
Cornucopia: Temporal Safety for CHERI Heaps
Nathaniel Wesley Filardo,∗ Brett F. Gutstein,∗ Jonathan Woodruff,∗ Sam Ainsworth,∗ Lucian Paul-Trifu,∗

Brooks Davis,† Hongyan Xia,∗ Edward Tomasz Napierala,∗ Alexander Richardson,∗ John Baldwin,‡
David Chisnall,§ Jessica Clarke,∗ Khilan Gudka,∗ Alexandre Joannou,∗ A. Theodore Markettos,∗

Alfredo Mazzinghi,∗ Robert M. Norton,∗ Michael Roe,∗ Peter Sewell,∗ Stacey Son,∗
Timothy M. Jones,∗ Simon W. Moore,∗ Peter G. Neumann,† Robert N. M. Watson∗
∗University of Cambridge, Cambridge, UK; †SRI International, Menlo Park, CA, USA;

§Microsoft Research, Cambridge, UK; ‡Ararat River Consulting, Walnut Creek, CA, USA

Abstract—Use-after-free violations of temporal memory safety
continue to plague software systems, underpinning many high-
impact exploits. The CHERI capability system shows great
promise in achieving C and C++ language spatial memory safety,
preventing out-of-bounds accesses. Enforcing language-level tem-
poral safety on CHERI requires capability revocation, traditionally
achieved either via table lookups (avoided for performance in
the CHERI design) or by identifying capabilities in memory to
revoke them (similar to a garbage-collector sweep). CHERIvoke,
a prior feasibility study, suggested that CHERI’s tagged capa-
bilities could make this latter strategy viable, but modeled only
architectural limits and did not consider the full implementation
or evaluation of the approach.

Cornucopia is a lightweight capability revocation system for
CHERI that implements non-probabilistic C/C++ temporal mem-
ory safety for standard heap allocations. It extends the CheriBSD
virtual-memory subsystem to track capability flow through mem-
ory and provides a concurrent kernel-resident revocation service
that is amenable to multi-processor and hardware acceleration.
We demonstrate an average overhead of less than 2% and a worst-
case of 8.9% for concurrent revocation on compatible SPEC
CPU2006 benchmarks on a multi-core CHERI CPU on FPGA,
and we validate Cornucopia against the Juliet test suite’s corpus
of temporally unsafe programs. We test its compatibility with a
large corpus of C programs by using a revoking allocator as the
system allocator while booting multi-user CheriBSD. Cornucopia
is a viable strategy for always-on temporal heap memory safety,
suitable for production environments.

I. Introduction

Memory allocators hold a special position within software
systems: they govern the object abstraction over memory.
Specifically, they allocate regions of heap memory to store
language-level objects (such as C-language structs), possibly
reusing address space previously occupied by objects no longer
in use. Explicitly managed memory allocators – those requiring
calls to free() rather than utilizing techniques such as garbage
collection – open the door to programmer-introduced bugs that
violate heap temporal safety, by allowing heap objects to alias.
In programs with these “use-after-free” flaws, more accurately
termed use-after-reallocation, a heap object can be accessed
erroneously after it has been free()-d and its underlying
memory has been reused for some other purpose, such as
storing a different object or allocator metadata. These aliased
accesses may leak information, damage allocator metadata, or
corrupt application data. Use-after-free flaws are prolific in
C and C++ programs and have been exploited extensively in
real-world systems [11, 46].

While use-after-free heap vulnerabilities are ultimately due
to application misuse of the malloc() and free() interface,
complete sanitization of the vast legacy C code base, or even
of highly maintained security-critical programs, has proved
infeasible. Instead, we turn our attention to the allocator
itself, and seek to robustly mitigate temporal-safety bugs.
Many attempts have been made to mitigate temporal-safety
vulnerabilities in existing architectures (discussed in §IX), and
they have demonstrated that temporal safety is not possible for
today’s computers without overheads above 5%, a threshold that
has been identified as necessary for universal deployment [46].

CHERI (§II-B) is a promising extension for general-purpose
architectures that can replace integer pointers with unforgeable
capability pointers. It has recently been adopted by Arm
for their Morello prototype processor, SoC, and board [20].
These capability pointers enforce spatial safety and are tagged,
allowing them to be reliably identified in memory, consequently
solving one of the major challenges to C temporal-safety
systems. CHERIvoke [52] (§II-C and §II-D) proposed an
algorithm for temporal safety in CHERI C and C++ using
sweeping revocation, and modeled key aspects on x86 machines
to characterize its performance.

We present Cornucopia, a practical design and implemen-
tation of the algorithm for sweeping capability revocation
that was proposed and modeled in the CHERIvoke paper.
Cornucopia is implemented in CheriBSD, a CHERI-aware
fork of FreeBSD supporting the CheriABI [13] spatially and
referentially safe process environment. Cornucopia consists of
an in-kernel service (§IV-A), controlled via shared memory
(§IV-B) and new system calls (§IV-C), that uses architectural
assistance (§IV-D) to instantiate the CHERIvoke sweep (§IV-E);
and of changes to heap allocators for expressing revocation
requests to the kernel (§V). Cornucopia also extends the initial
CHERIvoke algorithm by introducing concurrent revocation,
resulting in lower wall-clock overheads.
A. Contributions
In this paper, we:
• Demonstrate how the CHERI architecture, CheriBSD operat-

ing system, and CHERI C/C++ toolchain compose to ensure
that language-level pointers, implemented as capabilities,
can be identified exactly via sweeping. This identification
facilitates non-probabilistic temporal safety for the heap
(§II-B, §II-C, and §II-D).

• Implement the CHERIvoke algorithm in CheriBSD on the
CHERI-MIPS processor [51].

• Extend the CHERIvoke sweeping revocation algorithm
to support (1) concurrent sweeping revocation that can
be performed in parallel with application threads (§III);
(2) key cases in sweeping revocation beyond the user
address space, including user capabilities in register files
and kernel structures (§IV-A); (3) virtual-memory techniques
that facilitate tracking the spread of capabilities to efficiently
prune pages from sweeping passes (§IV-D); and (4) asyn-
chronous revocation that enables multiple allocators to safely
and efficiently share kernel-managed sweeping resources
(Appendices A and B).

• Adapt dlmalloc and snmalloc to use Cornucopia and
develop an allocator-agnostic wrapper that can augment
any existing allocator with temporal safety, facilitating an
exploration of allocator designs and their implications for
Cornucopia temporal safety (§V).

• Evaluate Cornucopia-related OS and allocator changes on
an FPGA hardware prototype with respect to a broad range
of benchmarks, security-evaluation test cases, and general-
purpose applications including a full Unix-like OS. We
demonstrate substantially greater efficiency and security
than prior work, which validates Cornucopia’s architectural
viability and practicality (§VII and §VIII).

B. Threat Model

We imagine that a non-malicious application with a poten-
tially flawed implementation is exposed to an adversary who
manipulates program input in an attempt to trigger heap
object confusion and cause malicious program behavior. This
adversary can directly invoke arbitrary sequences of malloc()
and free() and can perform arbitrary loads and stores within
these allocations (of both data and capabilities; see §II-B).
This roughly corresponds to real-world situations in which
an adversary can indirectly influence the heap activity of
a target program, such as an adversary-controlled webpage
being executed by a target JavaScript runtime or an adversary-
controlled process using system calls to influence the heap of
a target kernel.

Cornucopia is designed to prevent the adversary from using
an old capability to access a region of the heap that has been
reallocated. Allocators do not reallocate a region of memory
until all capabilities to it have been revoked. Attempts to
access a free()-d heap memory object will succeed and see a
preserved version of the object until revocation; after revocation,
they will result in a CHERI trap. In this way, Cornucopia
prevents heap aliasing and delivers temporal safety.

We assume that the allocator (and compiler) correctly
enforces spatial safety by setting bounds on allocated capa-
bilities that are architecturally guaranteed to be monotonically
nonincreasing (see §II-B). The adversary is thus able to reduce
bounds on capabilities given to them by malloc() but not to
increase them beyond the bounds of the referenced memory
object. We further assume that the allocator is hardened against
malformed input to free(), such as invalid capabilities or

capabilities that do not point to the start of a legitimate
allocation, so that the attacker cannot deallocate objects they do
not own or otherwise cause internal allocator corruption. We
assume that the allocator zeroes memory before it is reallocated,
so that adversaries cannot exploit uninitialized reads of heap
memory objects. Designing or augmenting memory allocators
to meet these assumptions on CHERI platforms is discussed
in detail in §V.

Questions of memory-object lifetime and temporal safety
also apply to the stack. We follow much of the existing literature
[1, 12, 27] in focusing solely on the heap. Heap temporal safety
violations are much more commonly exploited [12]. Moreover,
stack-allocated object pointers are amenable to static escape
analysis [12, 49] and possibly-escaping objects can be relegated
to a heap.
C. Non-Goals
Cornucopia is intended for high-performance exploit mitigation,
and is not a sanitizer [45] for use as a debugging aid. Sanitizers
often aspire to catch even subtle or benign bugs and use proba-
bilistic mechanisms to improve performance. Their performance
and security properties make them unsuitable for deployment
as a mitigation in production environments. For example,
AddressSanitizer [39], the most prolific run-time sanitizer,
is probabilistic, and therefore likely to be circumvented in
a directed attack, and it incurs high performance overheads,
even with hardware assistance [40]. In contrast, Cornucopia
absolutely enforces security-critical properties, and it does not
rely on any probabilistic mechanisms; it achieves performance
by sacrificing the detection of harmless use-after-free accesses
that do not yet alias new objects.

Cornucopia prevents old capabilities from being used to
access memory but cannot track integers, notably addresses,
derived from CHERI capabilities. Cornucopia even preserves
the addresses within a revoked capability. These aspects create
opportunities for integer confusion issues; for example, a map
keying on an object’s address would continue to return any
previously associated data even after address reuse. Using
capabilities whenever possible reduces these opportunities.

While the design of Cornucopia extends to guarding against
address-space reuse across munmap() calls, we have not yet
implemented such protections (but see §X-B). The primary
allocators of our study (dlmalloc and snmalloc) do not
release address space.

We do not attempt to detect or mitigate bugs within the
allocator, kernel, or any other part of the trusted runtime.
The kernel freely manipulates the virtual-memory map, and
may access all physical memory. The allocator freely arranges
memory into allocations, sets bounds on returned capabilities,
and retains access to allocated memory. We assume that these
components are constructed in good faith and can be made
trustworthy.

II. Background
A. Temporal Safety
Traditionally, a system is said to be temporally safe if it
does not allow a memory object to be accessed beyond its

declared lifetime. For an explicitly managed C heap, in which a
memory object is considered live between when it is allocated
by malloc() and freed by free(), violations of temporal
safety have been equated with use-after-free flaws, which allow
a dead (free()-d) heap object to be accessed via a stale (or
dangling) reference. However, these flaws are only exploitable
when the memory underlying the dead heap object has been
reallocated, for example to store allocator-internal metadata
or a new heap object, causing the old and new allocations to
alias. Thus, a system that prevents this aliasing (i.e., one that
prevents use-after-reallocation flaws) is also temporally safe.

Heap-memory-object aliasing opens the door to exploits
that can result in information leakage, data injection, and
control-flow hijacking [46]. As a typical example of the latter,
a dangling reference to the dead object might be used to mutate
bytes interpreted as a code pointer in the aliased live object.

B. CHERI Capabilities and Spatial Safety

Traditional instruction-set architectures use machine-word point-
ers to address memory. This makes pointers indistinguishable
from integers in execution, making it impossible to determine
what memory may be referenced on a finer granularity than
the entire address space: any word value can be constructed
and used as an address.

CHERI [47] extends traditional instruction-set architectures
with a new architectural data type: unforgeable and bounded
capabilities, which can replace machine-word references to
memory. CHERI capabilities allow hardware to efficiently
enforce bounds atomically on every memory access. CHERI
capabilities include permissions, which may restrict their use in
load, store, instruction fetch, and other accesses. Unforgeability
is enforced using out-of-band tags on each capability-sized
memory location; capabilities cannot be arbitrarily fabricated
but must be derived monotonically, i.e., from valid capabilities
to equal or larger regions with a superset of desired permissions.

CheriABI [13] is a process environment (with attendant run-
time code and compiler target) that uses CHERI architectures
to express every pointer in C and C++ programs as a capability,
completely eliminating raw machine-word addressing and
enforcing ubiquitous spatial safety. Under CheriABI, every
pointer returned from a heap allocator is bounded by the size
of the allocation, and references through that pointer can never
reach addresses not included in that allocation. Unlike machine-
word pointer programs, a CheriABI program can be trivially
inspected dynamically at run time to determine the complete set
of virtual addresses that may ever be referenced by that program
(without acquiring new capabilities from a more privileged
source).

