
CHERIvoke: Characterising Pointer Revocation using CHERI
Capabilities for Temporal Memory Safety

Hongyan Xia∗†
University of Cambridge

Jonathan Woodruff ∗†

University of Cambridge
Sam Ainsworth∗†

University of Cambridge

Nathaniel W. Filardo∗
University of Cambridge

Michael Roe∗
University of Cambridge

Alexander Richardson∗
University of Cambridge

Peter Rugg∗
University of Cambridge

Peter G. Neumann
SRI International

Simon W. Moore∗
University of Cambridge

Robert N. M. Watson∗
University of Cambridge

Timothy M. Jones∗
University of Cambridge

ABSTRACT
A lack of temporal safety in low-level languages has led to an
epidemic of use-after-free exploits. These have surpassed in number
and severity even the infamous buffer-overflow exploits violating
spatial safety. Capability addressing can directly enforce spatial
safety for the C language by enforcing bounds on pointers and by
rendering pointers unforgeable. Nevertheless, an efficient solution
for strong temporal memory safety remains elusive.

CHERI is an architectural extension to provide hardware capa-
bility addressing that is seeing significant commercial and open-
source interest. We show that CHERI capabilities can be used as
a foundation to enable low-cost heap temporal safety by facilitat-
ing out-of-date pointer revocation, as capabilities enable precise
and efficient identification and invalidation of pointers, even when
using unsafe languages such as C. We develop CHERIvoke, a tech-
nique for deterministic and fast sweeping revocation to enforce
temporal safety on CHERI systems. CHERIvoke quarantines freed
data before periodically using a small shadow map to revoke all
dangling pointers in a single sweep of memory, and provides a
tunable trade-off between performance and heap growth. We eval-
uate the performance of such a system using high-performance x86
processors, and further analytically examine its primary overheads.
When configured with a heap-size overhead of 25%, we find that
CHERIvoke achieves an average execution-time overhead of under
5%, far below the overheads associated with traditional garbage
collection, revocation, or page-table systems.

∗Email: {firstname.lastname}@cl.cam.ac.uk
†These authors contributed equally to this paper, and are named in reverse alphabetical
order.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MICRO-52, October 12–16, 2019, Columbus, OH, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6938-1/19/10. . . $15.00
https://doi.org/10.1145/3352460.3358288

CCS CONCEPTS
• Computer systems organization → Architectures; • Secu-
rity and privacy → Systems security; Security in hardware; Soft-
ware and application security.

KEYWORDS
temporal safety, use-after-free, architecture, security
ACM Reference Format:
Hongyan Xia, Jonathan Woodruff, Sam Ainsworth, Nathaniel W. Filardo,
Michael Roe, Alexander Richardson, Peter Rugg, Peter G. Neumann, Simon
W. Moore, Robert N. M. Watson, and Timothy M. Jones. 2019. CHERIvoke:
Characterising Pointer Revocation using CHERI Capabilities for Temporal
Memory Safety. In The 52nd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO-52), October 12–16, 2019, Columbus, OH, USA.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3352460.3358288

1 INTRODUCTION
Large codebases written in low-level languages have been plagued
by violations of temporal safety. A typical temporal-safety viola-
tion consists of a pointer to a deallocated object being mistakenly
reused by the programmer. Such a use-after-free temporal-safety
violation, in combination with other program behaviour, can re-
sult in a security vulnerability. Temporal-safety vulnerabilities can
allow attackers manipulating data inputs to achieve full control
of a program [8, 11], or even the entire system [46]. Indeed, this
form of attack was recently found to be more common [26, 30] than
buffer-overflow attacks that result from spatial-safety violations.
Future computer systems require much stronger enforcement of
both spatial and temporal memory safety.

Recent research has shown that spatial safety can be guaranteed
at low cost by using architectural extensions, such as CHERI [44, 45],
a hardware capability architecture that is influencing the direction
of industry [19]. CHERI replaces pointers with unforgeable, archi-
tecturally identifiable references (capabilities) that convey not only
the current address, but also the full range that is legally accessible
through that reference. In this paper, we show that CHERI further
allows us to achieve low-cost temporal safety for the heap in low-
level languages, such as C and C++, with only minor architectural
changes. By contrast, legacy architectures do not allow fine-grained

https://doi.org/10.1145/3352460.3358288
https://doi.org/10.1145/3352460.3358288

MICRO-52, October 12–16, 2019, Columbus, OH, USA Xia, Woodruff, Ainsworth, et al.

temporal safety of untrusted programs, as they can neither elimi-
nate the possibility of retaining or fabricating references to freed
memory nor distinguish dangling pointers from innocuous data.

We have designed CHERIvoke, a technique providing tempo-
ral safety for memory allocators on top of hardware capabilities,
complete with minor architectural extensions for performance.
CHERIvoke delays reallocation of memory, holding manually freed
objects in a quarantine buffer until performing a sweep of memory
to remove all references to these objects. An implementation of
CHERIvoke thus prevents reallocation of memory that may still be
addressable by references available to the program. Furthermore,
CHERIvoke specifies a data structure for describing the freed mem-
ory locations using a shadow map wherein one bit represents a
16-byte allocation granule. This shadowmap enables a single sweep
to revoke access to an arbitrary number of memory locations, re-
gardless of heap layout.

CHERIvoke provides fast, uncircumventable temporal guaran-
tees: memory cannot be addressed without a capability, and all
references to a region can be found as each capability contains
full bounds information. In contrast to other temporal-safety sys-
tems for C [12, 27, 41], pointers cannot be hidden from the sys-
tem. CHERIvoke also has a variety of useful performance proper-
ties: memory overhead can be capped due to active revocation (vs
garbage collection), and regions with no capabilities can be entirely
skipped based on hardware-tag metadata.

We evaluate the performance of CHERIvoke by reproducing its
behaviour on a modern x86 system to account for state-of-the-art
memory subsytems, and demonstrate overheads far lower than in
previous work [12, 27, 41]. CHERIvoke can achieve strong temporal
memory safety for the heap at an average of 4.7% runtime overhead
(and a maximum of 51%) at the cost of 25% increase in heap size
across SPEC CPU2006 benchmarks. Sweeping-time overhead is
determined by the application’s pointer density and the rate at
which memory is freed, rather than more complicating factors such
as the number of frees, number of loads, or allocation strategy.
Further, this cost can be deterministically traded for increased heap
overhead. Unlike pure software approaches, full memory safety
for low-level languages is practical and efficient using CHERIvoke,
and its overheads are predictable and intuitive to understand. The
contributions of this paper are:

• The case for temporal safety built on top of tagged CHERI
capability pointers.

• An algorithm for CHERI temporal safety that uses buffered
revocation to achieve predictable costs that are substantially
lower than previous techniques.

• An evaluation of this algorithm on a state-of-the-art memory
subsystem.

• Lightweight CHERI extensions to optimise sweeping mem-
ory to identify capabilities.

2 BACKGROUND
2.1 Temporal-Safety Violations
The Cmemorymodel presents to the programmer a view ofmemory
consisting of a set of objects. C allows the programmer to manip-
ulate pointers to these objects and perform arithmetic on these
pointers. As a result it is possible for programmers to mistakenly

Figure 1: A use-after-free attack which overwrites a reallo-
cated vtable pointer to reference attacker function pointers.

violate the memory model of the language such that a reference
to one object may actually reach a different object. Objects in the
C memory model are distinct from one another in both space and
time. That is, two objects may be distinguished from one another
by occupying disparate addresses in memory, or by existing at dif-
ferent times during the program’s execution. C implementations
have traditionally allowed violations of both of these boundaries,
dubbed spatial and temporal safety respectively. CHERI can natu-
rally enforce spatial safety by attaching bounds to pointers such
that no manipulation of a reference to one object can cause it to
reach another object. However, CHERI does not naturally defend
against temporal-safety violations that arise from using a pointer
after the program has asked for the object to be freed.

Accidental reuse of objects past their point of deallocation is
common in low-level languages such as C and C++. These violations
of temporal safety can result in security vulnerabilities, whereby
an attacker can manipulate memory reached through a dangling
pointer, causing it to point to a different object. This routinely allows
attackers the flexibility to fully compromise computer systems.

An illustrative temporal-safety violation for C++ is depicted in
figure 1. Here, delete is called on an object, which jumps to the de-
structor from the object’s vtable which will free the object. Though
the object is now notionally deleted, a pointer to the object’s old
location in memory is still accessible and now becomes a dangling
pointer. This memory is then reallocated by the program to an ob-
ject that holds external data input that has come from the attacker.
An accidental second call to delete on the dangling pointer will
now jump to an address of the attacker’s choosing, ceding control
over the process, and, if the vulnerability is within kernel mode,
the entire system.

Besides pointer corruption, data corruption can change program
execution [10], for example, to alter administrator checks to gain
control of a program.

