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Introduction
• A little about the CHERI architecture

• Software implications of architectural memory protection at scale

• (Fine-grained software compartmentalization is another talk)

• To learn more about the CHERI architecture and prototypes:

https://www.cheri-cpu.org/

• Watson, et al. Capability Hardware Enhanced RISC Instructions: CHERI 
Instruction-Set Architecture (Version 6), Technical Report UCAM-CL-TR-907, 
Computer Laboratory, April 2017.

• Davis, et al. CheriABI: Enforcing Valid Pointer Provenance and Minimizing 
Pointer Privilege in the POSIX C Run-time Environment, ASPLOS 2019.

• Also of interest: Watson, et al. Capability Hardware Enhanced RISC 
Instructions (CHERI): Notes on the Meltdown and Spectre Attacks, 
Technical Report UCAM-CL-TR-916, Computer Laboratory, February 2018.
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(Lack of) architectural least privilege
• Classical buffer-overflow attack

1. Buggy code overruns a buffer, overwrites return address 
with attacker-provided value

2. Overwritten return address is loaded and jumped to, 
allowing the attacker to manipulate control flow

• These privileges were not required by the C 
language; why allow code the ability to:
• Write outside the target buffer?
• Corrupt or inject a code pointer?
• Execute data as code / re-use code?

• Limiting privilege doesn’t fix bugs – but
does provide vulnerability mitigation

Ø Memory Management Units (MMUs) do not enable 
efficient, fine-grained privilege reduction3
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Software compartmentalization decomposes software into
isolated compartments that are delegated limited rights

Application-level least privilege

Able to mitigate not only unknown vulnerabilities, but also
as-yet undiscovered classes of vulnerabilities and exploits

Potential compartmentalization 
boundaries matching reasonable 
user expectations for least privilege
can be found in many user-facing apps. 

E.g., a malicious email attachment 
should not be able  to gain access to 
other attachments, messages, folders, 
accounts, or the system as a whole.



5

HTTP GET
sandbox

5. fetch

URL-specific sandbox
URL-specific sandbox

SSL
sandbox

HTTPS
sandbox

network
sandbox

Code-centred compartmentalisation

D
at

a-
ce

nt
er

ed
 c

om
pa

rtm
en

ta
lis

at
io

n

1. fetch
main loop

http

ssl

ftp

URL-specific sandbox

main loop

http

ssl

ftp

FTP
sandbox

2. fetch
main loop

http

ssl

ftp

HTTP
sandbox

3. fetch
main loop

http

ssl

FTP
sandbox

ftp

SSL
sandbox

HTTP auth
sandbox

4. fetch
main loop

http auth

ssl

FTP
sandbox

ftp http get

• Potential decompositions occupy a compartmentalization space:

• Points trade off security against performance, program complexity

• Increasing compartmentalization granularity better approximates 
the principle of least privilege …

• … but MMU-based architectures do not scale to many processes:

• Poor spatial protection granularity

• Limited simultaneous-process scalability

• Multi-address-space programming model



HARDWARE-SOFTWARE
CO-DESIGN FOR CHERI
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Hardware-software co-design over 8 years
• SRI + Cambridge over three DARPA programs (~$26M), EPSRC REMS, (£5.6M) 

Industrial: Google / DeepMind / Arm / HPE / … (~£750K)

• Architectural mitigation for C/C++ TCB vulnerabilities
• Tagged memory, capability pointer representation
• Fine-grained pointer and memory protection
• Highly scalable software compartmentalization
• Hybrid capability system for incremental adoption

• Least-privilege, capability-oriented design mitigates many known
(and unknown future) classes of vulnerabilities + exploit techniques

• Hardware-software-model co-design + concrete prototyping:

• CHERI abstract protection model, CHERI-MIPS concrete ISA
• 2x CHERI-MIPS ISA formal models, Qemu-CHERI, FPGA prototypes
• CHERI Clang/LLVM, CheriBSD OS, C/C++-language applications
• Repeated iteration to improve {overhead, security, compatibility, ..}
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CHERI research and development timeline

