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ABSTRACT
We propose new solutions that can efficiently address the problem
of malicious memory access from pluggable computer peripherals
and microcontrollers embedded within a system-on-chip. This prob-
lem represents a serious emerging threat to total-system computer
security. Previous work has shown that existing defenses are insuf-
ficient and poorly deployed, in part due to performance concerns.
In this paper we explore the threat and its implications for system
architecture. We propose a range of protection techniques, from
lightweight to heavyweight, across different classes of systems. We
consider how emerging capability architectures (and specifically
the CHERI protection model) can enhance protection and provide
a convenient bridge to describe interactions among software and
hardware components. Finally, we describe how new schemes may
be more efficient than existing defenses.
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1 INTRODUCTION
Increasingly, attacks come not just from software running on an
application CPU, but from other hardware inside or external to sys-
tems. Cross-system attacks come about when a secondary piece of
hardware is compromised and used as a springboard to attack other
parts of the system. For example on an iPhone, the firmware on a
Wi-Fi controller might be compromised by sending bad packets over
the air [4]: arbitrary code injection is achieved on the Wi-Fi con-
troller, and then the Wi-Fi controller is used to attack the application
processor running iOS.

Extremely damaging attacks are possible when such compromised
devices have direct memory access (DMA) to system memory. With-
out protection, attackers with access to main memory can steal all the
data on a machine (e.g., passwords, encryption keys, and confidential

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.
HASP’20, October 2020, Online
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: A typical computer system contains multiple
components with rights to directly access memory – not
only from internal processor cores, but also from peripheral
devices. Those which do not have access to DMA typically
can intermediate via a host controller that does.

information). They can also inject arbitrary code to be executed by
the application processor. Existing defenses are heavyweight or par-
tial, and in practice tend to see limited use [3, 18, 22]. Performance
and programmability overheads are posited as blockers to wider
adoption [18].

This paper proposes solutions that can efficiently protect against
DMA from malicious devices, be they inside a system-on-chip or ex-
ternal. We examine techniques used to constrain malicious software
and whether, with added architectural support, they might constrain
malicious hardware. We consider in particular the CHERI capability
protection model [27], which shows great promise at constraining
software – both in terms of applying the principle of least privilege
to memory accesses, and with compartmentalization. We assess ex-
isting defenses, propose new structures, and consider how CHERI
and similar mitigation technologies can be used to provide a more
unified hardware/software protection model across systems.

The text is organized as follows. Section 2 outlines how computer
systems are currently constructed and existing vulnerabilities to
DMA attacks. Section 3 describes the threat model our work ad-
dresses and some simplifying assumptions. Section 4 decomposes
the problem by systematizing DMA operations, which have often
never considered security, in terms of primitives that are used for
software protection. We additionally introduce the CHERI protec-
tion model. Section 5 analyzes how existing systems apply these
primitives to apply some form of protection, often unintentionally
as a side-effect of other system design choices.
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Figure 2: CHERI represents address, bounds, type and permissions in an in-memory capability plus a one-bit out-of-band tag.
In the CHERI Concentrate representation [28] 64-bit pointers with top/bottom bounds are compressed into an 128-bit format
using a scheme akin to floating point.

We then divide our focus into a number of different application
areas and discuss architectural primitives that may help, grouped
into two threat classes. First, we consider the defenses a system
can employ from attaching devices with both untrustworthy hard-
ware and untrustworthy software. This might be when a malicious
network card is plugged into a Thunderbolt port [18], or a system-on-
chip (SoC) designer instantiates a black-box third-party IP. Section
6 applies this to microcontroller systems, being relatively resource-
constrained with simpler software stacks. Section 7 considers more
complex systems that can afford translation-based protection, com-
monly on application processors and SoCs running full operating
systemssuchasLinux.Section8examines therequirementsofdeeper
integration between devices and applications, where performance
prevents intermediation via a trusted operating system kernel.

For the second threat class, Section 9 considers a device with
trustworthy hardware but untrustworthy software. For instance, an
SoC might be built entirely by one vendor, but with firmware for
devices vulnerable to a supply chain attack, or subject to over-the-air
compromise.

Finally, Section 10 sketches a comparison of the different archi-
tectural constructs, and identifies promising ways forward. Section
11 considers next steps and Section 12 concludes.

2 BACKGROUND
Traditionally, a computer system has been viewed in the past as a
‘central’ processing unit (CPU) and ‘peripherals’. The nature of sys-
tems has evolved substantially over the decades, and thus we need to
revisit the architectural shape of a system to consider it with security
in mind. Since the microprocessor era, we have been habituated to
the idea that all compute happens on the CPU and the peripherals are
its servants. In truth, while there remains something labeled a CPU,
systems have many distributed computing elements – both towards
the center and at the margins. Often, ‘peripherals’ have substantial
compute power of their own, in which standardized interfaces are
implemented by ‘firmware’.

We draw a caricature of such a system in Figure 1. On this diagram
we can broadly classify devices into two categories: those that have
direct access to memory (DMA), and those that intermediate mem-
ory access via another device (a host controller that performs DMA
on their behalf). Often the latter category has a message-passing
paradigm (for instance, SATA or USB) in which the operating sys-
tem and its device drivers are responsible for interpreting messages.
In such protocols memory addresses are not passed to the remote
device but remain on the host controller. DMA is typically required
when performance is critical: as a hardware-only path, it does not
need to intermediate via software; however, it is also less expressive.

