
Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL), under contracts FA8750-
10-C-0237 (“CTSRD”), with additional support from FA8750-11-C-0249 (“MRC2”), HR0011-18-C-0016 (“ECATS”), FA8650-18-C-7809 (“CIFV”), and HR001122C0110 (“ETC”) . The views, opinions, and/or findings
contained in this article/presentation are those of the author(s)/presenter(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

CHERI Update

Robert N. M. Watson, Simon W. Moore, Peter Sewell, Peter G. Neumann
Hesham Almatary, Ricardo de Oliveira Almeida, Jonathan Anderson, Alasdair Armstrong, Rosie Baish, Peter Blandford-Baker,

John Baldwin, Hadrien Barrel, Thomas Bauereiss, Ruslan Bukin, Brian Campbell, David Chisnall, Jessica Clarke, Nirav Dave, Brooks Davis,
Lawrence Esswood, Nathaniel W. Filardo, Franz Fuchs, Dapeng Gao, Ivan xGomes-Ribeiro, Khilan Gudka, Brett Gutstein,

Angus Hammond, Graeme Jenkinson, Alexandre Joannou, Mark Johnston, Robert Kovacsics, Ben Laurie, A.Theo Markettos,
J. Edward Maste, Alfredo Mazzinghi, Alan Mujumdar, Prashanth Mundkur, Steven J. Murdoch, Edward Napierala, George Neville-Neil,

Kyndylan Nienhuis, Robert Norton-Wright, Philip Paeps, Lucian Paul-Trifu, Allison Randal, Ivan Ribeiro, Alex Richardson, Michael Roe,
Colin Rothwell, Peter Rugg, Hassen Saidi, Thomas Sewell, Stacey Son, Ian Stark, Domagoj Stolfa, Andrew Turner, MunrajVadera,

Konrad Witaszczyk, Jonathan Woodruff, Hongyan Xia, Vadim Zaliva, and Bjoern A. Zeeb

University of Cambridge and SRI International
DSbD All Hands Meeting –Virtual Session – 11 October 2022

Approved for public release; distribution is unlimited.

This work was supported in part by the Innovate UK project Digital Security by Design (DSbD) Technology Platform
Prototype, 105694.

This work was also supported by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL), under contract FA8750-10-C-0237 (“CTSRD”), with additional support from FA8750-11-C-0249
(“MRC2”), HR0011-18-C-0016 (“ECATS”), FA8650-18-C-7809 (“CIFV”), and HR001122C0110 (“ETC”) as part of the
DARPA CRASH, MRC, and SSITH research programs. The views, opinions, and/or findings contained in this report are
those of the authors and should not be interpreted as representing the official views or policies of the Department of
Defense or the U.S. Government.

We further acknowledge the EPSRC REMS Programme Grant (EP/K008528/1), the ERC ELVER Advanced Grant (789108),
the Isaac Newton Trust, the UK Higher Education Innovation Fund (HEIF), Thales E-Security, Microsoft Research
Cambridge, Arm Limited, Google, Google DeepMind, HP Enterprise, and the Gates Cambridge Trust.

2

CHERI introduction
• CHERI is a new processor technology that mitigates

software security vulnerabilities

• Developed by the University of Cambridge and SRI
International starting in 2010, supported by DARPA

• Arm collaboration from 2014

• Arm Morello CPU, SoC, and board announced 2019, with
support from UKRI; shipping as of Jan 2022

• Today’s talk:

• Microsoft’s CHERI Ibex working

• CHERI software since the last DSbD All Hands Meeting

• http://www.cheri-cpu.org/

An early experimental FPGA-
based CHERI tablet prototype
running the CheriBSD
operating system and
applications, Cambridge, 2013.

3

High-performance Arm
Morello chip able to run a full
CHERI software stack,
Cambridge, 2022

http://www.cheri-cpu.org/

CHERI-RISC-V

4

What’s the smallest variety of CHERI?
• Production-quality CHERI-RISC-V-

extended Ibex core
• Small-scale microcontroller (baseline

CPU is used in OpenTitan)

• CHERI-RISC-V specialized to small
microcontrollers

• Memory-safe, compartmentalized OS

• Open-source hardware and software

• RISC-V embedded standardization
candidate

• Microsoft Research, MSRC, Azure
Silicon, and Azure Edge + Platform

5
https://msrc-blog.microsoft.com/2022/09/06/whats-the-smallest-variety-of-cheri/

RISC-V CHERI Special Interest Group (SIG)
• Created in early October 2022

• SIG acting chair is Alex Richardson (Google)

• Build interest and consensus around CHERI-RISC-V standardization

• Likely at least two closely coupled standardization efforts (WIP plan):

• Microcontroller 32-bit CHERI-RISC-V building on Microsoft’s work

• 64-bit CHERI-RISC-V building on SRI/Cambridge’s ISA

• We expect CHERI ISAv9 and the forthcoming Microsoft technical report to be
direct inputs to this process

• Lots of open questions -- e.g., do we need multiple working groups, how to we
best capture the commonalities of the two ISA encodings, etc.

