cheribsd-ports/commit/1c740aecda79044d5cbcafca15fce0f586fc66da



https://bit.ly/3VcuZK5 42

CheriBSD: release engineering

Graph template from: https://www.bryanbraun.com/2020/04/24/drawing-git-branching-diagrams/



https://bit.ly/3VcuZK5

CheriBSD: ABI version 

CheriBSD ABI version is defined in /usr/include/sys/param.h:
$ grep ‘define __CheriBSD_version’ /usr/include/sys/param.h

Check a CheriBSD ABI version of a binary with:
$ readelf -n /bin/sh

Package managers use the ABI version to select a package repository:
$ (pkg64c -vv; pkg64 -vv) | grep ^ABI
$ grep ABI /etc/pkg/CheriBSD.conf /etc/pkg64/CheriBSD.conf

43



https://bit.ly/3VcuZK5

CheriBSD: multi-ABI support 

44

Value \ ABI CheriABI Hybrid ABI

LOCALBASE / PREFIX /usr/local /usr/local64

CC / CXX / CPP cc / c++ / cpp clang / clang++ / clang-cpp

Run-time linker /libexec/ld-elf.so.1 /libexec/ld-elf64.so.1

Default library directories /lib:/usr/lib:/usr/local/lib /usr/lib64:/usr/local64/lib

Shared library search 
directories

LD_LIBRARY_PATH LD_64_LIBRARY_PATH

Package manager pkg64c pkg64



https://bit.ly/3VcuZK5

CheriBSD ports: CheriABI software

45

Users can build third-party software (with their patches) using CheriBSD ports.

You can use packages for dependencies if you do not want to build them yourself:

$ git clone https://github.com/CTSRD-CHERI/cheribsd-ports.git

$ cd cheribsd-ports/my/port

$ sudo make install USE_PACKAGE_DEPENDS=1 USE_PACKAGE_DEPENDS_REMOTE=1

$ sudo echo USE_PACKAGE_DEPENDS=1 >>/etc/make.conf
$ sudo echo USE_PACKAGE_DEPENDS_REMOTE=1 >>/etc/make.conf

Have a look at Mk/bsd.port.mk in CheriBSD ports for more useful flags/variables.



https://bit.ly/3VcuZK5

CheriBSD ports: hybrid ABI software

46

It is possible to build CheriBSD ports for the hybrid ABI.
You would have to set:
● ARCH=aarch64
● MACHINE_ARCH=aarch64
● LOCALBASE=/usr/local64
● CC=/usr/local64/bin/clang
and other variables when executing make.

FreeBSD ports and CheriBSD ports do not have any notion of an ABI.

You will find many ports broken when compiling for the hybrid ABI 
while running CheriABI world.



https://bit.ly/3VcuZK5

Poudriere: installation

Fetch our Poudriere fork:
$ git clone https://github.com/CTSRD-CHERI/poudriere

Install Poudriere:
$ cd poudriere; ./configure; make; sudo make install
$ sudo cp src/etc/poudriere.d/*make.conf.sample /usr/local/etc/poudriere.d/
$ sudo cp -a src/share/poudriere/toolchain /usr/local/share/poudriere/toolchain

Set FREEBSD_HOST to download.CheriBSD.org in: /usr/local/etc/poudriere.conf .

Install make.conf files:
$ sudo cp /usr/local/etc/poudriere.d/make.conf.sample /usr/local/etc/poudriere.d/make.conf
$ sudo cp /usr/local/etc/poudriere.d/cheriabi-make.conf.sample /usr/local/etc/poudriere.d/cheriabi-make.conf
$ sudo cp /usr/local/etc/poudriere.d/hybridabi-make.conf.sample /usr/local/etc/poudriere.d/hybridabi-make.conf

47



https://bit.ly/3VcuZK5

Poudriere: build hybrid ABI software
Create an aarch64 (hybrid ABI for Morello) jail with CheriBSD 22.05p1:

$ sudo poudriere jail -c -j aarch64-22_05p1 -a arm64.aarch64 -v 22.05p1

Register a CheriBSD ports directory as a ports tree:

$ sudo poudriere ports -c -p main -m null -M /usr/home/cheriuser/cheribsd-ports

Start the aarch64 jail with the CheriBSD ports directory mounted and make flags for the hybrid ABI:

$ sudo poudriere jail -s -j aarch64-22_05p1 -p main -z hybridabi

Find a jail without an IP address and use it to build ports mounted in /usr/ports:

$ jls

$ sudo jexec <jid>

48



https://bit.ly/3VcuZK5

Poudriere: build CheriABI software
Create an aarch64c (CheriABI for Morello) jail:
$ sudo poudriere jail -c -j aarch64c-22_05p1 -a arm64.aarch64c -v 22.05p1

CheriABI and hybrid ABI builds can use the same ports tree.