This paper focuses on DMA, because it represents both very high
risks and a very critical security challenge. Defenses from DMA

attacks also apply to message-passing interfaces, which can can be
used to perform DMA attacks if their host controller is compromised
(although DMA defenses will not protect against bugs in driver stacks
interpreting those messages).

2.1 Existing vulnerabilities
For the most part, systems have been poorly defended against DMA
attacks; there is a growing literature of these emerging threats. Pro-
tocols such as Firewire, PCI, PCI Express and Thunderbolt provided
unimpeded access to system memory, and attacks were straightfor-
ward for anyone who tried [25]. More recently, protections such as
the Input/Output Memory Management Unit (IOMMU) have been en-
abled, which made attackers look more carefully for loopholes, either
at boot time or through misconfiguration [12]. Recent work has indi-
cated that in practise IOMMU protections were not being used well,
and it is suspected this is due largely to performance concerns [18].

Separately, interest has grown in cross-system attacks. Firmware
compromise of DSPs [16], management controllers [21, 24], net-
work [7, 26] and Wi-Fi [4] cards has demonstrated that attackers
moving from one component to another within the system is a plau-
sible threat. Attacks on management processors [21] underscore
how these interconnections can be complex and exploitable.

3 THREATMODELANDASSUMPTIONS
We make some simplifying assumptions here, but only to simplify
the description. We assume we are dealing with a reasonably con-
ventional computer system. That means we have a single complex
of CPUs, consisting of some number of cores joined by a cache-
coherency fabric (which may be spread across multiple physical
chips). The CPUs are connected to main memory, typically Dynamic
RAM (DRAM), via port(s) on the caches. We assume the CPU hard-
ware, the cache hierarchy, and the DRAM are trustworthy – i.e., they
have been designed correctly and have not been manipulated by an
attacker. (Thus, attacks such as Rowhammer [15] are not directly in
scope, although separate mitigations may be employed.)

Further, we assume that, while applications might be untrustwor-
thy, some level of the software running on the CPU is trustworthy.
We refer to that as the operating system kernel – although it might be
a hypervisor, microkernel, executive or other privileged component.
Hardware techniques such as the CHERI instruction-set architecture
and its protection model can be used to improve the trustworthiness
of software, and to enforce these boundaries more clearly [6].

Away from the CPU complex, we have DMA-capable peripher-
als. Peripherals are largely autonomous, with their own processors
running their own firmware, and they have their own ability to
access DRAM. The physical form factor may vary substantially –
for instance, a storage controller in an embedded SoC, a Wi-Fi chip
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soldered into a phone, a plugin network card in a server, or an ex-
ternal GPU attached to a Thunderbolt port of a laptop. Peripheral
devices may also have their own internal memory. The basic problem
is that the device’s main memory access provides a vector for some
entity controlling the device to attack the system, for instance by
stealing secrets or injecting malicious code for the CPU to run. Our
threat model covers the case that an attacker can attach an extra
malicious device to the system, via a port such as Thunderbolt or
PCI Express [18]. Additionally, it considers that an existing device
may have been compromised. Once an attacker has control, they are
able to make memory requests acting as that device.

Out of scope for this paper are non-traditional computing systems,
for example, clusters sharing memory between servers via Infini-
band. Some of our solutions may apply, but would require further
study. Also out of scope are non-address-carrying protocols such as
USB1, although their host controllers are in scope.

Embedded systems often have a similar shape to such desktop
systems, although frequently more resource constrained. Our work
largely applies in that context as well – in that arena it applies to
DMA-based platforms such as VME or PC/104, but not directly to
non-DMA-based networks such as CAN.

We broadly classify malicious peripherals in two forms. Devices
with untrustworthy hardware and software are fully controlled by an
attacker, and may perform any operations allowed by their external
interfaces. For example they may make arbitrary memory requests.

Alternatively, devices may have trustworthyhardware, but untrust-
worthy software. For instance, the hardware comes from a trustwor-
thy vendor and has not been tampered with, but the firmware has
been compromised or replaced. The scope of attacks possible from
such devices depends on the restrictions imposed by their own hard-
ware, as well as their interfaces into the memory system. At present,
such restrictions are typically arbitrary and not focused on security
(but rather, are whatever features the hardware designer decided
to provide). However, we also consider cases in which the device
hardware can impose security defenses against malicious firmware.

Our work thus covers two areas. First, we consider mechanisms to
protect the host computer from malicious memory requests coming
from devices, by constraining the memory a device is allowed to
access. Second, we consider enforcement within peripherals, allow-
ing devices to run untrustworthy software without affecting other
components in the system. We assume a defense-in-depth approach
that might use both techniques.

4 MEMORY PROTECTIONCONCEPTS
In this section, we identify some protection concepts that are applica-
ble to low level software such as operating systems and device drivers.

