CHERI
Capability Hardware Enhanced RISC Instructions

Robert N. M.Watson, Simon W. Moore, Peter Sewell, Peter G. Neumann

Hesham Almatary, Ricardo de Oliveira Almeida, Jonathan Anderson, Alasdair Armstrong, Rosie Baish, Peter Blandford-Baker,
John Baldwin, Hadrien Barrel, Thomas Bauereiss, Ruslan Bukin, Brian Campbell, David Chisnall, Jessica Clarke, Nirav Dave, Brooks Davis,
Lawrence Esswood, Nathaniel W. Filardo, Franz Fuchs, Dapeng Gao, Ivan Gomes-Ribeiro, Khilan Gudka, Brett Gutstein,
Angus Hammond, Graeme Jenkinson, Alexandre Joannou, Mark Johnston, Robert Kovacsics, Ben Laurie, A. Theo Markettos,

J. Edward Maste, Alfredo Mazzinghi, Alan Mujumdar, Prashanth Mundkur, Steven J. Murdoch, Edward Napierala, George Neville-Neil,
Kyndylan Nienhuis, Robert Norton-Wright, Philip Paeps, Lucian Paul-Trifu, Allison Randal, Ivan Ribeiro, Alex Richardson, Michael Roe,
Colin Rothwell, Peter Rugg, Hassen Saidi, Thomas Sewell, Stacey Son, lan Stark, Domagoj Stolfa, Andrew Turner, Munraj Vadera,
Konrad Witaszczyk, Jonathan Woodruff, Hongyan Xia,Vadim Zaliva, and Bjoern A. Zeeb

University of Cambridge and SRI International
Web Slide Deck — 12 October 2022

I8 UNIVERSITY OF
CAMBRIDGE

10-C-0237 (“CTSRD”), with additional support from FA8750-11-C-0249 (“MRC2”), HROOI I-18-C-0016 (“ECATS”), FA8650-18-C-7809 (“CIFV”), and HR00I122CO0I 10 (“ETC”) . The views, opinions, and/or findings

71X Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL), under contracts FA8750-
International contained in this article/presentation are those of the author(s)/presenter(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

N

S ALl
Ssl= ©

7
International
A WA

Approved for public release; distribution is unlimited.

This work was supported in part by the Innovate UK project Digital Security by Design (DSbD) Technology Platform
Prototype, 105694.

This work was also supported by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL), under contract FA8750-10-C-0237 (“CTSRD”), with additional support from FA8750-1 1-C-0249
(“MRC2”), HROOI -18-C-0016 (“ECATS”), FA8650-18-C-7809 (“CIFV”),and HRO01122CO0110 (“ETC”) as part of the
DARPA CRASH, MRC, and SSITH research programs.The views, opinions, and/or findings contained in this report are
those of the authors and should not be interpreted as representing the official views or policies of the Department of
Defense or the U.S. Government.

We further acknowledge the EPSRC REMS Programme Grant (EP/K008528/1), the ERC ELVER Advanced Grant (789108),
the Isaac Newton Trust, the UK Higher Education Innovation Fund (HEIF), Thales E-Security, Microsoft Research
Cambridge, Arm Limited, Google, Google DeepMind, HP Enterprise, and the Gates Cambridge Trust.

I8 UNIVERSITY OF
CAMBRIDGE

2

e
CHERI introduction

* CHERI is a new processor technology that
mitigates software security vulnerabilities

* Developed by the University of Cambridge and SRI
International starting in 2010, supported by DARPA

An early experimental FPGA-

* Arm collaboration from 2014 based CHER| tablet protorype
running e eri
i d
* Arm Morello CPU, SoC, and board announced 2019, o ications, Cambridge, 2013

with support from UKRI; shipping as of Jan 2022
* Today’s talk:

* What is CHERI, how does it work, and is it any good!?

High-performanc Arm
* What is a Morello board, and what can | do with one? Morello chip able to run a full
CHERI software stack,

* http://www.cheri-cpu.org/ Cambridge, 2022

B UNIVERSITY OF
&¥ CAMBRIDGE

http://www.cheri-cpu.org/

o
Introduction

* An introduction to capabilities and the CHERI architecture

* Ongoing CHERI research and transition

* To learn more about the CHERI architecture and prototypes:

http://www.cheri-cpu.org/

* Watson, et al. An Introduction to CHERI, UCAM-CL-TR-941, September 2019.

* Watson, et al. Capability Hardware Enhanced RISC Instructions: CHERI
Instruction-Set Architecture (Version 8), UCAM-CL-TR-951, October 2020.

* Watson, et al. CHERI C/C++ Programming Guide, UCAM-CL-TR-947, June 2020.

* Watson, et al. DSbD CHERI and Morello Capability Essential IP (Version |)
UCAM-CL-TR-953, December 2020.

B UNIVERSITY OF
» CAMBRIDGE

http://www.cheri-cpu.org/

-
Capability systems

* The capability system is a design pattern for how CPUs, languages,
OSes, ... can control access to resources

/r‘ cap cnu‘ten *; e, g -7 . ,

L B " » Capabilities are communicable, unforgeable tokens of authority

m * In capability-based systems, resources are reachable only via capabilities

* Capability systems limit the scope and spread of damage from
accidental or intentional software misbehavior

* They do this by making it natural and efficient to implement, in
software, two security design principles:

* The principle of least privilege dictates that software should run with the
minimum privileges to perform its tasks

The CAP computer project ran from * The principle of intentional use dictates that when software holds multiple
1970-1977 at the University of

Cambridge, led by R. Needham, M. privileges, it must explicitly select which to exercise
Wilkes, and D.Wheeler.

B H UNIVERSITY OF
P CAMBRIDGE

e
What is CHERI?

* CHERI is a processor architectural protection model
* Composes a capability-system model with hardware and software
* Adds new security primitives to Instruction-Set Architectures (ISAs)
* Implemented by microarchitectural extensions to the CPU and SoC

* Enables new security behavior in software

o PR ofe, o . ++ °
CHERI mitigates vulnerabilities in C/C++ Trusted Computing Bases ~ °" srocessor and SoC with CHERI

i i ' tensions, Arm, 2022.
* Hypervisors, operating systems, language runtimes, browsers, extensions, Arm

* Fine-grained memory protection deterministically closes many arbitrary code
execution attacks, and directly impedes common exploit-chain tools

* Scalable compartmentalization mitigates many vulnerability classes .. even unknown
future classes .. by extending the idea of software sandboxing

 CHERI-RISC-V research architecture and prototype FPGA implementations

3B UNIVERSITY OF

* Arm Morello industrial quality demonstrator CPU, SoC, board
(P CAMBRIDGE

-
Architectural primitives for software security

Software configures and uses capabilities to continuously
_/ \ enforce safety properties such as referential, spatial, and
temporal memory safety, as well as higher-level security
< . constructs such as compartment isolation

Applications

Systems software

Compilersand toolchain CHERI capabilities are an architectural primitive that

compilers, systems software, and applications use to constrain
Instruction-Set Architecture their own future execution

(ISA)
. . i The microarchitecture implements the capability data type
Microarchitecture | B : :
and tagged memory, enforcing invariants on their
manipulation and use such as capability bounds,
monotonicity, and provenance validity

3 B UNIVERSITY OF
P CAMBRIDGE

e
An Introduction to CHERI

* Watson, et al. An Introduction to CHERI,

Technical Report "Heei: UCAM-CL-TR-941, September 2019
& hninrinct * Architectural capabilities and the CHERI ISA

e CHERI microarchitecture

An Introduction to CHERI ° ISA for'mal modehng and PrOOf

Robert N. M. Watson, Simon W. Moore, . .

Petter Sewell, i’eter G. Neumann o SOftwa re construction W|th C H E RI
* Language and compiler extensions
September 2019 ¢ OS eXtenSionS

* Application-level adaptations

e NB: Predates public announcement of Morello
7 | UNIVERSITY OF
SRi 8 o
CAMBRIDGE

(Lack of) architectural least privilege

e C(Classical buffer-overflow attack

|. Buggy code overruns a buffer, overwrites return address
with attacker-provided value

2. Overwritten return address is loaded and jumped to,
allowing the attacker to manipulate control flow

* These privileges were not required by the C
language; why allow code the ability to:
* Write outside the target buffer?
* Corrupt or inject a code pointer?

* Execute data as code / re-use code!?
* Limiting privilege doesn’t fix bugs — but
does provide vulnerability mitigation

» Memory Management Units (MMUs) do not enable
efficient, fine-grained privilege reduction

Program

counter

Register file

Virtual
memor

55 UNIVERSITY OF
4P CAMBRIDGE

Application-level least privilege

Software compartmentalization decomposes software into
isolated compartments that are delegated limited rights

O @ Z Thu05:49 100% B Q =

ol T] = u ? A~ ®

Potential compartmentalization
boundaries matching reasonable
user expectations for least privilege
can be found in many user-facing apps.

= Memory Safety Crisis

ilities in 2012

ploitation Trends, Microsoft

E.g., a malicious email attachment
should not be able to gain access to
other attachments, messages, folders,
accounts, or the system as a whole.

esponding?

Able to mitigate not only unknown vulnerabilities, but also

i , o its [EH UNIVERSITY OF
as-yet undiscovered classes of vulnerabilities and exploits m;n CAMBRIDGE

Code-centred compartmentalisation

1. fetch @ 2. fetch 3. fetch 4. fetch \
/,’ /,’ ‘.‘“ /,’ ‘.‘“ /,’ BRlTS — e
: @ tandbo Y e o L HTTPauth | [HTTPOET)
E IN— /I; sandbox sandpbox _L',' san ‘f)‘X/,/
é sandbox HTTPS f " —
% sandbox sandbox i:
g SsL
g 5. fetch sandbox
5 * Potential decompositions occupy a compartmentalization space:
° 7 N * Points trade off security against performance, program complexit
Cssi 3
R * Increasing compartmentalization granularity better approximates
URL-specific sandbox . o o o
v B the principle of least privilege ...

* ... but MMU-based architectures do not scale to many processes:
* Poor spatial protection granularity

* Limited simultaneous-process scalability

= * Multi-address-space programming model 1 UNIVERSITY OF
R B
Pace Pros & CAMBRIDGE

HARDWARE-SOFTWARE
CO-DESIGN FOR CHERI

@8 UNIVERSITY OF
P CAMBRIDGE

Hardware-software-semantics co-design
W * University of Cambridge and SRI International from 2010 supported by DARPA

Architectural mitigation for C/C++ TCB vulnerabilities

* Tagged memory, new hardware capability data type

* Model hybridizes cleanly with contemporary hardware and software designs

* New hardware enables incremental software deployment

* Hardware-software-semantics co-design + concrete prototyping:

* CHERI abstract protection model; concrete ISA instantiations in 64-bit MIPS,
32/64-bit RISC-V, 64-bit Armv8-a (Morello)

