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CHERI introduction
• CHERI is a new processor technology that mitigates 

software security vulnerabilities

• Developed by the University of Cambridge and SRI 
International starting in 2010, supported by DARPA

• Arm collaboration from 2014

• Arm Morello CPU, SoC, and board announced 2019, with 
support from UKRI; shipping as of Jan 2022

• Today’s talk:

• Microsoft’s CHERI Ibex working

• CHERI software since the last DSbD All Hands Meeting

• http://www.cheri-cpu.org/

An early experimental FPGA-
based CHERI tablet prototype 
running the CheriBSD
operating system and 
applications, Cambridge, 2013.
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High-performance Arm 
Morello chip able to run a full 
CHERI software stack, 
Cambridge, 2022

http://www.cheri-cpu.org/


CHERI-RISC-V
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What’s the smallest variety of CHERI?
• Production-quality CHERI-RISC-V-

extended Ibex core
• Small-scale microcontroller (baseline 

CPU is used in OpenTitan)

• CHERI-RISC-V specialized to small 
microcontrollers

• Memory-safe, compartmentalized OS

• Open-source hardware and software

• RISC-V embedded standardization 
candidate

• Microsoft Research, MSRC, Azure 
Silicon, and Azure Edge + Platform

5
https://msrc-blog.microsoft.com/2022/09/06/whats-the-smallest-variety-of-cheri/



RISC-V CHERI Special Interest Group (SIG)
• Created in early October 2022

• SIG acting chair is Alex Richardson (Google)

• Build interest and consensus around CHERI-RISC-V standardization

• Likely at least two closely coupled standardization efforts (WIP plan):

• Microcontroller 32-bit CHERI-RISC-V building on Microsoft’s work

• 64-bit CHERI-RISC-V building on SRI/Cambridge’s ISA

• We expect CHERI ISAv9 and the forthcoming Microsoft technical report to be 
direct inputs to this process

• Lots of open questions -- e.g., do we need multiple working groups, how to we 
best capture the commonalities of the two ISA encodings, etc.
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CHERI REFERENCE SOFTWARE STACK
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Why port the CHERI stack to Morello?
• Validate the Morello architecture (functional, sufficient)

• Evaluate the Morello implementation (performance, energy use, …)

• Provide reference software semantics (spatial and temporal safety, 
compartmentalization, POSIX integration, OS kernel use, …) that will be applicable to 
other adaptations

• Act as a template and prototyping platform for at-scale industrial and academic 
demonstration, including providing adaptations of common software dependencies 
(e.g., widely used libraries)

• Provide a platform for future software research, asking questions about what 
we can use CHERI for in {operating systems, compilers, language runtimes, 
applications, …}

• Enable a growing academic and industrial community around CHERI and 
Morello, including dozens of UK universities and companies associated with DSbD
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CHERI prototype software stack on Morello
• Complete open-source software stack from bare metal up: compilers, 

toolchain, debuggers, hypervisor, OS, applications – all demonstrating CHERI
• Establish “best practice” software semantics when using CHERI
• Rich CHERI feature use, but fundamentally incremental/hybridized deployment

CHERI Clang/LLVM compiler suite, LLD, LLDB, GDB

CheriBSD/Morello (funded by DARPA and UKRI)
(Morello and CHERI-RISC-V)

• FreeBSD kernel + userspace, application stack
• Kernel spatial and referential memory protection
• Userspace spatial, referential, and temporal memory protection
• Co-process compartmentalization
• Linker-based compartmentalization
• Morello-enabled bhyve Type-2 hypervisor
• ARMv8-A 64-bit binary compatibility for legacy binaries

Open-source application suite (KDE, Wayland, WebKit, Python, OpenSSH, nginx, PostgresQL …)

Android (Arm)
(Morello only)

Linux (Arm)
(Morello only)

Baseline CHERI 
Clang/LLVM from 
SRI/Cambridge; 

Morello adaptation 
by Arm + Linaro

9



CheriBSD software releases this year
• 22.05 release – First release supporting the Morello board

• Memory-safe kernel and userspace (“CheriABI”)

• USB stick installation

• Aarch64 and CheriABI third-party packages

• “Getting Started with CheriBSD”

• 22.05p1 release – Patch release

• Work around firmware bug to enable software reboot

• Install debug symbols for libraries

• Fix software crashes with thread-local storage (TLS)

• 22.10 (11?) release – Second major software release (details next slide)
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Some of our in-flight software R&D efforts
Feature Status Availability

Morello GPU device drivers Hybrid + pure-capability kernel driver
Hybrid + pure-capability user driver
Hybrid + pure-capability applications

Autumn 2022

Linker-based 
compartmentalization

Prototype runs some UNIX 
applications; limited debugger support

Autumn 2022 as (highly) 
experimental feature

Userlevel heap temporal 
safety

Prototype runs SPEC benchmarks Autumn 2022 (development 
branch), but “plug-in” to release

bhyve (Type-2) hypervisor Prototype boots pure-capability guest OS, but 
much more testing + review required

Autumn (development branch)

Co-process 
compartmentalization

Prototype runs some compartmentalized 
software (e.g., OpenSSL); API co-design

Early 2023 (development branch)
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Other forthcoming feaures in 22.10 include:
• Precompiled / easily installed CheriABI packages for Wayland memory-safe display server and KDE
• Morello GDB adaptation with significant functional improvements



MORELLO DESKTOP SUPPORT
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CheriBSD Morello GPU and HDMI kernel support
Quite significant engineering effort at Cambridge and CapLtd:

• Import + update Direct Rendering Manager (DRM) in FreeBSD

• Develop Arm IOMMU / SMMU driver for FreeBSD

• Develop Arm Komeda display controller driver

• Develop Arm Arm Mali GPU device driver

• Integrate HDMI controller device driver

General status:

• All compiles and runs with hybrid or memory-safe kernel and userlevel

• Shipping in CheriBSD Autumn 2022 release
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Memory-safe Wayland and KDE

• Shifted from X11 to Wayland compared to earlier CapLtd work

• CheriABI Packages for Mesa, Wayland, Qt, KDE, …

• Shipping in CheriBSD Autumn 2022 release
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Now on to the secure desktop grand challenges
• We are now within reach of an exciting – and historically highly vulnerable –

application corpus to which we can apply CHERI protections

• Memory-safe desktop applications at scale – especially those that contain one 
or more language runtimes:

• Web browsers

• Mail readers

• Office suites

• Extending this to fine-grained compartmentalization as software prototypes 
mature – library compartmentalization, coprocesses, further models, …

• For example: UKRI- and Google-funded efforts around the Chromium web 
browser at CapLtd, Kings College London, Arm, and Cambridge
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EXPERIMENTAL LIBRARY 
COMPARTMENTALISATION SUPPORT
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What is software compartmentalization?
• Fine-grained decomposition of a larger 

software system into isolated 
modules to constrain the impact of 
faults or attacks

• Goals is to minimize privileges 
yielded by a successful attack, and 
to limit further attack surfaces

• Usefully thought about as a graph of 
interconnected components, 
where the attacker’s goal is to 
compromise nodes of the graph 
providing a route from a point of entry 
to a specific target
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CheriFreeRTOS components and the application execute 
in compartments. CHERI contains an attack within 
TCP/IP compartment, which access neither flash nor the 
internals of the software update (OTA) compartment.



Software compartmentalization at scale

• Current CPUs limit:

• The number of compartments and rate of their creation/destruction

• The frequency of switching between them, especially as compartment count grows

• The nature and performance of memory sharing between compartments

• CHERI is intended to improve each of these – by at least an order of magnitude
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...

CHERI contains attack within compartment, 
preventing access to other data



CHERI-based pure-capability process memory
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• Capabilities are substituted for integer addresses throughout the address space

• Bounds and permissions are minimized by software including the kernel, run-time 
linker, memory allocator, and compiler-generated code

• Hardware permits fetch, load, and store only through granted capabilities

• Tags ensure integrity and provenance validity of all pointers
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CHERI-based compartmentalization

• Isolated compartments can be created using closed graphs of capabilities, 
combined with a constrained non-monotonic domain-transition mechanism
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Compartmentalization scalability

• CHERI dramatically improves compartmentalization scalability

• More compartments

• More frequent and faster domain transitions

• Faster shared memory between compartments

• Many potential use cases – e.g., sandbox processing of each image in a 
web browser, processing each message in a mail application

• Unlike memory protection,  software compartmentalization requires 
careful software refactoring to support strong encapsulation, and 
affects the software operational model

Early benchmarks show a 1-to-2 
order of magnitude performance 
inter-compartment 
communication improvement 
compared to conventional 
designs
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Operational models for CHERI compartmentalization
• CHERI is an architectural protection model enabling new software behavior

• As with virtual memory, multiple software operational models can be supported

• E.g., with an MMU: Microkernels, processes, virtual machines, etc.

• How are compartments created/destroyed? Function calls vs. message passing? 
Signaling, debugging, …?

• We have explored multiple viable CHERI-based models to date, including:

Isolated dynamic libraries Efficient but simple sandboxing in processes

UNIX co-processes Multiple processes share an address space

• Improved performance and new paradigms using CHERI primitives

• Both will be available in CheriBSD/Morello
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Kernel

User process X

Shared object Shared object

ld-elf.so (rtld)

Process X rights

Sandboxed shared libraries

• Shared libraries execute within “sandboxes”:
• Libraries have access only to explicitly linked or dynamically delegated resources

• CHERI used to isolate compartments within a shared address space
• Compartmentalisation-aware run-time linker (rtld), libc, libthr (pthreads)

• rtld injects domain-switching call and return shims during PLT linkage
• Lots of subtlety around topics like threads, signals, system calls, setjmp/longjmp, etc.
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Intra-address-space 
CHERI domain switch



Sandboxed library prototype in CheriBSD
• Early prototype implementation intended to make work more broadly 

available, especially for related research projects, but be aware / beware:

• Incomplete implementation

• Unstable APIs

• Depends on new and forthcoming compiler ABI changes

• No security claims [yet]

• Opt in: Programs will need to specify the alternative run-time linker in 
their ELF header, set during compilation

• Shipping in CheriBSD Autumn 2022 release

• Intention is that the design principles (and APIs?) will be fully applicable 
on Android / Linux
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CONCLUSION
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Conclusion
• Extremely active research and engineering around CHERI

• Creation of a CHERI-RISC-V SIG with the aim of standardizing

• Microsoft CHERI-RISC-V work and (soon) open-sourced Ibex core

• Morello software stack rapidly maturing

• Memory-safe GPU and early desktop environment

• Library compartmentalization model

• Easier use of experimental temporal memory safety work

• Many other ongoing activities including around co-process 
compartmentalization, an adaptation of the Chromium browser

• CHERI software adaptation workshop at DSbD All Hands Meeting 
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