4.1 The bounded buffer
Foundational to software, and similarly to hardware, is the concept of
the bounded buffer. This comprises a linear region of memory, which
may be described by top and bottom addresses. or more commonly
a base address and a length. Conceptually, such a buffer contains
(the memory representation of) a software object; valid accesses

1Latterly, message-based USB and DMA-based Thunderbolt have become intertwined,
especially with the USB 4 and Type-C specifications. Since the security models differ,
we treat them as distinct.

to the object do not stray outside the buffer’s limits. A bounded
buffer may contain pointers to other bounded buffers, and thus a
data structure can be represented as a graph of bounded buffers.
Often, especially in non-CHERI systems, the bounds of buffers are
implicit but nevertheless conceptually are well-defined.

Scatter-gather lists are listsofboundedbuffers,used to transferdata
to/from non-contiguous chunks of memory. Construction and ma-
nipulation of lists can remove the need to (re)pack data as segments
are inserted and removed. These lists are commonly used where data
might be handled by different software – for example, if the headers
on a network packet were stored separately from the payload.

The ring buffer extends the scatter-gather list to be a common
design pattern used to represent producer/consumer communication.
It is a table containing addresses and lengths of bounded buffers.
Head and tail pointers point to entries in the list, wrapping around as
the table becomes full. For example, on the transmit path of a network
card, the producer allocates bounded buffers, fills them with data,
puts their pointers at the end of the list, and updates the tail pointer.
The consumer uses the head pointer to find buffers to read from; once
a buffer is consumed, the head pointer is updated, indicating to the
producer that the buffer can be freed. Ring buffers are common in
networking and storage applications, where they can imply transfer
of ownership of bounded buffers between producer and consumer.

4.2 CHERI capabilities
A capability is an unforgeable token of authority. CHERI capabilities
are hardware-enforced manifestations of the bounded buffer that en-
force the principle of least privilege. Address, limits, permissions and
typing are bound together to make a bounded pointer that imposes
additional properties on software:
Authenticity and integrity – Capabilities are protected by an out-
of-band one-bit tag which makes it impossible for software to forge
or tamper with them; capabilities can be created or modified only
by processor instructions that maintain the capability properties.
Permissions– Capabilities carry permissions that restrict how they
can be used (for reading, writing, code execution, used to store other
capabilities, etc.).
Delegation – A capability may be passed to another piece of soft-
ware in the same way a pointer is passed. Passing a capability also
passes rights to access the object it points to.
Monotonicity – Bounds and rights on a capability may be reduced,
but can never be increased. Hence, we can pass objects with limited
rights to untrustworthy software which cannot acquire extra rights.
Typing– Capabilities can be typed to enable them to be used only by
software of a matching type; other software can use them as opaque
tokens but not dereference them.

In practice, a capability is a datatype twice as wide as the native
pointer size (128-bit with a 64-bit address, 64-bit with a 32-bit ad-
dress). It comprises bounds (which can span from a single byte to the
full 64-bit address space; compression imposes modest alignment re-
quirements for larger buffer lengths), permissions and other fields as
shown in Figure 2. The 1-bit integrity tag is not accessible to software
and carried separately through caches and out to a separate area
of DRAM that cannot be manipulated by regular instructions [14].
A memory location whose tag is set (by construction) contains a
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capability; one without the tag set is an integer, which cannot be
used to dereference memory.

CHERI is an architecture-neutral protection model – implementa-
tions have been designed for different architectures including RISC-V,
MIPS, x86 and, in Arm’s Morello prototype [2], ARMv8. A realisation
of CHERI into a particular architecture makes certain design choices
and tradeoffs; in this paper we do not assume a specific architecture
(indeed multiple architectures may coexist within a single system).

4.2.1 Capabilities to mitigate software vulnerabilities. Taken to-
gether, these features make capabilities compelling replacements
for integer pointers; they provide stronger security guarantees for
software and also enable efficient fine-grained software compart-
mentalization. Bounded pointers and monotonicity mitigate a large
number of traditional buffer-based vulnerabilities. Permissions pre-
vent confusion between code and data objects. Authenticity and
integrity prevent pointers from being forged, removing the need for
mitigation techniques such as Address-Space Layout Randomisation
(ASLR). Typing and delegation can be combined in the sealing mech-
anism, which allows construction of opaque references to memory
– which can be efficiently exchanged with untrustworthy code that
is sandboxed (compartmentalized), without granting the sandbox
rights of access and without the need for MMU memory protection.
Third-party libraries are just one example where this is desirable.

Altogether, CHERI provides a toolkit for the CPU to more di-
rectly articulate a number of higher-level protection techniques,
such as efficent enforcement of object bounds [6] (and especially
in higher-level languages [5]), software compartmentalisation [10],
and temporal safety [8].

4.2.2 Other pointer protection schemes. CHERI is a point in a de-
sign space of pointer protection schemes, summarized elsewhere [14].
We can decompose CHERI as providing a number of features that
might exist in other schemes: 1) pointers can be distinguished from
data; 2) pointers are inherently bounded; 3) bounds are embedded
inline with pointers; 4) pointer and bounds manipulations are re-
stricted by hardware. The techniques we describe in this paper may
be generalizable to other protection schemes with some degree of
modification. However we have focused on CHERI as it is a concrete
model being evaluated as a prototype by a mainstream commercial
architecture [9]. Given a CHERI-protected CPU and memory sys-
tem, cross-system DMA attacks then become a way to bypass the
protection model and so this becomes a pressing threat.