Years 1-2: Research platform, prototype architecture

Years 2-4: Hybrid C/OS model, compartment model

Years 4-7: Efficiency, software stack at scale

CHERI ISAv6 in 2017; CHERI ISAv7 due 2019
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CHERI ISA Refinement over 9 years
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Year Version Description

2010-2012 ISAv1
RISC capability-system model w/64-bit MIPS
Capability registers, tagged memory
Guarded manipulation of registers

2012 ISAv2
Extended tagging to capability registers
Capability-aware exception handling
Boots an MMU-based OS with CHERI support

2014 ISAv3
Fat pointers + capabilities, compiler support
Instructions to optimize hybrid code
Sealed capabilities, CCall/CReturn

2015 ISAv4
MMU-CHERI integration (TLB permissions)
ISA support for compressed 128-bit capabilities
HW-accelerated domain switching
Multicore instructions: full suite of LL/SC variants

2016 ISAv5
CHERI-128 compressed capability model
Improved generated code efficiency
Initial in-kernel privilege limitations

2017 ISAv6

Mature kernel privilege limitations
Further generated code efficiency
Architectural portability: CHERI-x86 and CHERI-RISC-V sketches
Exception-free domain transition

2019 ISAv7

64-bit capabilities for 32-bit architectures
Elaborated draft CHERI-RISC-V ISA
Architectural performance optimization for C++ applications
Temporal memory safety
Microarchitectural side-channel resistance features
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CHERI PROTECTION MODEL
AND ARCHITECTURE
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CHERI design goals and approach (1)
• Architectural security to mitigate C/C++ TCB vulnerabilities

• Efficient primitives allow software to ubiquitously employ the
principle of least privilege and principle of intentional use

• De-conflate virtualization and protection

• Memory Management Units (MMUs) protect by location in memory

• CHERI protects references (pointers) to code, data, objects

• Capabilities can also be used to describe scalable isolated 
compartments with efficient sharing within address spaces

• Capabilities add protection properties to existing indirection
(pointers), avoiding adding new architectural table lookups
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CHERI design goals and approach (2)
• Hybrid capability architecture

• Model composes naturally with RISC ISAs, MMUs, MMU-based 
systems software, C/C++ languages

• Capabilities protect resources within virtual address spaces
• Supports incremental software deployment paths

• Architectural mechanism can enforce various software policies

• Language-based properties – e.g., referential, spatial, and temporal 
integrity (e.g., C/C++ compiler, linkers, OS model, runtime)

• New software abstractions – e.g., software compartmentalization
(e.g., confined objects for in-address-space isolation)
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CHERI design goals and approach (3)
• Limited + selective disruption to current architecture, microarchitecture

• Retain almost vast majority of current RISC / load-store ISAs including 
register structure and supervisor features such as the MMU

• Introduce capability registers and instructions

• Introduce compressed capability model

• Interpose on I-fetch and legacy load/store instructions

• Constrain privileged instructions to allow kernel sandboxing

• Introduce capability-width physical memory tagging

• Implementation is consistent with current design tenets for in-order 
and superscalar processors, cache-based memory subsystems

• Key contributions include capability compression, tag support
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CHERI software protection goals
• C/C++-language TCBs: kernels, language runtimes, browsers, …

• Granular spatial memory protection, pointer protection

• Buffer overflows, control-flow attacks (ROP, JOP), …

• Foundations for temporal safety

• E.g., accurate C-language garbage collection

• Higher-level language safety

• Safe interfaces to native code (e.g., impose Java memory safety on JNI)

• Efficient memory safety (e.g., HW assist on bounds checking)

• Scalable in-process compartmentalization

• Facilitate exploit-independent mitigation techniques
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CHERI enforces protection semantics for pointers

• Integrity and provenance validity ensure that valid pointers are derived from 
other valid pointers via valid transformations; invalid pointers cannot be used

• E.g., Received network data cannot be interpreted as a code or data pointer

• Bounds prevent pointers from being manipulated to access the wrong object

• Bounds can be minimized by software – e.g., stack allocator, heap allocator, linker

