
CHERI

This work was sponsored in part by the Innovate UK project Digital Security by Design (DSbD) Technology Platform Prototype, 105694. Approved for public release; distribution is unlimited. Sponsored in part by
the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL), under contracts FA8750-10-C-0237 (``CTSRD’’), FA8750-11-C-0249 (``MRC2’’), HR0011-18-C-0016
(``ECATS''), and FA8650-18-C-7809 (``CIFV'') as part of the DARPA CRASH, MRC, and SSITH research programs. The views, opinions, and/or findings contained in this report are those of the authors and should
not be interpreted as representing the official views or policies, either expressed or implied, of the Department of Defense or the U.S. Government.

CHERI

Morello Consortium update
Robert N. M. Watson (University of Cambridge), Simon W. Moore (Cambridge), Peter Sewell

(Cambridge), Peter G. Neumann (SRI), Brooks Davis (SRI), Joakim Bech (Linaro),
Luis Machado (Linaro), Mark Nicholson (Arm), Mark Inskip (Arm)

Digital Security by Design (DSbD) - All Hands Meeting
7 May 2021

CHERI

The Morello Consortium

• Morello is a prototype processor, SoC, and board adapting the ARMv8-
A architecture to implement the CHERI protection model

• Four organisations collaborating to create the Morello platform
prototype and baseline software ecosystem:

• ARM UK Ltd

• Linaro

• University of Cambridge

• University of Edinburgh

• Updates from each, with some observations as we go …

2

CHERI

Threads of execution
• Arm Morello architecture

• Arm Morello CPU, SoC, and board

• Morello architecture model and proofs, generated tests

• Morello toolchains (Clang/LLVM/LLD/LLDB, GCC, GDB)

• CheriBSD/Morello OS

• Android/Morello OS

• Open-source application corpus

• Documentation and tutorial material

• Support

3

Architecture,
hardware, and
proofs

Software
ecosystem - multiple
toolchains, OSes

Supporting
material

CHERI

ARM:
MORELLO ARCHITECTURE, HARDWARE,
TOOLCHAIN, AND ANDROID

Mark Inskip

4

© 2021 Arm Limited (or its affiliates)

Mark Inskip, Program Director
Arm Central Engineering7 May 2021

Morello Technology
Demonstrator

Update May 2021

6 © 2021 Arm Limited (or its affiliates)

Morello Board: Capability Hardware Prototype Platform
• Silicon implementation of a Capability Hardware CPU Instruction Set Architecture

• Implements Morello Profile for A-class
Prototype Architecture

• Two clusters each of two Rainier CPUs
• Interconnect and Memory Controller

support for tagged memory
• Two channel DDR4 DRAM interface
• PCIe Gen3 and Gen4 x16 interface
• CCIX (Cache Coherent Interconnect

for Accelerators) interface
• Mid-range GPU, display processor

and HDMI output
• On standard uATX form factor board

Co
re

Si
gh

tS
oC

-6
00

CMN-Skeena (CoreLink CMN-600 based)

CoreLink GIC-600

CoreLink NIC-400

IOFPGA

SCP
Cortex-M7

MCP
Cortex-M7DDR4-2667

DMC-Bing
(DMC-620 based)

CCIXPCIe

MMU-600
Rainier

EL
A

-5
00

Rainier

EL
A

-5
00

DMC-Bing
(DMC-620 based)

HDMI

Mali-D35

Mali-G76

UEFI boot, SCP/MCP FirmwareTrusted Firmware-A

Linux Kernel

Supporting Arm system IP: GIC-600 (Generic Interrupt Controller), MMU-600 (IO MMU), Dynamic
Memory Controller derived from DMC-620, SoC-600 (SoC Debug and Trace), Coherent Mesh Network
derived from CMN-600, NIC-400 (Non-coherent interconnect)
Supporting 3rd party system IP/hardware: PCIe/CCIX Root Complex (PHY and controller), DDR4/3 PHY,
DDR4 memory, IO FPGA
Open-source software stack

7 © 2021 Arm Limited (or its affiliates)

Overview of the Morello Board 1x CCIX compatible PCIe
Gen4 x16 slot

3 x Standard PCIe Gen3 x16
slot routed as x16, x8, x1

PCIe Gen3 Switch

2 x SATA II

Rear I/O connections
HDMI1.4a output
1Gb Ethernet RJ45
4 x USB3.0
PCC Ethernet
Config USB (inc UARTs)
32 bit TRACE (MIPI 60)

Morello SoC

2 x 72 bit DDR4 RDIMMS,
one per channel
(16GByte standard config)

Motherboard
controller (MCC)

Morello SoC

IOFPGA

8 © 2021 Arm Limited (or its affiliates)

Existing Arm software for Morello

Morello Kernel
ACK derived baseline for future Morello Kernel
development.

