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CHERI

The Morello Consortium

• Morello is a prototype processor, SoC, and board adapting the ARMv8-
A architecture to implement the CHERI protection model

• Four organisations collaborating to create the Morello platform 
prototype and baseline software ecosystem: 

• ARM UK Ltd

• Linaro

• University of Cambridge

• University of Edinburgh

• Updates from each, with some observations as we go …
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CHERI

Threads of execution
• Arm Morello architecture

• Arm Morello CPU, SoC, and board

• Morello architecture model and proofs, generated tests

• Morello toolchains (Clang/LLVM/LLD/LLDB, GCC, GDB)

• CheriBSD/Morello OS

• Android/Morello OS

• Open-source application corpus

• Documentation and tutorial material

• Support
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Architecture,
hardware, and
proofs

Software
ecosystem - multiple
toolchains, OSes

Supporting
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ARM:
MORELLO ARCHITECTURE, HARDWARE, 
TOOLCHAIN, AND ANDROID

Mark Inskip

4



© 2021 Arm Limited (or its affiliates)

Mark Inskip, Program Director
Arm Central Engineering7 May 2021

Morello Technology 
Demonstrator 

Update May 2021



6 © 2021 Arm Limited (or its affiliates)

Morello Board:  Capability Hardware Prototype Platform
• Silicon implementation of a Capability Hardware CPU Instruction Set Architecture

• Implements Morello Profile for A-class 
Prototype Architecture

• Two clusters each of two Rainier CPUs
• Interconnect and Memory Controller 

support for tagged memory
• Two channel DDR4 DRAM interface
• PCIe Gen3 and Gen4 x16 interface
• CCIX (Cache Coherent Interconnect

for Accelerators) interface
• Mid-range GPU, display processor

and HDMI output
• On standard uATX form factor board
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Supporting Arm system IP: GIC-600 (Generic Interrupt Controller), MMU-600 (IO MMU), Dynamic 
Memory Controller derived from DMC-620, SoC-600 (SoC Debug and Trace), Coherent Mesh Network 
derived from CMN-600, NIC-400 (Non-coherent interconnect)
Supporting 3rd party system IP/hardware: PCIe/CCIX Root Complex (PHY and controller), DDR4/3 PHY, 
DDR4 memory, IO FPGA
Open-source software stack
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Overview of the Morello Board 1x CCIX compatible PCIe
Gen4 x16 slot

3 x Standard PCIe Gen3 x16 
slot routed as x16, x8, x1

PCIe Gen3 Switch

2 x SATA II

Rear I/O connections
HDMI1.4a output
1Gb Ethernet RJ45
4 x USB3.0
PCC Ethernet
Config USB (inc UARTs)
32 bit TRACE (MIPI 60)

Morello SoC

2 x 72 bit DDR4 RDIMMS, 
one per channel
(16GByte standard config)

Motherboard
controller (MCC)

Morello SoC

IOFPGA
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Existing Arm software for Morello

Morello Kernel
ACK derived baseline for future Morello Kernel 
development. 

BIONIC Android C lib for purecap applications
Kernel syscall ABI support reliant on library “shim”

CHERI LLVM toolchain
Primary toolchain and utilities (in 
association with Cambridge University)

Toolchain

C Library

Linux Kernel

Morello Platform Model (FVP) releases
• Platform Model available for download
• Code repositories live – hosting:

• Headless Android dev environment
• Initial mods to arm64-v8a AOSP to 

support Capabilities
• Open Source firmware (SCP, TF-A, EDK2)

Development board

Oct 2020 Jan 2022

Platform
Deliverables

Linaro
Infrastructure
Initial software access - Infrastructure 
for code hosting

CheriBSD environment 
available from Cambridge 
University

Arm Internal hardware bring up

CI development, contributions support

https://www.morello-project.org/
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Morello Development board – aims for initial hardware release
§ Parity with FVP release features on hardware platform

§ Android dev environment (Nano config)
§ Initial full Android (Software Rendering + DPU) hardware boot

Android Enablement (ongoing)

§ Dynamic Linking support

§ Additional pure-cap component ports (shell, libjpeg-turbo, etc)

§ Preparatory graphics stack porting
§ Investigation: Android Runtime + zygote

Linux Userspace enablement
1. Simple Linux environment (e.g. busybox): LLVM + musl
2. Simple Linux environment (e.g. busybox): GCC + GlibC
3. Basic Distro framework