CHERI’s unforgeability and spatial safety limit an attacker’s
flexibility, as integers cannot be used as capabilities (pointers),
and data pointers cannot be used as code pointers. Despite
CheriABI’s strong spatial safety, attackers nevertheless can
leverage temporal-safety vulnerabilities to corrupt heap alloca-
tions with existing capabilities.

free
mmap

allocated
malloc quarantinedfree

painted

set shadow

revoked sweep

clear shadow

Fig. 1. Address lifecycle in CHERIvoke. Solid edges represent transitions
made on behalf of the application; dashed edges represent transitions made
within the allocator.

C. Capability Revocation
Revocation, the act of retracting granted authority, is a key
design concern in any capability system. Historically, a popular
approach has been indirection, making each capability access
indirect through protected tables, providing a single point
for revocation of a capability and those derived from it [38].
However, as capabilities are used far more often than they are
revoked, this indirection is most often an unnecessary expense.

In the interest of RISC-style high-performance execution,
CHERI does not utilize indirection tables, but uses tagged
memory to protect capabilities distributed throughout program
memory and register files. This direct capability pointer design
matches the typical execution style of C-language programs,
which allows pointers to spread throughout program memory
and does not require implicit indirection on memory access.
However, this model presents challenges for efficient revocation,
as capabilities requiring revocation must be found. As CHERI
capabilities do not overtly track their provenance, this search
must involve sweeping through memory.
D. CHERIvoke Algorithm for Sweeping Revocation
CHERIvoke [52] defines a sweeping revocation algorithm
atop CHERI, periodically scanning all application memory
to identify and remove capabilities that authorize access to
free()-d memory. Fig. 1 shows its address lifecycle; the two
central aspects of its design are:

1) A quarantine for free()-d memory, implemented in the
memory allocator, used to defer revocation until a threshold
of unusable memory has accumulated.

2) A shadow bitmap, updated by allocators and read by the
sweeping revoker, with one bit for each word of memory,
set if that word is in quarantine.

CHERIvoke can revoke arbitrary subsets of the address space
in a single sweep. Its performance should be weakly sensitive
only to memory layout and the number of free()-d regions
being reclaimed, as it sweeps the entire address space. The
architectural nature of pointers means that CHERIvoke imple-
mentations can be oblivious to any language-level types; casts,
including to and from C’s void * and uintptr_t, preserve
the architectural tags. CHERIvoke also proposed two techniques
designed to accelerate memory sweeps: (1) page-level tracking
of capabilities using an architectural capability dirty bit, and
(2) a CLoadTags instruction to load capability tags without
loading data into caches.

The CHERIvoke experiments left a number of questions
unanswered. Performance of the algorithm was predicted using
x86 machines, but the algorithm was not implemented on

CHERI hardware, precluding validation against security test
suites and full evaluation of the CLoadTags optimizations. The
CHERIvoke simulation also neglected to consider capabilities
beyond user memory (§IV-A) and did not define a software
interface to revocation (§IV-B and §IV-C). Finally, while the
CHERIvoke algorithm has the potential to be run concurrently
with program execution, the experiment was limited to pre-
dicting sequential performance, leaving the possibility of a
significant further reduction in overhead (§IV-D).

III. Cornucopia Overview
Cornucopia is a cooperative effort between a kernel service
and user-space allocators. The kernel allocates shadow-space
memory and performs sweeping revocation; user-space allo-
cators manage buffering of quarantined allocations, painting
the shadow memory, and calling into the kernel to perform
revocation.

Cornucopia elevates the CHERIvoke sweeping revoker into
the kernel for both correctness (§IV-A) and performance
(§IV-D). The shadow bitmap is provided by the kernel as
a single reserved region of virtual address space, covering all
possible user addresses. The bitmap is the central communi-
cation channel from user-space to the revoker; it is written by
user allocators and read by the kernel revoker. For a single act
of revocation:

1) The allocator sets every bit in the shadow bitmap correspond-
ing to the words in allocations that have been free()-d and
are now in quarantine.

2) The kernel revoker sweeps through memory, consulting the
shadow bitmap for each capability that is discovered, to
determine whether it points into the quarantine.

3) When revocation is complete, the allocator clears the shadow
bits of address space now exiting quarantine.
Cornucopia generalizes CHERIvoke’s stop-the-world sweep,

and implements a mostly concurrent multi-sweep kernel revoker.
The revoker initially sweeps memory while the application can
continue to run, and completes revocation by stopping the
world to sweep only those pages that have accepted capability
writes during the initial sweep (§IV-D). (Objects free()-d
during concurrent revocation must wait for the next revocation
to finish; see Appendix B.)

Cornucopia leaves the policy and work of quarantining to
user heap allocators. Heap allocators come in a variety of
designs and implementations as a result of many decades of
focused performance optimization effort. Delayed reuse, as
required by CHERIvoke, is indeed sometimes antithetical to
the design of existing allocators, and represents a fundamental
change to the optimization criteria. We explore the impact
of wrapping a Cornucopia shim around three allocators
(§VII) and also explore integration into two allocators (§VIII
and Appendices A and B).

IV. Kernel Revocation Service
Several key functions of Cornucopia are implemented as a
FreeBSD kernel service. CheriABI code generally executes
according to the principle of least privilege and is not able

ke
rn

el

sh
ad

ow

sta
ck

glo
ba

ls

he
ap

re
gis

te
rs

Fig. 2. The shadow bitmap within the process’s address space (not to scale)
and its correspondence with the rest of the address space. White boxes within
the heap represent live allocations with clear shadow bits, while black regions
represent free()-d space with set shadow bits. Pointers to allocations may
be held in registers and in heap, stack, global, and kernel memory. Pointers to
free()-d address space (red, ×) must be revoked before the referenced space
is reused.

to access memory for which it does not have references. In
contrast, revocation requires extraordinary privilege to identify
and modify capabilities from all of the user address space,
from register files, and even from kernel structures. Privilege
is also required to ensure that the shadow bitmap is mapped at
a fixed offset in the address space that it represents to enable
efficient lookups. These mapping guarantees are most naturally
maintained by the kernel. This avoids a new highly-privileged
CheriABI user space service, and preserves the kernel’s role
in address-space mapping.
A. Beyond User-Space Memory

CHERIvoke’s simulation considered the spread of pointers only
within user-space memory. However, in order to completely
rule out temporal-safety violations, the revoker must reach
application pointers that have spread beyond user-space memory.
Specifically, the revoker must scan the register files of each
thread and must also consider pointers passed to the kernel.
Most of these are ephemeral, associated with instances of
typical system calls such as read(). Our revoker does not
scan kernel memory, as capabilities from multiple address
spaces appear and are not easily re-associated with their shadow
bitmaps. Instead, during revocation, an application’s threads
will all be held at the system call boundary, ensuring that no
system calls are in progress and all such ephemeral capabilities
reside in the trap frame, not elsewhere in the kernel. The kernel
does, however, hold (or hoard) user-space pointers in its own
data structures, past system-call invocation. Most often, these
are “cookies,” merely returned to the user program in response
to some event (e.g., kqueue triggers) and not directly used
by the kernel, but there are more complicated cases, such as
asynchronous I/O (aio) tasks. Our revoker has specialized code
for each hoarding subsystem; while most merely revoke as if
the pointer were in user memory, the aio handler also cancels
associated requests.
B. Maintaining the Shadow Bitmap

Our prototype implementation of Cornucopia reserves a con-
tiguous region of the address space for the shadow bitmap, as
shown in Fig. 2, with one bit representing each 16-byte word

sf

Sf

SF

sF

state

sweep

sweep

sweep

initialinter-

sweep

sweep

finalintra-

exit

Fig. 3. The capability-dirty states for a page undergoing concurrent revocation,
as time advances to the right. The four horizontal bands represent page states,
with s and f designating capability “sweep-clean” and “full-clean” respectively,
while S and F designate corresponding dirty states. State transitions marked
with are cap-dirtying stores. The “sweep” boxes and associated transitions
represent the action of the sweeper; dotted lines indicate the effect of application
capability stores concurrent with the sweeper. The shaded region runs with
the world stopped, which prevents concurrent stores.

of user memory. Despite the current system revoking only heap
objects, the shadow-map region is sufficient to represent all
valid user addresses.

The user-space allocator paints bits in the shadow bitmap
representing words of free()-d, quarantined memory (typi-
cally on free(), but any time prior to revocation suffices).
User-space requests a revocation sweep from the kernel, and
the kernel service looks up each capability it encounters in the
shadow bitmap to determine if it references free()-d memory.
When the kernel sweep is complete, the user-space allocator
zeroes bits of the shadow bitmap representing the words of
memory that can now be reallocated to live objects.

For simplicity, we can provide user-space with a capability
pointer to the entire shadow bitmap in response to a system call.
More principled designs would aim to compartmentalize rights
to the shadow bitmap. Where there may be multiple, possibly
unrelated, allocators within the same program, each allocator
should gain access only to those regions of the shadow space
corresponding to address space under that allocator’s control;
absent control of the address space, access to the shadow
bitmap should not be possible. We have implemented such a
mechanism and made use of it in our experimental allocator
integrations, but not in our wrapper; details are deferred to
Appendix A.

C. Kernel Revocation API

Our kernel exports a caprevoke() system call that uses the
calling thread to sweep the process’s memory and kernel-
hoarded capabilities. The basic form of this call promises that
all memory will be swept and all pending revocations will be
performed synchronously before the call returns. While the
calling thread is blocked for the duration of the scan, the scan
may be otherwise mostly concurrent with other threads of the
application, and so allocators can achieve mostly-concurrent
revocation using a dedicated worker thread for revocation, as
we explore below. Complete revocation requires eventually
stopping all application threads to sweep their register files as
well as all pages that experienced new capability writes during
the initial scan. However, the kernel takes pains to minimize
this “stop the world” period.

D. Capability-Dirty Pages and Concurrent Revocation

Two of the high-level optimizations we employ to reduce the
performance overhead of sweeping revocation are (1) bypassing
pages that are known not to contain capabilities and (2) running
the sweep mostly concurrently with the application being
swept. Both of these optimizations involve tracking the flow
of capabilities through the system, which is made possible
by the CHERI-MIPS processor’s ability to trap on stores of
valid capabilities to specified pages of the virtual address
space [52]. By convention, pages that will trap on stores of
capability pointers are called cap-clean, and pages that allow
such stores are called cap-dirty. CheriBSD has previously used
this mechanism to prevent the propagation of capability pointers
to certain pages, e.g. memory-mapped files. Cornucopia refines
the use of this mechanism to track pages that are

1) full-clean, which the revoker has found to be devoid of
capabilities during a revocation pass, and

2) sweep-clean, which have not been the target of capability
stores since they were last visited by the revoker.

The kernel service for Cornucopia maintains both a full-clean
flag and a sweep-clean flag per virtual page.

1) Bypassing Pages
To track capability flow, our Cornucopia kernel modifications

initially arrange for capability stores to all pages to cause traps.
When handling this trap, the kernel clears the sweep-clean
flag for the page and remaps it to henceforth permit stores.
During revocation, the revoker examines all pages that have the
sweep-clean flag clear (and also examines all pages that have
the full-clean flag clear). For each such page, it first sets the
sweep-clean flag and arranges for subsequent capability stores
to trap then examines and revokes capabilities as appropriate. If
it does not encounter any capabilities that it leaves unrevoked
on the page, it sets the full-clean flag. Under this scheme, if a
revoker encounters a page that is both full-clean and sweep-
clean, that page is guaranteed to be devoid of capabilities and
can be bypassed. Note that the full-clean flag is only updated
after a revocation pass; a page devoid of valid capabilities may
thus incorrectly be marked as not full-clean; this causes slightly
more work for the revoker but does not affect correctness.

2) Concurrent Revocation
To minimize the amount of time spent with all application

threads paused, we take inspiration from live migration [8] and
“Mostly Parallel Garbage Collection” [4] and split revocation
into two sweeps, which we call initial and final. The initial
sweep can run concurrently with any other application thread.
It visits pages by setting the sweep-clean flag, revoking
appropriate capabilities, and possibly setting the full-clean
flag, as described above. The final sweep requires stopping
the threads associated with the current program, synchronizing
and/or flushing the caches of all cores involved in running said
program, sweeping thread register files, and ransacking kernel
hoards of user capabilities. However, it need visit only those
pages that have been dirtied since the previous sweep (i.e., it
can skip pages that are sweep-clean). The possible flows of a
page through revocation are summarized in Fig. 3.

