
CheriABI: Enforcing Valid Pointer Provenance and
Minimizing Pointer Privilege in the POSIX C

Run-time Environment

Brooks Davis∗
brooks.davis@sri.com

Robert N. M. Watson†
robert.watson@cl.cam.ac.uk

Alexander Richardson†
alexander.richardson@cl.cam.ac.uk

Peter G. Neumann∗
peter.neumann@sri.com

Simon W. Moore†
simon.moore@cl.cam.ac.uk

John Baldwin‡
john@araratriver.co

David Chisnall§
David.Chisnall@microsoft.com

Jessica Clarke†
jessica.clarke@cl.cam.ac.uk

Nathaniel Wesley Filardo†
nwf20@cam.ac.uk

Khilan Gudka†
khilan.gudka@cl.cam.ac.uk

Alexandre Joannou†
alexandre.joannou@cl.cam.ac.uk

Ben Laurie¶
benl@google.com

A. Theodore Markettos†
theo.markettos@cl.cam.ac.uk

J. Edward Maste†
emaste@freebsd.org

Alfredo Mazzinghi†
am2419@cam.ac.uk

Edward Tomasz Napierala†
trasz@freebsd.org

Robert M. Norton†
robert.norton@cl.cam.ac.uk

Michael Roe†
michael.roe@cl.cam.ac.uk

Peter Sewell†
peter.sewell@cl.cam.ac.uk

Stacey Son†
sson@me.com

Jonathan Woodruff†
jonwoodruff@gmail.com

∗SRI International, Menlo Park, CA, United States †University of Cambridge, Cambridge, UK
‡Ararat River Consulting, Walnut Creek, CA, United States §Microsoft Research, Cambridge, UK

¶Google Inc., London, UK

Abstract
The CHERI architecture allows pointers to be implemented
as capabilities (rather than integer virtual addresses) in a
manner that is compatible with, and strengthens, the seman-
tics of the C language. In addition to the spatial protections
offered by conventional fat pointers, CHERI capabilities offer
strong integrity, enforced provenance validity, and access
monotonicity. The stronger guarantees of these architec-
tural capabilities must be reconciled with the real-world

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS’19, April 13–17, 2019, Providence, RI, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN ISBN 978-1-4503-6240-5/19/04. . . $15.00
https://doi.org/10.1145/3297858.3304042

behavior of operating systems, run-time environments, and
applications. When the process model, user-kernel interac-
tions, dynamic linking, and memory management are all
considered, we observe that simple derivation of architec-
tural capabilities is insufficient to describe appropriate access
to memory. We bridge this conceptual gap with a notional
abstract capability that describes the accesses that should be
allowed at a given point in execution, whether in the kernel
or userspace. To investigate this notion at scale, we describe
the first adaptation of a full C-language operating system
(FreeBSD) with an enterprise database (PostgreSQL) for com-
plete spatial and referential memory safety. We show that
awareness of abstract capabilities, coupled with CHERI archi-
tectural capabilities, can provide more complete protection,
strong compatibility, and acceptable performance overhead
compared with the pre-CHERI baseline and software-only
approaches. Our observations also have potentially signifi-
cant implications for other mitigation techniques.

https://doi.org/10.1145/3297858.3304042

CCSConcepts • Security andprivacy→Operating sys-
tems security; Security in hardware; • Software and its
engineering→ Maintaining software.

Keywords security, operating systems, hardware, CHERI
ACM Reference Format:
Brooks Davis, Robert N. M. Watson, Alexander Richardson, Peter G.
Neumann, Simon W. Moore, John Baldwin, David Chisnall, Jessica
Clarke, Nathaniel Wesley Filardo, Khilan Gudka, Alexandre Joan-
nou, Ben Laurie, A. Theodore Markettos, J. Edward Maste, Alfredo
Mazzinghi, Edward Tomasz Napierala, Robert M. Norton, Michael
Roe, Peter Sewell, Stacey Son, and Jonathan Woodruff. 2019. Cheri-
ABI: Enforcing Valid Pointer Provenance and Minimizing Pointer
Privilege in the POSIX C Run-time Environment. In Proceedings of
2019 Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS’19). ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3297858.3304042

1 Introduction
Conventional architectures and C programming language
implementations provide only coarse-grained protection
against memory errors. At run time, they represent memory
addresses simply as integers, and constrain how they can be
used with page-based memory-management units (MMUs).
This coarseness is the enabling root cause of large classes of
software vulnerabilities, allowing simple bugs (which con-
ventional engineering techniques cannot reliably exclude)
to be escalated to loss of data integrity and confidentiality
and to arbitrary code execution [41].