BIONIC Android C lib for purecap applications
Kernel syscall ABI support reliant on library “shim”

CHERI LLVM toolchain
Primary toolchain and utilities (in
association with Cambridge University)

Toolchain

C Library

Linux Kernel

Morello Platform Model (FVP) releases
• Platform Model available for download
• Code repositories live – hosting:

• Headless Android dev environment
• Initial mods to arm64-v8a AOSP to

support Capabilities
• Open Source firmware (SCP, TF-A, EDK2)

Development board

Oct 2020 Jan 2022

Platform
Deliverables

Linaro
Infrastructure
Initial software access - Infrastructure
for code hosting

CheriBSD environment
available from Cambridge
University

Arm Internal hardware bring up

CI development, contributions support

https://www.morello-project.org/

9 © 2021 Arm Limited (or its affiliates)

Morello Development board – aims for initial hardware release
§ Parity with FVP release features on hardware platform

§ Android dev environment (Nano config)
§ Initial full Android (Software Rendering + DPU) hardware boot

Android Enablement (ongoing)

§ Dynamic Linking support

§ Additional pure-cap component ports (shell, libjpeg-turbo, etc)

§ Preparatory graphics stack porting
§ Investigation: Android Runtime + zygote

Linux Userspace enablement
1. Simple Linux environment (e.g. busybox): LLVM + musl
2. Simple Linux environment (e.g. busybox): GCC + GlibC
3. Basic Distro framework

Morello Kernel enablement

§ Incremental progress towards Kernel support for Android & Linux
pure-cap environments
§ Base 64-bit functionality (COMPAT), evolving pure-cap syscall ABI

support, enforcement of Capability metadata
§ Aligns with associated C library development

C Libraries
§ C libraries initially developed using syscall ABI “shim” -

functionality reduced in line with evolving Kernel
§ BIONIC (Android)
§ Musl libC
§ GlibC

Toolchains
§ LLVM / Clang toolchain: additional functionality (C++

Exceptions, Compartments)
§ GNU toolchain: Binutils (gas, objdump, LD), GCC, GDB

Panfrost Graphics

§ Community enablement of A64 Panfrost drivers for Bifrost
GPU architecture, enabling à
§ A64 driver ports (Mali G76 GPU) & integration into OS

graphics frameworks on Morello hardware, enabling à
§ Purecap (c64) ports of OS graphics components

Hosting Infrastructure
§ Contributions and public CI
§ Linaro maintenance

Current & future Arm Morello enablement plans (provisional)

Longer term (post silicon)
development work with
deliveries 2022 onwards.

10 © 2021 Arm Limited (or its affiliates)

Morello Toolchains
LLVM & GNU Toolchain Plans

LLVM

• Ongoing: Regular re-bases to CHERI LLVM.
• 31 March 2021 (Done):

• C++ exceptions (static linking).
• 30 June 2021:

• Performance optimisations.
• Descriptor ABI (spec, codegen, LLD, LLDB).

• 30 September 2021:
• C++ exceptions (dynamic linking).

• 31 March 2022:
• More extensive public test.

• 30 June 2022:
• Code generation for DDC offsetting mode.