Morello Kernel enablement

§ Incremental progress towards Kernel support for Android & Linux
pure-cap environments
§ Base 64-bit functionality (COMPAT),  evolving pure-cap syscall ABI 

support, enforcement of Capability metadata
§ Aligns with associated C library development

C Libraries
§ C libraries initially developed using syscall ABI “shim” -

functionality reduced in line with evolving Kernel
§ BIONIC (Android)
§ Musl libC
§ GlibC

Toolchains
§ LLVM / Clang toolchain: additional functionality (C++ 

Exceptions, Compartments)
§ GNU toolchain: Binutils (gas, objdump, LD), GCC, GDB

Panfrost Graphics

§ Community enablement of A64 Panfrost drivers for Bifrost 
GPU architecture, enabling à
§ A64 driver ports (Mali G76 GPU) & integration into OS 

graphics frameworks on Morello hardware, enabling à
§ Purecap (c64) ports of OS graphics components

Hosting Infrastructure
§ Contributions and public CI
§ Linaro maintenance

Current & future Arm Morello enablement plans (provisional)

Longer term (post silicon) 
development work with 
deliveries 2022 onwards.
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Morello Toolchains 
LLVM & GNU Toolchain Plans

LLVM

• Ongoing: Regular re-bases to CHERI LLVM.
• 31 March 2021 (Done):

• C++ exceptions (static linking).
• 30 June 2021:

• Performance optimisations.
• Descriptor ABI (spec, codegen, LLD, LLDB).

• 30 September 2021:
• C++ exceptions (dynamic linking).

• 31 March 2022:
• More extensive public test.

• 30 June 2022:
• Code generation for DDC offsetting mode.

GNU Tools

• 30 September 2021 :
• GDB (REL)

• 31 December 2021:
• GCC ACLE Intrinsics & C Language Support

• 31 March 2021:
• GCC C++ Language Support
• Glibc 
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UNIVERSITY OF CAMBRIDGE:
CHERI, ARCHITECTURE, SYSTEMS 
SOFTWARE, AND APPLICATION CORPUS
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CHERI

CHERI
• Hardware-software(-semantics) co-design since 2010; 3x DARPA programmes

• Atom smash ideas about capability systems with contemporary architecture, 
microarchitecture, and C/C++-language software – first MIPS, now RISC-V

• Introduction to CHERI is the best starting point, but pre-Morello (UCAM-CL-TR-941)

• CHERI ISAv8 spec shipped October 2021 (UCAM-CL-TR-951)

• Compressed capabilities now the “model”; CHERI support for 32-bit RISC-V; many 
experimental features now non-experimental (e.g., sentries), load-side barrier temporal 
safety; microarchitecture chapter

• Synchronised with final Arm Morello ISA

• DSbD CHERI and Morello Capability Essential IP (Version 1) shipped December 
2021 (UCAM-CL-TR-953)

• CHERI ISAv9 due mid-2021

• CHERI-RISC-V compressed instructions; CHERI-x86 ISA elaboration; improved CHERI-
RISC-V static linking; further updates on microarchitecture
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CHERI

Open-source CHERI-RISC-V microarchitectures

• Demonstrate and evaluate CHERI techniques on FPGA

• Implemented in BlueSpec System Verilog (BSV)

• CHERI-Piccolo - 32-bit microcontroller; w/o MMU

• CHERI-Flute - 32/64-bit pipelined processor w/MMU

• CHERI-Toooba - 64-bit multicore superscalar processor w/MMU

• Used on Xilinx VCU-118 and Amazon AWS F1; Stratix 10 planned

• Run CHERI software stacks (CheriBSD and/or CheriFreeRTOS)

• MIT or Apache-style licenses
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CHERI

CHERI prototype software stack on Morello
• Complete open-source CHERI-enabled software stack from bare metal up: compilers, 

toolchain, debuggers, operating systems, applications – all demonstrating CHERI ideas

• Rich CHERI feature use, but fundamentally incremental/hybridized deployment

• Aim: Mature and highly useful research and development platform for Morello
15

CHERI-extended Google Hafnium hypervisor (Morello only)

CHERI Clang/LLVM compiler suite, LLD, LLDB, GDB

CheriBSD/Morello (DARPA)
• FreeBSD kernel + userspace, application stack
• Kernel spatial and referential memory protection
• Userspace spatial, referential, and temporal memory protection
• Intra-process compartmentalization
• Co-process IPC
• CHERI-aware bhyve hypervisor
• ARMv8-A 64-bit binary compatibility for legacy binaries