4.3 The translated buffer
Another paradigm modifies the bounded buffer to a translated buffer
by externally applying operations to the address; this is frequently
used when hardware generates or modifies addresses. An access to
index i within a bounded buffer of base B, which would ordinarily
produce an addressA=B+i , might be modified to a new addressA′

in a number of ways:
Offsetting– A fixed offsetT is added to the base, givingA′=T +B+i .
Relocation – The index i is used with a different base R, ignoring
the previous base, givingA′=R+i .
Sequencing – Data is streamed with no addressing information; the
address is generated by counting elements and added to a new base
R. The nth element is stored at addressA′=R+n.

Paging – Define a page size P (e.g., 4 KiB) and set p = loд2P (e.g.,
12 address bits). Take the page number from the upper bits of the
addressA[63 :p] and arbitrarily map to another prefix f (A[63 :p]),
forming a new addressA′= { f (A[63 :p]),A[p−1 :0]}. If no valid map
exists, the request is denied.

A separate operation would be required to check bounds (this
check is frequently missing in existing systems). In paging-based
systems, bounds are sometimes approximately enforced by rounding
up the bounds to an integer multiple of the page size, and inserting
“guard” gaps – i.e., addresses with no translation – between objects.

If the translation mechanism is controlled by a device that is more
trustworthy, we can use such methods to limit device accesses. For
example, a device might be able to make random access within a
relocated bounded buffer, but not random access to any part of mem-
ory. However, we would also need a bounds limit to prevent a device
running off the end of a bounded buffer within that relocated region.

5 EXISTING PROTECTIONMECHANISMS
In this section we describe existing protection mechanisms. Many of
these were not conceived for protection, but we can view them as a
means of applying ‘trust’. For example, a more ‘trustworthy’ compo-
nent than the device can be used to control DMA transfers. By fram-
ing DMA communication using the memory protection concepts
above, we consider how existing systems use them to apply trust.

5.1 Stream-based DMA: sequencing
Early microcomputer DMA hardware (such as in the original IBM
PC [13]) did not support devices generating addresses directly. A
DMA controller on the motherboard contained an address counter,
and a peripheral card indicated via DMA request/acknowledge sig-
nals to increment the counter for each word. The software which
configured the DMA controller could thus constrain the access from
the peripheral to a particular memory base, although bounds check-
ing may not have been enforced.

5.2 DMA controllers: sequencing or relocation
As a more general case than the above, today many systems-on-chip
provide separate DMA controller components. To simplify chip lay-
out, the DMA controller is used to pull data from devices rather than
devices being allowed to push it. A device driver programs both the
device to generate the stream and the DMA controller to transfer
it to memory. DMA controllers can typically drive both stream in-
terfaces and memory-mapped I/O, performing memory-to-memory
copies. Devices used by this mechanism are typically targets – they
cannot initiate their own memory accesses independently. Such
DMA controllers are often mini-processors executing instructions,
performing basic computation such as RGB to YUV pixel conversion
on the data that flows through.

5.3 Bus-mastering
DMA: no protection or limited offsetting

Bus mastering refers to peripheral devices that can independently
initiate arbitrary memory transactions. While early systems had
a true bus (i.e., the same parallel data, address and control signals
connecting to every device), today it can refer to any device able to
generatememory trafficoveranykindof I/O interconnect. Inabstract
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terms, bus mastering is the most general case of the problem since
there may be no restrictions on the transactions that can be generated.
A bus-mastering device can read or write any part of system memory.

Earlier bus-mastering hardware (e.g., ISA and PCI) had hardware
limits on the number of address bits a device could generate. Thus,
they did not have full access to memory, but only to a limited window
(for instance, 16 MiB or 4 GiB) into available memory. Either data
had to be allocated within the window, or a separate base register
could move the window by providing the upper bits. Software with
authority over that offsetting can specify which limited region the
device could access.

5.4 The IOMMU: paging
The IOMMU is a implementation of page-based translation, in the
same way the MMU applies paging to software. As with the MMU,
the IOMMU represents the translation f (A) using nested page tables.
For example Intel’s MMU implementation uses four levels of page
table to translate a 64-bit address. Unlike the MMU, which holds only
a single translation at any time, and multiplexes processes by context
switching, the IOMMU is used to apply a potentially different page
mapping for each I/O device. Intel’s IOMMU uses an additional two
levels to support 216 devices. Just as the MMU is typically fronted
with a Translation Lookaside Buffer (TLB) for performance, so too is
the IOMMU typically equipped with an IOTLB. Hits in these buffers
avoid the need to consult page tables, while misses of mapped ad-
dresses must consult memory for each layer of the page table scheme.
In MMU paging, we would call the inputA the virtual address and
outputA′ the physical address; for the IOMMU, the input is the I/O
virtual address (IOVA) and the output a physical address.

PROTECTION FROMDEVICESWITHUN-
TRUSTWORTHYHARDWAREANDSOFTWARE
This threat class considers devices where the attacker has control
of both hardware and software. This might be a pluggable Thunder-
bolt device, or a black-box IP core from a third-party vendor. The
protection model thus interposes on the device’s memory interface,
accepting memory requests from such a device and decide whether or
not to allow them, acting in effect as a firewall on the device’s traffic.