* Formal ISA models, Qemu-CHERI, and multiple FPGA prototypes
* Formal proofs that ISA security properties are met, automatic testing

e CHERI Clang/LLVM/LLD, CheriBSD, C/C++-language applications

* Repeated iteration to improve {performance, security, compatibility, ..}

B UNIVERSITY OF
&¥ CAMBRIDGE

CHERI research and development timeline

Nov. 2012:
Sandboxed code on |
CheriBSD; live
FPGA-base Trojan
mitigation demo

Oct. 2011: Capability
microkernel runs

sandboxon FPGA | 2012: LLVM

Sep. 2014: MIT LL red-
team live Heartbleed
mitigation demo

multiple per-packet

Nov. 2014: tcpdump +

Sep. 2015: CheriABI
pure-capability POSIX
process environment

Apr. 2016: CHERI Microkernel
Workshop with ARM, Broadcom,

Sep. 2020: Arm to
release Morello
specification and
ISA-level
executable

generates domain switches demo Cambridge, ETH Zurich, GWU,
Sl 2010 CHERI code 322}@%‘3' HPE, Oracle, SRI F—— July 2019: Sep.2019: ISCFDSbD SepJ/Oct. 2020: SRV
ul. - - x : f
CTSRD Jun. 2012: Ccall Jan. 2014: Jun. 2015: CHERIRISCY CneriBsD experimental CHERI-ARM _ Cambridge, Arm,
e ais ti f 3 Jul. 2016: CHERI : .. temporal CPU, SoC, and board and Linaro open Jan. 2022: Arm ships
proposal CheriBSD capability exception CheriBSD + 128-bit LLVM ime linker, G microcontroller with oo safety announced: “Morello” i | Morell
bmitted context switching CHERI LLVM and CheriBSD run-time linker, CheriFreeRTOS 4 : source Morello experimental Morello
su \ / for dynamic linking \ software stack CPU, SoC, and board
= S——
l | 1 nu !] LTy 1 1 jh— 1 |] >
! 12011 12012 12014 \ 12015 12016 12017 12018 12019 -1 2020 ~_ ! 2021 !
\ 7 ' S
4 t. 2020:
i Nov. 2015: Jun. 2016: April 2017: ICCD 2018: Jun. 2019: Sep. 2019: oy
Jul. 2014: Merged CHERIISAv4- CHERIISAV5 - CHERI ISAV6 : CHERI ISAV7 - P CHERI ISAVS -
: i CheriRTOS, Introduction to
Oct: 2010: capabliiities and fat 128-bit mature Kernel compartments i : formal semantics, mature RISC-V,
i inters; ISA + -bit caps, par g 32-bit ISAs * CHERI temporal safety,
CTSRD project 2‘;& A 2 t fast domain- CHERI-128, tag reconstruction, CHERI concentrate, 32/64-bit 4
begins work A prototype switching code efficiency efficiency, other ISA architecture |EEE S&P 2020 i h;olr‘ello
Nov. 2011: May 2012: instructions improvements sketches POPL 2019: neutrality, temporal Cornucopia
FPGA tablet + Ca;ab“m os/MMU in April 2013: multi- Jun. 2015: 128-bit C pointer safety, RISC-V temporal Jun. 2020:
LAW 2010: CHERI-specific ISA + FPGA. FreeBSD FPGA CheriCloud “candidate 3" ISA + provenance memory safety CHERI C/C++
Capabilities microkernel 08 boots on prototype FPGA prototype ACM CCS 2015: IEEE Micro Journal: ICCD 2017: ASPLOS 2019: Programming Guide
revisited Program analysis, Fast ISA-supported Efficient tagged Pure-capability
compartmentalization domain switching memory UNIX userspace .
IEEE TCS 2019: IEEE S&P 2020 e
CHERI ISA modeling
RESOLVE 2012: ISCA 2014: ASPLOS 2015: |IEEE S&P 2015: PLDI 2016: ASPLOS 2017- Compfg_ssed MICRO 2019: and formal proof
Hybrid MMU/ Hybrid MMU/capability C-language Operating systems, CHERI C-language CHERI-NI ’ capabilities Temporal memory-
capability model model + architecture compatibility compartmentalization formal semantics safety feasibility study

Years |-2:Research platform, prototype architecture

Years 2-4:

Hybrid C/OS model, compartment model

Years 4-7: Efficiency, CheriABI/C/C++/linker, ARMv8-A

Years 8-12: RISC-V, temporal safety, proof,
/Arm Morello, Microsoft CHERI Ibex

UNIVERSITY OF
CAMBRIDGE

-
CHERI ISA refinement over 10 years

Version _|Description
RISC capability-system model w/64-bit MIPS
Technical Report s 20102012 ISAvI Capabiliy registers, tagged memory
Guarded manipulation of registers
O 7
Number 951 Extended tagging to capability registers B
BB UNIVERSITY OF 2012 ISAv2 Capability-aware exception handling &
qt': CAMBRIDGE Boots an MMU-based OS with CHERI support = .
Computer Laboratory Fat pointers + capabilities, compiler support = Q
2014 ISAv3 Instructions to optimize hybrid code +
Sealed capabilities, CCall/CReturn Z
ogs w 0O " -
Capablhty Hardware MMU-CHERI integration (TLB permissions) 0 g CZ
. E ISA support for compressed |28-bit capabilities =
Enhanced RISC Instructions: 2015 ISAv4 HW PP o o pre o P 3 - 2
CHERI Instruction-Set Architecture e g 8
Multicore instructions: full suite of LL/SC variants 3 o
1 . 0 - -
(Version 8) CHERI-128 compressed capability model 0 g
2016 ISAv5 Improved generated code efficiency a = 5
Initial in-kernel privilege limitations + =4 N ~
Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, . L + o o 2 >
Michael Roe, Hesham Almatary, Jonathan Anderson, John Baldwin, Mature kernel P”Vllege l'm'tétlons g S g B 8 o]
Graeme Barnes, David Chisnall, Jessica Clarke, Brooks Davis, Further generated code efficiency [a% ‘n - =2
Lee Eisen, Nathaniel Wesley Filardo, Richard Grisenthwaite, 2017 ISAv6 Architectural portability: CHERI-x86, CHERI-RISC-V sketches 9 8 g |3
Alexandre Joannou, Ben Laurie, A. Theodore Markettos, . . L. o = 1
Simon W. Moore, Steven]J. Murdoch, Kyndylan Nienhuis, Exceptlon-free domain transition E‘ g 2 .>
Robert Norton, Alexander Richardson, Peter Rugg, Peter Sewell, Architectural performance optimization for C++ applications = %R)7; OZ
Stacey Son, Hongyan Xia Microarchitectural side-channel resistance features o g' 23
Architecture-neutral CHERI protection model 2 py S X
All instruction pseudocode from a formal model _g i 'z a
2019 ISAv7 CHERI Concentrate capability compression Q '7:, g
R} Improved C-language support, dynamic linking, sentry capabilities e D 0
Qeoebes 2020 Elaborated CHERI-RISC-V ISA L3 |0
- 64-bit capabilities for 32-bit architectures 3 =<
‘C;‘,,L‘bl,’;‘;';‘;i,;‘_;‘g‘,f;‘,““ Accelerated tag operations for temporal memory safety 8 zé
United Kingdom - 1
phone +44'1222/763500 MMU temporal memory-safety assist; e.g., capability dirty bit Q‘ N
httpsitfunovncl.cam.ac.ukl Optimizations for sentry capabilities o
2020 ISAv8 CHERI-RISC-V privileged support, general maturity <
Further C-language semantics improvements

Watson, et al. Capability Hardware Enhanced RISC Instructions: CHERI
Instruction-Set Architecture (Version 8), UCAM-CL-TR-951, October 2020.

Arm Morello architecture
synchronization point

H UNIVERSITY OF
CAMBRIDGE

-
CHERI ISAv7 — June 2019

Technical Report O e
Number 927
EH UNIVERSITY OF
Q¥ CAMBRIDGE
Computer Laboratory
Capability Hardware

Enhanced RISC Instructions:
CHERI Instruction-Set Architecture
(Version 7)

Robert N. M. Watson, Peter G. Neumann,
Jonathan Woodruff, Michael Roe, Hesham Almatary,
Jonathan Anderson, John Baldwin, David Chisnall,
Brooks Davis, Nathaniel Wesley Filardo,
Alexandre Joannou, Ben Laurie, A. Theodore Markettos,
Simon W. Moore, Steven J. Murdoch,
Kyndylan Nienhuis, Robert Norton, Alex Richardson,
Peter Rugg, Peter Sewell, Stacey Son, Hongyan Xia

June 2019

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/lwww.cl.cam.ac.uk/

7
@Y

* First CHERI ISA spec release in two years

* Key features:

Architecture-neutral CHERI model

Elaborated CHERI-RISC-V ISA

CHERI Concentrate capability compression (IEEETC 2019)
Side-channel resistance features

Improved C-language compatibility, dynamic linkage,
performance optimizations (ASPLOS 2019)

Experimental features including 64-bit capabilities for 32-bit
architectures (ICCD 2018), temporal safety
(IEEE Micro 2019, IEEE SSP 2020)

All instruction pseudocode derived from Sail formal models,
formally proven properties (IEEE SSP 2020)

T UNIVERSITY OF
CAMBRIDGE

16

-
CHERI ISAv8 (October 2020)

. - * 590 pages specifying CHERI-MIPS, CHERI-RISC-V
Technical Report R

Number 951 ot Key Changes

[UNIVERSITY OF
¥ CAMBRIDGE

Compuer Laboroy * Capability compression is now part of the abstract
protection model

Capability Hardware
Enhanced RISC Instructions:

CHERI Instructon-Set Architectur * Both 32-bit and 64-bit architectural address sizes
(Wersion 8 are supported

Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, . .
Michael Roe, Hesham Almatary, han And , John Baldwin,
e e o e e o D™ * Various experimental features are now mature:
Lee Eisen, Nathaniel Wesley Filardo, Richard Grisenthwaite, oo o
Alexandre Joannou, Ben Laurie, A. Theodore Markettos, Se ntry Capab I I Itl es ’ C H E RI - RI S C -V

Simon W. Moore, Steven J. Murdoch, Kyndylan Nienhuis,
Robert Norton, Alexander Richardson, Peter Rugg, Peter Sewell,

Stacey Son, Hongyan Xia

* New MMU temporal memory-safety mechanisms
based on load-side barrier model

October 2020

e CHERI microarchitecture chapter

c
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/howne.cl.cam.ac.uk/

* Synchronized with Arm Morello

7
17
@Y

I8 UNIVERSITY OF
CAMBRIDGE

-
CHERI ISAV9 (2022 Q4?)

* Increasing CHERI-RISC-V maturity
* Control-flow improvements to reduce function call bloat
* Compressed instruction support
* Shift away from exception generation to tag clearing
* Sundry clarifications
* CHERI-MIPS removed
* Substantially more detailed CHERI-x86 sketch

 Further information on CHERI microarchitecture

@8 UNIVERSITY OF
P CAMBRIDGE

18

CHERI PROTECTION MODEL
AND ARCHITECTURE

@8 UNIVERSITY OF
P CAMBRIDGE

Architectural primitives for software security

Software configures and uses capabilities to continuously n
Applications / \ enforce safety properties such as referential, spatial, and
temporal memory safety, as well as higher-level security
< constructs such as compartment isolation
Systems software BN
. . N
Solipicisnd s CHERI capabilities are an architectural primitive that
compilers, systems software, and applications use to constrain

Instruction-Set Architecture their own future execution

(ISA) N

| L

The microarchitecture implements the capability data type
and tagged memory, enforcing invariants on their
manipulation and use such as capability bounds,

monotonicity, and provenance validity

Microarchitecture

-
CHERI design goals and approach

* De-conflate memory virtualization and protection
* Memory Management Units (MMUs) protect by location (address)
* CHERI protects existing references (pointers) to code, data, objects

* Reusing existing pointer indirection avoids adding new architectural
table lookups

* Architectural mechanism that enforces software policies

* Language-based properties — e.g., referential, spatial, and temporal
integrity (C/C++ compiler, linkers, OS model, runtime, ...)

* New software abstractions — e.g., software compartmentalization

(confined objects for in-address-space isolation, ...)