The MMUs found in contemporary processors are the re-
sult of a long co-evolution with the Multics (and then UNIX)
process models [13, 35], to provide process-granularity fault
isolation. Programs reside in virtual memory, giving separate
scopes to the pointers (integers) used by each process. MMUs
conflate protection and translation: the granularity of both
is one virtual page. When OS kernels act on userspace, e.g.,
via pointers passed in to system calls, they must act on the
correct set of physical pages corresponding to the process.
However, the table-driven approaches of modern MMUs

do not scale easily to handle finer-grain protection, e.g., for
language-defined objects – often much smaller than a page
or not sized in whole pages. Besides, the MMU still does not
distinguish virtual addresses from arbitrary integers: while
the MMU protects the structure of the virtual memory space,
the references to virtual memory (i.e., integers implementing
pointers) are unprotected.
In thinking how we can improve this situation, we are

guided by two underlying principles. The first is the principle
of least privilege, a classic in computer security: greater secu-
rity can be obtained by minimizing the privileges accessible
to running software [37]. The second, newly identified dur-
ing our work, is the principle of intentional use: where a set
of privileges is available to a piece of software, an invoked
privilege should be selected explicitly rather than implicitly,
e.g., by selecting a specific capability with just the required

privileges, rather than via an arbitrary table search. The prin-
ciple of intentional use covers not only minimizing privileges
overtly used, but also not discarding valuable information
during program compilation. For example, out-of-bounds
speculative reads could be avoided if the length of a buffer
were available to the hardware.

The application of these principles limits the scope of
attacker behavior when exploiting a bug, and, in the context
of C-language memory protection, limits the effectiveness of
attackers in injecting, manipulating, or abusing pointers in
the run-time environment – whether explicit (i.e., declared
code or data pointers) or implied (e.g., as used in generated
code to implement global variables or return addresses, or
by the runtime to implement cross-library control flow). We
envisage a conceptual model in which:

• memory accesses are not merely via arbitrary inte-
gers (checked against only the process address space),
but also require an abstract capability, conferring an
appropriate set of memory access permissions;

• these abstract capabilities are constructed only by le-
gitimate provenance chains1 of operations, successively
reducing permissions from initial maximally permis-
sive capabilities provided at machine reset; and

• code is not given access to excessive capabilities.
Importantly, we aim to provide this across whole-system

executions, not just within the C-language portion of user
processes. This means that we have to capture the many
ways that pointer values are constructed and manipulated,
including process creation, virtual memory including swap-
ping, system calls, dynamic linking, context switching, signal
delivery, debugging, and a host of C-language operations.
Considerable C-language memory-safety research (con-

sidered further in Section 7) has explored various software-
and hardware-based mitigation techniques, both static and
dynamic, that protect the integrity of pointers, constrain
control flow, and protect the code and data referenced by
pointers [3, 8–12, 17, 22, 23, 25, 26, 28, 32, 33, 38, 42, 48, 50].
This has shown that while enforcing pointer-based protec-
tion can be helpful in mitigating bugs, it is also potentially
disruptive. Prior work has suffered from a range of practical
limitations, including: requiring large changes to existing
codebases, using a unique OS or library infrastructure in-
stead of a full POSIX environment, being limited to statically
linked code, lacking coverage in run-time libraries or kernels,
and incurring high performance costs.
The basic question here is whether it is practical to sup-

port a large-scale C-language software stack with strong
pointer-based protection (along the lines of the conceptual
model above), with only modest changes to existing C code-
bases, and with reasonable performance cost.We answer this
question affirmatively. We have adapted a complete C, C++,

1By provenance, we mean a series of correct operations like those we
describe in [31], not to the attribution of errors as in Bond [5].

https://doi.org/10.1145/3297858.3304042

and assembly-language software stack, including the open-
source FreeBSD OS [30] (nearly 800 UNIX programs and
more than 200 libraries including OpenSSH, OpenSSL, and
bsnmpd) and PostgreSQL database, to employ ubiquitous
capability-based pointer and virtual-address protection.
Our approach implements abstract capabilities using Ca-

pability Hardware Enhanced RISC Instructions (CHERI) [48]
architectural capabilities: these are hardware-implemented
run-time capabilities that can be reduced but not forged by
software. CHERI capabilities provide spatial integrity (a capa-
bility cannot be used to access memory outside its intended
bounds and privileges) and referential integrity (capabilities
may be neither forged nor corrupted to alter their bounds).
Two key challenges arise in implementing abstract capa-

bilities. First, CHERI architectural capabilities are expressed
in terms of virtual addresses, and have no meaning except
in conjunction with a specific virtual-to-physical mapping.
Given such a mapping, each capability allows direct access
to a specific subset of physical memory. However, these map-
pings change over time (e.g., when the OS creates a new
user process, maps additional memory, alters the backing
of a mapping, or context switches to other address spaces).
Second, in a real system, pointer values are created in a wide
variety of ways, some of which require special intervention
to preserve the provenance chain of abstract capabilities,
even though the architectural capability chain is broken –
for example, when memory is paged out, or during process
debugging.

In this paper, we:
• Review the semantics of CHERI capabilities.
• Introduce the concept of an abstract capability that
grants access to some system resource(s), and discuss
its construction and application.

• Describe the adaptation of over 99% of the C-language
userspace of a UNIX operating system and enterprise
database to employ fine-grained CHERI memory pro-
tection throughout userspace, while requiring only
minimal source-code modification.

• Extend prior userspace pointer-protection work by en-
forcing language-defined memory models in the OS
kernel through construction and maintenance of ab-
stract capabilities, preventing confused-deputy attacks
via the kernel. We consider numerous “edge cases” in
OS design often ignored in earlier work in memory
protection, such as process startup, dynamic linking,
thread-local storage (TLS), signal delivery, manage-
ment APIs such as (ioctl), and debugging, all of which
are essential to abstract capabilities.