GNU Tools

• 30 September 2021 :
• GDB (REL)

• 31 December 2021:
• GCC ACLE Intrinsics & C Language Support

• 31 March 2021:
• GCC C++ Language Support
• Glibc

© 2021 Arm Limited (or its affiliates)

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

ध"यवाद
ارًكش

ধন#বাদ
הדות

CHERI

UNIVERSITY OF CAMBRIDGE:
CHERI, ARCHITECTURE, SYSTEMS
SOFTWARE, AND APPLICATION CORPUS

12

CHERI

CHERI
• Hardware-software(-semantics) co-design since 2010; 3x DARPA programmes

• Atom smash ideas about capability systems with contemporary architecture,
microarchitecture, and C/C++-language software – first MIPS, now RISC-V

• Introduction to CHERI is the best starting point, but pre-Morello (UCAM-CL-TR-941)

• CHERI ISAv8 spec shipped October 2021 (UCAM-CL-TR-951)

• Compressed capabilities now the “model”; CHERI support for 32-bit RISC-V; many
experimental features now non-experimental (e.g., sentries), load-side barrier temporal
safety; microarchitecture chapter

• Synchronised with final Arm Morello ISA

• DSbD CHERI and Morello Capability Essential IP (Version 1) shipped December
2021 (UCAM-CL-TR-953)

• CHERI ISAv9 due mid-2021

• CHERI-RISC-V compressed instructions; CHERI-x86 ISA elaboration; improved CHERI-
RISC-V static linking; further updates on microarchitecture

13

CHERI

Open-source CHERI-RISC-V microarchitectures

• Demonstrate and evaluate CHERI techniques on FPGA

• Implemented in BlueSpec System Verilog (BSV)

• CHERI-Piccolo - 32-bit microcontroller; w/o MMU

• CHERI-Flute - 32/64-bit pipelined processor w/MMU

• CHERI-Toooba - 64-bit multicore superscalar processor w/MMU

• Used on Xilinx VCU-118 and Amazon AWS F1; Stratix 10 planned

• Run CHERI software stacks (CheriBSD and/or CheriFreeRTOS)

• MIT or Apache-style licenses

14

CHERI

CHERI prototype software stack on Morello
• Complete open-source CHERI-enabled software stack from bare metal up: compilers,

toolchain, debuggers, operating systems, applications – all demonstrating CHERI ideas

• Rich CHERI feature use, but fundamentally incremental/hybridized deployment

• Aim: Mature and highly useful research and development platform for Morello
15

CHERI-extended Google Hafnium hypervisor (Morello only)

CHERI Clang/LLVM compiler suite, LLD, LLDB, GDB

CheriBSD/Morello (DARPA)
• FreeBSD kernel + userspace, application stack
• Kernel spatial and referential memory protection
• Userspace spatial, referential, and temporal memory protection
• Intra-process compartmentalization
• Co-process IPC
• CHERI-aware bhyve hypervisor
• ARMv8-A 64-bit binary compatibility for legacy binaries

Open-source application suite (WebKit, Python, OpenSSH, nginx, PostgresQL …)

Android (Arm)
(Morello only)

Baseline CHERI
Clang/LLVM from
SRI/Cambridge;

Morello
adaptation by
Arm + Linaro

CHERI

Open-source CHERI Clang/LLVM/LLD+GDB
• Extensions to the open-source Clang/LLVM/LLD toolchain and GDB debugger

• Supports CHERI-RISC-V and CHERI-MIPS (deprecated)

• Upstream vendor for Arm’s Morello Clang/LLVM/LLD; input into Morello GDB, LLDB

• Closely tracks upstream baseline LLVM project

• Two compilation modes:

• Hybrid CHERI C/C++: Source annotations explicitly mark capability types; goal ABI compatibility

• Pure-capability CHERI C/C++: All C/C++ pointers, implied or explicit, implemented as capabilities;
goal strong protection through new ABI

• CHERI C/C++ Programming Guide, June 2020 (UCAM-CL-TR-947)

• Plenty to do:

• CHERI Hybrid C/C++ Programming Guide; delayed as we iterate on what Hybrid C should be

• Converge CHERI and Morello GDB implementations; develop richer CHERI debugger ideas

• Explicit specification, as Arm works on a second independent implementation: Morello GCC
16

Discouraged

Encouraged

CHERI

CheriBSD operating system
• CHERI adaptation of FreeBSD UNIX (Netflix, Netapp, EMC, Juniper, Sony, Nintendo, …)

• CheriBSD runs on Morello FVP and on Morello FPGA:

• AArch64 binary compatibility environment Complete

• Userspace spatial safety (“CheriABI”) Complete (C and C++)