• Monotonicity prevents pointer privilege escalation – e.g., broadening bounds

• Permissions limit unintended use of pointers; e.g., W^X for pointers

Data

Heap Stack

Code

Control flow

Monotonicity PermissionsIntegrity and
provenance validity Bounds
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virtual address (64 bits)

Pointers today
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• Implemented as integer virtual addresses (VAs)

• (Usually) point into allocations, mappings

• Derived from other pointers via integer arithmetic

• Dereferenced via jump, load, store

• No integrity protection – can be injected/corrupted

• Arithmetic errors – out-of-bounds leaks/overwrites

• Inappropriate use – executable data, format strings

Ø Attacks on data and code pointers are highly effective, often 
achieving arbitrary code execution
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Protection model: 256-bit capabilities

CHERI capabilities extend pointers with:

• Tags protect capabilities in registers and memory:
• Dereferencing an untagged capability throws an exception

• In-memory overwrite automatically clears capability tag
• Bounds limit range of address space accessible via pointer

• Permissions limit operations – e.g., load, store, fetch
• Sealing for encapsulation: immutable, non-dereferenceable
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Architecture:128-bit compressed capabilities
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• Compress bounds relative to 64-bit virtual address

• Floating-point bounds mechanism constrains bounds alignment

• Security properties maintained (e.g., provenance, monotonicity)

• Formats for sealed, non-sealed capabilities invest bits differently

• Strong C-language support (e.g., for out-of-bound pointers)

• DRAM tag density from 0.4% to 0.8% of physical memory size

• Full prototype with full software stack on FPGA



Mapping CHERI into 64-bit MIPS

• Capability register file holds in-use capabilities (code and data pointers)

• Tagged memory protects capability-sized and -aligned words in DRAM

• Program-counter capability ($pcc) constrains program counter ($pc)

• Default data capability ($ddc) constrains legacy MIPS loads/stores

• System control registers are also extended – e.g., $epc→$epcc, TLB

• Other concrete ISA instantiations are possible: e.g., merged register files
19
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FINE-GRAINED MEMORY PROTECTION
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What are CHERI’s implications for software?
• Efficient fine-grained architectural memory protection enforces:

Provenance validity: Q:  Where do pointers come from?

Integrity: Q:  How do pointers move in practice?

Bounds, permissions: Q:  What rights should pointers carry? 

Monotonicity: Q:  Can real software play by these rules?

• Scalable fine-grained software compartmentalization

Q:  Can we construct isolation and controlled communication 
using integrity, provenance, bounds, permissions, and monotonicity?

Q:  Can sealed capabilities, controlled non-monotonicity, and 
capability-based sharing enable safe, efficient compartmentalization?
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Hybrid-capability
userspace

From hybrid-capability code to pure-capability code
• n64 MIPS ABI: hybrid-capability code
• Early investigation – manual 

annotation and C semantics

• Many pointers are integers (including 
syscall arguments, most implied VAs)

• CheriABI: pure-capability code
• The last two years – fully automatic 

use of capabilities wherever possible

• All pointers, implied virtual addresses 
are capabilities (inc. syscall arguments)

• Now investigating pure-capability kernel
22
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CheriABI co-design methodology

• Develop pure-capability CHERI Clang/LLVM compiler suite

• Develop pure-capability CheriABI POSIX process environment

• Adapt complete UNIX system and its applications

• Measure compatibility, performance, protection, …

• Revise hardware, architecture, compiler/linker, OS, applications

• Rinse, repeat
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CheriABI: A full pure-capability OS userspace
• Complete memory- and pointer-safe FreeBSD C/C++ userspace

• System libraries: crt/csu, libc, zlib, libxml, libssl, …

• System tools and daemons: echo, sh, ls, openssl, ssh, sshd, …

• Applications: PostgreSQL, nginx, WebKit (C++)