1 foreach page in userspace_pages
2 if (is_sweep_clean(page) && is_full_clean(page))
3 next page // skip completely clean
4 if (!initial_pass && is_sweep_clean(page))
5 next page // revisit only sweep -dirty
6
7 // Assuming 128B cache lines & 16B caps, tags ≤ 0xFF.
8 tags = CLoadTags(page)
9 for (line = page; line < page + 4096; line += 128)

10 next_tags = CLoadTags(line + 128)
11 if (next_tags) prefetch(line + 128)
12 // Loop at most 8 times as tags ≤ 0xFF.
13 for (ptr = line; tags != 0; tags >>= 1, ptr += 16)
14 if (tags & 1)
15 cap = load(ptr)
16 if (shadow_bitmap(cap.base)) revoke(cap, ptr)
17 tags = next_tags

Listing 1. Pseudo-code for the sweep of user-space memory.

At present, our revoker can run concurrently with application
threads, but only one thread at a time can actually perform
revocation sweeps. Future work might investigate how the
revoker would benefit from internal parallelism by allowing a
single revocation sweep to be carried out in parallel by multiple
cores. On a smaller scale, revocation passes are also amenable
to vectorization and data-level parallelism more generally.
E. The Revoker’s Inner Loop
The revoker’s memory-scanning inner loop is shown in List-
ing 1, iterating through pages, cache lines, and capabilities
with filters to avoid work at each level to save time, DRAM
bandwidth, and cache contention.

On the page level, the full-clean and sweep-clean flags
allow the revoker to skip pages that certainly do not contain
capabilities to dead objects. For the cache line level, the
capability iteration loop will exit when tags is zero so that a
line with no tags will not be inspected at all. On the capability
level, each bit of tags is checked before loading a capability
and indexing the shadow bitmap.

The CLoadTags instruction performs a non-temporal load
of the capability tag bits of each cache line; that is, CLoadTags
will respond with tags stored either in tag caches or the
centralized tag controller, but will not perturb data caches.
Furthermore, the result of CLoadTags is used to prefetch
data lines that hold capabilities, improving performance. Our
cache implementation treats prefetched lines as non-temporal
by storing them in a fixed cache way of the L2 cache to reduce
contention. As a result, our loop writes and over-writes lines
from this single cache way when pulling in capability-bearing
lines from the address space. Shadow-bitmap accesses are
cached as standard data, as we expect to benefit from both
temporal and spatial locality – although these are likely to
contend with application accesses when sweeping concurrently.

In the concurrent revocation loop, the result from CLoadTags
is used to authoritatively identify capabilities in a cache line,
even though the tags may be stale and cause the sweep to miss
a capability. However, the capability store that caused tags to
become stale will have marked the page sweep-dirty, causing
the page to be revisited.

We test the base of each capability against the shadow
bitmap rather than the address. While the current address of
any capability is allowed to wander beyond the bounds of the

allocation due to pointer arithmetic (even though capabilities
cannot be dereferenced out-of-bounds), CHERI guarantees that
the base will lie within the original allocation, and will reliably
be detected using shadow-bitmap lookup.

If the capability under test must be revoked, an atomic
compare-and-swap (CAS) safely replaces it with a tag-cleared
version. In initial sweeps, a CAS failure causes the revoker to
mark the page sweep-dirty and defer processing of that page
until the next sweep. In the final, stop-the-world sweep there
will be no CAS failures.

V. User-Space Allocator
Having explored the kernel component of Cornucopia, we
turn our attention to the design of Cornucopia user-space
heap allocators. Because Cornucopia’s temporal safety relies
on memory allocators that enforce spatial safety and are
hardened against malformed inputs to free(), we first discuss
the process of making memory allocators CHERI-aware and
spatially safe. We then describe the changes necessary to
incorporate temporal safety with Cornucopia. These latter
changes can be made mostly independently of the base allocator,
so we introduce the design of a Cornucopia wrapper that allows
CHERI-aware allocators to leverage Cornucopia with minimal
modification.
A. CHERI-Aware Allocators
Making allocators CHERI-aware involves replacing all pointers
with bounded CHERI capabilities, which has a number of
implications for allocator design [13]. Most directly, capabilities
given out by malloc() and accepted by free() are tightly
bounded to enforce spatial safety for heap memory objects.
This means that allocators cannot use pointer arithmetic on
capabilities accepted by free() to access heap metadata
outside of the freed object, as is standard practice in some
existing allocators. Instead, CHERI-aware allocators internally
maintain capabilities from mmap() (which have a special
software permission bit, VMMAP, set, indicating their provenance)
to all of the memory they manage, including metadata. The
allocator uses these to derive more tightly bounded capabilities
for malloc()’s return values and to access allocator metadata
in free(). Capabilities returned to an application by malloc()
must have the VMMAP permission cleared: in order to support
the correct functioning of userspace allocators, VMMAP-bearing
capabilities are not subject to revocation.

To provide a robust foundation for spatial safety, CHERI-
aware allocators must also be hardened against invalid inputs
to free(). Specifically, capabilities passed to free() must be
tagged, have appropriate permissions, and point legitimately
(within bounds) to the beginning of a non-free region of
memory that was previously returned by malloc(). Otherwise,
an adversary might be able to deallocate objects they do not
own by passing untagged capabilities or capabilities with out-
of-bounds addresses to free(); alternatively, they might be
able to corrupt the allocator’s internal state by free()-ing
capabilities with modified bases or addresses. Corruption of
allocator-internal state can result in capabilities being returned
by malloc() with bounds that violate desired safety properties.

For a CHERI-aware allocator, we stipulate that the free()
function must not accept capabilities that point to the middle
of an allocation or untagged or inappropriately permissioned
capabilities.

We modified our CHERI-aware memory allocators to per-
form these checks. Validation of tags and permissions is
straightforward, and the exact method for validating that a
capability points to the beginning of an allocation depends
on the allocator’s implementation. In slab allocators, such as
snmalloc, free() first checks that the offset of the passed-in
capability is zero. This guarantees that the capability’s address
is not out of bounds, and snmalloc does not return capabilities
with non-zero offset, so the only possible valid offset is zero.
free() then checks that the base (address) of the capability
is both within a slab and at a position consistent with the
beginning of an allocation. In allocators that mix object sizes
within an arena, such as dlmalloc, free() may validate the
passed-in capability against a copy of the original capability
stored in metadata outside the bounds of the allocation.

Some existing allocators, like snmalloc, already have the
option to be built with checks that validate free()-d pointers’
pointing to the beginning of an allocation. Informal testing
suggested that such checks add a 1-2% cycle overhead on our
evaluation platform.

B. Adding Temporal Safety with Cornucopia

A few modifications are necessary to turn a spatially safe
CHERI-aware allocator into a temporally safe Cornucopia
allocator. When memory objects are free()-d, they must
be put into a quarantine state until the next revocation pass
has completed. The allocator must also keep track of the total
amount of quarantined memory, and once the quarantine size
passes some threshold, the allocator must engage the kernel’s
revocation service by making the caprevoke() system call as
described above. The allocator must manage the shadow bitmap,
ensuring that regions corresponding to quarantined memory
are set before the revocation pass and cleared afterwards. Once
the quarantined memory has been revoked, it returns to the
free state and can be safely reallocated.

For a memory allocator to be safe in the face of uninitialized
reads on the heap, it must zero memory before reallocation.
This issue has long been understood and appears in the
Common Criteria as Residual Information Protection [10]. This
is orthogonal to techniques to prevent heap aliasing; many
existing temporal-safety studies have not evaluated how their
techniques compose with memory zeroing. We focus on the
cost of revocation, but do measure the cost of zeroing in §VII-A
and §VII-C.

Key design choices in Cornucopia allocators include the
quarantine threshold value, the data structures used to track
quarantined memory objects, and whether it is possible to
coalesce objects in quarantine to reduce the work involved in
returning them to the free state. The optimal choices (as well
as the effect of quarantining in general) can depend on the
design of the base CHERI-aware allocator, although a single

policy implemented as a universal wrapper is sufficient in most
cases.

C. A Wrapper for Temporal Safety

CHERI-aware allocators can be augmented with Cornucopia
in a minimally invasive way. Our temporally safe allocator-
wrapper is easy to use, offers full protection, and can be
configured in many ways to explore the design space of
temporally safe Cornucopia allocators. It incurs only slight
inefficiencies relative to integrating Cornucopia temporal safety
directly into an allocator.

The Cornucopia wrapper is a shared library that exports allo-
cation functions including malloc() and new and deallocation
functions including free() and delete. When the wrapper
is preloaded by the run-time linker, its exported functions
call the corresponding functions of the underlying allocator
and perform the operations necessary to provide Cornucopia
temporal safety. For simplicity, we will focus our discussion on
malloc() and free(), as other allocation and deallocation
functions are similar.

The only demand the Cornucopia wrapper makes on under-
lying CHERI-aware allocators is that they export a function
called malloc_underlying_allocation() that takes in a
capability corresponding to some allocation, validates that it
is not not malformed (as described in §V-A), and returns a
capability whose bounds match those that were given for the
capability in the original call to malloc(). This information
allows the wrapper to track the quarantine size correctly and
to revoke references to any part of the original allocation;
the bounds of the capability passed to the wrapper’s free()
function could have been shrunk by the application.

The wrapper’s malloc() function calls the underlying
allocator’s malloc(), increments a counter that tracks the total
heap size by the size of the returned capability, and returns the
capability. The wrapper’s free() function validates the passed-
in capability using malloc_underlying_allocation(), in-
crements a counter that tracks the quarantine size by the size
of the returned capability, then adds the returned capability to
the quarantine list, which is implemented as a linked list of
arrays that the wrapper manages using mmap().

The wrapper checks whether to initiate a revocation pass
on calls to malloc(). When a revocation pass is initiated,
the wrapper iterates through the quarantine list and paints
the shadow bitmap appropriately, calls the caprevoke()
system call, iterates through the quarantine list to clear the
shadow bitmap and free the quarantined allocations back to
the underlying allocator, subtracts the quarantine size from
the heap size, and resets the quarantine size. Operations that
interact with the shadow bitmap use lightweight synchronization
to guarantee correctness even in multi-threaded scenarios.
Revocation can be performed asynchronously in an offloaded
thread or synchronously in the application thread. If revocation
is offloaded and performed asynchronously, the wrapper limits
the work that must be performed in the application thread.
While asynchronous revocation is in progress, the application
thread can continue working and filling up a second quarantine.

The application thread blocks if this second quarantine passes
the revocation threshold while asynchronous revocation is still
in progress.

One cost of using the Cornucopia wrapper relative to direct
allocator integration is that operations to validate or look up
metadata for each freed capability must be performed twice:
once by malloc_underlying_allocation() and once when
the capability is freed back to the underlying allocator. In an
integrated design, the allocator might avoid this duplicated work.
Another cost is that data structures for storing the quarantine
list must be maintained externally to the allocator, whereas an
integrated design might reuse existing allocator metadata to
track the quarantine list. Despite these costs, the wrapper is a
useful way to easily deploy temporal safety and evaluate the
design space.

VI. Experimental Setup

A. System Configuration

All benchmarks are run on a dual-core configuration of the
64-bit CHERI-MIPS processor [51] synthesized for the Stratix
IV FPGA at 50 MHz. The pipelines are in-order and single-
issue, roughly similar to the ARM7TDMI. The system has
32-KiB per-core L1 I and D caches, and a 256-KiB L2
cache shared by both cores. All caches are set-associative
in a configuration matching widely-shipped ARM Cortex
A53 configurations. Performance and memory scaling are
broadly similar to these commercial implementations. CHERI
is configured for 128-bit capabilities [50].

Experiments are run on the SPEC CPU2006 [21] suite;
while our headline figures come from the ref set, more
complex overhead breakdowns were performed on test. We
ran all benchmarks that executed under CheriABI [13] on the
CHERI-MIPS FPGA (all benchmarks that were compatible
with FreeBSD MIPS also ran under CheriABI). We set the
quarantine limit to 25% of the total heap.