6 MICROCONTROLLER SYSTEMS
The above existing primitives apply trust haphazardly, since they did
not consider it in their design. When designing explicitly for trust,
our first point in the design space considers a microcontroller with
DMA peripherals. Here, microcontrollers (MCUs) are processors that
do not have a Memory Management Unit: there is no address transla-
tion so applications use physical addresses directly. There may still be
memory protection techniques that restrict memory visibility, per-
haps as a function of the physical address being accessed, the instruc-
tion pointer, and/or the current processor ring or exception level.

For example, an MCU might have a peripheral storage controller
that performs DMA. A malicious application with access to the con-
troller could ask it to store data from a block in memory beyond
the application’s reach (e.g., containing secret data). The data would
then be written out to storage, using the storage controller’s authority
to access memory, and the malicious application could then read

it back into memory it can access. (This, then, is an example of the
“confused deputy problem” [11].)

6.1 MPU protection for DMA
The bounded-buffer approach suggests we might wish to constrain
the DMA device to accessing only specific regions. For example, the
storage controller might be allowed to read/write only from buffers
set up by the filesystem library.

Memory protection from malicious software may be implemented
via a Memory Protection Unit (MPU). An MPU comprises a number
of memory ranges, each described by a base, length and permissions.
Memory accesses from software are checked against all of the MPU
entries in parallel. If the access does not match any range, an excep-
tion is generated. As the MPU is relatively expensive in terms of area
and power, the number of ranges is small (e.g., 8 or 16).

We could apply this structure to DMA peripherals. When a DMA
request is made by a device, it would be checked against the ranges
held by the MPU. The MPU is programmed in advance by the device
driver to allow the device access only to those 8 or 16 ranges. This
would work for peripherals that require access to only a small num-
ber of memory ranges, as the size of the MPU provides a hard limit
on the number of buffers the device can access. Given the simplicity
of the microcontroller software stack, it could be acceptable to limit
the number of buffers being used to within the MPU capacity.

However, we are likely to have several DMA devices. Different de-
vices may make memory accesses in parallel, and so either a separate
MPU would need to be attached to each device or accesses would
need to be serialized through single MPU, where the ranges to be
checked are selected based on the device ID.

6.2 Capabilities inmicrocontroller DMA
If the microcontroller supports CHERI capabilties, we have some
additional requirements to ensure DMA does not break the software
protection model. Specifically, all of the following must hold, unless
the device in question holds some appropriate authority:

• Devices cannot access memory outside of permitted regions.
• Devices are unable to forge new capabilities.
• Devices are unable to expand the rights of existing capabilities.
• Devices must preserve the intentionality property, preventing

valid capabilties being used for incorrect purposes.

Tag clearing. With the bounded-buffer approach, we need addi-
tional safeguards to enforce these properties. A baseline approach
says that devices cannot be trusted to obey them and so devices
cannot store capabilities – only data. Devices can read capabilities,
but the capabilities are treated as integer data because tags are not
present on the I/O interconnect. Any write to a capability in memory
over DMA clears the tag, and the data becomes an integer as far as
the CPU is concerned. As devices are capability-unaware, device
drivers provide pointers to them as integers, and devices use inte-
gers as addresses in their memory requests. To achieve this, the I/O
system must have a connection into the cache/DRAM system that
enforces tag clears on writes, and prevents accesses to regions of
DRAM where tags are stored. Ideally I/O writes should also invalidate
cached capabilities.

This design preserves the integrity of capabilities themselves, but
does not preserve the integrity of data pointed to by capabilities. The
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device is able to generate memory transactions for arbitrary integer
addresses. Therefore, we need a mechanism to constrain accesses
from devices.

6.3 Capability Search Units
With a capability-enabled microcontroller, it would be a natural step
to populate the MPU with capabilities, instead of ranges containing
separate bases and lengths. This would enable a more natural inter-
face for device drivers to configure the MPU – we term this design
a Capability Search Unit (CSU). A device driver can allocate a buffer
and program the CSU directly with the returned capability. Due to
the limited size of the CSU, the device driver has to manipulate the
CSU entries to find a vacant spot; instead of maintaining its own
table, the device driver would be able to read capabilities from the
CSU and use them directly.

This provides several benefits over the MPU approach. The pri-
mary benefit concerns intentionality: there is no conversion between
a software representation of a bounded buffer (capability) and the
register format needed to set up the MPU. For instance, the driver
code needed to set up the MPU registers would be much reduced.
Separately, we do not need to maintain a local representation of
our bounded buffers, because the CSU already contains the valid
capability. Additionally, capability writes are atomic, preventing an
interval in which the MPU is only partially configured. This also
makes the CSU more efficient, in that a single write is needed to
configure a range, as opposed to the necessary synchronization to
safely manage non-atomic configuration. Due to the limited number
of MPU/CSU entries, this might enable limited use of ringbuffer
structures, as long as the items between head and tail pointers never
exceed the maximum number of CSU entries.

With the CHERI architecture it may be feasible to delegate part or
all of the CSU table to an application. The capability model implies
that software cannot derive a capability to resources it is not allowed
to access. Therefore, we might give applications the ability to manage
their own CSU table, with the knowledge that any capabilities the ap-
plication puts in there will be objects for which it already has access
rights. Thus, the CSU allows software and devices to be constrained
by the same capability protection model, potentially eliminating a
trusted executive to handle configuring the protection. However, the
primary shortcoming of the MPU remains: each memory access re-
quires a number of parallel lookups, consuming both area and power.