Open-source application suite (WebKit, Python, OpenSSH, nginx, PostgresQL …)

Android (Arm)
(Morello only)

Baseline CHERI 
Clang/LLVM from 
SRI/Cambridge; 

Morello 
adaptation by 
Arm + Linaro
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Open-source CHERI Clang/LLVM/LLD+GDB
• Extensions to the open-source Clang/LLVM/LLD toolchain and GDB debugger

• Supports CHERI-RISC-V and CHERI-MIPS (deprecated)

• Upstream vendor for Arm’s Morello Clang/LLVM/LLD; input into Morello GDB, LLDB

• Closely tracks upstream baseline LLVM project

• Two compilation modes:

• Hybrid CHERI C/C++: Source annotations explicitly mark capability types; goal ABI compatibility

• Pure-capability CHERI C/C++: All C/C++ pointers, implied or explicit, implemented as capabilities; 
goal strong protection through new ABI

• CHERI C/C++ Programming Guide, June 2020 (UCAM-CL-TR-947)

• Plenty to do:

• CHERI Hybrid C/C++ Programming Guide; delayed as we iterate on what Hybrid C should be 

• Converge CHERI and Morello GDB implementations; develop richer CHERI debugger ideas

• Explicit specification, as Arm works on a second independent implementation: Morello GCC
16
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CheriBSD operating system
• CHERI adaptation of FreeBSD UNIX (Netflix, Netapp, EMC, Juniper, Sony, Nintendo, …)

• CheriBSD runs on Morello FVP and on Morello FPGA:

• AArch64 binary compatibility environment Complete

• Userspace spatial safety (“CheriABI”) Complete (C and C++)

• Kernel spatial safety Complete

• Userspace temporal safety In progress adaptation from RISC-V

• Co-process compartmentalization Not yet adapted from RISC-V

• Morello-enabled virtual machines on bhyve Not yet started

• Applications such as OpenSSH, nginx, WebKit, etc., all run well on Morello in CheriABI

• Panfrost framework device-driver adapted; awaiting Collabora Morello GPU driver

• June 2021 next release – will ship from CheriBSD main branch rather than Morello dev

• Key objectives for 2021Q4: CheriABI applications; co-process compartmentelization
17
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CHERI C compatibility: CheriBSD Code Changes
Area Files total Files modified % 

files
LoC

total
LoC

changed
%

LoC

Kernel 11,861 896 7.6 6,095k 6,961 0.18

• Core 7,867 705 9.0 3,195k 5,787 0.18

• Drivers 3,994 191 4.8 2,900k 1,174 0.04

Userspace 16,968 649 3.8 5,393k 2,149 0.04

• Runtimes (excl. libc++) 1,493 233 15.6 207k 989 0.48

• libc++ 227 17 7.5 114k 133 0.12

• Programs and libraries 15,475 416 2.7 5,186k 1,160 0.02

Notes:
§ Numbers from cloc counting modified files and lines for identifiable C, C++, and assembly files
§ Kernel includes changes to be a hybrid program and most changes to be a pure-capability program

• Also includes most of support for CHERI-MIPS, CHERI-RISC-V, Morello
• Count includes partial support for 32 and 64-bit FreeBSD and Linux binaries.
• 67 files and 25k LoC added to core in addition to modifications
• Most generated code excluded, some existing code could likely be generated



CHERI

C/C++ compatibility: WebKit - JSC Code Changes

Area Files total Files
modified

% Files LoC
total

LoC
changed

%
LoC

JSC-C 3368 148 4.4 550k 2217 0.40

JSC-JIT 3368 339 10.1 550k 7581 1.38

Notes:
§ JSC-C is a port of the C-language JavaScriptCore interpreter backend
§ JSC-JIT includes support for a meta-assembly language interpreter and JIT compiler
§ Runs SunSpider JavaScript benchmarks to completion
§ Language runtimes represent worst-case in compatibility for CHERI

• Porting assembly interpreter and JIT compiler requires targeting new encodings
§ Changes reported here did not target diff minimization

• Prioritized debugging and multiple configurations (including integer offsets into bounded JS heap) for performance and 
security evaluation

• Some changes may not be required with modern CHERI compiler
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QEMU
• QEMU-CHERI

• Mature, fast, open-source ISA-level emulator for CHERI-RISC-V (+CHERI-MIPS)

• Support for multithreaded QEMU added, improving multicore emulation speed

• QEMU-Morello

• Adaptation of our QEMU-CHERI to add Morello ISA support

• Now boots CheriBSD with CheriABI userspace

• Ready for experimental third-party use in June 2021?