• Utilize trace-based execution analysis to reconstruct
the abstract capabilities of processes, and quantify the
increased granularity of architectural capabilities.

• Analyze the impact of pointer integrity, provenance,
monotonicity, and spatial protection across UNIX.

• Extend the CHERI ISA to enable generation of more
efficient code for dynamically linked programs, and
improved compatibility with existing C code.

• Validate, on an FPGA-based platform, that the perfor-
mance overhead of architectural memory protection
is acceptable for mainstream software.

• Discuss changes to the CHERI C compiler based on our
experience in compiling and running large amounts
of software.

To our knowledge, this is the first complete UNIX system
offering ubiquitous spatial and referential memory safety,
granting us unique insights into the practicality of C-language
protection at scale. Supporting a substantial software stack
that includes the entire UNIX OS has forced us to explore
many of the dark corners of C programming. However, once
the run-time environment has been updated, the vast major-
ity of code can simply be recompiled.

2 CHERI Background
The CHERI architecture adds a new hardware data type suit-
able to implement strongly protected C-language pointers,
namely, the CHERI capability. CHERI capabilities extend in-
teger virtual addresses to control access to virtual memory
by adjoining bounds constraining the range of addresses
and permissions limiting the use of each capability (e.g.,
load, store, or instruction fetch). We previously described
the initial CHERI architecture [45, 50], demonstrated an ef-
ficient compartmentalization framework above it [46, 48],
described a C-language compilation mode where all pointers
are capabilities [9], and demonstrated the use of those abili-
ties to implement a safer JNI [8]. The architecture enforces
the following properties:
Provenance validation ensures that only capabilities de-

rived via valid transformations of valid capabilities
using capability instructions can be used.

Capability integrity prevents direct in-memory manipu-
lation of architectural capability encodings.

Monotonicity prevents the permissions or bounds associ-
ated with a capability from being increased.

These properties collectively imply unforgeability of capa-
bilities. All accesses to virtual memory are via capabilities.
Instructions are fetched via the program-counter capability
(PCC). CHERI implementations add instructions to support
explicit capability-relative load, store, and jump, as well as to
manipulate capabilities. Legacy instructions accessing mem-
ory via virtual addresses are indirected through a default
data capability (DDC) register.
On processor reset, initial global capabilities are made

available via registers. Capabilities may be stored from capa-
bility registers to memory and loaded back with dedicated
instructions. However, IO devices have not been extended
to support capabilities; separate action must be taken to pre-
serve the validity of capabilities, for example, if they are

swapped to disk and back. Capabilities in registers may be
transformed with further instructions – including duplica-
tion (just as one can copy an integer address), arithmetic ad-
dress manipulation (such as incrementing a pointer through
an array), permission reduction (e.g., constructing a read-
only capability from a read-write one), and bounds reduction
(yielding a capability authorizing access to a smaller span
of virtual addresses). Software can employ these features
to restrict use of derived pointers – e.g., by narrowing the
bounds on a pointer to match an allocation, or to prevent
writing via a function pointer. In our prior work [8, 9, 48, 50],
reductions in privilege were done via language-level objects
or explicit capability instructions, rather than the OS or C-
language runtime. This left capabilities to the full address
available outside sandboxes, and all kernel interactions were
by unbounded and forgeable integer virtual addresses.

In implementation, CHERI extends 64-bit addresses with
metadata [47] in both the in-register and in-memory rep-
resentations, increasing the in-memory size of pointers to
128 bits, plus an out-of-band tag bit.2 There is one tag bit
per capability-sized and capability-aligned region of physi-
cal memory, to distinguish between data (i.e., integers) and
capabilities. This tag bit follows memory contents through
the cache hierarchy and into (capability) registers and indi-
cates valid provenance of the capability therein. Violations of
the architectural capability semantics, including overwriting
their representation with (integer) data, will clear the tag,
preventing subsequent interpretation as a capability. Tags
may not be explicitly set by software; all capabilities are
transitively derived from the initial capabilities provided at
reset; that is, valid provenance is enforced.

We implemented the CHERI protection model as an exten-
sion to the 64-bit MIPS ISA, including ISA-level emulation
(Qemu) and hardware (FGPA) implementations. This allows
for both fast software simulation and more detailed microar-
chitectural studies.

The CHERI C compiler supports two modes of operation
for pointers: a hybrid mode in which only pointers anno-
tated with __capability qualifiers become capabilities (un-
annotated pointers remain integers and are checked w.r.t. the
DDC), and a pure-capability mode in which all explicit (and
implied) pointers are capabilities. Our prior work used the
pure-capability mode within sandboxes [8, 48]. By contrast
to the present work, these sandboxes utilized only static
linking, and provided no (or a limited) system-call layer –

2Achieving 128-bit pointers requires compression of each capability (e.g.,
including 64-bit position, lower bound, upper bound; permission flags;
and other metadata). An alternative implementation, which more directly
encodes capabilities, uses 256 bits per pointer (plus the tag bit). Compression
exploits commonalities in position and bounds values, but requires that large
spans are aligned and sized at larger than byte granularity. Such constraints
affect memory allocators and stack layout, which must pad allocation sizes
up to ensure that capability references do not overlap.

