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Introduction

• A brief introduction to capabilities and the CHERI architecture

• What CHERI brings to the Digital Security by Design Challenge

• To learn more about the CHERI architecture and prototypes:

http://www.cheri-cpu.org/

• Watson, et al. An Introduction to CHERI, Technical Report
UCAM-CL-TR-941, Computer Laboratory, September 2019. (~40 pages)

• Watson, et al. Capability Hardware Enhanced RISC Instructions: 
CHERI Instruction-Set Architecture (Version 7), Technical Report 
UCAM-CL-TR-927, Computer Laboratory, June 2019. (~500 pages)
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Capability systems
• The capability system is a design pattern for how CPUs, languages, 

OSes, … can control access to resources

• Capabilities are communicable, unforgeable tokens of authority

• Capability-based systems are those in which resources are reachable only
via capabilities

• Capability systems limit the scope and spread of damage from 
accidental or intentional software misbehavior

• They do this by making it natural and efficient to implement, in 
software, two security design principles:

• The principle of least privilege dictates that software should run with the 
minimum privileges to perform its tasks

• The principle of intentional use dictates that when software holds multiple 
privileges, it must explicitly select which to exercise
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The CAP computer project ran from 
1970-1977 at the University of 
Cambridge, led by R. Needham, M. 
Wilkes, and D. Wheeler.



What is CHERI?
• CHERI is an architectural protection model

• Composes the capability-system model with hardware and software

• Adds new security primitives to Instruction-Set Architectures (ISAs)

• Implemented by microarchitectural extensions to the CPU/SoC

• Enables new security behavior in software

• CHERI mitigates vulnerabilities in C/C++ Trusted Computing Bases

• Hypervisors, operating systems, language runtimes, browsers, ….

• Fine-grained memory protection, scalable compartmentalization

• Directly impedes common exploit-chain tools used by attackers

• Mitigates many vulnerability classes .. even unknown future classes
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An early experimental FPGA-based 
CHERI tablet prototype running the 
CheriBSD operating system and 
applications, Cambridge, 2013



Hardware-software-semantics co-design
• Architectural mitigation for C/C++ TCB vulnerabilities

• Tagged memory, new hardware capability data type

• Model hybridizes cleanly with contemporary RISC ISAs, CPU designs, MMU-
based OSes, and C/C++-language software

• New hardware enables incremental software deployment

• Hardware-software-semantics co-design + concrete prototyping:

• CHERI abstract protection model; concrete ISA instantiations in 64-bit MIPS, 
32/64-bit RISC-V, 64-bit ARMv8-A

• Formal ISA models, Qemu-CHERI, and multiple FPGA prototypes

• Formal proofs that ISA security properties are met, automatic testing

• CHERI Clang/LLVM/LLD, CheriBSD, C/C++-language applications

• Repeated iteration to improve {performance, security, compatibility, ..}
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CHERI design goals and approach
• De-conflate memory virtualization and protection

• Memory Management Units (MMUs) protect by location (address)

• CHERI protect existing references (pointers) to code, data, objects

• Reusing existing pointer indirection avoids adding new 
architectural table lookups

• Architectural mechanism that enforces software policies

• Language-based properties – e.g., referential, spatial, and temporal 
integrity (C/C++ compiler, linkers, OS model, runtime, …)

• New software abstractions – e.g., software compartmentalization 
(confined objects for in-address-space isolation, …)
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CHERI 128-bit capabilities
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CHERI capabilities extend pointers with:

• Tags protect capabilities in registers and memory

• Dereferencing an untagged capability throws an exception

• In-memory overwrite automatically clears capability tag

• Bounds limit range of address space accessible via pointer

• Floating-point compressed 64-bit lower and upper bounds

• Strengthens larger allocation alignment requirements

• Out-of-bounds pointer support essential to C-language compatibility

• Permissions limit operations – e.g., load, store, fetch

• Sealing for encapsulation: immutable, non-dereferenceable



CHERI enforces protection semantics for pointers

• Integrity and provenance validity ensure that valid pointers are derived from other valid pointers 
via valid transformations; invalid pointers cannot be used
• E.g., Received network data cannot be interpreted as a code or data pointer

• Bounds prevent pointers from being manipulated to access the wrong object

• Bounds can be minimized by software – e.g., stack allocator, heap allocator, linker

• Monotonicity prevents pointer privilege escalation – e.g., broadening bounds

• Permissions limit unintended use of pointers; e.g., W^X for pointers

• These primitives not only allow us to implement strong memory protection, but also higher-level 
policies such as scalable software compartmentalization
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What are CHERI’s implications for software?
• Efficient fine-grained architectural memory protection enforces:

Provenance validity: Q:  Where do pointers come from?