• QEMU-Userlevel CheriABI

• Support for userspace-only execution of CheriABI binaries

• Primarily used in cross-build environements

• Dynamically linked binaries now in progress

• Will extend to Morello once mature for CHERI-RISC-V
20



CHERI

How to obtain and install CHERI software stack
• One build tool to rule them all: cheribuild

https://github.com/CTSRD-CHERI/cheribuild

• Builds, installs, and/or runs:

• Morello FVP or QEMU CHERI-RISC-V

• CheriBSD/Morello disk images

• Small suite of adapted third-party applications

• Up and running with one command (CHERI-RISC-V):

./cheribuild.py --include-dependencies run-riscv64-purecap

• We will integrate QEMU-Morello support with 
cheribuild in the coming month; only the FVP for now

21
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In-progress research (1/2)
• CHERI RISC-V PPA and dynamic performance (DARPA)

• CHERI-RISC-V ISA and ABI optimization (DARPA)

• Formal modeling and proof for CHERI-RISC-V (DARPA)

• CHERI and speculative execution (GCHQ, DARPA)

• Software compartmentalization demonstrator: Apache + TLS (DARPA)

• CheriFreeRTOS compartmentalized embedded OS (DARPA)

• CHERI temporal memory safety in HW/SW (w/Microsoft) (DARPA)

• CHERI Clang/LLVM/LLD optimizer analysis and improvement (EPSRC)

• WebKit safety, compartmentalization, JIT (w/Arm) (Gates)

22



CHERI

In-progress research (2/2)
• CHERI-BGAS PGAS-style hardware and software model (LPS)

• Morello ISA and hardware validation (Innovate)

• Spatial, temporal memory safety evaluation on Morell (Innovate)

• Formal modeling and proof for Morello (Innovate)

• Linux CheriABI development and validation (w/Arm) (Innovate)

• Open-source desktop ecosystem assessment (w/CapLtd) (Innovate)

• Software operational models for CHERI compartmentalization (EPSRC)

• CHERI support in GPUs and accelerators (EPSRC)

23

See our
posters!
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CAMBRIDGE AND EDINBURGH:
FORMAL MODELING AND VALIDATION

Peter Sewell
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CHERI

CHERI semantics

• Hardware-software-semantics co-design since 2014

• CHERI-RISC-V, CHERI-MIPS defined in Sail
(our ISA definition language)

• Underlying RISC-V model adopted by RISC-V International

• Morello ISA (and Armv8-A) auto-translated from Arm ASL to Sail

• [Thomas Bauereiss, Brian Campbell, Thomas Sewell, Kyndylan Nienhuis, 
Alasdair Armstrong, Prashanth Mundkur, Robert Norton-Wright, 
Alexandre Joannou, and Alastair Reid, in collaboration with the rest of 
the CHERI team, Arm, and RISC-V International]
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From Sail to ..
• From Sail we generate multiple artefacts:

• documentation: the detailed CHERI-RISC-V and CHERI-MIPS ISA documentation is the 
typeset Sail code

• emulation: we use a Sail-generated C emulator (~400KIPS) as a reference for testing 
hardware and QEMU against, for initial software bring-up, and (for Arm) to validate the 
Sail version of the model against Arm tools

• symbolic evaluation: our Isla SMT-based symbolic evaluator for Sail produces simplified 
views of the semantics under given assumptions

• test generation: using Isla we generate interesting ISA tests with good spec coverage

• theorem-prover definitions: we generate Isabelle, Coq, and HOL4 versions of the full 
ISA definitions to use for proof (also in progress: integration of Isla traces into Coq and 
Iris for program-logic reasoning)

• This automatic generation enables easy experimentation and helps keeps things in sync.

• All this is for the full sequential ISA definitions, including systems aspects and able to boot 
OSs, not just idealised fragments.
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Sail flow: From ISA models to spec, tests, proof
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Provable ISA security properties
• CHERI ISA designs are supposed to provide strong guarantees that system software can rely on to give 

better security

• But how do we know they do? A single small error in the (~100kLoC) Morello spec could break those 
guarantees. 