7 TRANSLATION-BASED PROTECTION
7.1 IOMMUprotection
Today, the IOMMU is the primary means of protecting systems from
malicious devices. Any memory requests from devices are checked
by looking them up in the IOMMU page table to translate the de-
vice’s I/O virtual address into a physical address. A growing litera-
ture [3, 18] exploits problems with IOMMU-based protection. First,
the IOMMU protects only pages rather than finer-grained objects.
Second, IOMMU page-table walks are inherently expensive, and
thus translations need to be cached in an IOTLB. Revoking trans-
lations in the IOTLB requires (in the worst case) a linear search of
the IOTLB, which is relatively slow; for this reason, revocation is
typically asynchronous, which can open up a temporal vulnerability.

More generally, page-based translation is not optimized for the
I/O use case. The MMU is primarily designed for software isolation;
programs from two users cannot access each others’ memory, and
shared memory between programs is relatively static. MMU map-
pings are often long-lived – the mapping may exist for as long as a
program does, which might be seconds or days. Setup and teardown
of a software process is a relatively heavyweight operation. While
the MMU page table is swapped at every context switch, TLB entries
maintain an address-space ID (ASID), so that the cached translations
do not have to be flushed on context switches. In this way, the MMU
lives mostly in a steady state that has acceptable performance.

I/O is different in that it is all about communication, and isolation
is a secondary concern. For example, the obvious implementation
would create a mapping for every network packet and delete the map-
ping once it is handled. This might generate millions of mappings
and revocations per second, which would have serious performance
degradation, especially given worst-case 6 memory operations for
an IOTLB miss. A number of schemes [1, 17, 19, 20, 23] have been
proposed to mitigate this performance bottleneck for particular use
cases, but in the absence of a general solution. This may be why exist-
ing systems do not utilize the IOMMU to its fullest extent, providing
a motivation to develop better hardware structures.

7.2 Address Lookup Tables (ALUTs)
The original motivation for the IOMMU was to delegate peripherals
to virtual machines. Here we need to provide to the guest operat-
ing system a physical memory map matching its target hardware.
Because the guest OS may be entirely unaware of hypervisors, the
IOMMU permits construction of an arbitrary translation that mim-
ics the guest physical address space configured by the hypervisor’s
Second-Level Address Translation (SLAT) page tables. With common
SLAT and IOMMU page tables, the guest’s device driver can config-
ure a delegated peripheral with the correct guest physical addresses.

When protection is separate from virtualization, we do not need
the full IOMMU structure. Other approaches may require support in
the device driver, but result in simpler and more efficient hardware.
We can also design for the observation that devices typically use
only a tiny part of their 64-bit IOVA space: gigabytes, not petabytes.

We propose the Address Lookup Table (ALUT), in which we re-
purpose high-address bits to make a one-level non-paged transla-
tion scheme, more efficient than the IOMMU, that applies bounded-
buffer semantics. The ALUT divides 64-bit I/O virtual addresses into
two parts, based on a chosen split s . I = A[63 : s] is the index and
O =A[s−1 :0] is the offset. The index selects one of 264−s buffers of
2s bytes long. s is chosen based on the requirements of the system –
for example, chosing s=40 would provide 224 regions of 1 TiB each.

When a device makes a memory request, the I part of the address
is looked up in its ALUT, a single-level in-memory translation ta-
ble. This provides a 64-bit physical base B that is then added to the
offset to produce a physical address A′ = B+O . For efficiency, the
ALUT entry containing the mapping I 7→B may be cached using the
existing last-level cache, or an additional caching unit.

We need an additional bounds check to prevent overrunning from
one buffer into another. The ALUT entry also includes a bounds
Omax , so that in parallel with the I mapping it also checksO <Omax .
If there is a chanceOmax could be near 2s , to retain intentionality
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we might populate only alternate entries in the ALUT – this would
prevent an overrun of buffern from unintentionally generating valid
addresses in buffer n+1. Permissions (read/write/etc.) would also
govern accesses via the corresponding ALUT entry. Additionally, the
ALUT table itself would be bounded, so a register would contain the
number of slots present in the ALUT. This means the ALUT needs
only as many entries as are in use, rather than taking a fixed memory
allocation (substantial when small s implies many regions). The base
of the ALUT would be determined from the device ID or some other
means of disambiguating devices.

The ALUT offers a number of advantages over an IOMMU for I/O.
First, the translation structure can be more efficient as there is no
need for the ALUT to be sparse, i.e. it does not need to be multi-level. If
the number of buffers in play is small, the ALUT table size is bounded
and blocks of ALUT entries are likely to be cached. Second, the mem-
ory access time is bounded, in that only a single memory request is
required. Each device would require a different ALUT base, but these
could be provisioned from a small fast-lookup table, given that there
are likely to be on the order of tens or hundreds of devices. Revocation
of an entry would be a simple write of a null value to the ALUT struc-
ture, which would automatically synchronize the last-level cache.

7.3 Capability Lookup Tables (CLUT)
An ALUT represents a table of translated buffers – each ALUT entry
combines physical prefix, bounds and permissions. We could build
a version of an ALUT using capabilities, a Capability Lookup Table
(CLUT).