B. Underlying allocators

We use CHERI-aware forks of the existing dlmalloc,
jemalloc, and snmalloc allocators. We investigate both
wrapped and integrated versions of dlmalloc and snmalloc,
and a wrapped version of jemalloc. Where only one result is
presented, snmalloc is used since it is the fastest unmodified
allocator. dlmalloc [26] is a coalescing free list allocator that
was the default allocator for many Linux distributions. It is
no longer considered state-of-the-art, but it remains in broad
use. Its constant-time coalescing algorithm naturally aggregates
free()-d memory into contiguous free()-d regions. This
opens opportunities for releasing physical pages that are entirely
in quarantine to be reused by the system, which we explore in
§VIII-A. jemalloc [16] is a state-of-the-art slab allocator that
was created for FreeBSD but is now widely used, including in
Android. It optimizes for multi-threaded use by maintaining
per-thread caches of recently free()-d memory that can be
reallocated without costly synchronization. snmalloc [28] is
a new allocator design from Microsoft Research intended for
heavily multi-threaded workloads; it uses dedicated, per-thread

 0

 5

 10

 15

 20

 25

 30

 35

 40

dlm
allo

c

jem
allo

c

sn
m

allo
c

sn
-o
�oad

dlm
allo

c

jem
allo

c

sn
m

allo
c

sn
-o
�oad

dlm
allo

c

jem
allo

c

sn
m

allo
c

sn
-o
�oad

dlm
allo

c

jem
allo

c

sn
m

allo
c

sn
-o
�oad

Hmmer Omnetpp Astar Xalanc

R
u
n
ti

m
e
 O

v
e
rh

e
a
d
 (

%
)

2.04%

9.17%

0.84%

7.39%

3.45%
0.72%1.19%

28.64%
30.92%

24.27%

7.18%

2.88%
1.52%

22.48%

17.19%
18.87%

Interpose
Bookkeeping

Quarantine
Shadow

Revoke
Zero

O�oad

Fig. 4. Run-time overheads for revocation using a generic wrapper around
dlmalloc, jemalloc, or snmalloc on the worst-performing, CHERI-
compatible SPEC CPU2006 test workloads. The baseline is pure-capability
execution without temporal safety. The fastest case is snmalloc offloading
revocation to a separate thread. The offload case performs revocation without
memory zeroing.

heap allocators, each of which maintain slab-like arenas, and
uses message-passing for cross-thread work.

VII. Evaluation
Here we evaluate the Cornucopia wrapper. We see that it
performs well across many different allocators even on the
most challenging benchmarks in the SPEC CPU2006 suite, with
costs mainly coming from the revocation sweep and quarantine
bookkeeping. Cornucopia improves significantly on results
from the literature, at 5.8% overhead using stop-the-world
revocation, and less than 2% overhead when offloaded. Re-
evaluated on our FPGA system, the Boehm Garbage Collector
and AddressSanitizer face 19× and 31× larger overheads,
respectively.
A. Decomposing Overheads
Fig. 4 shows the sources of the cycle overheads of three
allocators behind our Cornucopia wrapper. This study used
the test workloads of the four worst performing of the eight
CHERI-compatible SPEC CPU2006 integer benchmarks, and
set the quarantine size to 25% of the heap. We decompose
the overheads of Cornucopia into: (1) the wrapper interposing
on the allocator (2) bookkeeping: validating wrapper function
inputs (3) quarantining: delayed memory reuse (4) managing
the shadow bitmap (5) sweeping revocation: temporal safety
(6) zeroing memory before allocation. Finally, we include the
overhead for offloading revocation to a dedicated thread under
snmalloc, which had the best absolute performance of the
three allocators.

We observe an interesting variation in performance overheads
between jemalloc and snmalloc. jemalloc and snmalloc
achieve very similar performance on the baseline (while
dlmalloc is notably slower in allocation-intensive workloads),
but jemalloc develops a far greater overhead for quarantining
allocations and free()-ing them in batches. This is due
to the fast-path in jemalloc being the thread-local reuse
of recently free()-d memory. free()-ing memory in large
batches disrupts this optimization, causing jemalloc to resort
to its slower path far more often. snmalloc uses entire thread-
exclusive slabs for its fast path, which is much less disturbed
by batched reuse. This allows snmalloc to hold the overhead
due to the quarantine buffer below 8.2% in the worst case.

 0

 50

 100

 150

 200

astar
bzip2

gobmk
hmmer

libquantum
omnetpp

sjeng

xalancbmk

P
e

rf
o

rm
a

n
c
e

 O
v
e

rh
e

a
d

 (
%

)
Boehm GC

431% 543%

AddressSanitizer
Cornucopia

Cornucopia Offload

Fig. 5. Performance overheads for the Cornucopia snmalloc wrapper versus
Boehm GC and AddressSanitizer executing on the MIPS FPGA platform.
The baseline for Cornucopia is CheriABI, and the baseline for the others is
MIPS. MIPS and CheriABI are generally within 5% of each other [13]. All
benchmarks are run in their test configuration.

The worst case for snmalloc was the omnetpp benchmark,
which has an offloaded overhead of 9.2%. If the kernel
sweeping revocation passes were completely independent of
the application, we could expect the performance with an
offload thread to approximate the 8.2% cost of quarantine.
Offloaded revocation incurs 1 percentage point additional
overhead, indicating a reasonably small final sweep with
program threads stopped (see §VII-C and Fig. 10).

Sequential memory zeroing atop a revoking snmalloc incurs
an additional overhead of less than 3% for the benchmarks of
Fig. 4. Most of our subsequent measurements will focus on
revocation and will run without zeroing.
B. Cornucopia versus Boehm GC and AddressSanitizer
In Fig. 5, we compare the Cornucopia-wrapper-with-snmalloc
results against MIPS ports of AddressSanitizer [39] and Boehm
GC [4] executing the CHERI-compatible benchmarks on our
FPGA system. While the purpose and design of Cornucopia dif-
fers significantly from these tools, the performance comparison
is instructive.

AddressSanitizer’s primary performance overhead is its
memory-validity checks that scale with data access, not with
deallocation. As a result its highest overheads do not coincide
with those of Boehm GC and Cornucopia, but it maintains a
relatively predictable overhead of around 100%. This overhead
is higher than reported on x86, which appears to be due to
the shadow-map checking instructions bloating code due to the
low instruction density of the MIPS ISA, combined with the
scalar, in-order core being unable to execute these instructions
in parallel. The overhead of AddressSanitizer on our MIPS
implementation on FPGA has a geometric mean of 31× the
overhead of single-threaded Cornucopia, and of 56× when
offloaded.

Boehm GC overheads scale with deallocation and memory
size, similarly to Cornucopia, but the work that must be
done to infer memory management without reliable pointer
identification or quarantine metadata is formidable. The Boehm
GC has a geometric mean of 19× the overhead of single-
threaded Cornucopia, and of 37× with offload.

While these three tools are related, they have been designed
with different motivations. AddressSanitizer intends to effi-
ciently detect memory safety bugs with high probability, and so
prioritizes detection latency, while Cornucopia and Boehm GC
intend to prevent illegal behavior. Garbage collectors expend

effort to automate memory management by inferring freed
memory, while Cornucopia (and C in general) leverages manual
management for performance.

While the CHERI architecture could accelerate either of these
algorithms, particularly Boehm GC, it is clear that these types
of algorithms cannot approach the efficiency of Cornucopia
without hardware support, as both must do significantly more
work.

C. General Overheads

Fig. 6 shows the performance overhead of Cornucopia, using
snmalloc on SPEC CPU2006 in ref mode, in comparison
with numbers reported by software systems in the literature [12,
25, 29]. The worst-case benchmark is omnetpp, which has a
sequential overhead of 26.2% and an offloaded overhead of
8.9%. These benchmarks yield a geometric mean sequential
overhead of 5.8% and only 1.9% with offload. By comparison,
other techniques in the literature suffer significantly higher
average performance overheads: evaluated on the same subset
of benchmarks that run on our MIPS system, we see overheads
of 45% for DangSan, which stores lists of pointer locations,
16% for pSweeper [29], which stores a single list of pointer
locations and offloads revocation, 52% for Oscar, which uses
the page table to revoke allocations, 18% for CRCount [41],
which uses reference counting, and 68% for BOGO [54], which
is built on top of Intel MPX. These techniques are also unable
to give reliable memory consumption guarantees [52], and
so suffer significantly in both the average and worst cases.
While we should note that the numbers reported are run on
vastly different platforms from ours, the great discrepancy in
overheads demonstrates the scale of advantage that CHERI can
provide for temporal safety when combined with an efficient
algorithm.

Fig. 7 shows the increase in DRAM traffic, both with and
without offloading. The resulting DRAM overheads are similar
in magnitude to sequential performance overhead, and are
higher for the offload case due to two-phase sweeping and
due to L2 cache contention during the sweep. As described in
§IV-E, the sweep makes some effort to reduce cache disruption
to the main program, but disruption is nevertheless apparent
in concurrent results.

Fig. 8 shows the rate of sweeps performed by each appli-
cation. The number of sweeps during each benchmark varies
based on the rate that memory is free()-d. As offloading
introduces nondeterminism, the total space free()-d during
a sweep may be sufficient to fill this additional buffer; when
this happens, the benchmark blocks and waits for the sweep to
finish. As this increases the size of the heap, the application
subsequently performs fewer sweeps. astar alone reliably
triggers this behavior, while omnetpp and xalancbmk do so
only occasionally, and the remainder, never. Fig. 8 shows the
most common case for each benchmark with error bars showing
observed ranges.

Fig. 9 charts the memory pages used by each benchmark
process with Cornucopia protection. Our revocation sweep
is triggered when 25% of the heap is in quarantine so

1.0

1.2

1.4

1.6

1.8

2.0

astar bzip2 gobmk hmmer libquantum omnetpp sjeng xalancbmk geomeanN
o

rm
a

liz
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

Cornucopia Inline
Cornucopia Offload

Oscar

4.6 4.1
pSweeper-1s

DangSan

7.5
CRCount

BOGO

12.9

Fig. 6. A comparison of the run-time overheads of Cornucopia, using wrapped snmalloc without memory zeroing and with and without concurrent offloading,
against other techniques in the literature [12, 29, 25, 41, 54]. Cornucopia results are from the SPEC CPU2006 ref set. Error bars are the standard error
normalized by the baseline mean and, here, are always less than half a percent.

1.0

1.1

1.2

1.3

1.4

astar
bzip2

gobmk
hmmer

libquantum
omnetpp

sjeng

xalancbmk

N
o

rm
a

liz
e

d
 D

R
A

M
 T

ra
ff

ic

Quarantine
Inline

Offload

Fig. 7. DRAM traffic overheads for Cornucopia, both single-threaded and in
its concurrent offloaded form. Benchmarks used ref workloads.

0.0

0.5

1.0

1.5

2.0

astar
gobmk

hmmer

libquantum
omnetpp

xalancbmk

S
w

e
e

p
s
 /

 1
0

 B
ill

io
n

 C
y
c
le

s

Inline
Offload

36 27 110 44 796 398

Fig. 8. Frequency of revocation sweeps for Cornucopia: sweeps over baseline
ref mean cycle counts. Above the chart is the count of revocation sweeps
performed for each benchmark’s inline configuration. bzip2 and sjeng do
not sweep.

the target memory overhead is 33%. The single-threaded
performance generally tracks this target with a geometric
mean 36%, and offloaded revocation has a slightly higher
memory overhead due to memory continuing to be quarantined
during revocation. hmmer and omnetpp have an unusually
high memory overhead, which we tentatively attribute to
fragmentation due to interaction between quarantine and slab-
based allocation: insufficient page reuse between slabs leaves
unused pages in multiple slabs. Further, the generic quarantine
metadata management used by our wrapper is inefficient for
modern allocators such as snmalloc, where data layout choices
in the allocator itself would allow us to more efficiently store
secure metadata.

Fig. 10 shows the time taken by an average revocation sweep
for each benchmark. We observe that (1) two-phase revocation
is working as intended, reducing pause times to 28% (geometric
mean) of the non-offloaded sweep time, and (2) the pause time
is 19% (geometric mean) of the total time taken across both
initial and final phases.

Last, while we leave detailed analysis to future work, we
can nevertheless informally quantify the costs of memory
zeroing. On our worst-case benchmarks of Fig. 4, but now
in their ref configurations, we observe a few points of note.

1.00

1.25

1.50

1.75

2.00

astar
bzip2

gobmk
hmmer

libquantum
omnetpp

sjeng

xalancbmk

geomeanN
o

rm
a

liz
e

d
 P

e
a

k
 R

S
S

Quarantine
Inline

Offload

457 619 56 12 132 279 179 623

Fig. 9. Mean peak memory footprint (RSS) relative to baseline mean (shown
above each benchmark, in MiB), on SPEC ref workloads. Error bars show
observed extremal values. The policy target of 33% is shown, dashed. bzip2
and sjeng do not sweep.