B UNIVERSITY OF
P CAMBRIDGE

-
Pointers today

o
£ { virtual address (64 bits
o

64-bit

* Implemented as integer virtual addresses (VAs)

* (Usually) point into allocations, mappings
* Derived from other pointers via integer arithmetic
* Dereferenced via jump, load, store Allocation

* No integrity protection — can be injected/corrupted

* Arithmetic errors — out-of-bounds leaks/overwrites

* Inappropriate use — executable data, format strings \;i;tual
address
» Attacks on data and code pointers are highly effective, often space

achieving arbitrary code execution
2 5 UNIVERSITY OF

&9 CAMBRIDGE

CHERI enforces protection semantics for pointers

- A\ Globals | | /\ Stack |

* Integrity and provenance validity ensure that valid pointers are derived from other valid pointers via valid
transformations; invalid pointers cannot be used

Control flow

Integrity and

. Permissions
provenance validity

Bounds

* Valid pointers, once removed, cannot be reintroduced solely unless rederived from other valid pointers

* E.g, Received network data cannot be interpreted as a code/data pointer — even previously leaked pointers
* Bounds prevent pointers from being manipulated to access the wrong object

* Bounds can be minimized by software — e.g., stack allocator, heap allocator, linker
* Monotonicity prevents pointer privilege escalation — e.g., broadening bounds
* Permissions limit unintended use of pointers; e.g.,VWAX for pointers

* These primitives not only allow us to implement strong spatial and temporal memory protection, but
also higher-level policies such as scalable software compartmentalization =8 UNIVERSITY OF

23 4P CAMBRIDGE

| -bit
tag

128-bit
capability

A

|

permissions

CHERI 128-bit capabilities

Virtual address space

Memory
. allocation

otype Bounds compressed relative to address C

|

. lowerbound |
64-bit virtual address (

Capabilities extend integer memory addresses

Metadata (bounds, permissions, ...) control how they may be used

Guarded manipulation controls how capabilities may be manipulated;
e.g., provenance validity and monotonicity

Tags protect capability integrity/derivation in registers + memory

58 UNIVERSITY OF
CAMBRIDGE

24

-
CHERI 128-bit capabilities

* CHERI capabilities are a new architectural data type extending integer addresses

* Capability metadata (bounds, permissions, ...) control how a capability may be used

* Capability tags protect the integrity + safe derivation of capabilities in registers and memory

8]
Fe L
% — Urpezelaned |
E E permissions otype Bounds compressed relative to address C Pointer address Memory
Cb 9 : Y al ZT;ion
a % 64-bit virtual address } "
v (-L—ovte::)c:r:--
Capabili;cy width Virtual address space
GPRs extended to 129 bits — - :
$pc $pcc v
d d -
$ra $c31 v
- |-bit tags
$al $c4 | - Capability Y. added to
$a0 $c3 v DRAM
Capability-extended integer registers Tagged physical memory B UNIVERSITY OF
oo CAMBRIDGE

S

27
Ssl= ©

CHERI 128-bit capabilities L ‘
i

Bounds compressed
relative to address

Virtual address (64 bits

| -bit
tag

permissions otype

| 28-bit
capability
A

S—

CHERI capabilities extend pointers with:

e Tags protect capabilities in registers and memory

. Dereferencing an untagged capability throws an exception

. . - Allocation
. In-memory overwrite automatically clears capability tag ————————.

Bounds limit range of address space accessible via pointer

* Floating-point compressed 64-bit lower and upper bounds

» Strengthens larger allocation alignment requirements
Virtual

address
* Permissions limit operations — e.g., load, store, fetch space

* Out-of-bounds pointer support essential to C-language compatibility

S/lgtl. Sealing: immutable, non-dereferenceable capal)zi(!ities — used for non-monotonic transitiongs-

International
NS

S
Ssl= ©

I8 UNIVERSITY OF
CAMBRIDGE

Merged capability register file + tagged memory
(as found in Morello and CHERI-RISC-V; MIPS used a split register file)

Capability width
I

$pc $pcc v
$ra $c31 v R d d |-
|f|:::| | DDC Iv|
Capabilit
$al $c4 h Control and P -
§a0 $c3 v status registers
(CSRs)

General-purpose register file (GPRs) Physical memory

* 64-bit general-purpose registers (GPRs) are extended with 64 bits of metadata and a |-bit validity tag
* Program counter (PC) is extended to be the program-counter capability ($PCC)

* Default data capability ($DDC) constrains legacy integer-relative ISA load and store instructions
 Tagged memory protects capability-sized and -aligned words in DRAM by adding a I-bit validity tag

* Various system mechanisms are extended (e.g., capability-instruction enable control register, new TLB/PTE
permission bits, exception code extensions, saved exception stack pointers and vectors become capabilities, etc.)
38 UNIVERSITY OF
CAMBRIDGE

7N

SR

International
NS

S AL L
Sl

e
CHERI-RISC-V formal ISA model

* CHERI RISC-V ISA model extends RISC-V formal ISA specification, in Sail
* Sail RISC-V ISA specification developed by UCam + SRl
* Selected as official RISC-V spec by the Foundation

 Sail is a custom first-order imperative language for expressing ISA specifications, usable by
engineers but with static type checking of bitvector lengths etc.

* The Sail spec is inlined in versions of the unprivileged and privileged RISC-V manuals
 Sail auto-generates a C emulator, theorem-prover definitions,and SMT definitions
* Machinery for configuring model WRT YAML from compliance group

* Readable, precise definition of ISA behavior, usable as test oracle for testing hardware
against and for software bring-up, and providing prover definitions if you want more
rigorous reasoning

* Paper on earlier CHERI-MIPS L3 modelling and proof work at IEEE SSP 2020

* Most recently completed monotonicity proofs for the Arm Morello architecture

28 UNIVERSITY OF

% CAMBRIDGE

ISA formal modelling and verification

Rigorous engineering for hardware security: ESOP 2022
Formal modelling and pro
and implementj

Verified Security for the Morello

Kyndylan Nienhuis*, Alexandre Joannou*, Thomas Bauer Capablllty—enhanced Prototype Arm ArChlteCture
Matthew Naylor*, Robert M. Norton*, Simon W. Moore*,
and Peter §

*University of Cambridge TARM Limited t

Thomas Bauereiss!™®, Brian Campbell?®, Thomas Sewell'!®,
Alasdair Armstrong!, Lawrence Esswood!, Ian Stark?, Graeme Barnes?,

IEEE SSP 2020 Robert N. M. Watson', and Peter Sewell!

! University of Cambridge, Cambridge, UK
first.lastAcl <cam.ac uk

* Formal ISA models CHERI-MIPS, CHERI-RISC-V, and Morello

* Formal proof of compartmentalization for CHERI-MIPS, Morello
@B UNIVERSITY OF
CAMBRIDGE

CHERI MICROARCHITECTURE AND
PROTOTYPES

@8 UNIVERSITY OF
P CAMBRIDGE

Architectural primitives for software security

\
Software configures and uses capabilities to continuously
Applications / \ enforce safety properties such as referential, spatial, and
temporal memory safety, as well as higher-level security
< constructs such as compartment isolation

Systems software s\ -
C il d Ichai .

ompilers and toolchain CHERI capabilities are an architectural primitive that

compilers, systems software, and applications use to constrain

their own future execution

Instruction-Set Architecture

(ISA) /

The microarchitecture implements the capability data type
and tagged memory, enforcing invariants on their
manipulation and use such as capability bounds,
monotonicity, and provenance validity

Microarchitecture

-
CHERI hardware prototypes

* Oiriginal research based on our home-grown pipelined BERI MIPS core (CHERI-MIPS)

* We have transitioned our CHERI research to extended versions of open-source off-
the-shelf BSV RISC-V cores (CHERI-RISC-V)

* CHERI-Piccolo 3-stage pipeline, 32-bit, no MMU
* CHERI-Flute 5-stage pipeline, 32- or 64-bit, MMU
* CHERI-Toooba Superscalar, 64-bit, MMU

* Novel microarchitectural contributions include capability compression model,
tagged memory implementation techniques

* All of our CPU designs are open source
* We also provide a Qemu full-system and userlevel simulators for CHERI-RISC-V
* Arm Morello and Microsoft CHERI Ibex (later slides)

B UNIVERSITY OF
» CAMBRIDGE

32

Example microarchitecture: CHERI-Piccolo microcontroller
I = tag storage
capability arithmetic Changes to the Piccolo core (RISC-V 3-stage pipeline):
e capability arithmetic
* capability load/store operations with bounds checking
CHERI-Piccolo core capability exceptions * extended exception model
* PC becomes a capability (PCC)
» default data capability (DDC)

* new control/status registers

A ISR * merged integer & capability register file
capability registers

capability load/store

new registers:
PCC, DDC, CSRs

Memory subsystem:

e AXl user-field added to transport tag bits & data width
L1 I-cache LI D-cache doubled

e caches extended to include tags

DRAM controller Tag Controller DRAM cha nges:
* New tag controller uses a hierarchical tag table to
off-chip DRAM efficiently store tag bits backed by top of DRAM

33 mlm UNIVERSITY OF

P CAMBRIDGE

Microarchitectural tag storage for off-the-shelf DRAM

Efficient Tagged Memory

Alexandre Joannou™®, Jonathan Woodruff*, Robert Kovacsics®, Simon W. Moore*, Alex Bradbury*, Hongyan Xia*,
Robert N. M. Watson*, David Chisnall*, Michael Roe*, Brooks Davis’, Edward Napierala®,
John BaldwinT, Khilan Gudka®*, Peter G. NeumannT, Alfredo Mazzinghi*,
Alex Richardson*, Stacey Sonf, A. Theodore Markettos*

*Computer Laboratory, University of Cambridge, Cambridge, UK TSRI International, Menlo Park, CA, USA
Website: www.cl.cam.ac.uk/research/comparch Website: www.sri.com

Abstract—We characterize the cache behavior of an in-memory patterns sufficiently to inform implementations or further
tag table and demonstrate that an optimized implementation optimizations.
can typically achieve a near-zero memory traffic overhead. Both For simplicity, we identify three points in the tagging design

industry and academia have repeatedly demonstrated tagged . . . =4 NI 1P N
p~wory asa_key mechanism to e~ “le enforce=ent of pe=er- ~SPace: N0 tag, a single-bit+ag (SB™\ or a p~dti-b’ tag /" BT))
T g “luds s v ¥ T < @t v’ ¥ A b

* Published in the IEEE International Conference on Computer Design
(ICCD) 2017

* Shift from flat to hierarchal tag table to hold tags in DRAM
* Exploit inconsistent density of tags in physical memory

<o * Reduces DRAM access overhead for a variety of workloads gm universITY OF
Srtl CAMBRIDGE

NN 4

-
Compressing capability bounds

CHERI Concentrate:
Practical Compressed Capabilities

Jonathan Woodruff, Alexandre Joannou, Hongyan Xia, Anthony Fox, Robert Norton, Thomas Bauereiss,
David Chisnall, Brooks Davis, Khilan Gudka, Nathaniel W. Filardo, A. Theodore Markettos, Michael Roe,
Peter G. Neumann, Robert N. M. Watson, Simon W. Moore

Abstract—We present CHERI Concentrate, a new fat-pointer compression scheme applied to CHERI, the most developed
capability-pointer system at present. Capability fat pointers are a primary candidate to enforce fine-grained and non-bypassable
security properties in future computer systems, although increased pointer size can severely affect performance. Thus, several
proposals for capability compression have been suggested elsewhere that do not support legacy instruction sets, ignore features
critical to the existing software base, and also introduce design inefficiencies to RISC-style processor pipelines. CHERI Concentrate
improves on the state-of-the-art region-encoding efficiency, solves important pipeline problems, and eases semantic restrictions of
comprs ~ad encodi~ allowing,it* “tect aful gy softw star” We pree~ “the fire* “qtita¥ analve comr” tapr ty
+ e .

* Published in IEEE Transactions on Computers, April 2019
* Efficient compressed capabilities for 32-bit and 64-bit processors
* Reduces size of capabilities from 4x machine word size to 2x
* Large reduction in cache overheads
* Efficiently fits into a RISC pipeline with negligible impact on clock frequency

* Maintains all security and software compatibility properties E UNIVERSITY OF

CAMBRIDGE

HOW SOFTWARE WORKS ON CHERI

5 UNIVERSITY OF
4P CAMBRIDGE

Architectural primitives for software security

\
Software configures and uses capabilities to continuously
Applications / \ enforce safety properties such as referential, spatial, and
temporal memory safety, as well as higher-level security
< constructs such as compartment isolation
Systems software

C il d Ichai .

ompilers and toolchain CHERI capabilities are an architectural primitive that

compilers, systems software, and applications use to constrain

their own future execution

Instruction-Set Architecture

(ISA) /

L

The microarchitecture implements the capability data type

and tagged memory, enforcing invariants on their

manipulation and use such as capability bounds,
monotonicity, and provenance validity

Microarchitecture

&% CAMBRIDGE

-
Two key applications of the CHERI primitives

. Efficient, fine-grained memory protection for C/C++
* Strong source-level compatibility, but requires recompilation
* Deterministic and secret-free referential, spatial, and temporal memory safety
* Retrospective studies estimate %3 of memory-safety vulnerabilities mitigated
* Generally modest overhead (0%-5%, some pointer-dense workloads higher)
2. Scalable software compartmentalization
* Multiple software operational models from objects to processes
* Increases exploit chain length: Attackers must find and exploit more vulnerabilities

* Orders-of-magnitude performance improvement over MMU-based techniques
(<90% reduction in IPC overhead in early FPGA-based benchmarks)

B UNIVERSITY OF
P CAMBRIDGE

-
What are CHERI’s implications for software!