• Valid provenance, minimized privilege for pointers, implied VAs

• Userspace capabilities originate in kernel-provided roots

• Compiler, allocators, run-time linker, etc., refine bounds and perms

• Trading off privilege minimization, monotonicity, API conformance

• Typically in memory management – realloc(), mmap() + mprotect()
24



OS changes required for CheriABI
(A grand tour of low-level OS behavior)
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Hybrid ABI = MIPS ABI + …
• Kernel support for tagged memory, 

capability context switching, etc.
• Tag-preserving libc: memory copy, memory 

move, sort, …
• Bounds-aware malloc(), realloc(), free(), …
• setjmp(), longjmp(), sigcontext / signal 

delivery, pthreads updates for capabilities
• Run-time linkage for capability-based 

references to globals, code, vtables, etc. 
(bounds, permissions, …)

• Debugging APIs such as ptrace()

CheriABI = Hybrid ABI + …

• Kernel support for pure-capability userspace

• C start-up/runtime (CSU/CRT) changes

• Initial process state: reduced initial capability 
registers, ELF aux args, sigcode, etc.

• Pointer arguments/return values for syscalls
are now capabilities, …

• Review and fix tag preservation, 
integer/pointer provenance and casts

• Run-time linkage for globals, code, vtables, etc. 
(bounds, permissions, …)



Evaluating memory-protection compatibility
Approach: Prototype (1) “pure-capability” C compiler (Clang/LLVM) and (2) full OS 
(FreeBSD) that use capabilities for all explicit or implied userspace pointers

Goal: Little or no software modification (BSD base system + utilities)
Small changes to source files for 34 of 824 programs, 28 of 130 libraries.
Overall: modified ~200 of ~20,000 user-space C files/header

Goal: Software that works (BSD base + utilities test suites)
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Pointer + integer 
integrity, prov.

Pointer size 
& alignment

Monotonicity Calling 
conventions

Unsupported 
features

BSD headers 11 6 0 2 0

BSD libraries 83 36 4 41 22

BSD programs 24 9 1 11 2

Pass Fail* Skip Total

MIPS 3501 (91%) 90 244 3835

Pure capability 3301 (90%) 122 246 3669

* Test failure investigation remains a work-in
progress; we believe these can be resolved



Evaluating memory-protection impact
• Adversarial / historical vulnerability analysis

üPointer integrity, provenance validity prevent ROP, JOP

üBuffer overflows: Heartbleed (2014), Cloudbleed (2017)

üPointer provenance: Stack Clash (2017)

• Existing test suites – e.g., BOdiagsuite (buffer overflows)

• Key evaluation concern: reasoning about a CHERI-aware adversary
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OK min med large

mips64 0 4 8 175

CheriABI 0 279 289 291

LLVM Address Sanitizer (asan) on x86 0 276 286 286



Performance
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Impact in CHERI-MIPS typically less than 5%
Key overhead: higher pointer-density applications see increased cache pressure

Small print: 100MHz pipelined 64-bit MIPS core with CHERI extensions, 32KiB L1, 256 KiB L2 on FPGA
Similar core to ARM Cortex A53 but without prefetching.



Trace-based analysis using tagged pointers
• CHERI tags pointers in 

hardware, so we can find 
them in registers and memory

• Extract detailed execution 
traces in Qemu and FPGA

• Construct pointer 
provenance graphs

• Pattern match and measure:

allocations (stack, heap, …),
propagation of capabilities, 
rights refinements,
data and capability leaks, etc.

• Evaluate temporal aspects
29
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Most capabilities bound 
small regions (<<1page)

Stack references

Small number of 
whole address-space 
references remain in 

startup code

Better

Capability bounds (OpenSSL)
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SOFTWARE 
COMPARTMENTALIZATION
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Principles of CHERI compartmentalization (Oakland 2015)

• A thread’s protection domain is its transitively reachable 
capabilities (i.e., via held in registers, loadable into registers)

• Manipulation of the capability graph can implement isolation, 
controlled communication, and domain transition

• We can then construct an compartmentalized security models;
e.g., classes, objects, shared memory, and object invocation
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JamVM