Start the aarch64c jail with the CheriBSD ports directory mounted and make flags for 
CheriABI:
$ sudo poudriere jail -s -j aarch64-22_05p1 -p main -z cheriabi

Find a jail without an IP address and use it to build ports mounted in /usr/ports:
$ jls
$ sudo jexec <jid>

49



https://bit.ly/3VcuZK5

Porting issues in CheriBSD ports

50

Affecting hybrid ABI builds:
● Missing -L${LOCALBASE}
● Hardcoded LOCALBASE / PATH in a port;

○ www/chromium
● Hardcoded LD_LIBRARY_PATH environment

variable name;
○ lang/python39

● Hardcoded CC / CXX / CPP paths;
● Hardcoded library paths.

○ /usr/lib/libz.so instead of /usr/lib64/libz.so

Affecting CheriABI builds:
● DOCS
● Missing Python

○ devel/autoconf, devel/meson, …
● #undef uintptr_t

#define uintptr_t long int
○ gnulib, e.g. in print/texinfo

● Major port upgrades
○ net/rsync



https://bit.ly/3VcuZK5

CheriBSD ports: CheriBSD patches

51

CheriBSD ports must be patched to:
● Compile for CheriABI
● Build with non-default values (e.g., LOCALBASE)
● Behave differently on CheriBSD (e.g., use pkg64 for the hybrid ABI)

Most patches are placed in files/cheribsd.patch in port directories.

cheribsd.patch is applied after all other patches from FreeBSD.

The goal is to minimise the number of CheriBSD-patches and instead 
upstream all changes to port-specific repositories and FreeBSD ports.



https://bit.ly/3VcuZK5

Part II: practice
Example vulnerabilities, CHERI restrictions.

52



https://bit.ly/3VcuZK5

Exercise: vulnerability

1. An example buffer overflow is in ~/exercises/.
2. Compile a program for the hybrid ABI.
3. Compile a program for CheriABI.

Consider adding -g for debug symbols.
4. Run programs for both ABIs.
5. For the CheriABI program:

a. Enter gdb with a core dump.
b. Analyse with gdb what instruction failed and why.
c. Read the code and try to fix the issue.

53



https://bit.ly/3VcuZK5

Exercise: CHERI restrictions (1/2)
1. A broken cat sits in ~/exercises/.
2. Compile a program for the hybrid ABI.
3. Compile a program for CheriABI.

Ignore compiler output for now.
4. Run for both ABIs: ./cat /etc/hostid
5. For the CheriABI program:

a. Read the code and find the place where the 
program exits.

b. Analyse with gdb why it fails.
Consider setting a breakpoint.

c. Look at compiler output and try to fix the issue.

54



https://bit.ly/3VcuZK5

Exercise: CHERI restrictions (2/2)

6. Run for both ABIs: ./cat -n /etc/hostid
7. For the CheriABI program:

a. Enter gdb with a core dump.
b. Analyse with gdb what instruction failed and why.
c. Look at the compiler output and try to fix the 

issue.

55



https://bit.ly/3VcuZK5

Part III: discussion
Porting plans, suggestions and other topics.

56



https://bit.ly/3VcuZK5

Discussion
1. What software would you like to see ported to CHERI,

e.g. a missing dependency for your project?

2. Are you currently porting any software to CheriBSD/Linux/Android 
CHERI/CHERI-RISC-V/Morello?

3. Would you like to see your ported software in CheriBSD ports?

4. How to organise software porting to CHERI so that it can be used 
across different targets, in Linux/Morello, CheriBSD/Morello, 
CheriBSD/CHERI-RISC-V?

Place for notes: https://bit.ly/3eclutT

57



https://bit.ly/3VcuZK5

R&D: CheriBSD features in fall 2022
Feature Status

GUI with GPU support
● Hybrid and pure-capability Morello GPU kernel drivers;
● Hybrid ABI and CheriABI compilation of user space;
● Increasing number of ports adapted to CheriABI (Qt 5, KDE, Wayland).

GDB 12 ● Disassembler for capability instructions;
● Register and in-memory capability tag validity information.

ZFS
● Experimental implementation;
● Allows to create a zpool for a single drive;
● Multiple disks and boot environments do not work yet.

3rd-party packages
● Upstream FreeBSD ports are merged every two weeks now;
● ~9K CHERI packages, ~23K non-CHERI packages, and expected to 

increase (e.g., with the GUI stack).

Linker-based 
compartmentalization

● Prototype runs some UNIX applications;
● Should be included as an optional run-time linker in the next release.

58



https://bit.ly/3VcuZK5

R&D: other projects in progress

Feature Status
Co-process 
compartmentalization

● Prototype runs some compartmentalized software (e.g., OpenSSL);
● API co-design.

Userlevel heap temporal 
safety

● Prototype runs SPEC benchmarks;
● Should be available as snapshots at download.CheriBSD.org;
● Stub syscalls and libc symbols should be included in the next release.

bhyve (Type-2) hypervisor
● Prototype boots pure-capability guest OS;
● More testing and review required.

59



https://bit.ly/3VcuZK5

CHERI ecosystem community

Talk to us on the CHERI-CPU Slack or mailing lists:

https://cheri-cpu.org/

(→ CHERI → CHERI-CPU Slack)

The Slack includes the channel #workshop-dsbd-22-10.

60



https://bit.ly/3VcuZK5

Thanks for your attention!

You can contact me at:

konrad.witaszczyk@cl.cam.ac.uk

Feedback welcome!

61