• Kernel spatial safety Complete

• Userspace temporal safety In progress adaptation from RISC-V

• Co-process compartmentalization Not yet adapted from RISC-V

• Morello-enabled virtual machines on bhyve Not yet started

• Applications such as OpenSSH, nginx, WebKit, etc., all run well on Morello in CheriABI

• Panfrost framework device-driver adapted; awaiting Collabora Morello GPU driver

• June 2021 next release – will ship from CheriBSD main branch rather than Morello dev

• Key objectives for 2021Q4: CheriABI applications; co-process compartmentelization
17

CHERI

CHERI C compatibility: CheriBSD Code Changes
Area Files total Files modified %

files
LoC

total
LoC

changed
%

LoC

Kernel 11,861 896 7.6 6,095k 6,961 0.18

• Core 7,867 705 9.0 3,195k 5,787 0.18

• Drivers 3,994 191 4.8 2,900k 1,174 0.04

Userspace 16,968 649 3.8 5,393k 2,149 0.04

• Runtimes (excl. libc++) 1,493 233 15.6 207k 989 0.48

• libc++ 227 17 7.5 114k 133 0.12

• Programs and libraries 15,475 416 2.7 5,186k 1,160 0.02

Notes:
§ Numbers from cloc counting modified files and lines for identifiable C, C++, and assembly files
§ Kernel includes changes to be a hybrid program and most changes to be a pure-capability program

• Also includes most of support for CHERI-MIPS, CHERI-RISC-V, Morello
• Count includes partial support for 32 and 64-bit FreeBSD and Linux binaries.
• 67 files and 25k LoC added to core in addition to modifications
• Most generated code excluded, some existing code could likely be generated

CHERI

C/C++ compatibility: WebKit - JSC Code Changes

Area Files total Files
modified

% Files LoC
total

LoC
changed

%
LoC

JSC-C 3368 148 4.4 550k 2217 0.40

JSC-JIT 3368 339 10.1 550k 7581 1.38

Notes:
§ JSC-C is a port of the C-language JavaScriptCore interpreter backend
§ JSC-JIT includes support for a meta-assembly language interpreter and JIT compiler
§ Runs SunSpider JavaScript benchmarks to completion
§ Language runtimes represent worst-case in compatibility for CHERI

• Porting assembly interpreter and JIT compiler requires targeting new encodings
§ Changes reported here did not target diff minimization

• Prioritized debugging and multiple configurations (including integer offsets into bounded JS heap) for performance and
security evaluation

• Some changes may not be required with modern CHERI compiler

CHERI

QEMU
• QEMU-CHERI

• Mature, fast, open-source ISA-level emulator for CHERI-RISC-V (+CHERI-MIPS)

• Support for multithreaded QEMU added, improving multicore emulation speed

• QEMU-Morello

• Adaptation of our QEMU-CHERI to add Morello ISA support

• Now boots CheriBSD with CheriABI userspace

• Ready for experimental third-party use in June 2021?

• QEMU-Userlevel CheriABI

• Support for userspace-only execution of CheriABI binaries

• Primarily used in cross-build environements

• Dynamically linked binaries now in progress

• Will extend to Morello once mature for CHERI-RISC-V
20

CHERI

How to obtain and install CHERI software stack
• One build tool to rule them all: cheribuild

https://github.com/CTSRD-CHERI/cheribuild

• Builds, installs, and/or runs:

• Morello FVP or QEMU CHERI-RISC-V

• CheriBSD/Morello disk images

• Small suite of adapted third-party applications

• Up and running with one command (CHERI-RISC-V):

./cheribuild.py --include-dependencies run-riscv64-purecap

• We will integrate QEMU-Morello support with
cheribuild in the coming month; only the FVP for now

21

https://github.com/CTSRD-CHERI/cheribuild

CHERI

In-progress research (1/2)
• CHERI RISC-V PPA and dynamic performance (DARPA)

• CHERI-RISC-V ISA and ABI optimization (DARPA)

• Formal modeling and proof for CHERI-RISC-V (DARPA)

• CHERI and speculative execution (GCHQ, DARPA)

• Software compartmentalization demonstrator: Apache + TLS (DARPA)

• CheriFreeRTOS compartmentalized embedded OS (DARPA)

• CHERI temporal memory safety in HW/SW (w/Microsoft) (DARPA)

• CHERI Clang/LLVM/LLD optimizer analysis and improvement (EPSRC)