Each entry, consisting of base B, bounds and capability permis-
sions, would be replaced with a capability. Instead of adding the
offsetO to the translated base B, index I in the CLUT would provide
a capabilityC bearing address a and bounds b. The physical address
would be computedA′=a+O and checked against the boundsb and
permissions.

Allowing the CLUT to hold capabilities would mean a device dri-
ver could easily maintain the translation structure. A device driver
wishing to give the device a buffer to access would pick a slot n in
the CLUT and write a capability there. As the device is capability
unaware, the driver would need to pass to the device an IOVA com-
prising the offset O from the capability and the upper bits being
the slot index I . This conversion is relatively efficient in software (a
handful of instructions).

Such an approach takes the benefits of the ALUT while adding
better interworking with capability-enabled software, and smooths
intentionality – mapping/unmapping is a lightweight operation
when the CPU is already using capabilities.

8 USERADDRESS SPACESWITH I/O
Today there is increasing demand for unprivileged software to have
direct access to hardware devices. For instance, a database applica-
tion might wish to directly control a flash storage device without
having to pay a latency penalty of indirect accesses via a filesystem
stack in the kernel. Today, systems typically do this by sharing MMU
and IOMMU page maps, which allow the device to share the same
page map as a user process. Here we examine how a similar effect
might be achieved with the CLUT.

8.1 Virtually-addressed CLUTs
One challenge that arises with the CLUT design is that, in the CHERI
model, capabilities belong to a particular MMU-governed virtual
address space. This means that capability addresses used to program
the CLUT, by both unprivileged programs and the kernel, will be
virtual, while addresses coming out of the CLUT should be physical.
One possible solution would be to pre-translate capabilities in the
CLUT so that they refer to physical addresses. However, this would
not work for capabilities pointing to buffers larger than the page size,
because the buffer might span disjoint physical pages. Alternatively,
CLUT entries could be augmented with an address space identifier
(ASID) that corresponds to the page table base of the process that pro-
grammed the entry. An IOMMU, distinct from the CLUT, would use
the ASID’s page table base to translate the virtual address produced
by the CLUT into the appropriate physical address space. This design
would be analogous to how application-processor capabilities work
in tandem with the MMU: the CLUT provides protection, while the
IOMMU provides virtualization.

Using a CLUT in this way might at first seem to be less efficient
than using an IOMMU alone because it adds an additional memory
lookup. However, by removing the burden of protection from the
IOMMU, this design may actually offer positive performance charac-
teristics. Specifically, IOMMU mappings in this scheme will be mostly
static and can be effectively cached in an IOTLB using superpages
and ASIDs. CLUT mappings will be more dynamic; they will be cre-
ated and destroyed as mappings for I/O buffers are created and torn
down, potentially millions of times per second for high-performance
peripheral devices. Dynamic management of IOMMU mappings and
IOTLB entries is known to be a significant performance bottleneck in
I/O-heavy workloads. In contrast, the single-level translation struc-
ture of the CLUT simplifies the caching of translations and greatly
reduces the penalty of a cache miss.

9 CAPABILITIESWITHINDEVICES
WITHTRUSTWORTHYHARDWARE

The second threat class considers devices whose hardware can be
deemed trustworthy – for example, built on the same SoC from
a trustworthy vendor. In this instance we wish to defend against
the case where the firmware is compromised. Such devices can en-
force the capability protection model on their own firmware, but we
must consider how they interact with other parts of the system. We
consider a spectrum of use cases.

9.1 Capabilities within descriptor rings
A typical network device interacts with its device driver through de-
scriptor rings – ring buffers containing integer pointers and bounds
corresponding to packet data stored in host memory. It would be
natural to replace these with ring buffers of capabilities. The pointer
to the ring buffers would also be capabilities. In this case, the head
and tail pointers might not be capabilities themselves, but might
be offsets within the ring capability. This would provide a common
representation between device driver and ring buffer hardware.

At a basic level, devices can use the capabilities as simply a differ-
ent format of descriptor entries. Internally, addresses and lengths
would be used as they currently are. In this instance we would still
enforce tag-clearing on writes to capabilities from devices. Becuase
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the device can craft arbitrary addresses on its requests, we would
still need an IOMMU, CSU or CLUT to constrain those requests.

9.2 Internal use of capabilities by devices
A deeper integration would consider the use of capabilities internal
to devices. For example, a Wi-Fi or Bluetooth adapter might run a
software stack aimed at handling the air protocol. Like any other soft-
ware stack, it may be subject to programming errors that could make
it vulnerable to attacks over the air. Such designs are amenable to the
CHERI protection model just as much as the application processor is.

Often, device processors are attached to private memories. In this
instance, it is feasible to segregate the device processor and memory
from the CPU and system DRAM. A separate capability root exists
within the device. It is necessary to ensure that capabilities cannot
flow from the CPU to the device processor or vice versa, which might
cause confusion or aliasing. This can be achived by not allowing tags
to pass over the I/O interconnect in either direction.

Such protection is independent of whether the device is trusted
by the application OS, and so an IOMMU, CLUT or other protection
mechanism might still be required to constrain it. If the hardware
was trustworthy, the device’s access can also be constrained by pro-
viding it with a limited initial set of capabilities, preventing software
from gaining additional access.