* Efficient fine-grained architectural memory protection enforces:
Provenance validity: Q: Where do pointers come from!?
Integrity: Q: How do pointers move in practice?
Bounds, permissions: Q: What rights should pointers carry?
Monotonicity: Q: Can real software play by these rules?

* Scalable fine-grained software compartmentalization

Q: Can we construct isolation and controlled communication
using integrity, provenance, bounds, permissions, and monotonicity!?

Q: Can sealed capabilities, controlled non-monotonicity, and

capability-based sharing enable safe, efficient compartmentalization?

B UNIVERSITY OF
P CAMBRIDGE

CHERI C/C++ MEMORY PROTECTION

5 UNIVERSITY OF
4P CAMBRIDGE

-
Memory-safe CHERI C/C++

ISSN 1476-2986

Technical Rebort * Capabilities used to implement all pointers

Number 949

Implied — Control-flow pointers, stack pointers, GOTs, PLTs, ...

%ﬂ UNIVERSITY OF
¥ CAMBRIDGE

Computer Laboratory Explicit — All C/C++-level pointers and references

* Strong referential, spatial, and heap temporal safety

Complete spatial safety for C and . .
Ce++ using CHERI capabilities * Minor changes to C/C++ semantics; e.g.,

Alexander Richardson * All pointers must have well defined single provenance
* Increased pointer size and alignment
* Care required with integer-pointer casts and types

June 2020

¢ Memory-copy implementations may need to preserve tags

L * Watson, et al. CHERI C/C++ Programming Guide,

United Kingdom

e UCAM-CL-TR-947, June 2020

7
41
@Y

I8 UNIVERSITY OF
CAMBRIDGE

Memory protection for the language and the language runtime

* Capabilities are refined by the kernel, run-time linker,
Language-level memory safety compiler-generated code, heap allocator, ...

: i e Protection mechanisms:
Pointers to heap Pointers to

allocations Function * Referential memory safety
pointers Pointers to .
Pointers to stack memory mappings

allocations Pointers to TLS Pointers to sub-

variables objects * Applied automatically at two levels:

— T~ T~ "+ Language-level pointers point explicitly at stack and

heap allocations, global variables, ...

global variables

Spatial memory safety + privilege minimization

* Temporal memory safety

Vararg array
C?OT pointers PLT entry * Sub-language pointers used to implement control flow,
Return Pointers pointers linkage, etc.
addresses C++v-table EF.aux arg * Sub-language protection mitigates bugs in the language
Stack pointers int runtime and generated code, as well as attacks that cannot be
pointers pointers mitigated by higher-level memory safety
Sub-language memory safety * (e.g., union type confusion)

58 UNIVERSITY OF
CAMBRIDGE

42

-
CHERI-based pure-capability process memory

Memory
Code Stack
Thread P < EI \d
register Rl 4 <]
file] I 4 RN p N (P >
oo L | i \ R Implied
L~ ! ! ',' captable N ,,' Heap pointer
: : : ‘/ " ulaee
]
i Globals /
[N —_—
.\.‘;‘ T~ P Explicit
! pointer
L NULL

* Capabilities are substituted for integer addresses throughout the address space

* Bounds and permissions are minimized by software including the kernel, run-time
linker, memory allocator, and compiler-generated code

* Hardware permits fetch, load, and store only through granted capabilities

* Tags ensure integrity and provenance Vallglt)' of all pointers "B UNIVERSITY OF

CAMBRIDGE

N

S ALl
Ssl= ©

-
RISC-V vs. CHERI-RISC-V generated code

get_unix_time_riscv: get_unix_time_cheririscv:
addi sp, sp, -32 cincoffset csp, csp, -32
struct timezone tz; sd ra, 24(sp) csc cra, 16(csp)
addi a0, sp, 8 cincoffset cal0, csp, O
.LBBO_1: csetbounds ca0O, caO, 16

ebats i iRl inies el auipc al, %pcrel hi(tz) .LBBO_1:

{ . addi al, al, %pcrel lo(.LBBO 1) auipcc cal, %captab_pcrel hi(tz)
struct timeval tv; call gettimeofday clccal, %pcrel lo(.LBBO_1) (cal)
gettimeofday (8tv, &tz); (expands to auipc, possibly cld, cjalr) .LBBO_2: ' .
return tv.tv_sec; 1d a0, 8(sp) auipcc ca2, %captab_pcrel hi(gettimeofday)

} 1d ra, 24(sp) clcca2, 3%pcrel lo(.LBBO_2) (ca2)

addi sp, sp, 32 cjalr cra, ca2

ret cld a0, O(csp)
clc cra, 16(csp)
cincoffset c¢sp, csp, 32

* The general code structure is unchanged except that:

cret
I. Adjust stack address/capability

 The integer stack pointer becomes a capability stack pointer 2. save rewurn addvess/capability

3. Create address/capability to local ‘tv’

* The pointer to a local stack allocation becomes capability 4. Generate address/capability to global ‘tz’
* Compiler-specified bounds are set on the local variable pointer before use | 3. call gettimeofday()
-
. . .l . 6. Load return value from ‘tv’
* The loaded jump target is a capability rather than an integer address 7. Load return address/capability
a 8. Restore stack address/capability
“ 9. Return

-
CheriBSD:A pure-capability operating system

* Complete memory- and pointer-safe FreeBSD C/C++ kernel + userspace
* OS kernel: Core OS kernel, filesystems, networking, device drivers, ...
* System libraries: crt/csu, ld-elf.so, libc, zlib, libxml, libssl, ...
* System tools and daemons: echo, sh, Is, openssl, ssh, sshdq, ...
* Applications: PostgreSQL, nginx, WebKit (C++)

* Valid provenance, minimized privilege for pointers, implied VAs
* Userspace capabilities originate in kernel-provided roots
* Compiler, allocators, run-time linker, etc., refine bounds and perms

* Trading off privilege minimization, monotonicity, APl conformance

* Typically in memory management — realloc(), mmap() + mprotec

WE UNIVERSITY OF
&¥ CAMBRIDGE

-
CHERI C compatibility: CheriBSD Code Changes

Files modified
flles total cha nged

Kernel 11,861 6,095k 6,961 0.18
e Core 7,867 705 9.0 3,195k 5,787 0.18
* Drivers 3,994 191 4.8 2,900k 1,174 0.04
Userspace 16,968 649 3.8 5,393k 2,149 0.04
* Runtimes (excl. libc++) 1,493 233 15.6 207k 989 0.48
* libc++ 227 17 7.5 114k 133 0.12
* Programs and libraries 15,475 416 2.7 5,186k 1,160 0.02
Notes:

= Numbers from cloc counting modified files and lines for identifiable C, C++, and assembly files

= Kernel includes changes to be a hybrid program and most changes to be a pure-capability program
* Also includes most of support for CHERI-MIPS, CHERI-RISC-V, Morello
* Countincludes partial support for 32 and 64-bit FreeBSD and Linux binaries.
* 67 files and 25k LoC added to core in addition to modifications

* Most generated code excluded, some existing code could likely be generated

58 UNIVERSITY OF
4P CAMBRIDGE

-
C/C++ compatibility: WebKit - |]SC Code Changes

Files % Files
modified total changed

JSC-C 3368 550k 2217 0.40
JSC-JIT 3368 339 10.1 550k 7581 1.38
Notes:

= JSC-Cis a port of the C-language JavaScriptCore interpreter backend
= JSC-JIT includes support for a meta-assembly language interpreter and JIT compiler
= Runs SunSpider JavaScript benchmarks to completion
= Language runtimes represent worst-case in compatibility for CHERI
e Porting assembly interpreter and JIT compiler requires targeting new encodings
= Changes reported here did not target diff minimization

* Prioritized debugging and multiple configurations (including integer offsets into bounded JS heap) for performance and
security evaluation

* Some changes may not be required with modern CHERI compiler

mgm UNIVERSITY OF
4P CAMBRIDGE

-
Pure-capability UNIX process environment

CheriABI: Enforcing Valid Pointer Provenance and
Minimizing Pointer Privilege in the POSIX C
Run-time Environment

Brooks Davis” Robert N. M. Watson T Alexander Richardson
brooks.davis@sri.com robert.watson@cl.cam.ac.uk alexander.richardson@cl.cam.ac.uk
Peter G. Neumann® Simon W. Moore John Baldwin¥

peter.neumann@sri.com simon.moore@cl.cam.ac.uk john@araratriver.co
David Chisnalls Jese*ca M larkel N-hanj*” Vesls Sile o1
J o !

* Received best paper award at ASPLOS, April 2019

* Complete pure-capability UNIX OS userspace with spatial memory safety
* Usable for daily development tasks
* Almost vast majority of FreeBSD tests pass
* Management interfaces (e.g. ioctl), debugging, etc., work

<5 * Large, real-world applications have been ported: PostgreSQL and WebKit g

International
NS

S ALl
Ssl= ©

58 UNIVERSITY OF
CAMBRIDGE

Heap temporal memory safety

Cornucopia: Temporal Safety for CHERI Heaps

Nathaniel Wesley Filardo; Brett F. Gutstein] Jonathan Woodruff,;” Sam Ainsworth] Lucian Paul-Trifu;
Brooks Davis:r Hongyan Xia; Edward Tomasz Napierala; Alexander Richardson; John Baldwin?
David Chisnallf Jessica Clarke* Khilan Gudka* Alexandre Joannou* A. Theodore Markettos*
Alfredo Mazzinghi; Robert M. Norton; Michael Roe; Peter Sewell; Stacey Son;

Timothy M. Jones; Simon W. Moore; Peter G. Neumann! Robert N. M. Watson*
*University of Cambridge, Cambridge, UK; TSRI International, Menlo Park, CA, USA;

§Microsoft Research, Cambridge, UK; fArarat River Consulting, Walnut Creek, CA, USA

Abstract—Use-after-free violations of temporal memory safety While use-after-free heap vulnerabilities are ultimately due
continue to plague software systems, underpinning many high- o application misuse of the malloc() and free() interface,
imract exploits. The CHERI capshility system. shows great omplet~ <anitiza* of * vast” ¢y @ de’ e,/ ‘wen

s i tawi wd Cp” e ws /N

* |EEE Symposium on Security and Privacy (“Oakland”), May 2020

* Hardware and software support for deterministic temporal memory
safety for C/C++-language heaps using capability revocation

* Hardware enables fast tag searching using MMU-assisted tracking of

tagged values, tag controller and cache
UNIVERSITY OF

% CAMBRIDGE

MSRC: Security analysis of CHERI C/C++

SECURITY ANALYSIS OF CHERI ISA

Nicolas Joly, Saif ElSherei, Saar Amar — Microsoft Security Response Center (MSRC)

INTRODUCTION AND SCOPE

The CHERI ISA extension provides memory-protection features which allow historically memory-unsafe programming languages such
as Cand C++ to be adapted to provide strong, compatible, and efficient protection against many currently widely exploited
vulnerabilities.

CHERI requires addressing memory through unforgeable, bounded references called capabilities. These capabilities are 128-bit
extensions of traditional 64-bit pointers which embed protection metadata for how the pointer can be dereferenced. A separate tag
table is maintained to distinguish each capability word of physical memory from non-capability data to enforce unforgeability.

In this document, we evaluate attacks against the pure-capability mode of CHERI since non-capability code in CHERI's hybrid mode
could be attacked as-is today. The CHERI system assessed for this research is the CheriBSD operating system running under QEMU as
it is the largest CHERI adapted software available today.