 1

 10

 100

 1000

astar
gobmk

hmmer
libquantum

omnetpp
xalancbmk

M
ill

io
n

 C
y
c
le

s Inline
Concurrent

World-stopped

Fig. 10. Mean (and std. dev.) time per revocation pass. When offloading, the
concurrent pass is slightly longer than the non-offload sweep, but the second,
world-stopped pass is dramatically shorter.

(1) Zeroing on transition from quarantined to free adds up to
1.0% cycle overhead (on omnetpp, relative to the non-revoking
baseline) but adds a substantial 21.6% DRAM access overhead
(xalancbmk). (2) Zeroing on allocation, which takes place
on the allocating (i.e., benchmark) thread, is more expensive,
cycle-wise, with an observed maximum of 3.3% (omnetpp)
but a substantially lower maximum DRAM access overhead
of 1.1% (xalancbmk). We expect future optimizations, such
as being able to release quarantined pages (§VIII-A), to lower
these overheads.
D. Security

We used the Juliet Test Suite [6, 44] of C/C++ programs to
evaluate Cornucopia’s effectiveness in mitigating temporal-
safety attacks using the wrapper implementation, testing against
the classes that are relevant to temporal safety: CWE 415,
Double Free; and CWE 416, Use After Free.

Each pair of good (bug-free) and bad (bug-known) executa-
bles was run on the CHERI-MIPS FPGA using CheriBSD’s
version of jemalloc that supports spatial safety, and was also
run using the Cornucopia wrapper that adds temporal safety. To
test security in the limit, the Cornucopia wrapper was config-
ured with a quarantine size of zero. This caused revocation to

be performed on every call to free() so that temporal-safety
violations immediately manifest as CHERI exceptions. For all
818 test cases in CWE 415, and all 393 in CWE 416, the good
configuration executed successfully, while the bad configuration
executed successfully with the unwrapped version of jemalloc
(indicating that a temporal safety violation was allowed to occur)
and terminated abnormally with the wrapped version (indicating
that the temporal-safety violation was mitigated). For use-after-
free tests, the bad configurations caused CHERI exceptions by
attempting to use a revoked capability. For double-free tests,
the bad configurations attempted to free a revoked capability,
and we configured the wrapper to exit abnormally in this case.

For comparison, the test executables were also run on an x86
host with and without AddressSanitizer [39]. The results were
the same: for all test cases, the good executables executed
successfully in both configurations, while the bad executables
executed successfully without AddressSanitizer but resulted
in an error with AddressSanitizer. To evaluate our hardiness
against malformed inputs to free(), we evaluated a wrapped
version of snmalloc against tests for CWE 761, Free of Pointer
Not at Start of Buffer, and confirmed that it correctly detected
malformed inputs, matching the behavior of AddressSanitizer.

VIII. Additional Experiments
While the Cornucopia wrapper represents the most straightfor-
ward approach to implementing Cornucopia in a user-space
allocator, deep modification of the allocator can enable further
performance improvements and safer engineering principles.
We have explored several paths while integrating Cornucopia
into snmalloc and dlmalloc:
• extending dlmalloc to coalesce quarantined regions to

enable early reuse of physical pages (§VIII-A),
• using an integrated dlmalloc as the system allocator for

CheriBSD and booting to multi-user mode (§VIII-B),
• enforcing controlled access to the shadow bitmap to safely

share the revocation service between multiple allocators in
an address space (Appendix A),

• extending Cornucopia to enable lightweight synchronization
between different allocators (Appendix B), and

• comparing Cornucopia to the modeled overheads predicted
by CHERIvoke (Appendix C).

• lowering pause times by sweeping more (Appendix D).
A. Cornucopia dlmalloc: Fast Page Invalidaton
We adapted CHERIvoke’s experimental dlmalloc to use
CHERI bounds and to perform Cornucopia revocation. The
dlmalloc allocator naturally coalesces free()-d allocations,
and our adaptation of dlmalloc capitalizes on this mechanism
to coalesce allocations in quarantine and to discover when
a free() call results in entire pages being quarantined. In
such circumstances, our dlmalloc advises the kernel that such
pages are no longer needed, so that the kernel may reuse the
physical memory. Our allocator can be configured not to count
these pages against the quarantine threshold in order to reduce
sweeping frequency.

Fig. 11 shows such reductions in the amount of sweeping
work for a benchmark that replays traces of malloc()-s and

no unmaps
(0.0% baseline)

256 64 32 16 8 4 1

Minimum unmap size (pages)

85
75
50
25
15
10

5
2

Qu
ar

an
tin

e
siz

e
(%

 o
f t

he
 h

ea
p) 117 11.1% 36.8% 56.4% 92.3% 94.9% 100.0% 100.0%

198 10.6% 12.1% 16.7% 21.7% 70.7% 80.3% 91.4%
552 13.4% 13.6% 23.6% 23.0% 26.8% 33.3% 47.5%

1751 16.3% 18.7% 20.7% 25.1% 24.4% 26.0% 33.5%
3273 13.5% 15.5% 18.4% 20.0% 24.9% 22.8% 27.5%
5295 14.9% 15.5% 23.0% 22.2% 23.9% 25.8% 33.0%

10487 10.4% 13.1% 16.4% 18.4% 20.5% 22.0% 27.1%
24469 4.5% 2.6% 9.4% 13.6% 15.6% 17.1% 18.8%

Fig. 11. Percentage decrease in number of revocation sweeps due to coalescing
and unmapping quarantined memory when replaying a trace of Chromium
allocations. Lower minimum unmap size (X-axis) means higher run-time
overhead due to more frequent munmap() system calls. Higher quarantine
percentage-size (Y-axis) means approx. a factor of y

100−y
higher memory

overhead. The left-most column shows the absolute number of revocation
sweeps that is the baseline for each row. The percentage reductions directly
translate to reductions in the total run-time overhead of sweeping – higher is
better.

free()-s as recorded from a Chromium workload simulating
multi-tabbed browsing. In the simulation, up to 64 webpages
were assigned per tab and every tab loaded some of them in a
round, one webpage immediately after the other, tab after tab.
The number of tabs was randomly adjusted up or down between
1 – 32 once a mean number of webpages were loaded across
all tabs. 800 webpages were loaded in total, over HTTP and
from a local filesystem. The set of webpages was a selection
of WebKit’s Layout Tests and simple documentation webpages,
that are not JavaScript intensive (as the V8 JS engine has its
own heap). Chromium was configured to use our allocator for
the subsystems that support it and to run in a single process.
With the protections afforded by CheriABI and Cornucopia,
it may be possible for Chromium to maintain the required
protection and fault isolation in this configuration.

We find that a quarantine threshold policy of 25% allows a
33.5% reduction in the number of sweeps by coalescing and
unmapping at a single-page granularity. Larger quarantines
are able to avoid sweeping altogether, as quarantined memory
entirely coalesces into contiguous pages, despite over 50 GiB
being allocated across the trace.

Notifying the kernel about quarantined pages incurs the cost
of system calls to manipulate virtual-memory structures, and
this cost scales with granularity. Fig. 11 shows that a single-
page granularity achieves the greatest reduction in sweeps,
but a practical design may choose a multi-page granularity or
a batch system call to amortize the cost of virtual-memory
manipulation.

B. Cornucopia From Boot

We have booted CheriBSD to multi-user login and a shell
prompt using a Cornucopia-integrated dlmalloc as the libc
malloc() implementation and with the “bootstrapping” allo-
cators inside rtld and for thread-local storage also aware of
revocation. These latter allocators force a revocation only in
the rare event that they must request more memory from the
kernel; otherwise, they passively reclaim memory using the
epoch counters of Appendix B.

When dlmalloc’s quarantine was set to the default policy,
the machine booted successfully and no issues were observed.
When the quarantine was eliminated, so that every free()
triggered a revocation, the system was slow, but short-lived
use-after-free bugs were observed in sh and cron. Triaging
these bugs remains work in progress. To debug these issues,
as well as bugs within Cornucopia itself, we use standard
systems-level debugging tools: the CHERI-MIPS processor can
generate instruction traces and gdb works within CheriBSD.

IX. Related Work
A. Nullification
Cornucopia is not the first technique to use pointer nullification
to eliminate use-after-free attacks. DangNull [27] and FreeSen-
try [53] store stacks of use locations with each allocation, to
allow nullification on deallocation. DangSan [25] optimizes
this approach to deal with the complexities of multithreaded
workloads. PSweeper [29] combines these into one large unified
list of pointers, which it continuously sweeps through on another
thread. Cornucopia can achieve much lower memory and
performance overheads than these techniques because pointers
are architectural features [23] that do not need to be separately
logged – instead, we can efficiently sweep through memory.
B. Debugging Sanitizers
Many sanitizers are available to assist in debugging by
identifying the use of free()-d memory. Perhaps the most
well-known is AddressSanitizer [39], which instruments loads
and stores by looking them up in a shadow poison region, set
to mark the edges of accessible regions as well as unallocated
space. Cornucopia uses a similar shadow, but reduces overheads
by removing the need to instrument memory accesses.

These debugging sanitizers have also seen improvements
from hardware support. In hardware, techniques such as
SPARC ADI [36, 24] and Arm MTE [18] use limited wrap-
around versioning of regions and pointers to help identify, but
not prevent, use-after-free (but see §X-E). Hardware-assisted
AddressSanitizer [40] uses the top few pointer bits, ignored by
memory accesses on AArch64, to store version numbers.
C. Probabilistic Reuse Techniques
Rather than eliminating use-after-free attacks, some allocators
have reduced overheads by probabilistically delaying reuse of
memory, to force an attacker to reallocate large amounts of data
to successfully reallocate the victim’s space. This approach is
taken by FreeGuard [42], DieHard [3], and DieHarder [34].
Cling [2] uses this same strategy, along with more permissive
short-term reuse within a call-site and allocation size, to reduce
overheads.
D. Combining Spatial and Temporal Safety
In this paper, we observe that the spatial safety properties of
CHERI give both performance benefits and stronger guarantees
to temporal-safety mechanisms. Other work has exploited the
same property: for example, BOGO [54] builds temporal safety
atop the Intel MPX mechanism [22]. However, their different
algorithmic choices in the allocator result in larger overheads
of 1.6× for SPEC CPU2006.

Watchdog [30] uses labeling in hardware to provide spatial
and temporal safety. Software techniques for temporal and
spatial safety combined include MemSafe [43], CETS [31],
SoftBound [32], FailSafeC [35], and CCured [33].

CHERIvoke [52] observed that buffering free()-d memory
in quarantine can greatly amortize the work of invalidating
dangling pointers to render address space suitable for realloca-
tion. We extend this methodology to augment full allocators
and detail the techniques necessary for implementation on a
real CHERI system, including the complexities of multiple
different production allocators, interaction with the kernel, and
concurrent execution.

E. Garbage Collection

Garbage collectors [5], though often more expensive than
manual deallocation [52], are a method of protecting against
use-after-free errors by preventing the programmer from freeing
data. It is instructive to compare the CHERIvoke algorithm used
by Cornucopia to the mark and sweep phases of the standard
garbage collector model. CHERIvoke performs a sweep without
the mark phase, naturally decreasing overhead. Furthermore,
explicit deallocation allows CHERIvoke to schedule sweeps
to maintain a specified memory overhead without wasting
effort when sweeps are not required. Finally, the CHERIvoke
algorithm does not suffer memory leaks due to residual
references, as it does not rely on the existence of references to
determine the liveness of objects, but actively eliminates such
references.

Project Snowflake [37] optimizes relative to garbage collec-
tion for high-level languages by using safe manual memory
management for a proportion of allocations and also using
compaction and relocation to improve performance. While
C does not allow these forms of relocation (as they violate
commonly used techniques involving visible pointer addresses),
the Cornucopia service and CHERI primitives could further
accelerate systems for higher-level languages. ManagedC/Truf-
fleC [19] execute C using the Java virtual machine to inherit
the memory safety guarantees of Java, including bounds-
checked structures and garbage collection before memory reuse.
CRCount [41] emulates a tagged pointer shadow in software
similar to CHERI’s hardware implementation, and uses this to
build a reference-counting technique to prevent use-after-free.

F. Page Protection Mechanisms

Some systems page permissions to prevent use-after-free attacks
by allocating each address only once, and allocating only a
single object per page. One example of such a tool is Electric
Fence [15]. Dhurjati and Adve [14] extend this idea by allowing
reuse of physical addresses; specifically, by unmapping the
unique virtual address of each object and mapping multiple
virtual addresses to the same page. Oscar [12] further extends
the idea by removing the need for compiler support. Cornucopia
allows the use of a similar technique for large allocations
(§VIII-A), but avoids the high TLB pressure of such techniques
for small objects by allowing reuse of old virtual addresses
post-revocation.