The above scenarios would commonly be classified as use-after-
free vulnerabilities [11], but, more accurately, these are examples
of use-after-reallocation attacks. Attacks that take advantage of

CHERIvoke: Characterising Pointer Revocation using CHERI Capabilities for Temporal Memory Safety MICRO-52, October 12–16, 2019, Columbus, OH, USA

063

perms’15 compressed bounds’46

address’64

}
128 bits

Figure 2: Bit representation of a CHERI-128 capability.

reallocation are most dangerous from a security perspective as they
allow an attacker to take advantage of the mismatch in memory
interpretation to gain influence over execution, particularly if one
of the interpretations includes user-supplied data. By comparison,
use-after-free before reallocation does not allow manipulation of
a different object’s data and, while erroneous, rarely results in
security vulnerabilities. The enforcement of use-after-reallocation
rather than strict use-after-free allows us the flexibility to batch
revocations to achieve reasonable performance [27].

There is a class of use-after-free attacks that do not require reallo-
cation, but corrupt allocator metadata that has been stored in freed
memory. These vulnerabilities are solved relatively inexpensively
by careful placement of metadata, as in BIBOP designs [16, 39, 40]
and need not be addressed by revocation.

2.2 CHERI Capabilities
CHERI is an instruction-set extension [45] that requires addressing
memory through unforgeable, bounded references called capabil-
ities after the classic concept from computer science [14]. CHERI
capabilities embed protected metadata to each pointer word, typ-
ically extending pointers to 128-bits for a 64-bit address space,
or 64-bits for a 32-bit address space. As shown in figure 2, pro-
tected metadata includes the bounds of the object referenced and
permissions granted by this reference. To enforce monotonicity of
access rights, capability instructions do not allow the bounds of a
capability to be enlarged.1 To enforce unforgeability of capabilities,
each capability word is protected by a 1-bit tag [22] that distin-
guishes a capability from arbitrary data. This tag is cleared on a
non-capability write, preventing that word from being used as a
capability. As a result, the virtual addresses accessible to a program
are limited to those authorised by capabilities in the register file
and reachable capabilities in (transitively) authorised regions of
memory.

Prior work has described CheriABI [13], a new application binary
interface for C and C++ programs under a CHERI-aware branch
of FreeBSD. Programs compiled to CheriABI use capabilities for
every reference, achieving spatial safety (against attacks such as
buffer overflows) for all references, including the stack, heap, and
globals, at an overhead that is typically less than 10%, even for
pointer-heavy applications.

A primary benefit of the CHERI architecture is that the set of
memory locations accessible to the program is entirely encoded
in the memory state. Tags uniquely identify capability pointers,
and these capabilities entirely define the range of memory they can
reference. This structure facilitates precise pointer identification,
eliminating both false negatives and false positives; inspection of
memory cannot miss “hidden” pointers and cannot mistake data
1At CPU power-on, the register file is initialised with omnipotent capabilities, bearing
all permissions to all words of memory. Every capability created during the system’s
execution traces its provenance to these; there are no architectural operations that
derive a tagged word exclusively from untagged inputs, and, for all derivations, the
result bounds are no larger than those of a tagged input.

for a pointer. This visibility at the architectural level enables a
temporal-safety system that is both strong and high performance.

A secondary benefit of the CHERI architecture is its strong spa-
tial safety, providing object allocators with the ability to bound
returned pointers and, thereby, ensure that every object is accessed
only within its bounds. For example, cross-object buffer-overflow
attacks are impossible in C programs compiled to CheriABI, when
linked with a correct, bounds-setting allocator. CHERIvoke uses
this ability to ensure that each application-held capability with au-
thority to access the heap has authority to exactly one heap object,
so that object lifetimes imply capability lifetimes.

Prior work on CHERI has analysed the performance of tag stor-
age [22]. Tag performance can have a major effect on pointer inspec-
tion, particularly if tags are read separately from their associated
data in order to avoid loading untagged non-pointer data. CHERI
prototypes store capability tags in a hierarchical table in conven-
tional DRAM, and introduce a tag cache to reduce additional DRAM
traffic. This tag cache achieves very high hit rates, while separation
of tags and data facilitates efficient tag inspection without loading
all associated data.

2.3 Threat Model
Our threat model assumes a non-malicious programmer who has
inadvertently created a local program with a use-after-free vul-
nerability, and a malicious external attacker able to influence its
behaviour – for example, via I/O over a network socket. By manip-
ulating the vulnerable program, the attacker can utilise dangling
pointers caused by this use-after-free vulnerability, to induce reads
and/orwrites via both the prior and current pointers to thatmemory.
This allows an attacker broad scope for exploitative data corruption
and control-flow attacks [9, 47], particularly where user-supplied
data is confused for trusted data or function pointers.

Our aim is to remove dangling pointers to address-space regions
before they are reallocated. This strategy addresses a critical set of
exploit techniques relating to manipulation of data through differ-
ent object pointers to the same memory. As with other techniques
in the literature [27, 41], CHERIvoke does not address a broader
category of temporal-safety violations, such as use of uninitialised
data [28] or information leakage between prior and current alloca-
tions, and should be used alongside orthogonal low-cost protection
mechanisms [29] for this purpose.

CHERIvoke could also be extended to address stronger CHERI
threat models, such as software compartmentalisation, in which
the local programmer may also be malicious [42]. This requires en-
suring that shared memory referenced by two mutually distrusting
compartments could not be improperly freed by either compart-
ment. We do not address more sophisticated guarantees required
by such use cases in this paper.

3 CHERIVOKE
We propose CHERIvoke as a technique to enforce temporal safety
using CHERI by revoking access to freed memory before allowing
reallocation. To revoke a capability is to remove all copies and all
derivatives of that capability from a program. While this could be
done on every free, CHERIvoke periodically performs bulk revoca-
tion to reduce overhead. This is achieved by holding manually freed

MICRO-52, October 12–16, 2019, Columbus, OH, USA Xia, Woodruff, Ainsworth, et al.

Figure 3: Deallocations are kept in a quarantine buffer be-
fore they are revoked. Revocation is implemented efficiently
by using a small shadowmap of the heap that marks deallo-
cated regions in quarantine.Memory and registers are swept
using this shadowmap to identify any dangling pointers. Af-
ter the sweep, CHERIvoke clears the shadowmap andmoves
quarantined locations into the free list for reallocation.

heap memory in a quarantine buffer until CHERIvoke has swept
through program memory to clear tags on all capability references
to quarantined memory, as shown in figure 3.

3.1 Quarantine Buffer
In order to prevent use-after-reallocation attacks, an allocator must
not reissue freed address space until it has ensured that there are no
remaining references to this memory in memory segments available
to its caller. When allocations are freed, our allocator does not
immediately return addresses to the reallocatable state, but places
them in a quarantine buffer. When this quarantine buffer is full, we
sweep all memory that could contain references to the heap and
invalidate any capability reference that points to any region in the
quarantine buffer. After the sweep, all quarantined addresses are
returned to a free, reallocatable state.

In order to maintain a consistent memory overhead, this buffer
can be set to a fixed proportion of heap size. For example, we
may initiate a revocation sweep when the quarantined data has
reached 1

4 the size of the rest of the heap. The quarantine-buffer size
can be scaled to trade off memory overhead for runtime overhead,
increasing or reducing sweeping frequency.

3.2 Revocation Shadow Map
To achieve reliable, high performance regardless of application, the
sweeping procedure should ideally be deterministic and indepen-
dent of heap layout. We achieve these properties by maintaining
revocation metadata in a revocation shadowmap. For each allocation
granule, which we choose to be 16 bytes of memory to match the
default in dlmalloc [25], we allocate 1 bit in a shadow map; this
shadow space occupies less than 1% of the heap. Before a sweep,
for all allocations in the quarantine buffer, we “paint” the bits of the
shadow map corresponding to the allocation granules to indicate
that references to this memory should be revoked in the sweep.

The actual sweeping procedure performs a lookup in the shadow
map using the base of each capability to detect if it is pointing into
a revoked object.2

This shadow-map scheme allows fast, flat index lookup for test-
ing each capability reference during a sweep, and is deterministic
in its instruction count. As the shadow map is significantly smaller
than the heap itself, and accesses to it are highly likely to be both
temporally and spatially local, the shadow-map working set will
typically fit in the last-level cache, and accesses to it should not
limit DRAM bandwidth available to the primary sweep.

Most importantly, this shadow-space strategy allows revocation
of all quarantined address space in a single sweep, with the result
that sweeping frequency depends purely on the free rate of the
application (in MB/s) and the size of the quarantine buffer, and not
on heap layout. This ensures predictable and reliable performance
for all applications.

3.3 Sweeping Procedure
A revocation sweep must cover all memory that could contain capa-
bility references to the heap. This includes the heap itself, the stack,
register files, and global segments (such as .data and .bss). This
sweep is the primary overhead in CHERIvoke. The sweep needs
to be fast, and should aim to fully utilise the DRAM bandwidth of
the system, requiring a highly optimised inner loop. While we limit
our investigation to the efficiency of software implementations of
this loop in the evaluation section, it would be reasonable to extend
direct memory access (DMA) engines or digital signal processors
(DSPs) in the system to perform this loop at bus speed and without
CPU involvement.

In software, this inner loop consists of the following code:
1 for(uintptr_t* x=MIN_ADDR; x<MAX_ADDR; x++) {

2 uintptr_t capword = *x;

3 if(is_capability(capword)) {

4 capword >>= 4; // 16-byte alloc granule

5 // Get the byte from the shadow space.

6 char shadowbyte = shadowbyte_get(capword);

7 // Get the bit index.