CHERI also provides hardware features for application compartmentalization 115. In this document, we will review only the memory
safety guarantees, and show concrete examples of exploitation primitives and techniques for various classes of vulnerabilities.

SUMMARY

CHERI’s ISA is not yet stabilized. We reviewed the current revision 7, but some of the protections such as executable pointer sealing
is still experimental and likely subject to future change.

The CHERI protections applied to a codebase are also highly dependent on compiler configuration, with stricter configurations
requiring more refactoring and qualification testing (highly security-critical code can opt into more guarantees), with the strict sub-
allocation bounds behavior being the most likely high friction to enable. Examples of the protections that can be configured include:

o Pure-capability vs hybrid mode

e Chosen heap allocator’s resilience

e Sub-allocation bounds compilation flag

e Linkage model (PC-relative, PLT, and per-function .captable)
e Extensions for additional protections on execute capabilities
e Extensions for temporal safety

However, even with enabling all the strictest protections, it is possible that the cost of making existing code CHERI compatible will be
less than the cost of rewriting the code in a memory safe language, though this remains to be demonstrated.

We conservatively assessed the percentage of vulnerabilities reported to the Microsoft Security Response Center (MSRC) in 2019
and found that approximately 31% would no longer pose a risk to customers and therefore would not require addressing through a
security update on a CHERI system based on the default configuration of the CheriBSD operating system. If we also assume that
automatic initialization of stack variables (InitAll) and of heap allocations (e.g. pool zeroing) is present, the total number of
vulnerabilities deterministically mitigated exceeds 43%. With additional features such as Cornucopia that help prevent temporal
safety issues such as use after free, and assuming that it would cover 80% of all the UAFs, the number of deterministically mitigated
vulnerabilities would be at least 67%. There is additional work that needs to be done to protect the stack and add fined grained CFI,
but this combination means CHERI looks very promising in its early stages.

1|Page
Microsoft Security Response Center (MSRC)

tudy analyzed all 2019 critical security vulnerabilities

Metric:“Poses a risk to customers — requires a
software update”

log post and 42-page report

Concrete vulnerability analysis for spatial safety
Abstract analysis of the impact of temporal safety

Red teaming of specific artifacts to build CHERI
experience

Potential adversarial techniques post-CHERI

Recently shifted from CHERI-MIPS to
CHERI-RISC-V and Arm Morello

UNIVERSITY OF
CAMBRIDGE

Microsoft security analysis of CHERI| C/C++

SECURITY ANALYSIS OF CHERI ISA

Nicolas Joly, Saif ElSherei, Saar Amar — Microsoft Security Response Center (MSRC)

INTRODUCTION AND SCOPE

The CHERI ISA extension provides memory-protection features which allow historically memory-unsafe programming languages such
as Cand C++ to be adapted to provide strong, compatible, and efficient protection against many currently widely exploited
vulnerabilities.

CHERI requires addressing memory through unforgeable, bounded references called capabilities. These capabilities are 128-bit
extensions of traditional 64-bit pointers which embed protection metadata for how the pointer can be dereferenced. A separate tag
table is maintained to distinguish each capability word of physical memory from non-capability data to enforce unforgeability.

In this document, we evaluate attacks against the pure-capability mode of CHERI since non-capability code in CHERI's hybrid mode
could be attacked as-is today. The CHERI system assessed for this research is the CheriBSD operating system running under QEMU as
it is the largest CHERI adapted software available today.

CHERI also provides hardware features for application compartmentalization 115. In this document, we will review only the memory
safety guarantees, and show concrete examples of exploitation primitives and techniques for various classes of vulnerabilities.

SUMMARY

CHERI’s ISA is not yet stabilized. We reviewed the current revision 7, but some of the protections such as executable pointer sealing
is still experimental and likely subject to future change.

The CHERI protections applied to a codebase are also highly dependent on compiler configuration, with stricter configurations
requiring more refactoring and qualification testing (highly security-critical code can opt into more guarantees), with the strict sub-
allocation bounds behavior being the most likely high friction to enable. Examples of the protections that can be configured include:

o Pure-capability vs hybrid mode

e Chosen heap allocator’s resilience

e Sub-allocation bounds compilation flag

e Linkage model (PC-relative, PLT, and per-function .captable)
e Extensions for additional protections on execute capabilities
e Extensions for temporal safety

However, even with enabling all the strictest protections, it is possible that the cost of making existing code CHERI compatible will be
less than the cost of rewriting the code in a memory safe language, though this remains to be demonstrated.

We conservatively assessed the percentage of vulnerabilities reported to the Microsoft Security Response Center (MSRC) in 2019
and found that approximately 31% would no longer pose a risk to customers and therefore would not require addressing through a
security update on a CHERI system based on the default configuration of the CheriBSD operating system. If we also assume that
automatic initialization of stack variables (InitAll) and of heap allocations (e.g. pool zeroing) is present, the total number of
vulnerabilities deterministically mitigated exceeds 43%. With additional features such as Cornucopia that help prevent temporal
safety issues such as use after free, and assuming that it would cover 80% of all the UAFs, the number of deterministically mitigated
vulnerabilities would be at least 67%. There is additional work that needs to be done to protect the stack and add fined grained CFI,
but this combination means CHERI looks very promising in its early stages.

1|Page
Microsoft Security Response Center (MSRC)

Microsoft Security Research Center (MSRC) study analyzed all
2019 Microsoft critical memory-safety security vulnerabilities

* Metric:"Poses a risk to customers — requires a software
update”

* Vulnerability mitigated if no security update required
Blog post and 42-page report

* Concrete vulnerability analysis for spatial safety

* Abstract analysis of the impact of temporal safety

* Red teaming of specific artifacts to gain experience

CHERI,“in its current state, and combined with other mitigations,
it would have deterministically mitigated at least two
thirds of all those issues”

https://msrc-blog.microsoft.com/2020/10/1 4/55e|curity-analysis-of—cheri-isa/

UNIVERSITY OF
CAMBRIDGE

https://msrc-blog.microsoft.com/2020/10/14/security-analysis-of-cheri-isa/

Security Analysis of CHERI ISA

Security Research & Defense / By MSRC Team / October 14, 2020 /
Memory Corruption, Memory Safety, Secure Development, Security Research

Is it possible to get to a state where memory safety issues would be deterministically mitigated? Our quest to mitigate memory
corruption vulnerabilities led us to examine CHERI (Capability Hardware Enhanced RISC Instructions), which provides memory
protection features against many exploited vulnerabilities, or in other words, an architectural solution that breaks exploits. We’ve
looked at how CHERI would break class-specific categories of vulnerabilities and considered additional mitigations to put in place to
get to a comprehensive solution. We’ve assessed the theoretical impact of CHERI on all the memory safety vulnerabilities we
received in 2019, and concluded that in its current state, and combined with other mitigations, it would have
deterministically mitigated at least two thirds of all those issues.

We've reviewed revision 7 and used CheriBSD running under QEMU as a test environment. In this research, we’ve also looked for
weaknesses in the model and ended up developing exploits for various security issues using CheriBSD and gtwebkit. We've
highlighted several areas that warrant improvements, such as vulnerability classes that CHERI doesn’t mitigate at the architectural
level, the importance of using reliable and CHERI compliant memory management mechanisms, and multiple exploitation primitives
that would still allow memory corruption issues to be exploited. While CHERI does a fantastic job at breaking spatial safety
issues, more is needed to tackle temporal and type safety issues.

Your feedback is extremely important to us as there’s certainly much more to discover and mitigate. We're looking forward to your
comments on our paper.

Nicolas Joly, Saif EISherei, Saar Amar — Microsoft Security Response Center (MSRC)

- https://msrc-blog.microsoft.com/2020/10/14/security-analysis-of-cheri-isa/
Ri 52

International
NS

S ALl
S~ gl

T UNIVERSITY OF
CAMBRIDGE

https://msrc-blog.microsoft.com/2020/10/14/security-analysis-of-cheri-isa/

CHERI SOFTWARE
COMPARTMENTALISATION

@8 UNIVERSITY OF
P CAMBRIDGE

What is software compartmentalization?

aws_ota

%5

freertos _libota

1
1

1
s :
\ \ I
‘\ hbtmycbor freertos hbcorejson IQ7 :
\ o /

7
~ N \ s
Sl N V12 ‘ -7
N o \ -
\‘\\ \\\ \A ‘*' ‘/ —", ——_,r

. A _,—— -

cherifreertos 1

CheriFreeRTOS components and the application execute
in compartments. CHERI contains an attack within
TCP/IP compartment, which access neither flash nor the
internals of the software update (OTA) compartment

= .
SR' a
International
e

Fine-grained decomposition of a larger
software system into isolated
modules to constrain the impact of
faults or attacks

Goals is to minimize privileges
yielded by a successful attack, and
to limit further attack surfaces

Usefully thought about as a graph of
interconnected components,
where the attacker’s goal is to
compromise nodes of the graph
providing a route from a point of entry
to a specific target

I8 UNIVERSITY OF
CAMBRIDGE

Software compartmentalization at scale

CHERI contains attack within compartment,
P preventing access to other data

e Memory Safety Crisis

~82% of exploited vulnerabilities in 2012 () I \
Software Vulnerabilty Exploiation Trends, Microsofc N “ ‘ \
How are processors responding? ~82% of exploited vulnerabilities in 2012
2 Software Vulnerability Exploitation Trends, Microsoft
eee

How are processors responding?

* Current CPUs limit:
* The number of compartments and rate of their creation/destruction
* The frequency of switching between them, especially as compartment count grows
* The nature and performance of memory sharing between compartments

* CHERI is intended to improve each of these — by at least an order of magnitude

58 UNIVERSITY OF
P CAMBRIDGE

55

CHERI-based compartmentalization

Shared virtual address space
Domain-specific Domain-specific Domain-specific Heap .
captables + PLTs stacks globals allocations Protectlon
domain A
Register
Protection fle —_ ‘,‘—"
domain “ o ======-- >
A o — ¢ Implie
. ?oin .
N /f Flexible set of
o 24 Shared s
crod (~~~~~ i heap shared resources
s... ~~~~~ . : o\
domaing=<w o< e® #o» Explicrt
resourc,esT a2, . e - a® nointer
|] == g
,,,,, ‘...,‘lll\lllll
Filgister SO L ; J’--___ ,
Protection e, __-fle=T T __--- 'H “ RGN 2
. Lese[---" heap
domain SOt
B [=== = Protection
Domain B

* Isolated compartments can be created using closed graphs of capabilities,

combined with a constrained non-monotonic domain-transition mechanism
56 58 UNIVERSITY OF

&9 CAMBRIDGE

Compartmentalization scalability

* CHERI dramatically improves compartmentalization scalability

e More compartments Early benchmarks show a |-to-2
order of magnitude performance
* More frequent and faster domain transitions - inter-compartment

communication improvement
compared to conventional
- designs

* Faster shared memory between compartments

* Many potential use cases — e.g., sandbox processing of each image in a
web browser, processing each message in a mail application

* Unlike memory protection, software compartmentalization requires
careful software refactoring to support strong encapsulation, and
affects the software operational model

58 UNIVERSITY OF
CAMBRIDGE

57

Operational models for CHERI compartmentalization

* An architectural protection model enabling new software behavior
* As with virtual memory, multiple operational models can be supported
* E.g.,with an MMU: Microkernels, processes, virtual machines, etc.

* How are compartments created/destroyed? Function calls vs. message
passing? Signaling, debugging, ...?

