
Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL), under contract FA8750-10-C-0237. The views, opinions, and/or findings contained in this article/presentation are those of the
author(s)/presenter(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

CHERI
Capability Hardware Enhanced RISC Instructions

Robert N. M. Watson, Simon W. Moore, Peter Sewell, Peter G. Neumann
Hesham Almatary, Jonathan Anderson, John Baldwin, Hadrien Barrel, Ruslan Bukin, David Chisnall, James Clarke, Nirav Dave,

Brooks Davis, Lawrence Esswood, Nathaniel W. Filardo, Khilan Gudka, Alexandre Joannou, Robert Kovacsics, Ben Laurie,
A.Theo Markettos, J. Edward Maste, Alfredo Mazzinghi, Alan Mujumdar, Prashanth Mundkur, Steven J. Murdoch, Edward Napierala,
Robert Norton-Wright, Philip Paeps, Lucian Paul-Trifu, Alex Richardson, Michael Roe, Colin Rothwell, Peter Rugg, Hassen Saidi,
Peter Sewell, Stacey Son, Domagoj Stolfa, Andrew Turner, MunrajVadera, Jonathan Woodruff, Hongyan Xia, and Bjoern A. Zeeb

University of Cambridge and SRI International
InnovateUK Digital Security by Design Challenge – Collaborators’ Workshop – 26 September 2019

Approved for public release; distribution is unlimited.

This work was supported by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL), under contract FA8750-10-C-0237 (“CTSRD”), with additional support from FA8750-11-C-0249
(“MRC2”), HR0011-18-C-0016 (“ECATS”), and FA8650-18-C-7809 (“CIFV”) as part of the DARPA CRASH, MRC, and
SSITH research programs.

The views, opinions, and/or findings contained in this report are those of the authors and should not be interpreted as
representing the official views or policies of the Department of Defense or the U.S. Government.

We also acknowledge the EPSRC REMS Programme Grant (EP/K008528/1), the ERC ELVER Advanced Grant (789108),
the Isaac Newton Trust, the UK Higher Education Innovation Fund (HEIF), Thales E-Security, Microsoft Research
Cambridge, Arm Limited, Google, Google DeepMind, HP Enterprise, and the Gates Cambridge Trust.

2

Introduction

• A brief introduction to capabilities and the CHERI architecture

• What CHERI brings to the Digital Security by Design Challenge

• To learn more about the CHERI architecture and prototypes:

http://www.cheri-cpu.org/

• Watson, et al. An Introduction to CHERI, Technical Report
UCAM-CL-TR-941, Computer Laboratory, September 2019. (~40 pages)

• Watson, et al. Capability Hardware Enhanced RISC Instructions:
CHERI Instruction-Set Architecture (Version 7), Technical Report
UCAM-CL-TR-927, Computer Laboratory, June 2019. (~500 pages)

3

https://www.cheri-cpu.org/

Capability systems
• The capability system is a design pattern for how CPUs, languages,

OSes, … can control access to resources

• Capabilities are communicable, unforgeable tokens of authority

• Capability-based systems are those in which resources are reachable only
via capabilities

• Capability systems limit the scope and spread of damage from
accidental or intentional software misbehavior

• They do this by making it natural and efficient to implement, in
software, two security design principles:

• The principle of least privilege dictates that software should run with the
minimum privileges to perform its tasks

• The principle of intentional use dictates that when software holds multiple
privileges, it must explicitly select which to exercise

4

The CAP computer project ran from
1970-1977 at the University of
Cambridge, led by R. Needham, M.
Wilkes, and D. Wheeler.

What is CHERI?
• CHERI is an architectural protection model

• Composes the capability-system model with hardware and software

• Adds new security primitives to Instruction-Set Architectures (ISAs)

• Implemented by microarchitectural extensions to the CPU/SoC

• Enables new security behavior in software

• CHERI mitigates vulnerabilities in C/C++ Trusted Computing Bases

• Hypervisors, operating systems, language runtimes, browsers, ….