X. Future Work

A. Distinguishing Authority and Information Flows

In this paper we have reported the overhead of allocators
returning “uninitialized” memory and allocators returning fully
zeroed memory. One could accelerate memory reinitialization
by distinguishing between authority leakage and information
leakage: when memory is left uninitialized on reallocation,
information is leaked; if this memory also contains capabili-
ties, authority is also leaked. A CClearTags counterpart of
CLoadTags could minimize memory traffic and cache impact
of closing authority leaks.

B. Address-Space Reclamation

The kernel cannot safely reissue virtual address space that has
previously been munmap()-ed, as it cannot be certain that the
new capability returned from mmap() is the only reference to
that memory in the address space. We have designed, but not
implemented, extensions to Cornucopia to safely facilitate such
reuse.

C. Further Reducing Pause Times

While Cornucopia’s concurrent sweep greatly reduces applica-
tion pause times, they remain quite high for some workloads
(recall Fig. 10), and much more could be done to ensure
interactive applications experience minimal interruption. Given
proper architectural assistance, sweeping revocation could allow
the application to run but trap on any read of a page that has
yet to be swept [9]. The revoker would then sweep only that
page (and possibly those nearby), reducing application pause
durations.

D. Deferred Page Sweeping

Efficient support for swapping pages to disk requires the ability
to defer page sweeping for out-of-memory capability-bearing
pages. To process historic pages, we need to replay the sweep
of that page using the bitmap as of each sweep since that
page was removed from memory, which may require storing
(compressed) copies of older bitmaps.

E. Data Tagging Opportunities

In recent years, proposals such as ARM MTE [18] and
SPARC M7’s ADI [24, 36] have emerged. These color both
memory and pointers, and upon dereference, require that
the pointer and target colors match. Due to small color
spaces and permissive recoloring, these offer probabilistic
protection against accidental misuse. However, in composition
with CHERI (e.g., [47, §D.9]), such memory coloring may
significantly strengthen and accelerate Cornucopia.

F. Revocation of Other Identifiers

In CHERI, (virtual) memory addresses are but one kind of
identifier protected with architectural capabilities. Other spaces
explicitly instantiated in the architecture are object types [7,
47] and compartment identifiers [48, 47]. Sweeping revocation
can be extended to reclaim these as well.

G. Hierarchical Revocation
CHERIvoke and Cornucopia achieve only a limited form of
capability revocation, as they distinguish only between capabili-
ties of the TCB (in the kernel or bearing VMMAP) and those held
by the rest of an application. New (architectural) mechanisms
must be developed to enable revocation to selectively undo
delegations outside the TCB.

XI. Conclusion
We have presented Cornucopia, a system for heap temporal-
safety built atop CHERI’s spatial safety and capability model
that is faster and stronger than other known techniques. We
demonstrated that optimizations to sweeping revocation can
bring overheads below 2% on average, suggesting that temporal
safety can be enabled by default for C and C++ programs on
future CHERI platforms.

XII. Acknowledgements
We thank our colleagues Hesham Almatary, Jonathan Ander-
son, Ross Anderson, David Brazdil, Ruslan Bukin, Gregory
Chadwick, Nirav Dave, Lawrence Esswood, Tim Harris, Robert
Kovacsics, Bob Laddaga, Ben Laurie, J. Edward Maste, Alan
Mujumdar, Prashanth Munkdur, Steven J. Murdoch, Philip
Paeps, Keith Rebello, Colin Rothwell, Peter Rugg, Hassen
Saidi, Linton Salmon, Howie Shrobe, Domagoj Stolfa, Andy
Turner, Munraj Vadera, Stu Wagner, Hongyan Xia, and Bjoern
Zeeb. This work was supported by the Defense Advanced
Research Projects Agency (DARPA) and the Air Force Re-
search Laboratory (AFRL), under contracts FA8750-10-C-0237
(“CTSRD”) and HR0011-18-C-0016 (“ECATS”). The views,
opinions, and/or findings contained in this report are those
of the authors and should not be interpreted as representing
the official views or policies of the Department of Defense
or the U.S. Government. We also acknowledge the EPSRC
REMS Programme Grant (EP/K008528/1), the ABP Grant
(EP/P020011/1), the ERC ELVER Advanced Grant (789108),
the Gates Cambridge Trust, Arm Limited, HP Enterprise,
and Google, Inc. Approved for Public Release, Distribution
Unlimited.

Additional data relating to this paper can be found at https:
//doi.org/10.17863/CAM.51028.

References
[1] S. Ainsworth and T. M. Jones. “MarkUs: Drop-in Use-

After-Free Prevention for Low-Level Languages”. In:
2020 IEEE Symposium on Security and Privacy (SP).
IEEE Computer Society, May 2020, pp. 860–860. url:
https://doi.ieeecomputersociety.org/10.1109/SP.2020.
00058.

[2] Periklis Akritidis. “Cling: A Memory Allocator to
Mitigate Dangling Pointers”. In: USENIX Security’10.
USENIX Association, 2010, pp. 12–12. url: https://
www.usenix.org/legacy/events/sec10/tech/full_papers/
Akritidis.pdf.

[3] Emery D. Berger and Benjamin G. Zorn. “DieHard:
Probabilistic Memory Safety for Unsafe Languages”. In:
PLDI ’06. ACM, 2006, pp. 158–168. doi: 10 .1145/
1133981.1134000.

https://doi.org/10.17863/CAM.51028
https://doi.org/10.17863/CAM.51028
https://doi.ieeecomputersociety.org/10.1109/SP.2020.00058
https://doi.ieeecomputersociety.org/10.1109/SP.2020.00058
https://www.usenix.org/legacy/events/sec10/tech/full_papers/Akritidis.pdf
https://www.usenix.org/legacy/events/sec10/tech/full_papers/Akritidis.pdf
https://www.usenix.org/legacy/events/sec10/tech/full_papers/Akritidis.pdf
https://doi.org/10.1145/1133981.1134000
https://doi.org/10.1145/1133981.1134000

[4] Hans-J. Boehm, Alan J. Demers, and Scott Shenker.
“Mostly Parallel Garbage Collection”. In: PLDI ’91.
ACM, 1991, pp. 157–164. doi: 10.1145/113445.113459.

[5] Hans-Juergen Boehm and Mark Weiser. “Garbage Col-
lection in an Uncooperative Environment”. In: Softw.
Pract. Exper. 18.9 (Sept. 1988), pp. 807–820. doi: 10.
1002/spe.4380180902.

[6] Tim Boland and Paul E. Black. “Juliet 1.1 C/C++ and
Java Test Suite”. In: IEEE Computer 45.10 (Oct. 2012),
pp. 88–90. doi: 10.1109/MC.2012.345.

[7] David Chisnall, Brooks Davis, Khilan Gudka, David
Brazdil, Alexandre Joannou, Jonathan Woodruff,
A. Theodore Markettos, J. Edward Maste, Robert Norton,
Stacey Son, Michael Roe, Simon W. Moore, Peter G.
Neumann, Ben Laurie, and Robert N. M. Watson.
“CHERI JNI: Sinking the Java Security Model into the
C”. In: ASPLOS ’17. ACM, 2017, pp. 569–583. doi:
10.1145/3037697.3037725.

[8] Christopher Clark, Keir Fraser, Steven Hand, Jacob
Gorm Hansen, Eric Jul, Christian Limpach, Ian Pratt, and
Andrew Warfield. “Live Migration of Virtual Machines”.
In: NSDI’05. USENIX Association, 2005, pp. 273–286.
url: https://www.usenix.org/legacy/event/nsdi05/tech/
full_papers/clark/clark.pdf.

[9] Cliff Click, Gil Tene, and Michael Wolf. “The Pauseless
GC Algorithm”. In: VEE ’05. ACM, 2005, pp. 46–56.
doi: 10.1145/1064979.1064988.

[10] Common Criteria for Information Technology Security
Evaluation. » Part 2: Security functional components.
Apr. 2017.

[11] The MITRE Corporation. CWE-416: Use After Free.
2018. url: https://cwe.mitre.org/data/definitions/416.
html.

[12] Thurston H.Y. Dang, Petros Maniatis, and David Wagner.
“Oscar: A Practical Page-Permissions-Based Scheme for
Thwarting Dangling Pointers”. In: 26th USENIX Security
Symposium (USENIX Security 17). USENIX Association,
2017, pp. 815–832. isbn: 978-1-931971-40-9. url: https:
//www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/dang.

[13] Brooks Davis, Robert N. M. Watson, Alexander Richard-
son, Peter G. Neumann, Simon W. Moore, John Baldwin,
David Chisnall, Jessica Clarke, Nathaniel Wesley Fi-
lardo, Khilan Gudka, Alexandre Joannou, Ben Laurie,
A. Theodore Markettos, J. Edward Maste, Alfredo Mazz-
inghi, Edward Tomasz Napierala, Robert M. Norton,
Michael Roe, Peter Sewell, Stacey Son, and Jonathan
Woodruff. “CheriABI: Enforcing Valid Pointer Prove-
nance and Minimizing Pointer Privilege in the POSIX C
Run-time Environment”. In: ASPLOS ’19. ACM, 2019,
pp. 379–393. doi: 10.1145/3297858.3304042.

[14] Dinakar Dhurjati and Vikram Adve. “Efficiently Detect-
ing All Dangling Pointer Uses in Production Servers”.
In: DSN ’06. IEEE, June 2006, pp. 269–280. doi: 10.
1109/DSN.2006.31.

[15] Electric Fence. 2015. url: https://elinux.org/index.php?
title=Electric_Fence.

[16] Jason Evans. “A Scalable Concurrent malloc(3) Imple-
mentation for FreeBSD”. In: BSDCan. Apr. 16, 2006.
url: https://www.bsdcan.org/2006/papers/jemalloc.pdf.

[17] Keir Fraser. Practical lock-freedom. Tech. rep. UCAM-
CL-TR-579. University of Cambridge Computer Lab-
oratory, Feb. 2004. url: https://www.cl.cam.ac.uk/
techreports/UCAM-CL-TR-579.pdf.

[18] Matthew Gretton-Dann. Arm A-Profile Architecture
Developments 2018: Armv8.5-A. 2018. url: https : / /
community.arm.com/developer/ip-products/processors/b/
processors-ip-blog/posts/arm-a-profile-architecture-2018-
developments-armv85a.

[19] Matthias Grimmer, Roland Schatz, Chris Seaton, Thomas
Würthinger, and Hanspeter Mössenböck. “Memory-safe
Execution of C on a Java VM”. In: Proceedings of the
10th ACM Workshop on Programming Languages and
Analysis for Security. ACM. 2015, pp. 16–27.

[20] Richard Grisenthwaite. A Safer Digital Future, By
Design. url: https://www.arm.com/blogs/blueprint/
digital-security-by-design.

[21] John L. Henning. “SPEC CPU2006 Benchmark Descrip-
tions”. In: SIGARCH Comput. Archit. News 34.4 (Sept.
2006).

[22] Intel. Introduction to Intel® Memory Protection Exten-
sions. July 16, 2013. url: https://software.intel.com/en-
us /articles / introduction- to- intel -memory-protection-
extensions.

[23] A. Joannou, J. Woodruff, R. Kovacsics, S. W. Moore,
A. Bradbury, H. Xia, R. N. M. Watson, D. Chisnall, M.
Roe, B. Davis, E. Napierala, J. Baldwin, K. Gudka, P. G.
Neumann, A. Mazzinghi, A. Richardson, S. Son, and
A. T. Markettos. “Efficient Tagged Memory”. In: 2017
IEEE International Conference on Computer Design
(ICCD). Nov. 2017, pp. 641–648. doi: 10.1109/ICCD.
2017.112.

[24] G. K. Konstadinidis, H. P. Li, F. Schumacher, V. Krish-
naswamy, H. Cho, S. Dash, R. P. Masleid, C. Zheng, Y. D.
Lin, P. Loewenstein, H. Park, V. Srinivasan, D. Huang,
C. Hwang, W. Hsu, C. McAllister, J. Brooks, H. Pham,
S. Turullols, Y. Yanggong, R. Golla, A. P. Smith, and
A. Vahidsafa. “SPARC M7: A 20 nm 32-Core 64 MB
L3 Cache Processor”. In: IEEE Journal of Solid-State
Circuits 51.1 (2016).

[25] Erik van der Kouwe, Vinod Nigade, and Cristiano
Giuffrida. “DangSan: Scalable Use-after-free Detection”.
In: EuroSys. 2017.