8 int bitIdx = capword & 0x7;

9 if(shadowbyte & (1<<bitIdx)) {

10 // Pointing at freed memory.

11 // Invalidate the capability.

12 *x = 0;

13 }

14 }

15 }

One issue in this circumstance involves two data-dependent
branches, including the data-dependent store at the end. Here, the
branch predictor will often predict them in the wrong direction.
This means that this inner-loop should be carefully implemented to
use conditional execution or conditional-move instructions (rather
than true branching), to achieve the highest possible performance
in a software-only implementation. However, even with accurate
speculation, the loop can easily end up compute bound, despite the
large number of memory accesses. To ensure we are not compute
bound, we have implemented our model loop using Intel AVX2
vector extensions along with software pipelining. Vector extensions
in an actual CHERI implementation must be able to read capability
2We can be sure that any heap capability will have a base within the original allocation,
because the bounds of a capability can never be enlarged, only restricted, and the
CHERIvoke allocator sets the bounds of its returns to match the requested allocation.

CHERIvoke: Characterising Pointer Revocation using CHERI Capabilities for Temporal Memory Safety MICRO-52, October 12–16, 2019, Columbus, OH, USA

CPU

I$ D$

L2$

Bk0Tag$

DRAM

Bk1 Bk2 Bk3

Bk0 Bk1 Bk2 Bk3

vs.

$Line 0
$Line 1

Tags

Figure 4: The implementation of CLoadTags requiresmoving
tags from the data banks to tag metadata.

tags, but need not directly dereference the capabilities themselves,
since the sweeping loop only looks up the pointer values in the
shadow map.

3.4 New Hardware Support
A CHERI capability system tracks the presence of capability refer-
ences in hardware and can therefore facilitate a sweep that inspects
only genuine capability pointers. This gives us an opportunity to
optimise the sweeping procedure: as capability state is an archi-
tectural feature, we can avoid sweeping through entire regions of
memory that are pointer free, fundamentally decreasing the amount
of work that must be done.

However, to check whether a memory word is tagged (i.e. con-
tains a valid capability), the current CHERI ISA requires a load
of the full capability word and tag into a register followed by the
CGetTag instruction to query the tag bit. Use of this mechanism
requires loading all data into caches, despite (as we measure later
in table 2) fewer than a quarter of cache lines holding pointers
in many applications. To implement CHERIvoke efficiently, we
should directly exploit tag metadata to eliminate non-capability
data from the sweep to save DRAM bandwidth and power, and to
increase performance. We propose two new architectural assists
atop CHERI’s existing, spatial-safety-focused specification [45]. In
section 6.3, we show that these significantly reduce DRAM traffic
and time consumed by sweeping revocation.

3.4.1 CLoadTags. We introduce a new instruction, CLoadTags, to
the CHERI architecture, which directly loads tag bits without load-
ing the data from the given address. If CLoadTags returns a zero,
this cache line can be skipped in the sweep because it contains no
capabilities, thus avoiding DRAM traffic for this line.

The implementation of CLoadTags requires extensive integra-
tion with the memory hierarchy. First, we require a new memory-
request type that loads only the tags of a cache line. Such requests
require support in the L1 and L2 caches, as well as the tag controller.
Furthermore, the L1 and L2 caches needed to be modified to be able
to report all tags for a cache line in a single lookup. In the CHERI-
MIPS implementation [45], cache lines are stored across four banks,
so four cycles are required to read the entirety of the cache line.
Storing capability tags with data rules out a single-cycle response
to a CLoadTags bus request. We therefore implement CHERI caches
that store capability tags in a tag metadata block for each line, as
shown in figure 4.

Any cache where the line is held will respond to a CLoadTags
bus request. If the CLoadTags request misses in all data caches, the
tag controller will respond with only the tags of that line without
fetching the corresponding data from DRAM. As this response
contains only the tags of a cache line, it is inconvenient to cache the
result in intervening caches; as a result we approximate streaming
semantics for CLoadTags requests. Conveniently, this instruction
is likely to be used only when sweeping memory, and caching its
response is unlikely to be helpful. Future microarchitectures might
consider prefetching data for a cache line when CLoadTags returns
a non-zero result from the tag cache.

3.4.2 Page-table capability dirty (PTE CapDirty) bits. At a coarser
scale, we repurpose a flag from the existing CHERI-MIPS page-
table entries to avoid sweeping entire pages that do not contain
capabilities. This flag is similar to a traditional dirty flag in page-
table entries, although it specifically records the presence of valid
capability writes in a page.3 If CapDirty indicates that a page
is clean, a store of a word tagged as a capability will throw an
exception, allowing the operating system to record the presence
of capabilities in that page by marking CapDirty in that page-
table entry. Clean pages will not contain capabilities and need not
be scanned during a sweep. As with the traditional dirty flag in
page-table entries, some architectures may maintain PTE CapDirty
entirely in hardware. This approach has false positives, as clearing
all capabilities in a page will not reset CapDirty, though the page
can be marked clean again if found to be without capabilities on
the next sweep. However, our preliminary evaluation finds that the
false-positive rate is negligible for all the benchmarks we evaluate,
as the use of a page generally determines whether it can and does
hold capabilities; we rarely encounter pages that alternate between
holding capabilities and holding none.

3.5 Opportunities for Parallelism
Our description of CHERIvoke so far has described sweeping as
part of application execution, that is, a program is paused while
the sweep occurs. However, sweeping revocation can be made
independent of execution and can run alongside the execution of the
program. In addition, the sweep procedure itself is embarrassingly
parallel. The shared revocation shadow map is read-only during the
sweep, and pages to sweep can be distributed between independent
threads. For this reason, it is not unreasonable to expect that even
a pur- software sweeping routine could realistically saturate the
full DRAM bandwidth of a system.

Shadow-mapmaintenance also has convenient concurrency prop-
erties. Updating the shadow map of different memory chunks in the
quarantine buffer may occur in parallel, though care must be taken
to prevent race conditions on bit masks within the sameword. Paint-
ing the shadow map may use vector instructions, but is unlikely to
require this level of optimisation, as explored in section 6.1.2.

Our evaluation framework using the x86 architecture does not
allow a meaningful measurement of concurrent revocation, so we
do not explore the implications of parallelism further in this paper.
3The capability-store-inhibit bit, S, is only lightly used in existing CHERI software. Its
sole use is reflecting static properties of kernel-managed objects, e.g. preventing capa-
bility stores to shared memory segments (potentially violating capability provenance
within an address space) or direct mappings of file pages (because the file system is
not capable of storing tags).

MICRO-52, October 12–16, 2019, Columbus, OH, USA Xia, Woodruff, Ainsworth, et al.

3.6 Role of Allocator
CHERIvoke must invalidate all references to quarantined memory
available to the program. Nevertheless, the allocator itself must
hold references to heap memory, including quarantined memory, if
it is to later reallocate memory to the program. CHERIvoke counts
the allocator as part of the trusted computing base (TCB), and relies
on the allocator to enforce temporal safety. Indeed, the definition
of temporal safety itself is derived from allocator state. In order to
preserve allocator references, CHERIvokemust distinguish between
pointers held by the allocator and pointers issued to the program.
While there are several plausible mechanisms for this preservation,
one simple option is for the allocator to always use whole-heap-
spanning capabilities whose bases are never quarantined.

3.7 Protection Guarantees
CHERIvoke enforces temporal safety for heap allocations only.
Heap allocations have proven to be the most dangerous and com-
mon source of temporal-safety exploits [7], and stack exploits can
be prevented using other techniques, such as escape analysis [12].
Strictly, CHERIvoke prevents use-after-reallocation rather than use-
after-free, as the program still holds references to quarantined mem-
ory until a revocation sweep. Nevertheless, CHERIvoke guarantees
that an allocated object can be accessed only through references
derived from the latest allocation of that memory. While CHERI
could facilitate strict use-after-free for debugging if a sweep was per-
formed on every free, CHERIvoke is designed to enforce temporal
safety for deployed user programs. This subset of heap tempo-
ral memory safety provides protection from the vast majority of
exploitable bugs while taking advantage of buffering to achieve
reasonable performance [27].

3.8 Summary
CHERIvoke is a technique for temporal safety on architectures with
CHERI support. Dangling pointers can be revoked by sweeping
through an application’s memory, to remove references to deallo-
cated locations stored within a quarantine space. We can do this
because CHERI uniquely distinguishes pointer capability locations
at the architectural level, along with the valid ranges to which a
capability can point. Revocation can be implemented efficiently by
using a shadow map to indicate invalid capability pointers; with
the addition of new hardware support, PTE CapDirty bits and
CLoadTags instructions, we can limit the memory that needs to be
swept to include only cache lines that contain pointers.

CHERIvoke’s quarantine bufferwith shadow-map strategy achieves
overheads that we now show are far lower than existing systems in
practice, and further, can be easily understood and accounted for.

4 CHERI BENEFITS
CHERIvoke relies on the CHERI capability architecture to provide
precise pointer identification, spatial enforcement, and efficient
pointer-location metadata. These mechanisms enable the properties
discussed below.

4.1 Efficient and Precise Revocation
In programs compiled to CHERI’s pure capability mode, all pointers
are tagged as capabilities to distinguish them from data. CHERI

therefore eliminates conservative pointer classification that causes
integers to be misclassified as pointers in garbage collection [6] and
other techniques [12]. Conversely, clearing the tag of a capability
on revocation completely prevents its use for referencing memory.