6

CHERI REFERENCE SOFTWARE STACK

7

Why port the CHERI stack to Morello?
• Validate the Morello architecture (functional, sufficient)

• Evaluate the Morello implementation (performance, energy use, …)

• Provide reference software semantics (spatial and temporal safety,
compartmentalization, POSIX integration, OS kernel use, …) that will be applicable to
other adaptations

• Act as a template and prototyping platform for at-scale industrial and academic
demonstration, including providing adaptations of common software dependencies
(e.g., widely used libraries)

• Provide a platform for future software research, asking questions about what
we can use CHERI for in {operating systems, compilers, language runtimes,
applications, …}

• Enable a growing academic and industrial community around CHERI and
Morello, including dozens of UK universities and companies associated with DSbD

8

CHERI prototype software stack on Morello
• Complete open-source software stack from bare metal up: compilers,

toolchain, debuggers, hypervisor, OS, applications – all demonstrating CHERI
• Establish “best practice” software semantics when using CHERI
• Rich CHERI feature use, but fundamentally incremental/hybridized deployment

CHERI Clang/LLVM compiler suite, LLD, LLDB, GDB

CheriBSD/Morello (funded by DARPA and UKRI)
(Morello and CHERI-RISC-V)

• FreeBSD kernel + userspace, application stack
• Kernel spatial and referential memory protection
• Userspace spatial, referential, and temporal memory protection
• Co-process compartmentalization
• Linker-based compartmentalization
• Morello-enabled bhyve Type-2 hypervisor
• ARMv8-A 64-bit binary compatibility for legacy binaries

Open-source application suite (KDE, Wayland, WebKit, Python, OpenSSH, nginx, PostgresQL …)

Android (Arm)
(Morello only)

Linux (Arm)
(Morello only)

Baseline CHERI
Clang/LLVM from
SRI/Cambridge;

Morello adaptation
by Arm + Linaro

9

CheriBSD software releases this year
• 22.05 release – First release supporting the Morello board

• Memory-safe kernel and userspace (“CheriABI”)

• USB stick installation

• Aarch64 and CheriABI third-party packages

• “Getting Started with CheriBSD”

• 22.05p1 release – Patch release

• Work around firmware bug to enable software reboot

• Install debug symbols for libraries

• Fix software crashes with thread-local storage (TLS)

• 22.10 (11?) release – Second major software release (details next slide)

10

Some of our in-flight software R&D efforts
Feature Status Availability

Morello GPU device drivers Hybrid + pure-capability kernel driver
Hybrid + pure-capability user driver
Hybrid + pure-capability applications

Autumn 2022

Linker-based
compartmentalization

Prototype runs some UNIX
applications; limited debugger support

Autumn 2022 as (highly)
experimental feature

Userlevel heap temporal
safety

Prototype runs SPEC benchmarks Autumn 2022 (development
branch), but “plug-in” to release

bhyve (Type-2) hypervisor Prototype boots pure-capability guest OS, but
much more testing + review required

Autumn (development branch)

Co-process
compartmentalization

Prototype runs some compartmentalized
software (e.g., OpenSSL); API co-design

Early 2023 (development branch)

11

Other forthcoming feaures in 22.10 include:
• Precompiled / easily installed CheriABI packages for Wayland memory-safe display server and KDE
• Morello GDB adaptation with significant functional improvements

MORELLO DESKTOP SUPPORT

12

CheriBSD Morello GPU and HDMI kernel support
Quite significant engineering effort at Cambridge and CapLtd:

• Import + update Direct Rendering Manager (DRM) in FreeBSD

• Develop Arm IOMMU / SMMU driver for FreeBSD

• Develop Arm Komeda display controller driver

• Develop Arm Arm Mali GPU device driver

• Integrate HDMI controller device driver

General status:

• All compiles and runs with hybrid or memory-safe kernel and userlevel

• Shipping in CheriBSD Autumn 2022 release

13

Memory-safe Wayland and KDE

• Shifted from X11 to Wayland compared to earlier CapLtd work

• CheriABI Packages for Mesa, Wayland, Qt, KDE, …

• Shipping in CheriBSD Autumn 2022 release
14

Now on to the secure desktop grand challenges
• We are now within reach of an exciting – and historically highly vulnerable –

application corpus to which we can apply CHERI protections

• Memory-safe desktop applications at scale – especially those that contain one
or more language runtimes:

• Web browsers

• Mail readers

• Office suites

• Extending this to fine-grained compartmentalization as software prototypes
mature – library compartmentalization, coprocesses, further models, …

• For example: UKRI- and Google-funded efforts around the Chromium web
browser at CapLtd, Kings College London, Arm, and Cambridge

15

EXPERIMENTAL LIBRARY
COMPARTMENTALISATION SUPPORT

16

What is software compartmentalization?
• Fine-grained decomposition of a larger

software system into isolated
modules to constrain the impact of
faults or attacks

• Goals is to minimize privileges
yielded by a successful attack, and
to limit further attack surfaces

• Usefully thought about as a graph of
interconnected components,
where the attacker’s goal is to
compromise nodes of the graph
providing a route from a point of entry
to a specific target

17

CheriFreeRTOS components and the application execute
in compartments. CHERI contains an attack within
TCP/IP compartment, which access neither flash nor the
internals of the software update (OTA) compartment.