CHERI-JNI: Protecting Java from JNI (ASPLOS 2017)
• Java Native Interface (JNI) allows Java programs to use 

native code for performance, portability, functionality

• Often fragile; sometimes overtly insecure

• Apply Java memory-safety and security models to JNI

• Limit native-code access to JVM internal state

• Pointer, spatial memory safety for native code

• Temporal safety for JNI heap access w/C-language GC

• Safe copy-free JNI access to Java buffers via capabilities

• Enforces Java security model on JNI access to Java 
objects and system services (e.g., files, sockets)

• Prototyped using JamVM on CHERI-MIPS, CheriBSD
33
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WHERE NEXT?
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Ongoing research
Quantitative ISA optimization

Compiler optimization

Superscalar microarchitectures

Tag tables vs. native DRAM tags

Toolchain: linker, debugger, …

C++ compilation to CHERI

Growing the software corpus

CHERI and ISO C/POSIX APIs

Sandbox frameworks into CHERI

MMU-free CHERI microkernel

Safe native-code interfaces (JNI)

Safe inter-language interoperability

C-language garbage collection

Accelerating managed languages

Formal proofs of ISA properties 

Formal proofs of software properties

Verified hardware implementations

Non-volatile memory

Pointer-based security analysis from traces

Microarchitectural optimization opportunities 
from exposed software semantics

MMU-free HW designs for “IoT”
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Ongoing HW-SW security research projects
• EPSRC IOSEC – Research into I/O-originated adversaries

• NDSS 2019: Thunderclap – OS IOMMU vulnerabilities

• DARPA ECATS – CHERI + SoCs  – SRI, Cambridge,  ARM Research

• CHERI for 32-bit microcontrollers

• CHERI-RISC-V

• CHERI interactions with DMA and heterogenous compute

• Containing untrustworthy IP cores in CHERI-aware SoCs

• DARPA CIFV – Formal modeling/reasoning – SRI, Cambridge, Arm Research

• Formal models of CHERI-enabled architectures

• Formal verification of CHERI architectural security properties
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Extensive open-source ecosystem
and academic publication record

• Unique hardware – software – formal-model co-design process

• Memory protection + compartmentalization for MIPS, RISC-V,  ARMv8, ARM-M
• Papers at ISCA’14, ASPLOS’15, IEEE S&P’15, ACM CCS’15, PLDI’2016, ASPLOS’17, 

ICCD’17, ICCD’18, POPL’19, NDSS’19, and ASPLOS’19
• Research featured in the Register (2019), the New Scientist (2018), the 

Economist (2014), and New York Times (2012)

• Sail formal ISA models of CHERI-MIPS (and soon CHERI-RISC-V) convert to Isabelle, 
HOL, and Coq to allow formal verification of security properties

• Open-source CHERI-MIPS and CHERI-RISC-V CPU cores in Bluespec SystemVerilog
(BSV) targeted at FPGA and cycle-accurate C simulation

• Open-source compiler, linker, debugger, and OS including Clang/LLVM and full 
memory-safety FreeBSD UNIX implementation

• Typical cycle overheads <5% for workloads on multiple microarchitectures

• Multi-year collaboration with Arm
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Conclusion
• New architectural primitives require software adaptation and rich evaluation

• Primitives support many potential usage patterns, use cases

• Applicable uses depend on compatibility, performance, effectiveness

• Best validation approach: full hardware-software prototype

• Co-design methodology: hardware ↔ architecture ↔ software

• CheriABI explores ubiquitous pointer and spatial memory protection in the MMU-
based POSIX process model

• Tradeoffs around language semantics, security effects

• Good compatibility, strong protection, reasonable overheads

• Exposing greater program semantics to architecture assists with efficient protection –
but could it have other benefits (e.g., in microarchitecture?)

https://www.cheri-cpu.org/
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Learning more about CHERI
http://www.cheri-cpu.org/

Watson, Moore, Neumann, et al. Capability Hardware Enhanced 
RISC Instructions: CHERI Instruction-Set Architecture 
(Version 6), Technical Report UCAM-CL-TR-907, Computer 
Laboratory, April 2017.

CHERI ISAv7-alpha4 (draft) available on request; technical report 
due for release in early 2019
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