Furthermore, CHERIvoke relies on CHERI bounds enforcement
to ensure that capabilities to the heap are easily attributed to exactly
one allocation. Specifically, the base of any heap capability must
remain within the original allocation, even as the pointer address
can wander out of bounds. This relies on the property that the
bounds of capabilities cannot be expanded, and that there is no
mechanism to “fuse” adjacent objects into one capability, which
could then reference multiple allocations with different lifetimes.

As CHERI identifies references with certainty and associates
them uniquely to allocations, even a simple system can correctly
invalidate references to quarantined memory knowing that it will
not affect the behaviour of a correct program.

4.2 Full Memory Safety
CHERI capabilities provide spatial safety and unforgeability: that is,
all memory accesses must be within the bounds of their allocation,
and capabilities to other allocations cannot be fabricated. Based
on these properties, CHERIvoke can completely prevent access to
heap allocations after revocation, even in the face of adversarial
programs. As capabilities are easily identified and trivially associ-
ated with their original allocation, we can reliably identify dangling
pointers, and pointers can never be hidden from CHERIvoke with-
out destroying their ability to ever reference memory.

CHERIvoke thus completely prevents even adversarial programs
from accessing deallocated memory after a revocation sweep. Con-
sequently, the temporal-security guarantees in the presence of capa-
bilities are significantly stronger than in previous work [26, 27, 41].

4.3 Efficient Pointer Search
CHERI’s architecturally visible capability tags not only enable iden-
tification of pointer words, but can even detect the presence of
pointers in memory. Optimised tag storage in current CHERI proto-
types enables CLoadTags to eliminate non-pointer data, reducing
work by limiting the revocation sweep to regions that may contain
dangling pointers.

5 EXPERIMENTAL SETUP
5.1 Systems
The systems we use in our evaluation are shown in table 1. In
addition to evaluation of our hardware extensions on the CHERI
FPGA platform [45], we have designed experiments to evaluate
CHERIvoke revocation on a modern x86-64 machine to establish
performance expectations for a wide deployment of mature CHERI
implementations. Memory-sweeping performance depends heavily
on the microarchitecture. These experiments allow us to charac-
terise revocation using state-of-the-art memory systems, vector
extensions, and out-of-order superscalar hardware. We simulate the
existence of capabilities in these experiments using conservative
pointer estimation, as used by garbage collectors [6], considering
any 64-bit integer that is a valid virtual address to be a pointer. Eval-
uating on a mature x86 platform also provides higher application
coverage, as the current CHERI prototype implements the 64-bit

CHERIvoke: Characterising Pointer Revocation using CHERI Capabilities for Temporal Memory Safety MICRO-52, October 12–16, 2019, Columbus, OH, USA

System Specification

x86-64 Intel Core i7-7820HK CPU, 2.9GHz, 4 cores 8 threads, 8MiB
LLC, 14–18 stage out-of-order superscalar pipeline, AVX2
support, 16GiB DDR4 2400, FreeBSD 12.0

CHERI Stratix IV FPGA, 100MHz, single core, 256KiB LLC, 6-stage
in-order scalar pipeline, 1GiB DDR2

Table 1: System setup for processors used in the evaluation.

MIPS instruction set that lacks ports for many applications and
benchmarks. Because the toolset for CHERI is based on FreeBSD, we
also run FreeBSD on our x86 system to ensure uniformity, though
results apply to any operating system.

To measure the impact of our new hardware additions, we ex-
tend a 64-bit CHERI core and cache subsystem to implement the
CLoadTags instruction, and add PTE CapDirty support to our pro-
totype operating system. To measure their impact on performance,
we perform revocation sweeps on the CHERI FPGA implementa-
tion over application memory dumps taken from our x86 system,
allowing us to measure data elimination for applications that are
not yet able to execute natively on the CHERI-MIPS architecture.

5.2 dlmalloc_cherivoke
We have implemented dlmalloc_cherivoke as an extension of
dlmalloc [25], a classic allocator that remains in wide use. This
modified allocator maintains a quarantine buffer proportional to
heap size, and also maintains the corresponding shadow map. Calls
to free() insert allocations into a quarantine buffer that uses the
dlmalloc constant-time algorithm for aggregating contiguous al-
locations. When a certain proportion of the heap is in quarantine,
dlmalloc_cherivoke logs a simulated sweep event and returns all
chunks in the quarantine buffer to the internal free list. As a result
of aggregation, the number of internal frees may be much smaller
than the number of frees without quarantine.

To implement the shadow map, each mmap() call is accompanied
by a smaller mapping at a fixed transform from the original alloca-
tion. This allows the sweeping procedure to index the shadow map
for any heap allocation, by shifting the pointer by a fixed amount
and adding to the base of the shadow map. As dlmalloc aligns
allocations to at least 16-byte boundaries (128 bits), each shadow
map is 1

128 of the primary allocation. When a region is unmapped,
its corresponding shadow map is also unmapped.

Besides shadow-map allocation, dlmalloc_cherivoke delays
shadow-space operations until a simulated sweep is triggered. Be-
fore a sweep event, we traverse the quarantined chunks in the buffer
and set shadow-map bits for each. After a sweep event, these bits
are cleared. We have optimised the shadow-map painting procedure
such that large and aligned contiguous regions use byte, half-word,
word, and double-word store instructions when possible, rather
than setting individual bits.

5.3 Sweeping Cost
dlmalloc_cherivoke evaluates all overheads besides the revoca-
tion sweep itself. In order to accurately model a CHERI revocation

loop, pointers must be architecturally visible. Simulating this visi-
bility requires memory state to be preprocessed, which prevents
accurate performance modeling during execution. To capture mem-
ory state, we dump the core image periodically when the quarantine
buffer is full and a sweep would have been triggered. We preprocess
the memory image to identify all virtual addresses that lie within
regions of the core dump, and zero all non-pointer words. This
allows a test against zero to simulate the ability to test the capabil-
ity tag in a true CHERI system. The core dump also preserves the
revocation shadow map, which is used during the sweep.

We simulate a sweep that uses PTE CapDirty optimisations (sec-
tion 3.4.2) to eliminate non-pointer data at a page granularity, but
that does not use the CLoadTags instruction. While page elimina-
tion can be modelled sufficiently on a standard microarchitecture,
CLoadTags is difficult to model due to its interaction with tagged
memory and a tag cache. As a result, our performance numbers
are a pessimistic estimation of the full optimisations possible on
CHERI. Our sweep procedure simulates a system API that returns
an array of pages that could contain capabilities4 according to PTE
CapDirty flags.

To evaluate the overall cost, we perform revocation sweeps on
ten sample core dumps from across each application’s execution.5
We then multiply the average sweep time by the total number of
sweep events to derive the total sweeping cost for that execution.

5.4 Benchmarks
To evaluate CHERIvoke, we are interested in both worst-case and
average-case overhead. To do this, we evaluate on benchmarks
taken mostly from SPEC CPU2006 [21], in line with other papers
in the literature [12, 27, 41]. The subset we evaluate includes the
three most allocation-intensive workloads [41]: dealII, omnetpp,
and xalancbmk. We also include all other SPEC CPU2006 bench-
marks that would compile under the 64-bit FreeBSD setup neces-
sary to use our current CHERI infrastructure: astar, bzip2, gobmk,
h264ref, hmmer, lbm, libquantum, mcf, milc, povray, sjeng, soplex,
and sphinx3. In each case, we evaluate on the reference input. We
further add ffmpeg, which has a larger allocation throughput than
any SPEC benchmark and is useful to more fully account for worst-
case application behaviour. We take the average of 5 runs for each
benchmark.

6 EVALUATION
The overall observed overhead of CHERIvoke is shown in fig-
ure 5, compared with other temporal-safety techniques in the lit-
erature [6, 12, 27, 41] that do not make use of CHERI capabilities.
For a target 25% heap storage overhead in the quarantine buffer,
we achieve an average 4.7% execution time and 12.5% total mem-
ory overhead. This significantly outperforms any other technique.
Further, CHERIvoke performs far more reliably, with only 1.51×
and 1.35× maximum runtime and memory overheads. CHERIvoke

4A similar API, GetWriteWatch(), is implemented in Windows to return the list of
pages that have been written since last reset to accelerate garbage collection and
language runtimes [23].
5Collecting more than ten core dumps per application increased evaluation time but
was not found to improve the accuracy of results. Sweep time for each core dump is
averaged over 20 sweeps.

MICRO-52, October 12–16, 2019, Columbus, OH, USA Xia, Woodruff, Ainsworth, et al.

 1

 1.2

 1.4

 1.6

 1.8

 2

astar
bzip2

dealII
gobmk

h264ref
hmmer

lbm

libquantum mcf
milc

omnetpp
povray

sjeng
soplex

sphinx3

xalancbmk

geomean

N
o
rm

a
lis

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

CHERIvoke Oscar pSweeper
2.9 4.6 4.1

DangSan Boehm-GC
4.2 9.4 9.7 3.8 14.4 2 31.6 2.57.5

(a) Execution Time

 0

 1

 2

 3

 4

 5

astar
bzip2

dealII
gobmk

h264ref

hmmer
lbm

libquantum mcf
milc

omnetpp
povray

sjeng
soplex

sphinx3

xalancbmk

geomean

N
o

rm
a

lis
e

d
 M

e
m

o
ry

 U
ti
liz

a
ti
o

n

226.5 135

(b) Memory. The dashed line shows CHERIvoke’s default quarantine size at 25% of the heap.