Integrity: Q:  How do pointers move in practice?

Bounds, permissions: Q:  What rights should pointers carry? 

Monotonicity: Q:  Can real software play by these rules?

• Scalable fine-grained software compartmentalization

Q:  Can we construct isolation and controlled communication 
using integrity, provenance, bounds, permissions, and monotonicity?

Q:  Can sealed capabilities, controlled non-monotonicity, and 
capability-based sharing enable safe, efficient compartmentalization?
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CHERI-based process memory
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• Capabilities are substituted for integer addresses throughout the address space

• Bounds and permissions are minimized by software including the kernel, run-time 
linker, memory allocator, and compiler-generated code

• Hardware permits fetch, load, and store only through granted capabilities

• Tags ensure integrity and provenance validity of all pointers
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CHERI-based compartmentalization

• Isolated compartments can be created using closed graphs of capabilities, 
combined with a constrained non-monotonic domain-transition mechanism
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CHERI-ARM research since 2014
• Since 2014, in collaboration with Arm, we have been pursuing joint research to experimentally 

incorporate CHERI into ARMv8-A:

• Develop CHERI as an architecture-neutral and portable protection model implemented in 
multiple concrete architectures

• Refine and extend the CHERI architecture – e.g., capability compression, tagging µarch, 
domain transition, and temporal safety

• Apply concept of architecture neutrality to the CHERI-enabled software stack, including 
compiler, OS, and applications

• Expand software experimentation: large-scale application experiments, operating-system 
use, debuggers, …

• Extend work in formal modeling and security proofs to an industrial-scale architecture

• Solve arising practical {hardware, software, …} problems as part of the research

• Build evidence, demonstrations, SW templates to support potential CHERI adoption
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DARPA software prototype stack

• Complete hybrid software stack from bare metal up: compilers, 
toolchain, debuggers, operating systems, applications

• Focused on deploying CHERI incrementally, rather than clean-slate
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CHERI-extended Google Hafnium hypervisor

CHERI Clang/LLVM compiler suite, LLD, LLDB, GDB

CheriBSD/Morello (DARPA)
• FreeBSD kernel + userspace, application stack
• Kernel spatial and referential memory protection
• Userspace spatial, referential, and temporal memory protection
• Intra-process compartmentalization

Open-source application suite

Android (Arm)



Potential areas for CHERI research
(.. and there are many others as well ..)

Quantitative ISA optimization

Compiler semantics and optimization

Superscalar microarchitectures

Tag tables vs. native DRAM tags

Toolchain: linker, debugger, …

C++ compilation to CHERI

Growing the software corpus

CHERI and ISO C/POSIX APIs

Compartmentalization frameworks

MMU-free CHERI microkernel

Safe Foreign Function Interfaces (FFIs)

Safe inter-language interoperability

C-language temporal memory safety

Integration with managed languages

Formal proofs of ISA properties 

Formal proofs of software properties

Verified hardware implementations

Use with large or non-volatile memory

Security analysis and red teaming

Microarchitectural optimization opportunities 
from exposed software semantics

MMU-free HW designs for IoT
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Invitation to collaborate
• It is an exciting moment for CHERI

• Finally able to talk about a significant industrial collaboration

• Experimental adaptations to mainstream architecture(s)

• Rich and maturing software baselines for experimentation

• Strong formal foundations available to be built on

• New research funding program create opportunity to broaden collaborations and 
bring new ideas and expertise to CHERI

• EPSRC and ESRC calls around the CHERI technology and possible deployment

• Many new things to learn – we’ve done a lot with CHERI, but the more we do, the 
more we learn remains to be done!

www.cheri-cpu.org
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