* We have explored multiple viable CHERI-based models to date, including:
Isolated dynamic libraries Efficient but simple sandboxing in processes
UNIX co-processes Multiple processes share an address space

* Improved performance and new paradigms using CHERI primitives

Both will be available in CheriBSD/Morello

B UNIVERSITY OF
P CAMBRIDGE

Proposed operational models:
Isolated libraries and UNIX co-processes

Isolated dynamically linked libraries

* New API loads libraries into in-process sandboxes.
Prototype

* Calling functions in isolated libraries performs a domain transition, with | to appear in
overheads comparable to function calls. CheriBSD

22.10
* Simple model eschews asynchrony, independent debugging, etc.
UNIX co-processes
* Multiple processes share a single virtual address space, separated using
independent CHERI capability graphs. Prototype
* CHERI capabilities enable efficient sharing, domain transition. _:Sti':'eaear "
* Rich model associates UNIX process with each compartment. CheriBSD
. . release
* Active area of research; early prototype available for co-processes

5 H UNIVERSITY OF
P CAMBRIDGE

59

Example: Robust shared libraries

Kernel

Process X rights Process Y rights
A I\

==

Userspace domain switcher

Jump-based Exception-based
intra-address-space F= -~ ,’h\ N, 3 inter-address-space
CHERI domain switch : TN MMU context switch
"Sandbox | . Sandbox i '

: : l ;
I\ _____________ J N e e e e e e s
User process X User processY

* User compartments exist within individual UNIX processes (“robust shared libraries”™):
* CHERI isolates compartments within each address spaces
* Compartment switcher is itself a trusted userspace library
* Compartments have strict subset of OS rights of the process
* Intra-process domain switches take no architectural exceptions and do not enter the kernel

* Multiple processes + IPC required if differing OS right sets needed

" UNIVERSITY OF

% CAMBRIDGE

-
Example: CHERI co-process model

Kernel
Process X rights Process Y rights
A I\

MWitcher I

N
1
|
1
1
1
1
1
1
\

7’

ump-based intra-address- .
" | <pace CHERI domain A I
. Sandbox ! P . Sandbox !
| : switch also switches kernel i :
. (process X) : notion of active process . (processY) :
! ! 1 1
N e /’ N 4

User processes X andY with shared virtual address space
* CHERI isolates multiple processes within a single virtual address space
* Kernel-provided trusted compartment switcher runs in userspace (actually a microkernel)
* CHERI-based inter-process memory sharing + domain switching
* A compartment’s OS rights correspond to the owning process
* Inter-process context switches take no architectural exceptions and do not enter the kernel

* CHERI can be pitched as improving IPC performance while retaining a (largely)
SRl conventional process model

International
NS

S AL L
Ssl= ©

I8 UNIVERSITY OF
CAMBRIDGE

CHERITRANSITION

B UNIVERSITY OF
&¥ CAMBRIDGE

62

-
Morello and CHERI-RISC-V

* We are pursing two CHERI adaptations to post-MIPS ISAs:

* 2014 Joint with Arm, an experimental adaptation of 64-bit ARMv8-A
Arm Morello multicore SoC, development board, etc.
(announced Oct. 2019; experimental SoC shipped 2022)

« 2017 An experimental adaptation of 32/64-bit RISC-V
(open-source research processors on FPGA)

* Complete elaborations of the full hardware-software stack for each ISA:
* All aspects of the architectures (e.g.,ARMv8-AVM features, etc.)
* Formal models + proofs, hardware implementations, compilers, OSes
* Potential for transition through both paths

B UNIVERSITY OF
P CAMBRIDGE

-
CHERI target architectures

Architecture CHERI challenges

64-bit MIPS 1990s RISC architecture Our legacy research architecture.
(CHERI baseline) Poor code density and addressing modes:
harder to differentiate ‘essential’ CHERI costs;
few transition opportunities with MIPS

64-bit ARMv8-A Mature and widely Feature-rich; exception-adverse; rich address
deployed load-store modes; constrained opcode space; hardware
architecture page tables; virtualization features; ecosystem

32-bit and Open RISC ISA in active Limited addressing modes (expects micro-op

64-bit RISC-V development fusion); hardware page tables; only partially
(MIPS + 10 years?) standardized; features missing (e.g., hypervisor);

immature software stack

BB UNIVERSITY OF
&¥ CAMBRIDGE

64

-
What'’s the smallest variety of CHERI?

Microsoft Security Response Center o — o Production-q uality CHERI-RISC-V-
extended |Ibex core

* Small-scale microcontroller used in

What's the smallest variety of CHERI? OPenTltan and other use cases

Security Research & Defense [By Saar Amar | September 6, 2022

* Clean-slate memory-safe, compartmentalized

The Portmeirion project is a collaboration between Microsoft Research Cambridge, Microsoft OS
Security Response Center, and Azure Silicon Engineering & Solutions. Over the past year, we

have been exploring how to scale the key ideas from CHERI down to tiny cores on the scale of

the cheapest microcontrollers. These cores are very different from the desktop and server- PY Wi I I be O Pe n _SO u r.ce h ardwa r.e an d SOftwa re

class processors that have been the focus of the Morello project.

Microcontrollers are still typically in-order systems with short pipelines and tens to hundreds ° C H E RI RI SC V tU n ed fo r. S mal I

of kilobytes of local SRAM. In contrast, systems such as Morello have wide and deep

pipelines, perform out-of-order execution, and have gigabytes to terabytes of DRAM hidden m ic roco ntrOI Ie rs

behind layers of caches and a memory management unit with multiple levels of page tables.

There are billions of microcontrollers in the world and they are increasingly likely to be

e RISC-V embedded standardization candidate

connected to the Internet. The lack of virtual memory means that they typically don't have

any kind of process-like abstraction and so run unsafe languages in a single privilege domain.

. .
This project has now reached the stage where we have a working RTOS running existing o C O I Iabo ratl O n ac ro s S M I C ros Oft Res ea rc h ’
C/C++ components in compartments. We will be open sourcing the software stack over the ol e
coming months and are working to verify a production-quality implementation of our M S RC) AZU re S I I I Co n) a n d AZU re Edge +
proposed ISA extension based on the lowRISC project's Ibex core, which we intend to

contribute back upstream. PI atfo rm

R BB UNIVERSITY OF
" &¥» CAMBRIDGE

https://msrc-blog.microsoft.com/2022/09/06/whats-the-smallest-variety-of-cheri/
1

-
RISC-V CHERI Special Interest Group (SIG)

* Created in early October 2022
* SIG acting chair is Alex Richardson (Google)

* |ntention to build interest and consensus around CHERI-RISC-V
standardization

* Likely at least two closely coupled standardization efforts:
* Microcontroller CHERI building on Microsoft’s recent work

* 64-bit CHERI-RISC-V building on SRI/Cambridge’s ISA

* Lots of open questions -- e.g., do we need multiple working groups, how to we
best capture the commonalities of the two ISA encodings, etc.

* SRl and Cambridge have recently joined RISC-V International to factilitate this

B UNIVERSITY OF
» CAMBRIDGE

66

e
CHERI-ARM research since 2014

* Since 2014, in collaboration with Arm, we have been pursuing joint research to
experimentally incorporate CHERI into ARMv8-A:

* Develop CHERI as an architecture-neutral and portable protection model
implemented in multiple concrete architectures

* Refine and extend the CHERI architecture — e.g., capability compression, tagging
uarch, domain transition, and temporal safety

* Apply concept of architecture neutrality to the CHERI-enabled software stack,
including compiler, OS, and applications

* Expand software: large-scale application experiments, OS use, debuggers, ...
* Extend work in formal modeling and proofs to an industrial-scale architecture
* Solve arising practical {hardware, software, ...} problems as part of the research

* Build evidence, demonstrations, SV templates to support potential CHERI adoption

B UNIVERSITY OF
» CAMBRIDGE

67

-
ISCF: Digital Security by Design (UKRI)

* S-year Digital Security by Design UKRI program: £70M UK gov. Rl
funding, £1 17M UK industrial match, to create CHERI-ARM Bebbith (B

CoreSight™ multicore debug and trace

demonstrator SoC + board with proven ISA

Core 1

* Leap supply-chain gap that makes adopting new architecture difficult
. o Armv8-A (v8.2)

— in particular, validation of concepts in microarchitecture, a2/t i CoU

architecture, and software “at scale”

* Support industrial and academic R&D (EPSRC, ESRC, InnovateUK) StaNAvERRARLGe

Asynchronous Bridges

* Baseline CPU is Neoverse NI; reuses existing SoC/board designs

1x 256-bit AMBA® 5 CHI Direct-Connect

* Collaborative review distillation of CHERI ISAv8; experimental
additions relating to temporal safety, compartmentalization

microarchitectural design choices for software-based evaluation 2 e el
=y o= I

: . . . e
* Science designed allowed: Multiple architectural + :gﬂ '
=01

* 2020 emulation models; 2022 Morello board shipped!

= H UNIVERSITY OF

68

Digital Security by
Design

Richard Grisenthwaite
SVP Chief Architect and Fellow

'Richard.Griserithwaite@arm-.com

STRATEGY

Challenges with creating substantially new architecture ?ﬁe%amh

and Innovation

Required to justify

New
New
Software Hardware
Models

o g

Required to develop

70 2019 Arm Limited a r m

Why is Arm interested in the CHERI architecture e serm

71

UK Research

Arm had been working with UoCambridge on CHERI for some 4-5 years and Innovation

Big step to addressing security based on strong fundamental principles

Addresses spatial memory safety robustly and some ideas for temporal safety
- Memory safety issues reported to be involved with ~70% of vulnerabilities (Matt Miller, BlueHat IL, 2019)

Has scope to be the foundation of a new mechanism for compartmentalisation
- Potentially far cheaper than using translation tables

Interesting scope to address temporal safety issues as well as spatial ones....

Many of the Arm software vendors are similarly interested in the possibilities of CHERI

- Microsoft, Google and others have expressed strong interest in exploring the concept...
- ... but lots of questions about the real-world performance costs and usage models
- ...understanding the intended usage models is important to refine the architectural features

But is a novel thing to do with additional costs to the system and software
- Adding a 129t tag bit has a lot of impacts to the memory system
- it is an ABI change, so non-trivial costs for compatibility for some uses

2019 Arm Limited a r m

- N
|P POSItIOn UK Research

and Innovation

* Today’s CPU architectures have largely the same basic functionality
- “Similar but different” approaches to most aspects of system architecture
- Small scale optimisations exist

* This position very beneficial for the porting of system software
- Anything that fundamentally changes the system software architecture is likely to be ignored

* Arm believes that this reality needs to continue with capabilities
- Implication is that we’d like the world’s leading architectures to adopt capabilities
- The Digital Security by Design program

72 2019 Arm Limited a r m

73

Arm Morello specification

73

a r m Arm® Architecture Reference

Manual Supplement Morello
for A-profile Architecture

Document number DDI0606

Copyright © 2020 Arm Limited or its affilates. All rights reserved.

INDUSTRIAL
STRATEGY

UK Research
and Innovation
Experimental application of CHERI ISAv8 to ARMvV8-A

Much richer base ISA .. Much longer spec - 2,155
pages excluding additional material!