Figure 5: Overheads for CHERIvoke, compared with results reported by other state-of-the-art techniques.

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

ffm
peg

astar
bzip2

dealII
gobmk

h264ref
hmmer

lbm

libquantum mcf
milc

omnetpp
povray

sjeng
soplex

sphinx3

xalancbmk

geomean

N
o
rm

a
lis

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

CHERIvoke with quarantine buffer only
+ shadow space
+ sweeping

1.51

Figure 6: Decomposition of run-time overheads of
CHERIvoke, with the default 25% heap overhead.

has significantly more predictable behaviour regardless of work-
load, as its sweeping technique suffers none of the worst cases
encountered by more complex temporal-safety schemes: overheads
are proportional to memory freed and pointer density, rather than
pointer movement, number of frees, loads per second, or memory
layout. In addition, CHERI enforces the strongest safety guarantees:
construction of references to freed memory is impossible by any
means after revocation.

6.1 Breakdown of Overheads
Figure 6 shows overheads for successively adding constituent parts
of CHERIvoke, beginning with quarantining freed memory, adding
shadow-map maintenance, and, finally, full-memory sweeps. While

memory sweeping is usually the dominant overhead, we discover
notable exceptions that are discussed below.

6.1.1 Quarantine buffer. Many existing allocators, including dl-
malloc, attempt to reuse freed memory as quickly as possible to
improve cache performance. dlmalloc_cherivoke, however, intro-
duces a quarantine buffer where freed memory is detained, missing
the opportunity to reuse cached memory.

The quarantine buffer has negligible impact onmost benchmarks.
For xalancbmk, however, the quarantine buffer increases execution
time by 22%. Performance counters confirm that instruction count
only grows by 3%, but level-2 cache misses grow by 50%. While
favorable deallocation patterns allow us to simply move to fresh,
unquarantined cache lines, xalancbmk has a combination of small
allocations, a high allocation throughput (nearly 1 million per sec-
ond according to table 2), and temporal fragmentation. Temporal
fragmentation occurs when objects with very different lifetimes
are interspersed on the heap, leaving holes of quarantined memory
in cache lines that are still in use. This suggests that a CHERIvoke
memory allocator might attempt to group objects of similar life-
time. Nevertheless, we discover in section 6.4 that increasing the
quarantine-buffer size consistently improves cache performance
for xalancbmk.

The quarantine buffer actually improves performance in most of
the benchmarks. One reason for this is batching and aggregating
calls to free. DealII, for example, has 630,000 calls to free per second
(see table 2), constituting a significant amount of execution time.
dlmalloc_cherivoke quarantines these allocations at typically
less than half the execution time of a real free. If these freed regions
aggregate well, many fewer free operations will be performed when
the quarantine buffer is drained than would have been performed

CHERIvoke: Characterising Pointer Revocation using CHERI Capabilities for Temporal Memory Safety MICRO-52, October 12–16, 2019, Columbus, OH, USA

Benchmark
Pages with

pointers
Free rate
(MiB/s)

Frees
(thousands/s)

ffmpeg 4% 1268 44
astar 62% 24 27
bzip2 0% 0 ≈ 0
dealII 70% 40 498
gobmk 54% 1 1
h264ref 9% 3 1
hmmer 4% 17 12
lbm 0% 5 ≈ 0
libquantum 1% 5 ≈ 0
mcf 46% 53 ≈ 0
milc 3% 224 ≈ 0
omnetpp 95% 175 1027
povray 19% 1 17
sjeng 24% 0 ≈ 0
soplex 23% 287 2
sphinx3 18% 33 30
xalancbmk 86% 371 811

Table 2: Deallocation metadata from applications.

on demand. While this effect is minor, many of the benchmarks
that gain advantage from the quarantine buffer do not experience
a net overhead for full temporal safety.

6.1.2 Shadow-map maintenance. CHERIvoke also requires mainte-
nance of the revocation shadow map (the second bar in figure 6).
While the size of the shadow map is small compared to the heap
itself, and the quarantined portion is even smaller, the overhead of
painting is hard to predict due to sensitivity towards the alignment
and size of allocations. Nevertheless, the net impact of shadow-
space maintenance is minor for all applications benchmarked.

6.1.3 Sweeping overhead. Where CHERIvoke has significant exe-
cution time overhead, the largest cost is in memory sweeping. Of
the four benchmarks in figure 6 that have overheads beyond 5%,
dealII, omnetpp and soplex are dominated by sweeping overhead
and xalancbmk is a special case, as discussed above. Sweeping cost
is predictable and can be described mathematically.

A memory sweep will be initiated when the amount of mem-
ory freed reaches the current size of the quarantine buffer, and
thus the frequency of sweeping is directly proportional to the
QuarantineSize and the FreeRate (in MB/s). This relation allows
us to analytically derive an estimation for runtime overhead for a
single-threaded implementation:

RuntimeOverhead ≈
FreeRate · PointerDensity

ScanRate · QuarantineFraction

This equation assumes that we must only sweep the proportion
of memory that contains pointers, PointerDensity, which is at a page
granularity for this experiment. This equation also assumes the
quarantine-buffer size to be a fixed proportion of the total memory
space (rather than of the heap), which is a rough approximation if
the heap is large. Nevertheless, this equation provides an intuitive
model for the cost of sweeping using CHERIvoke.

The numerator, (FreeRate · PointerDensity), constitutes an app-
lication-specific cost factor. A low throughput for frees, or con-
versely a low pointer density, will result in a low sweeping cost for
CHERIvoke. In the denominator, the ScanRate is a function of the

 0

 2000

 4000

 6000

 8000

 10000

ffm
peg

astar
dealII

gobmk

h264ref
hmmer

mcf
milc

omnetpp
povray

soplex

sphinx3

xalancbmk

geomean

D
R

A
M

 B
a
n
d
w

id
th

 (
M

iB
/s

)

Simple loop
Unrolling + manual pipelining

AVX2

Figure 7: Memory bandwidth achieved for the sweep loop
with different optimisations. The system’s full read band-
width is 19,405MiB/s.

memory bandwidth of the system and the efficiency of the sweep-
ing loop, and QuarantineFraction is a tunable property to balance
performance and memory consumption.

This analytical model, along with the data in table 2, allows
us to understand the sweeping overheads measured in figure 6.
Xalancbmk and omnetpp have significant free rates and pointer
densities over 85%, followed by dealII and soplex, whose pointer
densities are 70% and 23% respectively. These four are indeed the
only benchmarks with over 5% execution time overhead, as sug-
gested by the model. Ffmpeg has a very high free rate, but a low
pointer density, such that sweeping overhead does not break 5%.

6.2 Sweeping-Loop Optimisation
The speed of the memory sweep is critical to the performance of
CHERIvoke. In figure 7, we evaluate the performance of several
implementations of our sweeping-procedure kernel on each bench-
mark that features significant deallocation. A CHERIvoke sweep
might approach the 19,405MiB/s read bandwidth of the system if
the procedure is not compute bound, and if the indirect shadow
lookup is entirely cached. We find that a naïve sweeping loop (pre-
sented in red) utilises only 28% of read bandwidth on average, and
unrolling and manually pipelining the loop for better scheduling
achieves 32%. We were able to fully vectorise the loop using AVX2
to sweep an entire cache line in 28 instructions, achieving 39% of
the read bandwidth on average, but required an unconditional store
to possibly clear dangling pointers, limiting us to memory copy
performance. The performance of the AVX2 loop is roughly con-
stant at almost 8GiB/s. AVX2 is not always the fastest; in hmmer
and sphinx3 our vectorised implementation cannot compete with
the unrolled loop. Mcf and milc see lower bandwidth utilisation, as
their small, infrequent sweeping loops do not reach full throughput.
Since none of these cases are allocation intensive, these outliers do
not have a significant performance impact in figure 6.

6.3 Hardware Optimisations
Because of the new hardware optimisations introduced in sec-
tion 3.4, we need not sweep all of memory. Two mechanisms avoid
reading segments of memory without pointers: PTE CapDirty bits

MICRO-52, October 12–16, 2019, Columbus, OH, USA Xia, Woodruff, Ainsworth, et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

ffm
peg

astar
bzip2

dealII

gobmk

h264ref

hmmer
lbm

libquantummcf
milc

omnetpp
povray

sjeng
soplex

sphinx3

xalancbmk

M
e
m

o
ry

 S
w

e
e
p
 P

ro
p
o
rt

io
n

PTE CapDirty CLoadTags

(a) Proportion of memory that needs to be swept for specific bench-
marks, with work reduction both on a page-table granularity (PTE
CapDirty) and on a cache-line granularity (CLoadTags).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

N
o
rm

a
lis

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

Pointer Density (at a Page or Cache Line Granularity)

CLoadTags
PTE dirty
Idealised

(b) Normalised execution time for sweeping through memory with
the addition of PTE dirty bits to exclude capability-free pages, and
CLoadTags instructions to exclude capability-free cache lines. Each
is plotted versus their target granularities: PTE dirty is plotted
against page density, andCLoadTags against cache-line density. The
dotted line shows the ideal improvement from each technique.