limiting adaptability of code and evaluation at scale. Non-
sandboxed code retained permissions, via DDC, to the entire
user-program address space.
The CheriBSD operating system is an adaptation of the

FreeBSD operating system, with added support for CHERI
capabilities. In prior work, we implemented only the ba-
sic CheriBSD kernel and runtime infrastructure necessary
to run a (hybrid-mode) userspace program manipulating
capabilities: capability-register context switching, tagged
memory, preserving capabilities when copying memory, etc.
Outside some limited code in sandboxes, capabilities were
used by the compiler only where explicitly annotated, and
no implied virtual addresses (e.g., as used in dynamic-linker-
implemented Global Offset Tables (GOTs), return addresses,
or v-table pointers) were implemented as capabilities.
This paper extends pure-capability support to the full

userspace process environment, addressing for the first time
topics such as capability interactions with system calls, sig-
nals, dynamic linking, and process debugging. Critically, this
allows DDC to be assigned a value of NULL, eliminating
legacy MIPS loads and stores utilizing DDC implicitly; all
memory accesses are performed intentionally through ex-
plicit capabilities having reduced permissions and narrowed
bounds.

3 Abstract capabilities
Our work is based on an abstract conceptual model in which
every legitimate memory access is via a deliberately con-
structed abstract capability (following the principle of in-
tentional use), which allows that access but (following the
principle of least privilege) should not allow access to unre-
lated data. Such capabilities are constructed by some legiti-
mate chain of operations rooted at primordial, omnipotent,
capabilities.

The abstract capability model is implemented with a sub-
tle combination of architectural capabilities (as provided
by the hardware) and the critical systems code involved in
managing paging, context switching, linking, memory al-
location, and suchlike. The model allows programmers to
reason about the effective properties of capabilities without
the need to understand the details of each of these issues.
This is analogous to the traditional Unix abstract process
model, where virtual memory, file descriptors, credentials,
threads, and signals combine to form a coherent program-
ming environment in which programmers can reason about
processes in relatively simple terms, without knowing all
the implementation details.

The main challenge in defining the concept of an abstract
capability is the fact that our architectural capabilities are
expressed in terms of virtual addresses, and therefore have
meaning only in conjunction with a specific interpretation
thereof. Given a fixed and total virtual-to-physical mapping,
each capability would authorize access to a specific subset

Thread stack

Userspace
Kernel

ELF aux args:
rtld binary

program binary
envv, argv

envv[]

argv[]

Process arguments

Capabilities in user registers:
 Code capability
 Default data capability
 Stack capability
 Argument capability

Capabilities copied
into user memory:
 ELF aux args
 argv[] array
 envv[] array
 Program binary
 Run-time linker
 …

rtld binary

Program binary

Virtual memory mappings

Root user
capability

Legend Capability points to Capability propagation

TCB 1

$csp

$args
…

$pcc

Figure 1. Process creation installs capabilities into both the
user-thread register file and initial memory mappings.

of physical memory. However, operating systems actually
maintain partial mappings, relying on page faults to pro-
vide illusory additional physical memory (e.g., by paging
to and from disk, zero filling on demand, or copying on
writes). Moreover, these mappings are dynamic, as processes
request and release memory. We therefore introduce a model
in which an abstract capability contains a set of access rights
to abstract memory and a conceptual abstract principal ID.
Principal IDs are freshly created for the kernel and each
process address space, unique over the entire execution. Ab-
stract physical memory is an unbounded byte array, a source
of never-before-used addresses for each successive alloca-
tion. The OS is responsible for concretizing this abstract
model by implementing it using architectural features. That
is, the OS maintains invariants about its virtual-to-physical
mappings and paging-related metadata, e.g., to prevent an
architectural capability frommistakenly being used to access
private abstract memory of another process either though
virtual-to-physical aliasing or incorrect paging.

In our experimental system, abstract and architectural
capabilities are constructed in the following ways:
CPU reset At hardware reset, maximally permissive archi-
tectural capabilities are provided to the boot code.
Kernel startup The kernel deliberately narrows these boot
capabilities to ones separately covering userspace, kernel
code, and kernel data.
Process address-space creation When a process address
space is replaced by execve, the kernel establishes newmem-
ory mappings for the contents of the address space. It subdi-
vides the previously created userspace capability into one for
each mapped object (text, data, stack, arguments, etc). The
newly mapped virtual memory maps onto physical memory
disjoint from that currently mapped for any other process