Describes ISA as implemented in Arm Morello FVP
and processor/SoC

Includes recent features such as sentry and load-side
barrier support

arm

The Morello Board ¥ e

74

UK Research

An Industrial Demonstrator of a Capability architecture and Innovation

Uses a prototype capability extension to the Arm Architecture
- Prototype is a “superset” of what could be adopted into the Arm architecture

Use of a superset of the architecture is very unusual

- Also unrealistic as a commercial product — there will be some frequency effects
- However, there are tight timescales so architecture is nearly complete now

The superset of the architecture will allow a lot of software experimentation
- Various different mechanisms for compartmentalisation
- Collection of features for which the justification is unclear
- Techniques for holding the capability tag bit

Architecture will have formally proved security properties (with UoC and UoE)

Morello Board will be the ONLY physical implementation of this prototype architecture

- Learnings from these experiments will be adopted into a mainstream extension to the Arm architecture
« NO COMMITMENT TO FULL BINARY COMPATIBILITY TO THE PROTOTYPE ARCHITECTURE
— But successful concepts are expected to be carried forward into the architecture and can be reused there

2019 Arm Limited a r m

STRATEGY

Morello Board overview (subject to change) ?ﬁe%amh

and Innovation

Quad core bespoke high-end CPU with prototype capability extensions

- Backwards compatibility with v8.2 AArch64-only
- Based on Neoverse N1 core

— Multi-issue out-of-order superscalar core with 3 levels of cache
« Build in 7nm process

- Targeting clock frequency around 2GHz

* Reasonable performance GPU and Display controller
- Standard Mali architecture core — not extended with capability
« Supports Android

* PCle and CClx interfaces including to FPGA based accelerators
* FPGA for peripheral expansion

e SBSA compliant system

* 16GB of System Memory (expandable to 32GB — thc)

75 2019 Arm Limited a r m

76

INDUSTRIAL

Morello Board: Capability Hardware Prototype PIatforrr*

UK Research
and Innovation

Silicon implementation of a Capability Hardware CPU Instruction Set Architecture

* Implements Morello Profile for A-class
Prototype Architecture

« Two clusters each of two Rainier CPUs

CorelLink GIC-600

1 1
MMU-600

- Interconnect and Memory Controller
support for tagged memory

- Two channel DDR4 DRAM interface
- PCle Gen3 and Gen4 x16 interface

« CCIX (Cache Coherent Interconnect
for Accelerators) interface

Rainier Rainier

CMN-Skeena (CoreLink CMN-600 based)

CoreLink NIC-400 ValiD3s

- Mid-range GPU, display processor -- DMC-Bing [§DMC-Bing
DMC-620 based DMC-620 based ll
and HDMI OUtpUt IOFPGA DDR4-2667 HDMI|

° O N Sta N d d rd UATX fO m fa CtO r boa rd Supporting Arm system IP: GIC-600 (Generic Interrupt Controller), MMU-600 (10 MMU), Dynamic

Memory Controller derived from DMC-620, SoC-600 (SoC Debug and Trace), Coherent Mesh Network
derived from CMN-600, NIC-400 (Non-coherent interconnect)

Supporting 3™ party system IP/hardware: PCle/CCIX Root Complex (PHY and controller), DDR4/3 PHY,
DDR4 memory, 10 FPGA

2019 Arm Limited . Open-source software stack a r m

)
)
T
O
(@)
wn
)
<
90
(%)
]
| -
o
@)

MCP

Cortex-M7

-
UK EPSRC DSbD research program 2020-2023

EPSRC
Competition

* £10M Research funding
* £7M from ISCF/DSbD
* £3m from DCMS

* The EPSRC call covered 3 areas:

* Capability enabled hardware
proof and software verification

* Impact on system software and
libraries

* Future implications of
capability enabled Hardware

* Projects starting July-Oct

Selected Projects

AppControl: Enforcing Application Behaviour through Type-Based Constraints

Dr Wim Vanderbauwhede (University of Glasgow)

CapableVMs — Capable Virtual Machines

Dr Laurence Tratt (King’s College London) & Dr Jeremy Singer (University of Glasgow)

CAPcelerate: Capabilities for Heterogeneous Accelerators
Dr Timothy Jones (University of Cambridge)

CapC: Capability C semantics, tools and reasoning
Dr Mark Batty (University of Kent)

CAP-TEE: Capability Architectures for Trusted Execution
Dr David Oswald (University of Birmingham)

CHaOS: CHERI for Hypervisors and Operating Systems
Dr Robert Watson (University of Cambridge)

CloudCAP: Capability-based Isolation for Cloud-Native Applications
Prof Peter Pietzuch (Imperial College London)

HD-Sec: Holistic Design of Secure Systems on Capability Hardware
Professor Michael Butler (University of Southampton)

SCorCH: Secure Code for Capability Hardware
Dr Giles Reger (The University of Manchester)
Prof Daniel Kroening (University of Oxford)

a4t
Department for
Digital, Culture
Media & Sport

9 EPSRC projects
funded across 10 UK
universities

Several InnovateUK
industrial projects
supporting
exploration,
evaluation,
demonstration

5 UNIVERSITY OF
» CAMBRIDGE

CHERI REFERENCE SOFTWARE STACK

5 UNIVERSITY OF
4P CAMBRIDGE

-
Why port the CHERI stack to Morello!?

* Validate the Morello architecture (functional, sufficient)
* Evaluate the Morello implementation (performance, energy use, ...)

* Provide reference software semantics (spatial and temporal safety,
compartmentalization, POSIX integration, OS kernel use, ...) that will be applicable to
other adaptations

* Act as a template and prototyping platform for at-scale industrial and academic

demonstration, including providing adaptations of common software dependencies
(e.g., widely used libraries)

* Provide a platform for future software research, asking questions about what
we can use CHERI for in {operating systems, compilers, language runtimes,
applications, ...}

* Enable a growing academic and industrial community around CHERI and
Morello, including dozens of UK universities and companies associated with DSbD

B UNIVERSITY OF
P CAMBRIDGE

o
Caution: Research software!

* The baseline compiler toolchain and OS stack are themselves research
e This means unknown risks, hard-to-predict schedules, and inevitable direction changes
* Application Binary Interface (ABI) stability
* ABIs are a key research area; there are 2x Morello ABls, and there will be [many?] more
* This limits long-term binary compatibility guarantees for compiled software (for example)
* Software performance optimization with a limited corpus
* Right now, we're just happy things are working, but we will get beyond that soon!
* Supporting a large and diverse audience of consumers with different objectives
* Engineering constraints limit objectives and support (e.g., software updates)
* Software adaptation workload
* Some code ports trivially (e.g., Qt/KDE stack) and other code doesn’t (e.g., JITs)

58 UNIVERSITY OF
CAMBRIDGE

80

-
CHERI prototype software stack on Morello

« Complete open-source software stack from bare metal up: compilers,
toolchain, debuggers, hypervisor, OS, applications — all demonstrating CHERI

* Rich CHERI feature use, but fundamentally incremental/hybridized deployment

Open-source application suite (KDE, X1 I,WebKit, Python, OpenSSH, nginx, PostgresQL ...)

CheriBSD/Morello (funded by DARPA and UKRI)
(Morello and CHERI-RISC-V)

* FreeBSD kernel + userspace, application stack

* Kernel spatial and referential memory protection

* Userspace spatial, referential, and temporal memory protection
* Co-process compartmentalization

* Linker-based compartmentalization
* Morello-enabled bhyve Type-2 hypervisor (Baseline CHER|

Android (Arm) Linux (Arm)
(Morello only) (Morello only)

Clang/LLVM from

* ARMV8-A 64-bit binary compatibility for legacy binaries SRI/Cambridge;
. Morello
CHERI Clang/LLVM compiler suite, LLD, LLDB, GDB 4\ :ﬂanftjt;j:atz
s UNTVERSITY OF

SRI

International
N

% CAMBRIDGE

Some of our in-flight software R&D efforts
Featwre _______[Smts ________________lAwilbily

3rd-party packages (Hybrid) 23K software packages with strong
functionality expectations

3rd-party packages (CheriABl) 9K software packages with mixed functionality
expectations

Morello GPU device drivers Hybrid + pure-capability kernel driver
Hybrid + pure-capability user driver
Hybrid + pure-capability applications

Linker-based Prototype runs some UNIX
compartmentalization applications; limited debugger support

Userlevel heap temporal safety Prototype runs SPEC benchmarks

bhyve (Type-2) hypervisor Prototype boots pure-capability guest OS, but
much more testing + review required

Co-process Prototype runs some compartmentalized
P YP P
<&, compartmentalization software (e.g., OpenSSL); APl co-design

Intern..........

Since May 2022 (22.05 release)

Since May 2022 (22.05 release)

Autumn 2022

Autumn 2022 as (highly)
experimental feature

Autumn 2022 (development branch),
but “plug-in” to release

Autumn (development branch)

Early 2023 (development branch)

OF
a¥ CAMBRIVGE

(At least) two code generation / ABI targets
* Hybrid code is primarily aarch64 but with

More capability use > selected capability use:
* Kernel: Mostly aarch64 with
capability use for system-call arguments,
Hybrid CheriABI context switching, virtual memory, signals

* Userspace: Runs off-the-shelf armé4

aarché4c userspace wi programs without modification
ubiquitous capability u

aarch64 + selected
capability use
userspace

* Pure-capability code implements all data
e L e -- and control-flow pointers with capabilities:

* Kernel and userspace both spatially and

Pure-capability or Hybrid kernel i
referentially space

* In the future userspace temporally safe

58 UNIVERSITY OF
CAMBRIDGE

-
FreeBSD base, ports/packages

WVell
Base Base FreeBSD OS including kernel and key adapt:d to
libraries, shells, daemons, and command-line tools CHERI
Ports Build infrastructure + FreeBSD adaptation patches Early
— roughly 30,000 mainstream open-source prototype
libraries, runtimes, and application
Packages Prebuilt binary packages built from ports, installed and Early
managed using the pkg(8) package manager prototype
We provide a full set of ~20K-30K aarch64 (non-CHERI) packages to run on
CheriBSD/Morello to use while the CheriABI collection matures. = UNIVERSITY OF

&¥ CAMBRIDGE

-
Getting Started with CheriBSD

* Introduces CheriBSD

* Steps you through installation on a
Morello board using a USB stick
image that you can download

Starting the boot

* Describes third-party package
system and pkgé64/pkgb4c

bsdinstall
ysdinstall usesthe libdialog textinterface library. Be aware that you will sometimes need to ‘ ‘ ’ , . .
use the space bar, and not enter key, to select menu options, which many users find .
ustrates nelio wor compliation
Select Install at the first menu by hitting Enter. °
. , and debugging
<Install sh Live |
| D ib me k .
€SCribes some Known Issues
If you intend only to use the serial console, and not video console, select the default keymap by

* Explains how to get support

58 UNIVERSITY OF
CAMBRIDGE

https://ctsrd-cheri.github.io/cheribsd-getting-started/ &5

N

S ALl
Ssl= ©

https://ctsrd-cheri.github.io/cheribsd-getting-started/

e
Adversarial CHERI Exercises and Missions

* CHERI training exercises for developers,
Adversarial CHERI Exercises and Missions I"ed teamS, and bug bOuntieS

e Adversarial missions where we want to
understand exploitation better

* CHERI software adaptation

* Assume a strong level of knowledge about
C, code generation, exploitation

* (E.g.,GOTs, PLTs, ROP, and JOP)
* Targets Morello and CHERI-RISC-V

https://ctsrd-cheri.github.io/cheri-exercises/

7 58 UNIVERSITY OF
” ¥ CAMBRIDGE

S ALl
Ssl= ©

-
CHERI software stack support channels

* cheri-cpu.slack.com Slack
* Visit the CHERI website to request an invitation email/link

* Forthcoming mailing lists (not yet live)

* cl-cheribsd-announce Low-traffic announcement
* cl-cheribsd-discuss General discussion and support
* cl-cheribsd-security Report security issues

* Sundry issue trackers in the github.com/CTSRD-CHERI organization

* Not just “How do | get the software to work”, but also to assist with
experimental design, interpreting results, and seeking

improvements
T UNIVERSITY OF

&P CAMBRIDGE

87

How to obtain and install the CHERI software stack

README.md p,

cheribuild.py - A script to build CHERI-related
software (requires Python 3.5.2+)
This script automates all the steps required to build various CHERI-related software. For example cheribuild.py

[options] sdk will create a SDK that can be used to compile software for the CHERI CPU and cheribuild.py
[options] run-riscv64-purecap will start an instance of CheriBSD built for RISC-V in QEMU.

cheribuild.py also allows building software for Arm's adaption of CHERI, the Morello platform, however not all

targets are supported yet.

Supported operating systems

cheribuild.py has been tested and should work on FreeBSD 11 and 12. On Linux, Ubuntu 16.04, Ubuntu 18.04
and OpenSUSE Tumbleweed are supported. Ubuntu 14.04 may also work but is no longer tested. macOS 10.14
and newer is also supported.

Pre-Build Setup

macOS

When building on macOS the following packages are required:

brew install cmake ninja libarchive git glib automake autoconf coreutils llvm make wget pixman f

brew install arichardson/cheri/samba

#1 intend to r e morellc VP mod you will al need the follow

quartz socat dtc

brew install homebrew/cask/docker homebrew/cask/x;

Ubuntu

If you are building CHERI on a Debian/Ubuntu-based machine, please install the following packages:
apt-get install libtool pkg-config clang bison cmake ninja-build samba flex texinfo libglib2.0-¢

Older versions of Ubuntu may report errors when trying to install libarchive-tools . In this case try using apt-
get install bsdtar instead.