• Answer: we state those guarantees as properties of the CHERI ISA specs, and do machine-checked 
mathematical proof (in the Isabelle proof assistant) that they hold.  E.g.:

• Theorem  [Capabilities cannot be forged (Capability Monotonicity)]  For any intra-domain 
trace, the reachable capabilities from the final state are no greater than those of the initial state.

• Theorem  [Compartmentalisation]  Any trace within a properly set-up compartment cannot 
affect other memory, and can exit the compartment only in controlled ways.

• These are properties of arbitrary code above the ISA. 

• Initially for CHERI-MIPS (above the earlier L3 model) [Nienhuis et al., Security & Privacy 2019]

• Now monotonicity proof essentially complete for Morello, under various assumptions (e.g. about 
address translation). [Bauereiss, T. Sewell, Campbell, Armstrong]

• Also proofs and SMT checking of compression scheme.
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Formal artifacts

• Sail models and generated prover (esp. Isabelle) definitions:

• for CHERI-RISC-V, RISC-V, CHERI-MIPS, Armv8-A: all available

• for Morello: available soon (mid-2021)

• Isabelle proofs for Morello: available soon

• Future plans:

• software verification above these models

• semantics and verification for CHERI C, CHERI LLVM (TBD)
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LINARO:
ECOSYSTEM ENABLEMENT

Joakim Bech, Luis Machado

30



Linaro’s Morello and CHERI 
contributions
Joakim Bech, Luis Machado
2021-05-04



Toolchain Contributions
Updates

- LLDB - functional in maintenance mode
- Improved unwinding support (backtraces)
- Descriptor ABI support

- GDB - functional alpha stage
- Support for reading/writing capabilities from/to memory
- Support for calling functions from within GDB
- Core file support

- C register dumps
- Capability tag dumps WIP

- AUXV / Linkmap support WIP



Toolchain Contributions
Updates

- Binutils / GAS / LD - functional
- Maintenance and bug fixes

- GLIBC - under development
- C64 string/memory routines
- Morello setjmp/longjmp support
- Syscall interface
- Sysdeps enablement
- Static binary support WIP
- Dynamically-linked binaries WIP



Toolchain Contributions
Planned work

- LLDB
- Maintenance and bug fixes

- GDB
- Core file support
- AUXV / Linkmap
- Maintenance and bug fixes

- Binutils / GAS / LD
- Maintenance and bug fixes

- GLIBC
- Static binary support
- More sysdeps enablement
- Dynamically-linked binaries



Software enablement
- Usability from a newcomers perspective

- Helping out verifying and providing feedback on existing documentation and guidelines.
- Contributed with guidelines on how to build Morello Nano (AOSP based Morello build)

- Pure-capability enablement
- Done changes to a few software projects within AOSP
- Once you’ve understood how to build and port a project, it’s pretty easy to port additional ones

Software project Diff (*) Total LOCs 
(**)

% of code changed Comment

bzip2 3 files changed, +22, -1 8186 0.00281 MR being reviewed

dnsmasq 1 file changed, +7 14389 0.00049 MR being reviewed

sqlite(3) 2 files changed, +33, -2 469220 0.000007 Libshim issues, MR being reviewed

tcpdump 1 file changed, +7 105408 0.000006 MR being reviewed

toybox 6 files changed, +36, -17 82936 0.00064 MR being reviewed

.../arm/morello-examples n/a n/a MR being reviewed

(**) $ find . -type f -name '*.[ch]' -o -name "*.bp" | xargs wc -l

(*) Patch statistics to change the application to run as a pure capability binary.
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CONCLUSION
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An evolving CHERI/Morello software ecosystem
• Current activity: Laying the foundations before the hardware ships

• Architectural formal models and proofs

• Emulators – FVP and QEMU, and soon QEMU-userlevel

• ABI, compiler, and toolchain functionality, performance

• CHERI-enabled OSes including FreeBSD+Android, drivers etc.

• Basic open-source application stack – WebKit, nginx, OpenSSH, …

• But there are lots of gaps (e.g., high-level language runtimes)…

• … And lots of questions (community, repositories, multi-OS, …)

• Invitation: Engage in creating a Morello software community!
37
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Ways to engage

• Chat with folk from Arm, Cambridge, Edinburgh, and Linaro
around this workshop – and see our research posters

• Join us on cheri-cpu.slack.com

• Email cheri-slack@cl.cam.ac.uk to request an invitation

• cl-cheri-discuss mailing list – low traffic but probably will grow

38
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Q&A
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