or the kernel, excepting mappings deliberately shared be-
tween processes (including read- or execute-only and copy-
on-write pages). Conceptually, we create a fresh principal
ID, and the initial user abstract capability encompasses all
the physical-memory access rights of those architectural
capabilities with regard to the new memory mapping. (See
Figure 1.)
Context switching The kernel saves and restores user-
thread register capability state, and updates the virtual-to-
physical mappings if required. (Figure 2 illustrates this along
with swapping and signal handling.)
Swapping Any userspace page and some kernel pages may
be swapped out to external storage, which does not preserve
tags. The swap subsystem scans evicted pages, recording
tags in the swap metadata. When pages are restored, the
swap-in code derives a new architectural capability from
the saved values and an appropriate root capability. This
preserves the abstract capability, despite the break in the
architectural capability chain.
Signals Signal delivery is similar to context switching, ex-
cept that the register state is copied to the signal stack for
modification. Access to, and manipulation of, saved capabil-
ity state by the signal handler preserves the architectural
capability chain.
System calls When a process makes a system call with a
pointer argument (e.g., passing a reference to a buffer), the
kernel will use the passed-in capability when dereferencing
that pointer (rather than using its own, elevated, authority).
We have altered all standard methods of accessing process
memory to use an explicit capability (respecting the principle
of intentional use). This ensures that the kernel accesses only
the memory specified – and authorized – by the user process.
Figure 3 illustrates an example path for such a capability
from userspace to a copyin routine.
Automatic referencesAs references are taken to automatic
variables, compiler-generated code derives bounded capabil-
ities to those objects from the stack capability.
Dynamic linking The run-time linker creates subsets of the
program and library data capabilities for each global variable,
and from code capabilities for each jump destination, and
places them in a capability-extended GOT.
PC-relative accesses Values installed in PCC are bounded
to shared objects, constraining control flow and limiting
potential for arbitrary code execution.
C/C++ function calls At C or C++ function calls and re-
turns, the stack capability is updated to the new stack frame,
and both the previous stack frame and return capability are
spilled to the stack. The use of capabilities in the return path
strongly limits attackers’ ability to leverage memory-safety
errors by requiring that these capabilities be overwritten
with capabilities with appropriate permissions in order to
escalate an attack.

Userspace
Kernel

Swapping Signal deliveryUser thread context switching

$c1

$pcc

Registers

…

TCB 1

$c1

$pcc

…

$c1

$pcc

Registers

…

Abstract capabilities preserved for
registers across context switching as
architectural capabilities

Kernel saves and
restores capability
state in kernel
memory across
thread context
switch

Memory mappings
User page

Memory mappings
User page

Buffer capability Buffer capability

Tag bit vector in memory

Tag-free capability in swap $c1

Abstract capabilities preserved for memory
across swap using capability rederivation

Capability
rederivation

$c1

$pcc

Registers

…

Thread stack

Stack frames

Signal frame
including saved

capabilities

Signal handler
frame

TCB 1

$c1

$pcc

…

Trap handler
passes capability
register values to
signal handler,
restores modified
values on return

Abstract capabilities preserved for registers
across signals as architectural capabilities

$c1

$pcc

Registers

…

TCB 1

$c1

$pcc

…

Root user
capability

Rederived
capability

Architectural
capability
propagation

Architectural
capability
propagation

Figure 2. Context switches preserve abstract capabilities using architectural capabilities or capability rederivation.

Userspace
Kernel

Memory mappings

User page
$c3

Buffer

Buffer capability 1. Capability to buffer
loaded into register,
passed as system-
call argument

Pseudo-terminal

File-descriptor layer

System-call layer

2. Kernel code dereferences
user-provided capabilities
when accessing user memory

$c3

Figure 3. The kernel observes abstract capabilities by ac-
cessing user memory only through user capabilities.

C pointer arithmetic C pointer arithmetic manifests as
arithmetic on the address contained in the architectural ca-
pability, leaving its bounds and permissions unchanged.
Memory allocation Each allocator (e.g., malloc and TLS)
maintains a set of architectural capabilities to regions allo-
cated by mmap, from which it derives narrower responses
to requests. Freed capabilities are used to look up internal
capabilities and are then discarded.
Pointer propagation Architectural capabilities are main-
tained across various low-level C idioms including explicit

and implied memory copies (e.g., memory sorting and bit-
wise pointer manipulations used in locking code).
Debugging Two processes are involved in debugging – the
debugger and the target – and hence two different principal
IDs. Abstract capabilities belong to one or the other, andmust
not be propagated between them. The debugger process may
inspect capabilities from, or inject capabilities into, the target
memory or register file; these capabilities are derived from
an appropriate extant target or root architectural capability.
Legacy loads and storesWeprohibit legacy (integer pointer)
loads and stores by installing a NULL capability in DDC.
We must ensure not just that the capability used for an

access is legitimate and appropriately minimal, but also that
the whole set of capabilities available to the code is appro-
priately minimal, otherwise we would provide weaker miti-
gation than desired. Most notably, each principal’s abstract
capability has a disjoint root.

4 Implementation
Our goal is to compile, run, and evaluate the complete C-
language userspace of the FreeBSD operating system, com-
piled such that all dereferenceable pointers and implied vir-
tual addresses are implemented as capabilities having valid
provenance and minimized bounds. The question is then: by
how much can we reduce bounds, given the constraints of
compatibility with existing code and system-call APIs?