[26] Doug Lea. A Memory Allocator. 2000. url: http://gee.
cs.oswego.edu/dl/html/malloc.html.

[27] Byoungyoung Lee, Chengyu Song, Yeongjin Jang, Tielei
Wang, Taesoo Kim, Long Lu, and Wenke Lee. “Prevent-
ing Use-after-Free with Dangling Pointers Nullification”.
In: NDSS ’15. Internet Society, 2015. doi: 10.14722/
ndss.2015.23238.

https://doi.org/10.1145/113445.113459
https://doi.org/10.1002/spe.4380180902
https://doi.org/10.1002/spe.4380180902
https://doi.org/10.1109/MC.2012.345
https://doi.org/10.1145/3037697.3037725
https://www.usenix.org/legacy/event/nsdi05/tech/full_papers/clark/clark.pdf
https://www.usenix.org/legacy/event/nsdi05/tech/full_papers/clark/clark.pdf
https://doi.org/10.1145/1064979.1064988
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/416.html
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/dang
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/dang
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/dang
https://doi.org/10.1145/3297858.3304042
https://doi.org/10.1109/DSN.2006.31
https://doi.org/10.1109/DSN.2006.31
https://elinux.org/index.php?title=Electric_Fence
https://elinux.org/index.php?title=Electric_Fence
https://www.bsdcan.org/2006/papers/jemalloc.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-a-profile-architecture-2018-developments-armv85a
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-a-profile-architecture-2018-developments-armv85a
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-a-profile-architecture-2018-developments-armv85a
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-a-profile-architecture-2018-developments-armv85a
https://www.arm.com/blogs/blueprint/digital-security-by-design
https://www.arm.com/blogs/blueprint/digital-security-by-design
https://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
https://doi.org/10.1109/ICCD.2017.112
https://doi.org/10.1109/ICCD.2017.112
http://gee.cs.oswego.edu/dl/html/malloc.html
http://gee.cs.oswego.edu/dl/html/malloc.html
https://doi.org/10.14722/ndss.2015.23238
https://doi.org/10.14722/ndss.2015.23238

[28] Paul Liétar, Theodore Butler, Sylvan Clebsch, Sophia
Drossopoulou, Juliana Franco, Matthew J. Parkinson,
Alex Shamis, Christoph M. Wintersteiger, and David
Chisnall. “Snmalloc: A Message Passing Allocator”. In:
ISMM 2019. ACM, 2019, pp. 122–135. doi: 10.1145/
3315573.3329980.

[29] Daiping Liu, Mingwei Zhang, and Haining Wang. “A
Robust and Efficient Defense Against Use-after-Free
Exploits via Concurrent Pointer Sweeping”. In: CCS
’18. ACM, 2018, pp. 1635–1648. doi: 10.1145/3243734.
3243826.

[30] Santosh Nagarakatte, Milo M. K. Martin, and Steve
Zdancewic. “Watchdog: Hardware for Safe and Secure
Manual Memory Management and Full Memory Safety”.
In: ISCA ’12. IEEE Computer Society, June 2012,
pp. 189–200. doi: 10.1109/ISCA.2012.6237017.

[31] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Mar-
tin, and Steve Zdancewic. “CETS: Compiler Enforced
Temporal Safety for C”. In: ISMM ’10. ACM, 2010,
pp. 31–40. doi: 10.1145/1806651.1806657.

[32] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin,
and Steve Zdancewic. “SoftBound: Highly Compatible
and Complete Spatial Memory Safety for C”. In: PLDI
’09. ACM, 2009, pp. 245–258. doi: 10.1145/1542476.
1542504.

[33] George C. Necula, Jeremy Condit, Matthew Harren,
Scott McPeak, and Westley Weimer. “CCured: Type-
safe Retrofitting of Legacy Software”. In: ACM Trans.
Program. Lang. Syst. 27.3 (May 2005).

[34] Gene Novark and Emery D. Berger. “DieHarder: Secur-
ing the Heap”. In: CCS ’10. ACM, 2010, pp. 573–584.
doi: 10.1145/1866307.1866371.

[35] Yutaka Oiwa. “Implementation of the Memory-Safe Full
ANSI-C Compiler”. In: PLDI ’09. ACM, 2009, pp. 259–
269. doi: 10.1145/1542476.1542505.

[36] Oracle’s SPARC T7 and SPARC M7 Server Architecture.
Oracle. Aug. 2016.

[37] Matthew Parkinson, Kapil Vaswani, Manuel Costa,
Pantazis Deligiannis, Aaron Blankstein, Dylan Mc-
Dermott, Jonathan Balkind, and Dimitrios Vytiniotis.
Project Snowflake: Non-blocking safe manual memory
management in .NET. Tech. rep. July 2017. url: https:
/ / www . microsoft . com / en - us / research / publication /
project-snowflake-non-blocking-safe-manual-memory-
management-net/.

[38] David D. Redell. Naming And Protection In Extendable
Operating Systems. Tech. rep. MAC TR-140. Mas-
sachusetts Institute of Technology, 1974.

[39] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitry Vyukov. “AddressSanitizer: A
Fast Address Sanity Checker”. In: USENIX ATC’12.
USENIX Association, 2012, pp. 309–318. url: https:
//www.usenix.org/conference/atc12/technical-sessions/
presentation/serebryany.

[40] Kostya Serebryany, Evgenii Stepanov, Aleksey Shlyap-
nikov, Vlad Tsyrklevich, and Dmitry Vyukov. “Memory

Tagging and How It Improves C/C++ Memory Safety”.
In: (Feb. 26, 2018). url: http://arxiv.org/abs/1802.09517.

[41] Jangseop Shin, Donghyun Kwon, Jiwon Seo, Yeongpil
Cho, and Yunheung Paek. “CRCount: Pointer Invalida-
tion with Reference Counting to Mitigate Use-after-Free
in Legacy C/C++”. In: NDSS ’19. Internet Society, 2019.
doi: 10.14722/ndss.2019.23541.

[42] Sam Silvestro, Hongyu Liu, Corey Crosser, Zhiqiang Lin,
and Tongping Liu. “FreeGuard: A Faster Secure Heap
Allocator”. In: CCS ’17 (2017), pp. 2389–2403. doi:
10.1145/3133956.3133957.

[43] Matthew S. Simpson and Rajeev K. Barua. “MemSafe:
Ensuring the Spatial and Temporal Memory Safety of C
at Runtime”. In: SCAM ’10. IEEE, Sept. 2010, pp. 199–
208. doi: 10.1109/SCAM.2010.15.

[44] Software Assurance Reference Dataset :: Around the
Software Assurance Reference Dataset. url: https : / /
samate.nist.gov/SRD/around.php#juliet_documents.

[45] Dokyung Song, Julian Lettner, Prabhu Rajasekaran,
Yeoul Na, Stijn Volckaert, Per Larsen, and Michael
Franz. “SoK: Sanitizing for Security”. In: SP ’19. IEEE,
May 20–22, 2019, pp. 1275–1295. doi: 10.1109/SP.
2019.00010.

[46] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn
Song. “SoK: Eternal War in Memory”. In: SP ’13. IEEE
Computer Society, 2013, pp. 48–62. doi: 10.1109/SP.
2013.13.

[47] Robert N. M. Watson, Peter G. Neumann, Jonathan
Woodruff, Michael Roe, Hesham Almatary, Jonathan
Anderson, John Baldwin, David Chisnall, Brooks Davis,
Nathaniel Wesley Filardo, Alexandre Joannou, Ben
Laurie, Simon W. Moore, Steven J. Murdoch, Kyndylan
Nienhuis, Robert Norton, Alex Richardson, Peter Sewell,
Stacey Son, and Hongyan Xia. Capability Hardware
Enhanced RISC Instructions: CHERI Instruction-Set
Architecture (Version 7). Tech. rep. UCAM-CL-TR-927.
University of Cambridge, Computer Laboratory, 2018.
url: https://www.cl.cam.ac.uk/techreports/UCAM-CL-
TR-927.html.

[48] Robert N. M. Watson, Jonathan Woodruff, Michael Roe,
Simon W. Moore, and Peter G. Neumann. Capability
Hardware Enhanced RISC Instructions (CHERI): Notes
on the Meltdown and Spectre Attacks. Tech. rep. UCAM-
CL-TR-916. University of Cambridge, Computer Lab-
oratory, Feb. 2018. url: https://www.cl.cam.ac.uk/
techreports/UCAM-CL-TR-916.pdf.

[49] Aaron Weiss, Daniel Patterson, Nicholas D. Matsakis,
and Amal Ahmed. Oxide: The Essence of Rust. 2019.
url: https://arxiv.org/abs/1903.00982.

[50] Jonathan Woodruff, Alexandre Joannou, Hongyan Xia,
Anthony Fox, Robert Norton, Thomas Bauereiss, David
Chisnall, Brooks Davis, Khilan Gudka, Nathaniel W.
Filardo, A. Theodore Markettos, Michael Roe, Peter G.
Neumann, Robert N. M. Watson, and Simon W. Moore.
“CHERI Concentrate: Practical Compressed Capabili-

https://doi.org/10.1145/3315573.3329980
https://doi.org/10.1145/3315573.3329980
https://doi.org/10.1145/3243734.3243826
https://doi.org/10.1145/3243734.3243826
https://doi.org/10.1109/ISCA.2012.6237017
https://doi.org/10.1145/1806651.1806657
https://doi.org/10.1145/1542476.1542504
https://doi.org/10.1145/1542476.1542504
https://doi.org/10.1145/1866307.1866371
https://doi.org/10.1145/1542476.1542505
https://www.microsoft.com/en-us/research/publication/project-snowflake-non-blocking-safe-manual-memory-management-net/
https://www.microsoft.com/en-us/research/publication/project-snowflake-non-blocking-safe-manual-memory-management-net/
https://www.microsoft.com/en-us/research/publication/project-snowflake-non-blocking-safe-manual-memory-management-net/
https://www.microsoft.com/en-us/research/publication/project-snowflake-non-blocking-safe-manual-memory-management-net/
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
http://arxiv.org/abs/1802.09517
https://doi.org/10.14722/ndss.2019.23541
https://doi.org/10.1145/3133956.3133957
https://doi.org/10.1109/SCAM.2010.15
https://samate.nist.gov/SRD/around.php#juliet_documents
https://samate.nist.gov/SRD/around.php#juliet_documents
https://doi.org/10.1109/SP.2019.00010
https://doi.org/10.1109/SP.2019.00010
https://doi.org/10.1109/SP.2013.13
https://doi.org/10.1109/SP.2013.13
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.html
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.html
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-916.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-916.pdf
https://arxiv.org/abs/1903.00982

ties”. In: IEEE Transactions on Computers (2019). doi:
10.1109/TC.2019.2914037.

[51] Jonathan Woodruff, Robert N. M. Watson, David Chis-
nall, Simon W. Moore, Jonathan Anderson, Brooks
Davis, Ben Laurie, Peter G. Neumann, Robert Norton,
and Michael Roe. “The CHERI capability model: Re-
visiting RISC in an age of risk”. In: Proceedings of the
41st International Symposium on Computer Architecture
(ISCA 2014). June 2014.

[52] Hongyan Xia, Jonathan Woodruff, Sam Ainsworth,
Nathaniel W. Filardo, Michael Roe, Alexander Richard-
son, Peter Rugg, Peter G. Neumann, Simon W.
Moore, Robert N. M. Watson, and Timothy M. Jones.
“CHERIvoke: Characterising Pointer Revocation Using
CHERI Capabilities for Temporal Memory Safety”. In:
MICRO ’52. ACM, 2019, pp. 545–557. doi: 10.1145/
3352460.3358288.

[53] Yves Younan. “FreeSentry: Protecting Against Use-After-
Free Vulnerabilities Due to Dangling Pointers”. In:
NDSS ’15. Internet Society, 2015. doi: 10.14722/ndss.
2015.23190.

[54] Tong Zhang, Dongyoon Lee, and Changhee Jung.
“BOGO: Buy Spatial Memory Safety, Get Temporal
Memory Safety (Almost) Free”. In: ASPLOS ’19. ACM,
2019, pp. 631–644. doi: 10.1145/3297858.3304017.

Appendix

A. Shadow-Space Access Control

The wrapper design and implementation explored throughout
this paper assumes that malloc() is the only allocator, and it
obtains access to the entire shadow bitmap. To support compart-
mentalized applications or those with multiple allocators, we
must redesign Cornucopia’s kernel interface to enable selective
access to the shadow space.