Figure 8: Impact of the hardware optimisations from sec-
tion 3.4 on both amount of memory that needs to be swept,
and on resultant execution time as measured on CHERI.

(section 3.4.2), which remove the need to scan through pages with-
out capabilities, and the more fine-grained CLoadTags instruction
(section 3.4.1), which allows us to skip cache lines with no tag-bits
set. The results of our evaluations are shown in figure 8.

Figure 8(a) shows the proportion of memory that must be swept
under each optimisation, derived from the densities of capabilities
both at the cache line and the page granularities. In most cases,
the PTE CapDirty bits in the page table are sufficient to reach the
achievable reduction in work, though there are several workloads
where CLoadTags instructions allow a significant further reduc-
tion. Figure 8(b) shows how these mechanisms map to performance
improvements on our CHERI FPGA hardware. We see that PTE
CapDirty bits get close to an ideal performance improvement, in
that the blue line is very close to the dotted x = y line, and so
the effect of not having to walk through pointer-free pages corre-
sponds directly to a performance improvement. Performance with

 1

 1.5

 2

 2.5

 3

 0 20 40 60 80 100 120 140 160 180 200

N
o
rm

a
lis

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

Heap Overhead (%)

Xalancbmk
Omnetpp

Figure 9: Normalised execution time for the two workloads
with highest overheads, at varying heap overhead. Default
setup shown by dotted line.

CLoadTags (orange) is more complex: though it can capture more
fine-grained density data, and therefore theoretically reduce the
amount of work more, its performance in practice is less close-
to-ideal and can even lower performance. This reflects the larger
amount of work necessary to exploit this more fine-grained infor-
mation. To determine if a cache line of 8 pointers can be skipped,
CLoadTags must query the L1 and L2 caches and reach the tag
cache of the system (around 10 cycles round trip in our FPGA im-
plementation), and perform an unpredictable branch. In contrast,
the PTE CapDirty implementation can skip a page of 256 point-
ers by inspecting page metadata. In practice, both coarse-grained
(PTE CapDirty) and fine-grained (CLoadTags) optimisations are
necessary for optimal work reduction.

6.4 Sweep-Frequency Trade-Offs
Time and space overheads can be traded off for one another in
CHERIvoke. To see the extent of this, we re-evaluated xalancbmk
and omnetpp, our workloads with the highest overheads at default
settings, with different target heap-space overheads. The results of
this are shown in figure 9. We see that the higher the heap overhead
we are willing to tolerate, the less of a performance impact we will
observe, even on highly allocation-intensive workloads.

There are two reasons for this. The first is that if we are willing
to tolerate a higher heap overhead, deallocations can be left in quar-
antine for longer, and so we sweep proportionately less often as a
result. This accounts for the majority of the performance increase
we see with larger quarantine buffers, as most of the overhead
of CHERIvoke is brought about via the sweeping procedure. The
second is more subtle: for xalancbmk, by the time we reach 100%
heap overhead, the normalised execution time is actually lower
than the non-sweeping costs alone in figure 6. We found a con-
sistent reduction in non-sweeping overheads corresponding to an
increase in observed cache hit rate for the program as we moved to
larger quarantine buffers. This counterintuitive result is caused by
better allocation-fragmentation properties as we increase the heap
size: under severe temporal fragmentation, it is better to quaran-
tine memory for longer to allow cache lines to fall entirely out of
use rather than frequently releasing small fragments in a severely
fragmented heap.

CHERIvoke: Characterising Pointer Revocation using CHERI Capabilities for Temporal Memory Safety MICRO-52, October 12–16, 2019, Columbus, OH, USA

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

ffm
peg

astar
bzip2

dealII

gobmk

h264ref

hmmer
lbm

lib
quantum mcf

milc

omnetpp

povray
sjeng

soplex

sphinx3

xalancbmk

T
ra

ff
ic

 O
v
e
rh

e
a
d
 (

%
)

Figure 10: Off-core-traffic overhead.

6.5 Sweeping-Traffic Overhead
The results in figure 10 show the extra traffic generated from sweep-
ing. We use Intel performance counters [43] to report the “off-core”
traffic, which on our benchmark machine indicates the traffic to
the shared L3 cache and above. We find that extra traffic utilisa-
tion is either comparable to (dealII) or significantly lower than
(omnetpp, soplex, xalancbmk) the performance overhead. This is
unsurprising: CHERIvoke only pays overhead on workloads that
are allocation intensive, and workloads that are allocation intensive
tend to be memory-bandwidth intensive, rendering CHERIvoke
sweeping overheads less significant by comparison.

We can use this information to make judgements about the im-
pact CHERIvoke has both on energy consumption and performance
on multicores. In effect, energy-consumption overhead should scale
comparably to performance overhead, as the additional factor, off-
core traffic, and thus DRAM traffic, is comparable or smaller. Sim-
ilarly, accesses to the shared L3-cache resource outside the core,
which will affect performance of other applications running on a
multicore, are typically minimal, and in allocation-intensive envi-
ronments comparable to, though lower than, performance overhead.

6.6 Summary
CHERIvoke significantly outperforms any other system designed
to provide strong performance guarantees [6, 12, 27, 41], both in
average (4.7% runtime and 12.5% overall memory overheads) and
worst case (51% performance and 35% memory). These overheads
typically come from the sweeping procedure, which is a small code
kernel that can be heavily optimised using vector instructions, and
the cost of which can be analytically understood in simple terms
of volume of freed data and density of pointers in memory. Our
hardware extensions, CLoadTags and PTE CapDirty, both serve to
significantly reduce the amount of work performed by CHERIvoke.
Where performance overhead is high, memory can be traded to
meet the target performance.

7 RELATEDWORK
7.1 Revocation Techniques
Revocation techniques that do not make use of hardware capabili-
ties have been explored. These include DangSan [41], DangNull [26],
FreeSentry [48] and PSweeper [27]. These use the compiler to dis-
ambiguate pointers from data, add code for each pointer creation

that inserts the pointer to a per-allocation list, and nullify all en-
tries when data is freed. However, this per-allocation list is highly
performance- and storage-intensive, which makes these techniques
infeasible for allocation-heavy workloads. Additionally, pointers
can be hidden, so such techniques cannot guarantee temporal safety.

With CHERI, we can disambiguate pointers at run-time without
any additional metadata, by using 1-bit tag metadata [22]. This
means that we can instead sweep through memory to nullify any
dangling pointers, avoiding the large memory and performance
overheads associated with this complex metadata. It also means
that the compiler need not be involved: the only change required is
for the free method to add the quarantine list. CHERI also innately
prevents hidden pointers, so can guarantee temporal safety.

BOGO [49], like CHERIvoke, builds temporal safety on top of
spatial safety, in this case, Intel MPX. Due to a lack of a quarantine
buffer for batching and due to the complex MPX table structure,
BOGO’s overheads are significantly higher than CHERIvoke: on
SPEC CPU2006, CHERIvoke pays 4.7% average overhead and 50%
worst case, whereas BOGO pays 60% average and 1,616% worst
case.

7.2 Page-Table Techniques
Dangling pointers can be prevented from being used via protection
at the granularity of the page table, by poisoning regions of mem-
ory upon a free. This is the technique used by Electric Fence [1].
Dhurjati and Adve [15] extend the technique to allow reuse of the
underlying physical address to reduce overheads by aliasing virtual
pages, and Dang et. al [12] present Oscar, which better supports
concurrency and looks at more common workloads.

Page granularity can achieve low overheads when allocations
are large. However, frequent small allocations can cause perfor-
mance and memory overheads to increase enormously, as each
allocation must be given its own virtual page, as well as increasing
TLB pressure, causing significant slowdown.

7.3 Garbage Collection
Garbage collection solves the problem of use-after-frees by the
inverse of pointer nullification: it prevents data from being freed
until all references are removed. Examples of garbage collection
used for this approach include FailSafe-C [35] and CCured [33].

As pointers can be hidden in low-level languages such as C and
C++, this makes safe garbage collection a challenge [4, 5, 17]: we
cannot trade the security issue of temporal safety for a program-
safety issue of premature deletion of still-needed data. However, in
the CHERI architecture, pointers cannot be hidden, as all memory
accesses occur by unforgeable capabilities that can be distinguished
from other data by tags. This means that CHERI avoids both the
safety issue and any pointer aliasing from conservative garbage-
collection techniques.

In addition, garbage collection suffers from two weaknesses that
CHERIvoke does not. Because references to pointers may exist until
long after the data is no longer being used, garbage collectors can
suffer significant memory overhead evenwith frequent mark-sweep
procedures. To counteract this, techniques such as the Boehm-
Demers-Weiser garbage collector [6] also allowmanual deallocation

MICRO-52, October 12–16, 2019, Columbus, OH, USA Xia, Woodruff, Ainsworth, et al.

of objects. This means that use-after-free and use-after-reallocate
violations can still occur in high-performance garbage collectors.