To achieve our goal, we have made changes to the CHERI
ISA, the C compiler, the C language runtime, the virtual-
memory APIs, and the CheriBSD kernel.
In our prior work [9, 48] on pure-capability C, we de-

rived bounded capabilities on static, global, automatic, and

dynamic allocations from a single, address-space-covering
capability. Considered under the lens of the principle of least
privilege, this is undesirable. In this work, we set DDC to
NULL, and place bounds on PCC and global references de-
rived from capabilities to regions mapped by the kernel in
execve or mmap.
Our implementation extends our prior work on pure-

capability code from a sandbox environment [48] with lim-
ited POSIX compatibility to a new process ABI, CheriABI.
In CheriABI, all pointers are capabilities, and all kernel ma-
nipulations of process memory are via explicitly delegated
capabilities. In our prior work, the kernel interacted with
capabilities via assembly stubs. Our enhanced version of
the CheriBSD kernel is a hybrid C program where nearly
all interactions with userspace are via explicitly annotated
capability pointers. Of the 675 C and 8 assembly language
files in our test kernels, 26 were created to support capabili-
ties and 146 required adaptation for capabilities. In the full
kernel source, about 750 files were touched. Other than a
single file, implementing the CHERI-MIPS specific portions
of CheriABI, the changes for CheriABI apply to any CHERI
implementation. We continue to support the large suite of
“legacy” mips64 userspace applications that adhere to the
SysV ABI [44], alongside CheriABI userspace programs.

As part of our baseline we assume that the kernel ensures
that the correct physical pages are mapped when accessing
user pages from the kernel. This places the kernel within the
trusted computing base (TCB) of the process. Our changes
to use capabilities for all access to userspace limit the degree
to which the kernel can be tricked into performing incorrect
accesses. FreeBSD MIPS (and most other architectures) re-
serves the low portion of the address space for the current
user virtual-memory map as an optimization for copyin and
related functions. We rely on that being correct and, cur-
rently, on the kernel using that mapping only via authorized
functions.
Starting CheriABI processes with execve CheriABI (and
legacy) programs are mapped into the process address space
by the execve system call, along with command-line ar-
guments, environment, an initial stack, and the run-time
linker as shown in Figure 1. Legacy programs store the ar-
gument, environment, and ELF auxiliary argument arrays
at the top of the stack, adjusting the initial stack pointer
appropriately [15, 44]. CheriABI processes have an identical
set of arrays, but all pointers are bounded capabilities; the C
run-time uses pointers to the arguments and environment
in the ELF auxiliary arguments, rather than knowledge of
the stack layout. Once loaded, the program drives further
changes to the address space (including dynamic loading) via
system calls. The program refines both the initial capabilities
provided at startup and capabilities to later mappings.
Run-time capability refinementCompiler-generated code
sets bounds on references to variables on the stack. These

prevent classic stack-based buffer overflows. Dynamic alloca-
tion is via a lightly modified version of JEMalloc. We install
bounds matching the requested allocation before return, and
rederive pointers to the underlying storage in the free and
realloc paths using existing internal interfaces.
Thread local storage We have added a CHERI-compatible
TLS implementation modeled on the MIPS implementation.
Bounds are per shared-object rather than per variable, to
avoid an extra indirection.
Dynamic linking We extended the dynamic linker (RTLD)
to initialize external symbol references using new dynamic
relocations that initialize and bound the capability. Global
variables containing pointers are initialized during process
startup, as tags are not preserved on disk; this adds overhead
comparable to position-independent binaries (commonly
used to improve ASLR [20, 43]). We bound function sym-
bols’ resolved capabilities to the shared object. While these
bounds are not minimal, this preserves the ability of code to
use branches in place of jumps between functions. The wide
bounds also facilitate the existing practice of referencing
global variables using program-counter-relative addressing.
System calls Our implementation transforms the kernel
into a hybrid C program where all access to userspace for
CheriABI processes is via explicitly annotated capability
pointers. System calls use these architectural capabilities
to access process memory during a call. When acting on
behalf of a CheriABI process, non-capability versions of
copyout and copyin return errors, ensuring that all access
to process memory is via explicit capabilities. To reduce the
risk of accidental copying of capabilities between userspace
and the kernel, we strip tags from copied capabilities unless
special interfaces are used. It is usually obvious when these
are needed, but ioctl and sysctl present challenges: it is
not easy to tell whether capabilities should be preserved
for a given command. Some management interfaces export
kernel pointers. Where we have encountered them, we have
altered them to expose virtual addresses rather than kernel
capabilities. A few system calls take pointers and store them
in kernel data structures for later return. In all such cases
(including signal handling, asynchronous I/O, and FreeBSD’s
kevent), we have modified the kernel structures to store
capabilities and the legacy ABIs to convert pointers into
capabilities for storage.
Virtual-address management APIs Programs add mem-
ory mappings through three system calls: sbrk, mmap, and
shmat; mmap and shmat allocate (or alter the mappings of)
regions of memory, returning a reference to the new alloca-
tion. In CheriABI we have altered them to return capabilities
that are bounded to the requested allocation length, with
permissions derived from the requested page permissions.
Both mmap and shmat allow the caller to specify a target ad-
dress for the mapping. In the case of mmap, the address can
be an optional hint or a fixed address for the mapping. With
shmat, a fixed address is supported. If the fixed address is

a valid capability, we require that it have the vmmap user-
defined capability permission. When a capability is passed
as the hint argument, the returned capability is derived from
it, preserving provenance. In mmap we allow untagged val-
ues and capabilities without the vmmap permissions as hints;
however, if the caller requests a fixed mapping, we allow it
only if it would not replace an existing mapping. We also
require the vmmap permission to be present on capabilities
passed to munmap and shmdt. This prevents the possibility of
replacing the contents of arbitrary memory without a valid
capability.
The sbrk API adjusts the heap size. It predates modern