9.3 Using capabilities in shared
memory spaces

Devices that lack private memory may use capabilities for internal
purposes – such as on-SoC devices sharing an external DRAM.

Inasharedmemory,weneednon-interferencebetweenapplication-
processor and device-processor capabilities. A capability used by
one processor should not be able to be confused for another. This can
be achieved using memory segregation – making sections of address
space inaccessible to all but one client. If not achieved statically (at
manufacture time), it can be enforced by IOMMU and MMUs being
configured to never share pages.

Another scheme would allow capabilities to flow freely into mem-
ory, but identify them with a color. A color could be implemented
using spare bits inside the existing 128-bit format. A processor pro-
duces capabilities with a specific color, and an exception is raised if
it attempts to interact with a capability of a different color.

Bothschemesachieve isolationbetweentheapplicationanddevice
processors. To transfer data between them, a separate mechanism
would be needed to translate data from one address space or color
to another. This would be a more privileged path that would need to
apply suitable scrutiny to such conversions. Care would be needed
to avoid this path becoming a bottleneck, especially since much I/O
traffic already crosses such domain boundaries.

10 EVALUATION
Security is notoriously hard to quantify, and this is a novel field
without existing metrics. However we can sketch the tradeoffs be-
tween schemes in a number of ways (Table 1). We can represent the
expressiveness, for example the granule of accuracy to which objects
can be referred. More subjectively, we can consider the ease of use, for
example whether the programmer can use the same representation
when configuring protection hardware as is used in software. This
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Table 1: Comparison of schemes for controlling memory
access from devices.

reduces the likelihood of bugs when translating representations.
Additionally we consider whether updates are atomic, which avoids
some temporal vulnerabilities. We can also count the cost, here pri-
marily in terms of the number of memory requests that need to be
made and their associated latency and power costs (noting that these
costs are mostly unaffected by word size). We also evaluate whether
the approach would be scalable to many buffers or many devices.

Table 1 highlights the weaknesses of existing schemes. Looking
at the schemes to protect from untrustworthy hardware, the MPU
provides sufficient spatial protection, but needs privileged drivers
to program it. The CSU can share the same capabilities as used by
application code, providing better intentionality and direct manip-
ulation by the application. Both suffer from a lack of scalability that
means they are only usable in small systems.

Moving to translation-based approaches, those described are more
scalable. The IOMMU has a very high worst-case overhead (600% for
Intel’s IOMMU) – in practise IOTLB caching will mitigate the cost
to an application-dependent degree. The ALUT and CLUT impose a
better bound on the worst-case cost, and are amenable to the similar
caching strategies to reduce this further. They both provide byte gran-
ularity compared with the page granularity of the IOMMU, and they
can be designed to use the same bounded-buffer representation for
setup as that used by software. The main distinction is that the CLUT
applies the capability manipulation rules to CLUT entries, which
means that it is not possible to construct mappings without software
having valid capabilities for those mappings. Thus the CLUT can
ensure that rights transfer correctly and safely from software to hard-
ware, without the necessity for management by privileged software.

When programming trustworthy device cores, capabilities allow
enforcement of the bounded buffer model but additionally this trans-
fer of rights – both from the application core to the device core, or
between internal software components. Thus malicious software is
constrained by the capability model in a way it is not using software
bounded buffers.
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While this analysis is purely a paper exercise, the capability-based
solutions provide a good blend of transferring programmer intent
from software into hardware, avoiding temporal vulnerabilities, and
limiting costs compared with existing solutions.

11 FUTUREWORK
The above evaluation is obviously only a sketch of architectural costs,
not a picture of a real system. However, it is valuable to apply such
techniques to consider the tradeoffs inherent in different schemes,
a prerequisite in planning implementation strategies.

The next steps consider implementing some of these solutions
and assessing their behavior. This involves an implementation in
hardware and software, across multiple parts of an SoC, including
in the operating system, device drivers and device firmware. Such
an implementation would test some of the properties we quantified
in Table 1 - in an implementation we would discover whether the
ease of programmability properties hold, or whether other issues are
encountered. The costs outlined here are largely theoretical costs;
an implementation would consider whether they could be mitigated
by caching or other strategies, and whether certain solutions are
more amenable than others. A scheme can be properly assessed only
when its real-world behavior and amenity to cost mitigation have
been measured within the constraints of an implementation.

Another question is whether a scheme is virtualizable, not just
in terms of hypervisors but also to present a virtual interface that
abstracts away hard limits in the implementation. While some of
the schemes described have no hard limits, virtualizing over limited
hardware resource would require further study.

Being a wide solution space, this is a signficant amount of work,
however it would allow for focusing on particular points of the design
space that are worthy of more substantial engineering optimization.

12 CONCLUSION
In this paper we introduce and systematize the relatively under-
studied problem of protecting I/O from malicious devices. We have
outlined a number of approaches that may provide efficient and ex-
pressive protections. We have also considered how these protections
might interwork with emerging capability hardware, and where that
might improve their efficiency and intentionality.

Malicious DMA is a complex and emerging problem, in which the
requirements and threat models are often disparate and cross-cutting.
Since the problem has received little attention to date, many of the
foundations are yet to be established. Our work should allow map-
ping of the space and refine the promising architectural directions
that are worthy of further study.
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