• Fine-grained memory protection, scalable compartmentalization

• Directly impedes common exploit-chain tools used by attackers

• Mitigates many vulnerability classes .. even unknown future classes

5

An early experimental FPGA-based
CHERI tablet prototype running the
CheriBSD operating system and
applications, Cambridge, 2013

Hardware-software-semantics co-design
• Architectural mitigation for C/C++ TCB vulnerabilities

• Tagged memory, new hardware capability data type

• Model hybridizes cleanly with contemporary RISC ISAs, CPU designs, MMU-
based OSes, and C/C++-language software

• New hardware enables incremental software deployment

• Hardware-software-semantics co-design + concrete prototyping:

• CHERI abstract protection model; concrete ISA instantiations in 64-bit MIPS,
32/64-bit RISC-V, 64-bit ARMv8-A

• Formal ISA models, Qemu-CHERI, and multiple FPGA prototypes

• Formal proofs that ISA security properties are met, automatic testing

• CHERI Clang/LLVM/LLD, CheriBSD, C/C++-language applications

• Repeated iteration to improve {performance, security, compatibility, ..}
6

Instruction
Fetch

Register
Fetch Decode Execute Writeback

Capability Coprocessor

Instruction Cache MMU: TLB Data Cache

Memory

Memory
Access

L2 Cache

Tag Controller

Implementation on FPGA

CHERI design goals and approach
• De-conflate memory virtualization and protection

• Memory Management Units (MMUs) protect by location (address)

• CHERI protect existing references (pointers) to code, data, objects

• Reusing existing pointer indirection avoids adding new
architectural table lookups

• Architectural mechanism that enforces software policies

• Language-based properties – e.g., referential, spatial, and temporal
integrity (C/C++ compiler, linkers, OS model, runtime, …)

• New software abstractions – e.g., software compartmentalization
(confined objects for in-address-space isolation, …)

7

CHERI 128-bit capabilities

8

12
8-

bi
t

ca
pa

bi
lit

y

Allocation

Virtual
address
space

v

1-
bi

t
ta

g
permissions

Bounds compressed
relative to address

otype

Virtual address (64 bits)

CHERI capabilities extend pointers with:

• Tags protect capabilities in registers and memory

• Dereferencing an untagged capability throws an exception

• In-memory overwrite automatically clears capability tag

• Bounds limit range of address space accessible via pointer

• Floating-point compressed 64-bit lower and upper bounds

• Strengthens larger allocation alignment requirements

• Out-of-bounds pointer support essential to C-language compatibility

• Permissions limit operations – e.g., load, store, fetch

• Sealing for encapsulation: immutable, non-dereferenceable

CHERI enforces protection semantics for pointers

• Integrity and provenance validity ensure that valid pointers are derived from other valid pointers
via valid transformations; invalid pointers cannot be used
• E.g., Received network data cannot be interpreted as a code or data pointer

• Bounds prevent pointers from being manipulated to access the wrong object

• Bounds can be minimized by software – e.g., stack allocator, heap allocator, linker

• Monotonicity prevents pointer privilege escalation – e.g., broadening bounds

• Permissions limit unintended use of pointers; e.g., W^X for pointers

• These primitives not only allow us to implement strong memory protection, but also higher-level
policies such as scalable software compartmentalization

Data

Heap Stack

Code

Control flow

Monotonicity PermissionsIntegrity and
provenance validity Bounds

9

What are CHERI’s implications for software?
• Efficient fine-grained architectural memory protection enforces:

Provenance validity: Q: Where do pointers come from?

Integrity: Q: How do pointers move in practice?

Bounds, permissions: Q: What rights should pointers carry?

Monotonicity: Q: Can real software play by these rules?

• Scalable fine-grained software compartmentalization

Q: Can we construct isolation and controlled communication
using integrity, provenance, bounds, permissions, and monotonicity?