• WebKit safety, compartmentalization, JIT (w/Arm) (Gates)

22

CHERI

In-progress research (2/2)
• CHERI-BGAS PGAS-style hardware and software model (LPS)

• Morello ISA and hardware validation (Innovate)

• Spatial, temporal memory safety evaluation on Morell (Innovate)

• Formal modeling and proof for Morello (Innovate)

• Linux CheriABI development and validation (w/Arm) (Innovate)

• Open-source desktop ecosystem assessment (w/CapLtd) (Innovate)

• Software operational models for CHERI compartmentalization (EPSRC)

• CHERI support in GPUs and accelerators (EPSRC)

23

See our
posters!

CHERI

CAMBRIDGE AND EDINBURGH:
FORMAL MODELING AND VALIDATION

Peter Sewell

24

CHERI

CHERI semantics

• Hardware-software-semantics co-design since 2014

• CHERI-RISC-V, CHERI-MIPS defined in Sail
(our ISA definition language)

• Underlying RISC-V model adopted by RISC-V International

• Morello ISA (and Armv8-A) auto-translated from Arm ASL to Sail

• [Thomas Bauereiss, Brian Campbell, Thomas Sewell, Kyndylan Nienhuis,
Alasdair Armstrong, Prashanth Mundkur, Robert Norton-Wright,
Alexandre Joannou, and Alastair Reid, in collaboration with the rest of
the CHERI team, Arm, and RISC-V International]

25

CHERI

From Sail to ..
• From Sail we generate multiple artefacts:

• documentation: the detailed CHERI-RISC-V and CHERI-MIPS ISA documentation is the
typeset Sail code

• emulation: we use a Sail-generated C emulator (~400KIPS) as a reference for testing
hardware and QEMU against, for initial software bring-up, and (for Arm) to validate the
Sail version of the model against Arm tools

• symbolic evaluation: our Isla SMT-based symbolic evaluator for Sail produces simplified
views of the semantics under given assumptions

• test generation: using Isla we generate interesting ISA tests with good spec coverage

• theorem-prover definitions: we generate Isabelle, Coq, and HOL4 versions of the full
ISA definitions to use for proof (also in progress: integration of Isla traces into Coq and
Iris for program-logic reasoning)

• This automatic generation enables easy experimentation and helps keeps things in sync.

• All this is for the full sequential ISA definitions, including systems aspects and able to boot
OSs, not just idealised fragments.

26

CHERI

Sail flow: From ISA models to spec, tests, proof

Sail

Sequential

Emulator (C)

Sequential

Emulator (OCaml)

Test

Generation

Lem
ELF model

Coq

Isabelle

HOL4

(CHERI ARM)
ASL

Morello

G
e

n
e

ra
te

d
 A

rtifa
cts

ISA Security Properties

(Machine−checked proofs)

Framemaker export

parse, analyse, patch

Sail

Framemaker

XMLSail

asl_to_sail

Sail

Sail Sail

(CHERI ARM)
Morello

LaTeX

fragments
Sequential Execution

Concurrent Execution

Lem

IS
A

 D
e

fin
itio

n
s

X

asl_to_sail

ASL

Sail

ARMv8−A

ARMv8−A

Sail

Power 2.06B

Power 2.06B

Sail

Documentation
CHERI−RISC−V
CHERI−MIPS

Prover Definitions

ISA Tests

Sail

RISC−V

isla SMT

symbolic evaluator

Power (core)

ARM (core)CHERI RISC−V CHERI−MIPS

concurrency concurrency

Concurrency models

Axiomatic, Cat Operational, Lem

isla−axiomatic

tool

RMEM

tool

MIPS x86 (core)

Concurrency models

27

CHERI

Provable ISA security properties
• CHERI ISA designs are supposed to provide strong guarantees that system software can rely on to give

better security

• But how do we know they do? A single small error in the (~100kLoC) Morello spec could break those
guarantees.

• Answer: we state those guarantees as properties of the CHERI ISA specs, and do machine-checked
mathematical proof (in the Isabelle proof assistant) that they hold. E.g.:

• Theorem [Capabilities cannot be forged (Capability Monotonicity)] For any intra-domain
trace, the reachable capabilities from the final state are no greater than those of the initial state.