The second issue is related to performance. A garbage collec-
tor’s marking procedure is significantly slower than CHERIvoke’s
sweeping procedure, as marking involves a complex and memory-
irregular graph search through each allocation, whereas sweeping
can be performed at close to the rate of memory bandwidth via a
simple, easy-to-optimise loop. Further, with CHERIvoke we know
precisely how much memory can be reclaimed by each sweeping
procedure, as this is supplied by the programmer with their manual
deallocations. This means we can optimise by calling sweeping
procedures only when there is sufficient useful work to be done (in
our case, when the quarantine buffer is 25% of the rest of the heap),
vastly reducing overheads without increasing memory usage.

Moreover, for many programmers, the malloc/free model is sim-
ply familiar. The semantics of explicitly managing memory is well
understood and acceptable to a large class of programmers, as
exemplified by the C and C++ communities. Existing codebases,
especially legacy C and C++, need extra care to be ported to a GC
model to function well under reasonable memory and performance
overhead. On the contrary, malloc/free with sweeping revocation
provides temporal safety without perturbing memory-allocation
semantics, as well as having much more predictable memory and
performance overhead — as this paper demonstrates.

7.4 Partial Temporal Safety
Techniques to reduce (but not eliminate) temporal-safety bugs have
seen use both in academia and in practice. Cling [2] reduces the
classes of use-after-free bugs that can be exploited by promoting
type-safe reuse of pointers, based on size and call site, to reduce the
provenance of reused memory, along with a more general delay-
of-use to prevent memory exhaustion at the expense of security.
Other techniques that use a delay-of-reuse technique, to make it
harder for an attacker to reallocate data that is falsely freed but still
in use, include DieHard [3], DieHarder [34], and FreeGuard [39].

7.5 Detection Methods
Runtime protection can fully guarantee temporal safety. However,
some protection can also be brought about by detection methods
designed to debug applications. An example of this strategy is Ad-
dressSanitizer [37], which poisons deallocated regions to flag up
any accesses to them. The performance loss as a result is substan-
tial, and so software AddressSanitizer can only be used in a debug
setting. However, hardware acceleration of memory debug is im-
plemented in the Sparc M7’s ADI technique [24, 36] and in Arm
MTE [18]. These use a small number of shadow bits to tag pointers,
such that accesses to a region de- or re-allocated and tagged with a
different bit value will fail. However, the small number of bits in
these tags means that a motivated attacker can exhaust the space,
to reallocate data with the correct tag. These techniques are there-
fore only suitable for runtime fault reporting rather than security.
Another detection method is Undangle [7], which finds dangling
pointers within a program at run-time, at the cost of false positives,
since dangling pointers themselves may not result in future use.

7.6 Tagged Memory
CHERI [45] is just oneway of using taggedmemory to improve secu-
rity or debug properties of a system. Other uses include annotating
address validity, version numbers, object types and ownership [20].
While CHERI uses one bit per capability-aligned region to prevent
arbitrary changes of capabilities, other techniques use multiple
bits to provide memory versioning. These include SPARC ADI [36]
and Arm MTE [18]. Another tagged-memory debug technique,
AArch64 HWASAN, combines memory tagging with a modified
compiler toolchain for a hardware-assisted AddressSanitizer-like
scheme [37, 38], by utilising unused top bits in pointers as memory
tags to detect stale references.

CETS [32] uses word-length unique tags for memory accesses,
such that a memory access will fail if the tag does not match the allo-
cated region. This means that pointers are as large as CHERI’s, but
at the same time a large false-positive rate is suffered due to pointer
hiding, which is valid in non-CHERI C. Unlike in CHERI, spatial
safety cannot be guaranteed, and as there is no hardware support
for CETS, it results in a significant performance loss. Watchdog [31]
uses unique pointer and allocation identifiers to provide tempo-
ral safety in hardware: for the benchmarks in common between
Watchdog and CHERIvoke, Watchdog pays 17% average overhead,
whereas CHERIvoke pays less than 1%.

8 CONCLUSION
We have shown that it is possible to enforce temporal safety on
modern systems with hardware capability support at low over-
head. CHERIvoke, a technique that sweeps through memory to
find architecturally visible capability pointers, and uses an efficient
revocation shadow map to identify those that need to be revoked; it
can achieve performance overheads of under 5% for a 25% heap size
increase, and these can be traded off to match system requirements.

Our presentation of CHERIvoke considers only the fundamental
mechanisms necessary for high-performance temporal safety; full
implementations could be optimised further. Techniques such as
reuse of physical addresses for page-size deallocations [12], type-
based reuse of allocation data [2], and delaying of revocation by
reusing locations over multiple MTE-style history bits [18] all have
the potential to combine with CHERIvoke to make strong memory-
safety properties cheap enough in all cases to become ubiquitous
in all future systems.

Acknowledgements
Approved for public release; distribution is unlimited. This work is
part of the CTSRD and ECATS projects sponsored by the Defense
Advanced Research Projects Agency (DARPA) and the Air Force Re-
search Laboratory (AFRL), under contracts FA8750-10-C-0237 and
HR0011-18-C-0016. The views, opinions, and/or findings contained
in this paper are those of the authors and should not be interpreted
as representing the official views or policies, either expressed or
implied, of the Department of Defense or the U.S. Government. This
work was also supported by the Engineering and Physical Sciences
Research Council (EPSRC), through grant references EP/K026399/1,
EP/P020011/1, and EP/K008528/1 and by Arm Limited and Google,
Inc. We would like to acknowledge the contributions of John Bald-
win, Matthias Boettcher, David Chisnall, Brooks Davis, Lawrence

CHERIvoke: Characterising Pointer Revocation using CHERI Capabilities for Temporal Memory Safety MICRO-52, October 12–16, 2019, Columbus, OH, USA

Esswood, Alexandre Joannou, Lucian Paul-Trifu, Stacey Son, and
Hugo Vincent. Additional data related to this publication is available
in the data repository at https://doi.org/10.17863/CAM.42436.

REFERENCES
[1] 2015. Electric Fence. https://elinux.org/index.php?title=Electric_Fence
[2] Periklis Akritidis. 2010. Cling: AMemory Allocator to Mitigate Dangling Pointers.

In USENIX Security.
[3] Emery D. Berger and Benjamin G. Zorn. 2006. DieHard: Probabilistic Memory

Safety for Unsafe Languages. In PLDI.
[4] Hans-J. Boehm. 1996. Simple Garbage-Collector-Safety. In PLDI.
[5] Hans-J. Boehm and David Chase. 1992. A Proposal for Garbage-Collector-Safe C

Compilation. Journal of C Language Translation 4, 2 (1992).
[6] Hans-Juergen Boehm and Mark Weiser. 1988. Garbage Collection in an Uncoop-

erative Environment. Softw. Pract. Exper. 18, 9 (1988).
[7] Juan Caballero, Gustavo Grieco, Mark Marron, and Antonio Nappa. 2012. Un-

dangle: Early Detection of Dangling Pointers in Use-after-free and Double-free
Vulnerabilities. In ISSTA.

[8] Oliver Chang. 2016. Racing MIDI messages in Chrome. https://googleprojectzero.
blogspot.com/2016/02/racing-midi-messages-in-chrome.html

[9] Oliver Chang. 2016. Racing MIDI messages in Chrome. https://googleprojectzero.
blogspot.com/2016/02/racing-midi-messages-in-chrome.html.

[10] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K. Iyer. 2005.
Non-control-data Attacks Are Realistic Threats. In SSYM.

[11] The MITRE Corporation. 2018. CWE-416: Use After Free. https://cwe.mitre.org/
data/definitions/416.html

[12] Thurston H.Y. Dang, Petros Maniatis, and David Wagner. 2017. Oscar: A Practical
Page-Permissions-Based Scheme for Thwarting Dangling Pointers. In USENIX
Security.

[13] Brooks Davis, Robert N. M. Watson, Alexander Richardson, Peter G. Neumann,
Simon W. Moore, John Baldwin, David Chisnall, James Clarke, Nathaniel Wesley
Filardo, Khilan Gudka, Alexandre Joannou, Ben Laurie, A. Theodore Markettos,
J. EdwardMaste, AlfredoMazzinghi, Edward Tomasz Napierala, RobertM. Norton,
Michael Roe, Peter Sewell, Stacey Son, and Jonathan Woodruff. 2019. CheriABI:
Enforcing Valid Pointer Provenance and Minimizing Pointer Privilege in the
POSIX C Run-Time Environment. In ASPLOS.

[14] Jack B. Dennis and Earl C. Van Horn. 1966. Programming semantics for multi-
programmed computations. Commun. ACM 9, 3 (1966).

[15] Dinakar Dhurjati and Vikram Adve. 2006. Efficiently Detecting All Dangling
Pointer Uses in Production Servers. In DSN.

[16] R. Kent Dybvig, David Eby, and Carl Bruggeman. 1994. Don’t stop the BIBOP:
Flexible and Efficient Storage Management for Dynamically-Typed Languages.
Technical Report 400. Indiana University School of Informatics, Computing, and
Engineering.

[17] John R. Ellis and David L. Detlefs. 1994. Safe, Efficient Garbage Collection for
C++. In CTEC.