RHEL/Fedora

If you are building CHERI on a RHEL/Fedora-based machine, please install the following packages:

dnf install libtool clang-devel bison cmake ninja-build samba flex texinfo glib2-devel pixman-de

Basic usage

If vou want to start up a QEMU VM runnina CheriBSD run cheribuild.pv run-riscv64-purecap -d (-d means

One build tool to rule them all: cheribuild

https://github.com/CTSRD-CHERI/cheribuild

Builds, installs, and/or runs:
 QEMU CHERI-RISC-V and Morello, Morello FVP
* CheriBSD/CHERI-RISC-V and Morello disk images
* Small suite of adapted third-party applications

Up and running with one command (CHERI-RISC-V):

Jcheribuild.py --include-dependencies run-riscve4-purecap

UNIVERSITY OF
CAMBRIDGE

88

https://github.com/CTSRD-CHERI/cheribuild

CHERI/MORELLO DESKTOP STUDY

5 UNIVERSITY OF
4P CAMBRIDGE

-
3-month CHERI Desktop UKRI pilot study

InnovateUK-funded project at Capabilities Limited to assess the viability of
a CHERI/Morello open-source desktop software stack (on QEMU model):

* Selected slice of open-source desktop stack: X1 1, Qt, KDE, applications
* Implemented CHERI C/C++ referential and spatial memory protection
* Whiteboarded possible software compartmentalizations

* Evaluated software change as %LoC changed

* Evaluated security via 5-year retrospective vulnerability analysis

http://www.capabilitieslimited.co.uk/pdfs/202 1091 7-capltd-cheri-desktop-report-
version | -FINAL.pdf

B UNIVERSITY OF
» CAMBRIDGE

90

http://www.capabilitieslimited.co.uk/pdfs/20210917-capltd-cheri-desktop-report-version1-FINAL.pdf
http://www.capabilitieslimited.co.uk/pdfs/20210917-capltd-cheri-desktop-report-version1-FINAL.pdf

-
CHERI desktop ecosystem study: Key outcomes

—
——— CHERI — Software stack status update

Robert N. M.Watson, Simon W. Moore, Peter Sewell, Peter G. Neumann
Hesham Almatary, Jonathan Anderson. Alasdair Armstrong, Peter Blandford-Baker, John Baldwin, Hadrien Barrel, Thomas Bauereiss,
Ruslan Bukin, David Chisnall, Jessica Clarke, Nirav Dave, Brooks Davis, Lawrence Esswood, Nathaniel W, Filardo, Franz Fuchs,
Dapeng Gao, Khilan Gudka, Brett Gutstein, Alexandre Joannou, Mark Johnston, Robert Kovacsics, Ben Laurie, A. Theo Markettos,
- 4 L J. Edward Maste, Alfredo Mazzinghi, Alan Mujumdar, Prashanth Mundkur, Steven). Murdoch, Edward Napierala, George Neville-Neil,
Robert Norton-Wright, Philip Paeps, Lucian Paul-Trifu, Allison Randal, Ivan Ribeiro, Alex Richardson, Michael Roe, Colin Rothwell,

l

Jonathan Woodruff, Hongyan Xia, and Bjoern A. Zeeb

Peter Rugg, Hassen Saidi, Peter Sewell, Thomas Sewell, Stacey Son, Domagoj Stolfa, Andrew Turner, Munraj Vadera, Konrad Witaszczyk,

University of Cambridge, SRI International, Capabilities Limited, Ararat River, and MSB Associates
DSbD All Hands Meeting — 6 April 2022

B UNIVERSITY OF
¥ CAMBRIDGH

280 =moEONR

root@morello:~/cheri-exercises/src/exercises # 1
README . md buffer-overflow-heap
adapt-c buffer-overflow-stack
buffer-overflow-global cheri-allocator
root@morello:~/cheri-exercises/src/exercises # D

s
cheri-tags
cheriabi
compile-and-run

opt/cheri-exercises/buffer|

opt/cheri-exercises/buffer

cdie

control-flow-pointer
debug-and-disassemble
pointer-injection

p
s

t

91

Developed:

6 million lines of C/C++ code
compiled for memory safety; modest
dynamic testing

Three compartmentalization
case studies in Qt/KDE

Evaluation results:

0.026% LoC modification rate
across full corpus for memory safety

73.8% mitigation rate across full
corpus, using memory safety and
compartmentalization

H UNIVERSITY OF
CAMBRIDGE

-
Memory-safe Morello desktop environment

* Single FTE project over one calendar year developed:
* Pure-capability CheriBSD kernel GPU device drivers
* Pure-capability CheriBSD userspace including Mesa, Wayland, KDE

58 UNIVERSITY OF
4P CAMBRIDGE

92

-
Now on to the grand challenges

* We are now within reach of an exciting — and historically highly vulnerable —
application corpus to which we can apply CHERI protections

* Memory-safe desktop applications at scale — especially those that contain one
or more language runtimes:

* Web browsers
 Mail readers
e Office suites

* Extending this to fine-grained compartmentalization as software prototypes
mature — library compartmentalization, coprocesses, further models, ...

* For example: UKRI- and Google-funded efforts around the Chromium web
browser at Capltd, Kings College London, Arm, and Cambridge

B UNIVERSITY OF
» CAMBRIDGE

93

CONCLUSION

I8 UNIVERSITY OF
4P CAMBRIDGE

94

Some potential software research areas

* Clean-slate OSes and languages * Virtualization
Current research has focused on incremental CHERI adoption Can memory protection usefully harden hypervisors? Can we
within current software and languages. How would we design new compartmentalize hypervisors? Can CHERI offer a better
OSes, languages, etc., assuming CHERI as an ISA baseline? mechanism for virtualizing code than an MMU?
 Compilers,language runtimes, and JITs * Debuggers and tracing
How can we mitigate the performance overheads of more Debugging/tracing tools rely on high levels of privilege to
pointer-dense executions, such as with language runtimes? Are operate. How can we reduce their privilege to mitigate
vulnerabilities in code generated by compilers and JIT susceptible vulnerabilities in these tools? With stronger architectural
to mitigation using CHERI? How does CHERI break or potentially semantics, is new dynamic analysis possible?

improve current compiler analyses and optimization?
] i * Software compartmentalization tools
* Further C/C++ protections with CHERI

Granular software compartmentalization offers vulnerability

We have focused on spatial, referential, and temporal memory mitigation through privilege reduction and strong encapsulation.
safety for C/C++. But the CHERI primitives could assist with How should current applications be refactored, and new
data-oriented protections, garbage collection, type checking, etc. applications be designed, to accomplish maintainable and more
Could these improve security, and at what performance cost? secure software!?
* Safe and managed languages * Security evaluation and adversarial research
Languages such as Java, Rust, C#, OCaml, etc., offer strong safety What is the impact of CHERI on known vulnerabilities and
properties, but frequently depend on C/C++ runtimes and FFl- attack techniques? How does a CHERI-aware attacker change
linked native code. Can CHERI provide stronger foundations for their behavior? Could formal models and proofs support
higher-level language stacks? stronger security arguments for CHERI?
R 05 B UNIVERSITY OF
CAMBRIDGE

L
Conclusion

* New architectural primitives require rich HW and SWV evaluation:
* Primitives support many potential usage patterns, use cases
* Applicable uses depend on compatibility, performance, effectiveness
* Best validation approach: full hardware-software prototype
* Co-design methodology: hardware <> architecture < software
http://www.cheri-cpu.org/

* Watson, et al. An Introduction to CHERI, Technical Report UCAM-CL-
TR-941, Computer Laboratory, September 2019.

* Watson, et al. Capability Hardware Enhanced RISC Instructions:
CHERI Instruction-Set Architecture (Version 8), UCAM-CL-TR-951,
October 2020.

* Watson, et al. CHERI C/C++ Programming Guide, UCAM-CL-TR-947,

June 2020. 5 E UNIVERSITY OF
P CAMBRIDGE

https://www.cheri-cpu.org/

3B UNIVERSITY OF

97

&9 CAMBRIDGE

-
Lessons learned: Split vs. merged register files

$pc $pcc v $ddc \v $pc $pcc v
EPCC

$ra $c31 v Merge $ra $c31 v | |v|

. ’ register | d:b | BRE |V|
pointers
LI $c4 i files $al $c4 LY Special registers
$a0 $c3 - $a0 $c3 v
Integer register file Capability register file Merged register file

CHERI-MIPS has split register files following coprocessor conventions

... but new register files add control logic, increasing area overhead

Instead merge register files along the lines of 32-bit — 64-bit extension

Key design choice in CHERI-RISC-V: Implement both approaches, evaluate

B UNIVERSITY OF
P CAMBRIDGE

From hybrid-capability code to pure-capability code
* n64 MIPS ABI: hybrid-capability code

* Early investigation — manual
Pure-capability annotation and C semantics

Hybrid-capability
userspace userspace]]]]
* Many pointers are integers (including

g . syscall arguments, most implied VAs)

Hybrid-capability CheriABI shim
* CheriABI: pure-capability code

* More recently — fully automatic use
of capabilities wherever possible

Largely conventional MIPS OS kernel
with CHERI-enabled userspace

] MIPS code * All pointers, implied virtual addresses
Hybrid-capability code are capabilities (inc. syscall arguments)
Pure-capability code . . . s

Py Now investigating pure-capability kernel
5 UNIVERSITY OF

% CAMBRIDGE

-
OS changes required for CheriABI

(A grand tour of low-level OS behavior)

Hybrid ABI = MIPSABI + ... CheriABI = Hybrid ABI + ...

* Kernel support for tagged memory, Kernel support for pure-capability userspace
capability context switching, etc. .
. * C start-up/runtime (CSU/CRT) changes
* Tag-preserving libc: memory copy, memory N o -
move, sort, ... * Initial process state: reduced initial capability

* Bounds-aware malloc(), realloc(), free(), ... registers, ELF aux args, sigcode, etc.

. setjmp(), longjmp(), sigcontext / signal * Pointer arguments/return values for syscalls

delivery, pthreads updates for capabilities are now capabilities, ...
 Run-time linkage for capability-based * Review and fix tag preservation,
references to globals, code, vtables, etc. integer/pointer provenance and casts

(bounds, permissions,) * Run-time linkage for globals, code, vtables, etc.

* Debugging APIs such as ptrace() (bounds, permissions, ...)

B UNIVERSITY OF
P CAMBRIDGE

Evaluating memory-protection compatibility

Approach: Prototype (1) “pure-capability” CHERI C/C++ compiler (Clang/LLVM) and
(2) full OS (FreeBSD) that use capabilities for all explicit or implied userspace pointers

Goal: Little or no software modification (BSD base system + utilities)
Small changes to source files for 34 of 824 programs, 28 of 130 libraries.
Overall: modified ~200 of ~20,000 user-space C files/header

integrity, prov. & alignment conventions features

BSD headers | 6 0 2 0
83 36 4 41 22
24 9 | ¥ 2

—_mm
Pure capability 3301 (90%) 122 246 3669

...l... UNIVERSITY OF
4P CAMBRIDGE

101 * Test failure investigation remains a work-in
progress; we believe these can be resolved

-
Evaluating memory-protection impact

* Adbversarial / historical vulnerability analysis
v Pointer integrity, provenance validity prevent ROP, JOP
v’ Buffer overflows: Heartbleed (2014), Cloudbleed (2017)
v Pointer provenance: Stack Clash (2017)

* Existing test suites — e.g., BOdiagsuite (buffer overflows)

_E_mm- o

mips64
CheriABI 0 279 289 291
LLVM Address Sanitizer (asan) on x86 0 276 286 286

* Davis, et al. CheriABI: Enforcing Valid Pointer Provenance and Minimizing
Pointer Privilege in the POSIX C Run-time Environment, ASPLOS 2019.

* Key evaluation concern: reasoning about a CHERI-aware adversary

102 @B UNIVERSITY OF

&% CAMBRIDGE