Q: Can sealed capabilities, controlled non-monotonicity, and
capability-based sharing enable safe, efficient compartmentalization?

10

CHERI-based process memory

11

• Capabilities are substituted for integer addresses throughout the address space

• Bounds and permissions are minimized by software including the kernel, run-time
linker, memory allocator, and compiler-generated code

• Hardware permits fetch, load, and store only through granted capabilities

• Tags ensure integrity and provenance validity of all pointers

Memory
StackCode

Heap
Implied
pointer

Explicit
pointer

…

Thread
register

file

PLTs

Globals

captable

DDC

PCC

GPRs

NULL

NULL

NULL

CHERI-based compartmentalization

• Isolated compartments can be created using closed graphs of capabilities,
combined with a constrained non-monotonic domain-transition mechanism

12

Shared virtual address space

Register
fileProtection

domain
A

Protection
domain

B

Shared
heap

Domain-specific
captables + PLTs

Domain-specific
stacks

Domain-specific
globals

Heap
allocations

Register
file Domain B

heap

Domain A
heap

Cross-
domain

resources

Shared
code

Implied
pointer

Explicit
pointer

Protection
domain A

Protection
Domain B

Flexible set of
shared resources

CHERI-ARM research since 2014
• Since 2014, in collaboration with Arm, we have been pursuing joint research to experimentally

incorporate CHERI into ARMv8-A:

• Develop CHERI as an architecture-neutral and portable protection model implemented in
multiple concrete architectures

• Refine and extend the CHERI architecture – e.g., capability compression, tagging µarch,
domain transition, and temporal safety

• Apply concept of architecture neutrality to the CHERI-enabled software stack, including
compiler, OS, and applications

• Expand software experimentation: large-scale application experiments, operating-system
use, debuggers, …

• Extend work in formal modeling and security proofs to an industrial-scale architecture

• Solve arising practical {hardware, software, …} problems as part of the research

• Build evidence, demonstrations, SW templates to support potential CHERI adoption

13

DARPA software prototype stack

• Complete hybrid software stack from bare metal up: compilers,
toolchain, debuggers, operating systems, applications

• Focused on deploying CHERI incrementally, rather than clean-slate
14

CHERI-extended Google Hafnium hypervisor

CHERI Clang/LLVM compiler suite, LLD, LLDB, GDB

CheriBSD/Morello (DARPA)
• FreeBSD kernel + userspace, application stack
• Kernel spatial and referential memory protection
• Userspace spatial, referential, and temporal memory protection
• Intra-process compartmentalization

Open-source application suite

Android (Arm)

Potential areas for CHERI research
(.. and there are many others as well ..)

Quantitative ISA optimization

Compiler semantics and optimization

Superscalar microarchitectures

Tag tables vs. native DRAM tags

Toolchain: linker, debugger, …

C++ compilation to CHERI

Growing the software corpus

CHERI and ISO C/POSIX APIs

Compartmentalization frameworks

MMU-free CHERI microkernel

Safe Foreign Function Interfaces (FFIs)

Safe inter-language interoperability

C-language temporal memory safety

Integration with managed languages

Formal proofs of ISA properties

Formal proofs of software properties

Verified hardware implementations

Use with large or non-volatile memory

Security analysis and red teaming

Microarchitectural optimization opportunities
from exposed software semantics

MMU-free HW designs for IoT

15

Invitation to collaborate
• It is an exciting moment for CHERI

• Finally able to talk about a significant industrial collaboration

• Experimental adaptations to mainstream architecture(s)

• Rich and maturing software baselines for experimentation

• Strong formal foundations available to be built on

• New research funding program create opportunity to broaden collaborations and
bring new ideas and expertise to CHERI

• EPSRC and ESRC calls around the CHERI technology and possible deployment

• Many new things to learn – we’ve done a lot with CHERI, but the more we do, the
more we learn remains to be done!

www.cheri-cpu.org

16