• Theorem [Compartmentalisation] Any trace within a properly set-up compartment cannot
affect other memory, and can exit the compartment only in controlled ways.

• These are properties of arbitrary code above the ISA.

• Initially for CHERI-MIPS (above the earlier L3 model) [Nienhuis et al., Security & Privacy 2019]

• Now monotonicity proof essentially complete for Morello, under various assumptions (e.g. about
address translation). [Bauereiss, T. Sewell, Campbell, Armstrong]

• Also proofs and SMT checking of compression scheme.

28

CHERI

Formal artifacts

• Sail models and generated prover (esp. Isabelle) definitions:

• for CHERI-RISC-V, RISC-V, CHERI-MIPS, Armv8-A: all available

• for Morello: available soon (mid-2021)

• Isabelle proofs for Morello: available soon

• Future plans:

• software verification above these models

• semantics and verification for CHERI C, CHERI LLVM (TBD)

29

CHERI

LINARO:
ECOSYSTEM ENABLEMENT

Joakim Bech, Luis Machado

30

Linaro’s Morello and CHERI
contributions
Joakim Bech, Luis Machado
2021-05-04

Toolchain Contributions
Updates

- LLDB - functional in maintenance mode
- Improved unwinding support (backtraces)
- Descriptor ABI support

- GDB - functional alpha stage
- Support for reading/writing capabilities from/to memory
- Support for calling functions from within GDB
- Core file support

- C register dumps
- Capability tag dumps WIP

- AUXV / Linkmap support WIP

Toolchain Contributions
Updates

- Binutils / GAS / LD - functional
- Maintenance and bug fixes

- GLIBC - under development
- C64 string/memory routines
- Morello setjmp/longjmp support
- Syscall interface
- Sysdeps enablement
- Static binary support WIP
- Dynamically-linked binaries WIP

Toolchain Contributions
Planned work

- LLDB
- Maintenance and bug fixes

- GDB
- Core file support
- AUXV / Linkmap
- Maintenance and bug fixes

- Binutils / GAS / LD
- Maintenance and bug fixes

- GLIBC
- Static binary support
- More sysdeps enablement
- Dynamically-linked binaries

Software enablement
- Usability from a newcomers perspective

- Helping out verifying and providing feedback on existing documentation and guidelines.
- Contributed with guidelines on how to build Morello Nano (AOSP based Morello build)

- Pure-capability enablement
- Done changes to a few software projects within AOSP
- Once you’ve understood how to build and port a project, it’s pretty easy to port additional ones

Software project Diff (*) Total LOCs
(**)

% of code changed Comment

bzip2 3 files changed, +22, -1 8186 0.00281 MR being reviewed

dnsmasq 1 file changed, +7 14389 0.00049 MR being reviewed

sqlite(3) 2 files changed, +33, -2 469220 0.000007 Libshim issues, MR being reviewed

tcpdump 1 file changed, +7 105408 0.000006 MR being reviewed

toybox 6 files changed, +36, -17 82936 0.00064 MR being reviewed

.../arm/morello-examples n/a n/a MR being reviewed

(**) $ find . -type f -name '*.[ch]' -o -name "*.bp" | xargs wc -l

(*) Patch statistics to change the application to run as a pure capability binary.

CHERI

CONCLUSION

36

CHERI

An evolving CHERI/Morello software ecosystem
• Current activity: Laying the foundations before the hardware ships

• Architectural formal models and proofs

• Emulators – FVP and QEMU, and soon QEMU-userlevel

• ABI, compiler, and toolchain functionality, performance

• CHERI-enabled OSes including FreeBSD+Android, drivers etc.

• Basic open-source application stack – WebKit, nginx, OpenSSH, …

• But there are lots of gaps (e.g., high-level language runtimes)…

• … And lots of questions (community, repositories, multi-OS, …)

• Invitation: Engage in creating a Morello software community!
37

CHERI

Ways to engage

• Chat with folk from Arm, Cambridge, Edinburgh, and Linaro
around this workshop – and see our research posters

• Join us on cheri-cpu.slack.com

• Email cheri-slack@cl.cam.ac.uk to request an invitation

• cl-cheri-discuss mailing list – low traffic but probably will grow

38

mailto:cheri-slack@cl.cam.ac.uk=

CHERI

Q&A

39