APIs such as mmap – and is obsolete. An implementation is
possible with some limitations, but few programs require it
– so we do not support it in our prototype.
Signal handling CheriABI signal handling is similar to
legacy signaling, excepting adjustments for ABI differences
in function calls and stack management, and the fact that
the return trampoline capability is a tightly bound capability
to a read-only shared page mapped by execve.
Dynamic allocationsWe have altered the FreeBSD malloc
implementation (JEMalloc[19]) to return capabilities bounded
to the requested size. These allocations are non-executable
and have the vmmap permission stripped preventing them
from being used to remap memory under management by
malloc. We have similarly altered the TLS allocators in libc
and RTLD.
Additional changes As we expanded the set of code run
under the pure-capability ABI, we found that we needed to
extend qsort and other sorting routines to preserve capabil-
ities when swapping array elements. We also replaced use of
Berkeley DB as an in-memory hash table, because BDB does
not preserve the alignment of stored data. We also addressed
a number of issues related to treating integers as pointers:
casting pointers through integer types other than intptr_t
and expecting to get pointers back; and integer manipula-
tion of pointers to store flags in unused bits, to adjust the
alignment of pointers, or to access the virtual address.
Debugging Beyond supporting the ptrace system call, we
have extended it to permit reading the values of capability
registers and arranged for register values to be stored in core
dumps. We have modified GDB to add limited support for
capabilities, including dereferencing capability pointers in-
teractively and unwinding stacks. However, there is currently
no facility for examining additional properties of capabilities
stored in memory, such as validity (tags), bounds, or permis-
sions – as this is not a natural fit for GDB’s internals. The
user interface does not enforce bounds or permissions, or
check the tag, when dereferencing a capability pointer.
Limitations Our implementation has a few limitations. We
support nearly all system calls, but have excluded sbrk as a
matter of principle, and avoided a small number of admin-
istrative interfaces due to the tedium of translating pointer

heavy argument structures. Where we have found them nec-
essary, ioctl and sysctl interfaces involving structs con-
taining pointers have been translated, but we have skipped
some cases, such as some storage-management interfaces.
These limitations are not fundamental, and could be over-
come with further engineering effort. The exclusion of sbrk
is likely correctable, but the FreeBSD Project shipped the
Arm64 and RISC-V ports without it, with few reports of prob-
lems; emacs has since removed the requirement for sbrk.

5 Evaluation
We evaluated CheriABI in several dimensions. (1) To demon-
strate the completeness of the CheriABI implementation,
we ran the FreeBSD and PostgreSQL test suites. (2) We val-
idated performance assumptions with system-call micro-
benchmarks and whole-application benchmarks. (3) We ex-
amined the changes required to support CheriABI across
FreeBSD userspace as well as PostgreSQL. (4) To demonstrate
the practical value of capability restrictions, we examined
a set of memory-safety test cases that show the effective-
ness of CHERI protections and relate to memory-safety bugs
found in real code. (5) Finally, we used ISA-level traces to
reconstruct the abstract capabilities of a process and to study
the increased granularity of capabilities in CheriABI pro-
grams. Where suitable, we compare with LLVM Address
Sanitizer [38]. While the overheads of this software-based
sanitizer are significant, it is widely used, primarily as a
debugging tool. In an ideal world, we would compare to
HWASAN [39] rather than the software implementation, but
we do not have an implementation for MIPS.

We benchmark on FPGA, for microarchitectural realism,
using a version of CHERI written in Bluespec SystemVer-
ilog, and synthesized for the Stratix IV FPGA at 100MHz.
The pipeline is in-order and single-issue, roughly similar to
the ARM7TDMI. Our FPGA system has 32-KiB L1 caches
and a shared 256-KiB L2 cache, all set-associative, similar
to widely shipped CPUs such as many ARM Cortex A53 im-
plementations, although without pre-fetching. Performance
and memory scaling are broadly similar to these commercial
implementations. Specific performance is subject to the pe-
culiarities of our microarchitecture. For ISA traces and tests,
we use a CHERI-extended version of QEMU.

We have benchmarked on 128-bit CHERI, as its lower
overheads make it a more realistic candidate for commer-
cial adoption. In an effort to reduce unnecessary differences,
benchmark software for CheriABI and MIPS are both com-
piled with the CHERI compiler (based on LLVM pre-8.0) and
use the CheriABI-capable kernel.

5.1 Test suites
The FreeBSD test suite is part of the FreeBSD base system
and provides tests for many programs and libraries. The test
suite contains over 3500 programs (most of which test many

Pass Fail Skip Total

FreeBSD MIPS 3501 90 244 3835
FreeBSD CheriABI 3301 122 246 3669
PostgreSQL MIPS 167 0 0 167
PostgreSQL CheriABI 150 16 1 167
libc++ MIPS 5338 29 789 6156
libc++ CheriABI 5333 34 789 6156

Table 1. Test suite results

conditions). We ran the test suite on a mips64 system and
CheriABI. The results are summarized in Table 1. In addition
to these tests, we use a CheriABI version of CheriBSD under
Qemu for daily development.
We also ran the PostgreSQL version 9.6 pg_regress test

suite. Of the 16 test failures 8 fail because the outputs are
sorted in a different order or the test assumes a pointer size
of 4 or 8 bytes. One test is failing due to the use of under-
aligned pointers, which will trap on CHERI. The remaining
failures are returning slightly different results and still need
further investigation.
Finally, we also ran the libc++ tests both for MIPS and

CheriABI, and encountered only five additional failures – due
a missing runtime library function for atomics – compared
to the MIPS baseline.