[18] Matthew Gretton-Dann. 2018. Arm A-Profile Architecture Develop-
ments 2018: Armv8.5-A. https://community.arm.com/developer/ip-
products/processors/b/processors-ip-blog/posts/arm-a-profile-architecture-
2018-developments-armv85a

[19] Richard Grisenthwaite. 2019. Supporting the UK in becoming a leading
global player in cybersecurity. https://community.arm.com/blog/company/
b/blog/posts/supporting-the-uk-in-becoming-a-leading-global-player-in-
cybersecurity

[20] Richard H. Gumpertz. 1981. Error Detection with Memory Tags. Ph.D. Dissertation.
Carnegie Mellon University.

[21] John L. Henning. 2006. SPEC CPU2006 Benchmark Descriptions. SIGARCH
Comput. Archit. News 34, 4 (2006).

[22] A. Joannou, J. Woodruff, R. Kovacsics, S. W. Moore, A. Bradbury, H. Xia, R. N. M.
Watson, D. Chisnall, M. Roe, B. Davis, E. Napierala, J. Baldwin, K. Gudka, P. G.
Neumann, A. Mazzinghi, A. Richardson, S. Son, and A. T. Markettos. 2017. Effi-
cient Tagged Memory. In ICCD.

[23] Piyus Kedia, Manuel Costa, Matthew Parkinson, Kapil Vaswani, Dimitrios Vy-
tiniotis, and Aaron Blankstein. 2017. Simple, Fast, and Safe Manual Memory
Management. In PLDI.

[24] G. K. Konstadinidis, H. P. Li, F. Schumacher, V. Krishnaswamy, H. Cho, S. Dash,
R. P. Masleid, C. Zheng, Y. D. Lin, P. Loewenstein, H. Park, V. Srinivasan, D.
Huang, C. Hwang, W. Hsu, C. McAllister, J. Brooks, H. Pham, S. Turullols, Y.
Yanggong, R. Golla, A. P. Smith, and A. Vahidsafa. 2016. SPARC M7: A 20 nm
32-Core 64 MB L3 Cache Processor. IEEE J. of Solid-State Circuits 51, 1 (2016).

[25] Doug Lea. 2000. A Memory Allocator. (2000). http://g.oswego.edu/dl/html/
malloc.html

[26] Byoungyoung Lee, Chengyu Song, Yeongjin Jang, Tielei Wang, Taesoo Kim, Long
Lu, and Wenke Lee. 2015. Preventing Use-after-free with Dangling Pointers
Nullification.. In NDSS.

[27] Daiping Liu, Mingwei Zhang, and Haining Wang. 2018. A Robust and Efficient
Defense Against Use-after-Free Exploits via Concurrent Pointer Sweeping. In
CCS.

[28] Kangjie Lu, Marie-Therese Walter, David Pfaff, Stefan Nuernberger, Wenke Lee,
and Michael Backes. 2017. Unleashing Use-Before-Initialization Vulnerabilities
in the Linux Kernel Using Targeted Stack Spraying. In NDSS.

https://doi.org/10.17863/CAM.42436
https://elinux.org/index.php?title=Electric_Fence
https://googleprojectzero.blogspot.com/2016/02/racing-midi-messages-in-chrome.html
https://googleprojectzero.blogspot.com/2016/02/racing-midi-messages-in-chrome.html
https://googleprojectzero.blogspot.com/2016/02/racing-midi-messages-in-chrome.html
https://googleprojectzero.blogspot.com/2016/02/racing-midi-messages-in-chrome.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/416.html
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-a-profile-architecture-2018-developments-armv85a
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-a-profile-architecture-2018-developments-armv85a
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-a-profile-architecture-2018-developments-armv85a
https://community.arm.com/blog/company/b/blog/posts/supporting-the-uk-in-becoming-a-leading-global-player-in-cybersecurity
https://community.arm.com/blog/company/b/blog/posts/supporting-the-uk-in-becoming-a-leading-global-player-in-cybersecurity
https://community.arm.com/blog/company/b/blog/posts/supporting-the-uk-in-becoming-a-leading-global-player-in-cybersecurity
http://g.oswego.edu/dl/html/malloc.html
http://g.oswego.edu/dl/html/malloc.html

MICRO-52, October 12–16, 2019, Columbus, OH, USA Xia, Woodruff, Ainsworth, et al.

[29] Alyssa Milburn, Herbert Bos, and Cristiano Giuffrida. 2017. SafeInit: Compre-
hensive and Practical Mitigation of Uninitialized Read Vulnerabilities. In NDSS.

[30] S. S. Nagaraju, C. Craioveanu, E. Florio, and M. Miller. 2013. Software vulnerability
exploitation trends. Technical Report. Microsoft.

[31] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. 2012. Watchdog:
Hardware for Safe and Secure Manual Memory Management and Full Memory
Safety. In ISCA.

[32] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic.
2010. CETS: Compiler Enforced Temporal Safety for C. In ISMM.

[33] George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley
Weimer. 2005. CCured: Type-safe Retrofitting of Legacy Software. ACM Trans.
Program. Lang. Syst. 27, 3 (2005).

[34] Gene Novark and Emery D. Berger. 2010. DieHarder: Securing the Heap. In CCS.
[35] Yutaka Oiwa. 2009. Implementation of the Memory-safe Full ANSI-C Compiler.

In PLDI.
[36] Oracle 2016. Oracle’s SPARC T7 and SPARC M7 Server Architecture. Oracle.
[37] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry

Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In USENIX
ATC.

[38] Kostya Serebryany, Evgenii Stepanov, Aleksey Shlyapnikov, Vlad Tsyrklevich,
and Dmitry Vyukov. 2018. Memory Tagging and how it improves C/C++ memory
safety. CoRR abs/1802.09517 (2018).

[39] Sam Silvestro, Hongyu Liu, Corey Crosser, Zhiqiang Lin, and Tongping Liu. 2017.
FreeGuard: A Faster Secure Heap Allocator. In CCS.

[40] Jr. Steele, Guy Lewis. 1977. Data representations in PDP-10 MACLISP. Technical
Report AIM-420. MIT.

[41] Erik van der Kouwe, Vinod Nigade, and Cristiano Giuffrida. 2017. DangSan:
Scalable Use-after-free Detection. In EuroSys.

[42] Robert N. M. Watson, Jonathan Woodruff, Peter G. Neumann, Simon W. Moore,
Jonathan Anderson, David Chisnall, Nirav Dave, Brook s Davis, Khilan Gudka,
Ben Laurie, Steven J. Murdoch, Robert Norton, Michael Roe, Stacey Son, and
Munraj Vadera. 2015. CHERI: A Hybrid Capability-System Architecture for
Scalable Software Compartmentalization. In IEEE S&P.

[43] Thomas Willhalm, Roman Dementiev, and Patrick Fay. 2012. Intel Performance
Counter Monitor - A Better Way to Measure CPU Utilization. Intel.

[44] Jonathan Woodruff, Alexandre Joannou, Hongyan Xia, Brooks Davis, Peter G
Neumann, Robert Nicholas Maxwell Watson, Simon Moore, Anthony Fox, Robert
Norton, and David Chisnall. 2019. Cheri concentrate: Practical compressed
capabilities. IEEE Trans. Comput. (2019).

[45] Jonathan Woodruff, Robert N.M. Watson, David Chisnall, Simon W. Moore,
Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neumann, Robert Norton,
and Michael Roe. 2014. The CHERI Capability Model: Revisiting RISC in an Age
of Risk. In ISCA.

[46] Wen Xu, Juanru Li, Junliang Shu, Wenbo Yang, Tianyi Xie, Yuanyuan Zhang,
and Dawu Gu. 2015. From Collision To Exploitation: Unleashing Use-After-Free
Vulnerabilities in Linux Kernel. In CCS.

[47] Wen Xu, Juanru Li, Junliang Shu, Wenbo Yang, Tianyi Xie, Yuanyuan Zhang,
and Dawu Gu. 2015. From Collision To Exploitation: Unleashing Use-After-Free
Vulnerabilities in Linux Kernel. In CCS.

[48] Yves Younan. 2015. FreeSentry: protecting against use-after-free vulnerabilities
due to dangling pointers. In NDSS.

[49] Tong Zhang, Dongyoon Lee, and Changhee Jung. 2019. BOGO: Buy Spatial
Memory Safety, Get Temporal Memory Safety (Almost) Free. In ASPLOS.

	Abstract
	Introduction
	Background
	Temporal-Safety Violations
	CHERI Capabilities
	Threat Model

	CHERIVOKE
	Quarantine Buffer
	Revocation Shadow Map
	Sweeping Procedure
	New Hardware Support
	Opportunities for Parallelism
	Role of Allocator
	Protection Guarantees
	Summary

	CHERI Benefits
	Efficient and Precise Revocation
	Full Memory Safety
	Efficient Pointer Search

	Experimental Setup
	Systems
	dlmalloc_cherivoke
	Sweeping Cost
	Benchmarks

	Evaluation
	Breakdown of Overheads
	Sweeping-Loop Optimisation
	Hardware Optimisations
	Sweep-Frequency Trade-Offs
	Sweeping-Traffic Overhead
	Summary

	Related Work
	Revocation Techniques
	Page-Table Techniques
	Garbage Collection
	Partial Temporal Safety
	Detection Methods
	Tagged Memory

	Conclusion
	References