To revoke pointers to a given allocation, user-space must
set the shadow bits corresponding to that allocation’s memory
before requesting revocation from the kernel, and clear them
after revocation and before the memory is reused; recall Fig. 1.
We observe that, while user-space must write to the shadow
bitmap, unmediated writes to this structure are able to break
temporal-safety guarantees. For example, a spurious clear
of bits in the shadow bitmap could result in capabilities to
quarantined memory surviving the revocation sweep. Therefore,
we must carefully control access to the shadow bitmap within
an application and must not share access between distrusting
sandboxes.

In order to support safe sharing of address space between
distrusting allocators, we have implemented a kernel API to
mediate control of the shadow bitmap space. Our kernel API
builds on CHERI’s spatial protection to enforce a privilege-
minimizing policy: access to a region of the shadow bitmap
is predicated on presenting a capability to the corresponding
memory. The effect is that an allocator (or any user of the
mmap() API, more generally) can access the shadows of its
mappings but not those of other allocators.

Q
u
a
ra
n
ti
n
e

Time

Fig. 12. A schematic example of two independent, Cornucopia-aware allocators
running within a single address space. Here, both divide their quarantines into
four segments and label each full segment with the epoch at time of fill. Each
allocator fully drains its quarantine when all its segments are filled, which
happens five times in this scenario (indicated by the vertical bars). Four times,
indicated by dotted rectangles, an allocator fills a quarantine segment and
discovers that existing segments were filled prior to the last revocation (i.e., in
an earlier epoch) and so its quarantine is just the new segment.

CheriBSD, as part of CheriABI [13], also infers privilege
of user-space code from capabilities presented to system calls,
but defines an additional layer of privilege. As mentioned in
§V-A, CheriBSD uses one of the capability permission bits left
available for software interpretation, VMMAP, to confer rights
to manage address space. The kernel returns a capability with
this permission bit set whenever a mapping at a new address is
created and subsequently checks that this bit is present on the
authorizing capability whenever changes to the memory map
are requested. CHERI-aware allocators strip this permission
on capabilities returned to the program by malloc().

We have replaced the generic whole-shadow access mech-
anism in Cornucopia with one that requires user-space to
present a VMMAP-bearing capability and returns a capability
only to that capability’s shadow. This allows an allocator to
prevent any other code from accessing the shadow bitmap of
its heap. Our extensions of snmalloc and dlmalloc were
not unduly burdened by managing disjoint capabilities to the
shadow bitmap. Modern allocators must maintain metadata for
multiple slabs of disjoint address space returned from mmap(),
and we found it natural to expand this metadata to hold these
bitmap capabilities.

B. Revocation Epochs and Segmented Quarantines

In addition to supporting safe sharing of address space between
allocators as described in Appendix A, Cornucopia supports
efficient work-sharing by enabling non-cooperating allocators
to share revocation sweeps. That is, all allocators in a process
benefit from a revocation pass performed by any allocator.
In particular, by the time a revocation is performed by one
allocator, other allocators may already have expressed (parts of)
their quarantines in the shadow bits. The revocation performed
will take those bits into consideration, and allocators need not
perform additional unnecessary revocations.

Towards this end, we use a variant of epoch-based reclama-
tion [17] and introduce the notion of a revocation epoch: a
per-address-space count of the number of revocations performed.
Allocators can exploit the published epoch counters by using
a segmented quarantine structure. If a set of quarantined
allocations are labeled with the epoch counter observed after
setting the shadow bits, the observation of a sufficiently larger
epoch counter later implies that a revocation sweep has revoked
this set.

https://doi.org/10.1109/TC.2019.2914037
https://doi.org/10.1145/3352460.3358288
https://doi.org/10.1145/3352460.3358288
https://doi.org/10.14722/ndss.2015.23190
https://doi.org/10.14722/ndss.2015.23190
https://doi.org/10.1145/3297858.3304017

This design scales to any number of allocators with com-
pletely independent quarantine and revocation policies. In
practice, only the allocator subject to the highest free() load is
likely to discover a need to revoke, while allocators responding
to lighter free()-ing loads will almost always find that their
oldest quarantine segments are already revoked and so can
clear their shadow bits and reuse their memory immediately.

Our integration of Cornucopia into snmalloc uses this
epoch mechanism. Each of its per-thread allocators maintains
a segmented quarantine, and threaded programs do indeed
behave as expected with shared revocation work. Figure 12
shows a schematic interaction between two allocators with
varying workloads that benefit from one another’s revocations.

1) Epoch Counters and Memory Ordering
Cornucopia in fact exposes two epoch counters to user-space.

The enqueue epoch counter is suitable for labeling quarantine
segments as they become full, while the dequeue epoch counter
should be used for testing revokedness of segments.

Between revocations, the enqueue counter is ahead of the
dequeue value by two increments. When a revocation begins, the
enqueue counter is incremented, and a release fence performed,
before memory is swept (implicitly performing an acquire fence
as part of the kernel’s locking). When a revocation finishes, the
enqueue counter is again incremented and the dequeue counter
is advanced by two (and followed by an implicit release fence).
A quarantine segment is revoked if its label is less than or equal
to the dequeue counter: the staggered advance of the enqueue
counter ensures that a segment remains in quarantine until a
revocation both begins and ends after its labeling. (Counter
values are 64-bit, and so for the prototype described here,
we ignore wrap-around. In the future, we envision guarding
our counters with capabilities whose revocation also indicates
revokedness of a segment; this will moot any concerns of
wrap-around.) The caprevoke() system call of §IV-C takes
an optional epoch counter argument and will quickly return if
a segment labeled by this epoch is already revoked by the time
the kernel has entered its critical section. An allocator passing
the epoch of its eldest quarantine segment will ensure that
there is no TOCTTOU gap and avoids useless back-to-back
revocations.

When labeling a segment of the quarantine with the enqueue
epoch counter, we must be sure that the load of the counter
happens after all cores would see the updates to the bitmap. This
requires that the allocator perform an acquire-and-release fence
after populating the bitmap and before loading the counter. This
holds even if the allocator itself is fully serialized, because,
while the interaction with the revocation bitmaps happens
within the allocator’s critical section, it is otherwise independent
of other allocators’ interactions with revocation.

When releasing a segment of the quarantine back to the free
pools, a traditional allocator using locks will likely require
no additional fencing. So long as an implicit release, such
as exiting the critical section, separates clearing the shadow
bitmap from derivation of the non-VMMAP-bearing capability
returned to the client, all cores will perceive the shadows of
these allocated objects to be clear before the allocator has

1.0

1.1

1.2

1.3

1.4

1.5

astar
bzip2

gobmk
hmmer

libquantum
omnetpp

sjeng

xalancbmk

geomean

N
o

rm
a

liz
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

CHERIvoke Model
Cornucopia

Cornucopia Offload

Fig. 13. CHERIvoke’s modeled overheads vs the Cornucopia implementation.
All benchmarks are run in their ref configuration.

0.2

0.4

0.6

0.8

astar
gobmk

hmmer
libquantum

omnetpp
xalancbmk

F
ra

c
ti
o

n
 V

is
it
e

d pages
cache lines

Fig. 14. Proportion of memory swept by the revoker, at both page and cache-
line granularity. The cap-clean flag allows elision of page sweeps, and the
CLoadTags allows elision of cache line loads.

constructed a revoke-able capability. The data dependence
between the capability loaded by the revoker and the location
looked up in the shadow bitmap is sufficient to ensure that
no additional interlocking with the revoker is required: if the
revoker perceives a capability to reused address space, the
fence implies that it will perceive zeros in the shadow (unless
they have become set again).

However, for allocators that do not enter and exit critical
sections as part of their routine operation, such as snmalloc,
it is necessary that explicit fences be inserted. snmalloc’s
case is especially interesting, as it has three different behaviors
for de-quarantining address space. (1) Large objects’ addresses
are immediately published to a global queue, and so require a
release fence between clearing shadow bits and said publication.
(2) Addresses belonging to other threads will be queued in this
thread’s “remote cache.” This cache will be drained when it
fills above some threshold; a release fence must be performed
before such draining, but insertions into the cache need not
fence. (3) Other addresses, belonging to the current thread,
will not be considered for reuse until after the de-quarantining
operation; here, a single release fence can cover any number
of de-quarantined objects. Having performed this single fence,
this thread is justified in immediately reusing any of its de-
quarantined address space.
C. Correspondence with CHERIvoke Model
Cornucopia uses the CHERIvoke algorithm, which was origi-
nally characterized on modern out-of-order x86 processors [52].
Fig. 13 shows the results of the CHERIvoke modeling ex-
periment against the measured overheads of the Cornucopia
implementation. The results of the CHERIvoke study roughly
agree with the scale of overheads we have measured for
Cornucopia, despite vast differences in microarchitectural
sophistication, indicating that the sweeping algorithm scales
similarly to general performance. The biggest divergence is
in xalancbmk where half of the overhead in the CHERIvoke

 1

 10

 100

 1000

astar
gobmk

hmmer
libquantum

omnetpp
xalanc

M
ill

io
n

 C
y
c
le

s Initial
Middle

World-stopped

Fig. 15. Mean (and std. dev.) time per revocation phase, with revocation
broken down into three phases. Compare Fig. 10.

experiment was from allocator layout, which varies significantly
between dlmalloc and snmalloc, which we used for these
Cornucopia results.

Fig. 14 shows the rates at which Cornucopia can take
advantage of cap-clean and CLoadTags to save work. These
results qualitatively confirm CHERIvoke’s predictions (Fig.
8a of [52]), but we observe broadly elevated frequency of
capabilities, likely due to CHERI’s increased pointer size.

The sequential performance overhead of Cornucopia is lower
than the overhead predicted by CHERIvoke: while CHERIvoke
described using CLoadTags instructions (§IV-E) to avoid
accessing cache lines without capabilities, it could not evaluate
its performance effect. Cornucopia’s implementation on CHERI
benefits from CLoadTags for workloads such as xalancbmk
that have irregular pointer distributions. Concurrent sweeping
using an offload thread further improves over predicted per-
formance by allowing continued execution during a sweep,
achieving a geometric mean overhead of less than 1/3 of the
modeled overhead.
D. Adding Another Incremental Pass
One way to attempt to reduce the large pause times observed
in §VII-C would be to introduce one or more “middle” phases
to revocation, between the initial sweep and the world-stopped
sweep. These middle phases could be, like the final sweep,
incremental, considering only sweep-dirty pages, and could,
like the initial sweep, be run concurrently with other application
threads. Ideally, the number of pages left sweep-dirty after such
a middle phase is smaller than the number of sweep-dirty pages
at its start, as the application has less time to dirty pages than
it did during the previous phase.

We re-run the experiments of §VII-C with a wrapper that
makes three caprevoke() calls per revocation. While the
results, shown in Fig. 15, suggest that our intuition is correct
and that middle phase(s) could reduce pause times, the gain is
perhaps less than might be desired. Moreover, this multiple-
phase design requires revisiting pages yet again. That is, they
necessarily increase both cycle and, worse, memory access
overheads.

	Introduction
	Contributions
	Threat Model
	Non-Goals

	Background
	Temporal Safety
	CHERI Capabilities and Spatial Safety
	Capability Revocation
	CHERIvoke Algorithm for Sweeping Revocation

	Cornucopia Overview
	Kernel Revocation Service
	Beyond User-Space Memory
	Maintaining the Shadow Bitmap
	Kernel Revocation API
	Capability-Dirty Pages and Concurrent Revocation
	Bypassing Pages
	Concurrent Revocation

	The Revoker's Inner Loop

	User-Space Allocator
	CHERI-Aware Allocators
	Adding Temporal Safety with Cornucopia
	A Wrapper for Temporal Safety

	Experimental Setup
	System Configuration
	Underlying allocators

	Evaluation
	Decomposing Overheads
	Cornucopia versus Boehm GC and AddressSanitizer
	General Overheads
	Security

	Additional Experiments
	Cornucopia dlmalloc: Fast Page Invalidaton
	Cornucopia From Boot

	Related Work
	Nullification
	Debugging Sanitizers
	Probabilistic Reuse Techniques
	Combining Spatial and Temporal Safety
	Garbage Collection
	Page Protection Mechanisms

	Future Work
	Distinguishing Authority and Information Flows
	Address-Space Reclamation
	Further Reducing Pause Times
	Deferred Page Sweeping
	Data Tagging Opportunities
	Revocation of Other Identifiers
	Hierarchical Revocation

	Conclusion
	Acknowledgements
	Appendix
	Shadow-Space Access Control
	Revocation Epochs and Segmented Quarantines
	Epoch Counters and Memory Ordering

	Correspondence with CHERIvoke Model
	Adding Another Incremental Pass