Software compartmentalization at scale

• Current CPUs limit:

• The number of compartments and rate of their creation/destruction

• The frequency of switching between them, especially as compartment count grows

• The nature and performance of memory sharing between compartments

• CHERI is intended to improve each of these – by at least an order of magnitude

18

...

CHERI contains attack within compartment,
preventing access to other data

CHERI-based pure-capability process memory

19

• Capabilities are substituted for integer addresses throughout the address space

• Bounds and permissions are minimized by software including the kernel, run-time
linker, memory allocator, and compiler-generated code

• Hardware permits fetch, load, and store only through granted capabilities

• Tags ensure integrity and provenance validity of all pointers

Memory
StackCode

Heap
Implied
pointer

Explicit
pointer

…

Thread
register

file

PLTs

Globals

captable

DDC

PCC

GPRs

NULL

NULL

NULL

Shared virtual address space

Register
fileProtection

domain
A

Protection
domain

B

Shared
heap

Domain-specific
captables + PLTs

Domain-specific
stacks

Domain-specific
globals

Heap
allocations

Register
file Domain B

heap

Domain A
heap

Cross-
domain

resources

Shared
code

Implied
pointer

Explicit
pointer

CHERI-based compartmentalization

• Isolated compartments can be created using closed graphs of capabilities,
combined with a constrained non-monotonic domain-transition mechanism

20

Protection
domain A

Protection
Domain B

Flexible set of
shared resources

Compartmentalization scalability

• CHERI dramatically improves compartmentalization scalability

• More compartments

• More frequent and faster domain transitions

• Faster shared memory between compartments

• Many potential use cases – e.g., sandbox processing of each image in a
web browser, processing each message in a mail application

• Unlike memory protection, software compartmentalization requires
careful software refactoring to support strong encapsulation, and
affects the software operational model

Early benchmarks show a 1-to-2
order of magnitude performance
inter-compartment
communication improvement
compared to conventional
designs

21

Operational models for CHERI compartmentalization
• CHERI is an architectural protection model enabling new software behavior

• As with virtual memory, multiple software operational models can be supported

• E.g., with an MMU: Microkernels, processes, virtual machines, etc.

• How are compartments created/destroyed? Function calls vs. message passing?
Signaling, debugging, …?

• We have explored multiple viable CHERI-based models to date, including:

Isolated dynamic libraries Efficient but simple sandboxing in processes

UNIX co-processes Multiple processes share an address space

• Improved performance and new paradigms using CHERI primitives

• Both will be available in CheriBSD/Morello

22

Kernel

User process X

Shared object Shared object

ld-elf.so (rtld)

Process X rights

Sandboxed shared libraries

• Shared libraries execute within “sandboxes”:
• Libraries have access only to explicitly linked or dynamically delegated resources

• CHERI used to isolate compartments within a shared address space
• Compartmentalisation-aware run-time linker (rtld), libc, libthr (pthreads)

• rtld injects domain-switching call and return shims during PLT linkage
• Lots of subtlety around topics like threads, signals, system calls, setjmp/longjmp, etc.

23

Intra-address-space
CHERI domain switch

Sandboxed library prototype in CheriBSD
• Early prototype implementation intended to make work more broadly

available, especially for related research projects, but be aware / beware:

• Incomplete implementation

• Unstable APIs

• Depends on new and forthcoming compiler ABI changes

• No security claims [yet]

• Opt in: Programs will need to specify the alternative run-time linker in
their ELF header, set during compilation

• Shipping in CheriBSD Autumn 2022 release

• Intention is that the design principles (and APIs?) will be fully applicable
on Android / Linux

24

CONCLUSION

25

Conclusion
• Extremely active research and engineering around CHERI

• Creation of a CHERI-RISC-V SIG with the aim of standardizing

• Microsoft CHERI-RISC-V work and (soon) open-sourced Ibex core

• Morello software stack rapidly maturing

• Memory-safe GPU and early desktop environment

• Library compartmentalization model

• Easier use of experimental temporal memory safety work

• Many other ongoing activities including around co-process
compartmentalization, an adaptation of the Chromium browser

• CHERI software adaptation workshop at DSbD All Hands Meeting
26

27