5.2 Performance
To evaluate the impact of pure-capability compilation, we
have run the MiBench benchmarks [21], which are intended
to be commercially representative embedded programs. Each
is composed of a tight inner loop and spends very little
time in the kernel, providing a sampling of performance for
pure-capability execution. Additionally, we have run por-
tions of SPEC CPU2006. Figure 4 shows the results of these
runs, most of which are well within the noise level for com-
piler and cache differences. We have excluded a number
of bit-manipulation, compression, encryption, and image-
processing benchmarks where the separate capability reg-
ister file in CHERI-MIPS allows the compiler to generate
more efficient code in the benchmark kernel (the security-
sha benchmark shows an example of this effect).
To determine the worst-case impact of our system-call

interface changes, we ran the FreeBSD system call timing
benchmarks. Performance impact varies from 3.4% slower
for fork, to 9.8% faster for select. We believe the latter
is due to the cost of creating capabilities from four pointer
arguments in the CHERI kernel.

As a macro-benchmark, we use the PostgreSQL database
initdb tool, which sets up a new database. We chose Post-
greSQL because it is a large real-world workload written in
C. Furthermore, it also makes use of various IPC mechanisms
(including sockets, shared memory and semaphores); it is the

largest program that we have run dynamically linked so far.
Overall, PostgreSQL is only 6.8% slower as a CheriABI binary,
even without any changes to reduce the impact of pointer
size on structure padding. In contrast to this, compiling the
initdb binary with Address Sanitizer instrumentation (but
without instrumented library dependencies) requires 3.29
times more cycles to complete.
Regarding the performance impact of CheriABI, we dis-

covered that the immediate range of the capability-relative
load instruction (CLC) was often too small – leading to ex-
pensive accesses to globals. We added a new CLC with larger
immediate, allowing most GOT entries to be accessed with a
single instruction (as in MIPS). This reduces the code size of
most binaries by over 10%, and reduces the initdb overhead
from 11% to 6.8%.

5.3 Compatibility
CheriABI is almost entirely compatible with the de-facto
standard POSIX programming environment used by modern
UNIX-like systems. Most programs require no modifications
to compile and run successfully. Of the nearly 800 C pro-
grams in the FreeBSD source tree, we exclude two manage-
ment utilities that require compatibility shims to work with
CheriABI and the non-CHERI supporting toolchain. Table 2
includes a breakdown of the changes required, summarizing
the types of changes and compiler updates to find or address
them.

There are three classes of provenance related issues. Pointer
provenance (PP) covers attempts to create a pointer to an
object from a pointer to an unrelated object, and attempts
to pass pointers over IPC channels. Integer provenance (IP)
relates to the loss of provenance as pointers are cast though
integer types other than uintptr_t. and Monotonicity (M)
refers to code that assumes it can reach outside object bounds
or increase permissions. We have generally found these
through debugging.
Pointer shape (PS) reflects changes due to the increased

size of CHERI capabilities vs. integer virtual addresses. Some
objects must be enlarged or more strongly aligned; some
struct padding computations required tweaking. Existing
alignment warnings help locate many of these.
Pointer as integer (I) covers storing sentinel integers in

pointers (e.g., MAP_FAILED is (void *)-1).
There are a number of issues related tomanipulating point-

ers as virtual addresses (VA). Several are sufficiently common
that we have broken them out: Bit flags (BF) refers to storing
flags (e.g., lock status) in the low bits of pointers. Hashing
(H) means computing a hash from a virtual address. Align-
ment (A) counts adjusting the alignment of a pointer (e.g.,
rounding up a (char *) to permit storing a pointer). We have
added compiler warnings for bitwise math and remainder
operations on capabilities. Additionally, we have created a
new compiler mode and a supporting CGetAddr instruction
in which casts of pointers to integers produce the virtual

se
cu

rit
y-

sh
a

offi
ce

-s
tr

in
gs

ea
rc

h

au
to

-q
so

rt

au
to

-b
as

ic
m

at
h

net
wor

k-
dijk

st
ra

net
wor

k-
pat

ric
ia

te
lc

o-
ad

pcm
-e

nc

te
lc

o-
ad

pcm
-d

ec

sp
ec

20
06

-g
ob

m
k

sp
ec

20
06

-li
bquan

tu
m

sp
ec

20
06

-a
st

ar

sp
ec

20
06

-x
al

an
cb

m
k

in
itd

b-d
yn

am
ic

-10
+0

+10
+20
+30
+40
+50
+60
+70
+80 instructions cycles l2cache misses

Figure 4.MiBench, SPEC CPU2006, and PostgreSQL benchmark median overheads relative to MIPS baseline. Error bars are
interquartile ranges (IQRs).

PP IP M PS I VA BF H A CC U

BSD headers 0 8 0 4 2 1 1 0 3 2 0
BSD libraries 5 18 4 19 22 20 11 6 19 42 19
BSD programs 1 11 1 3 13 0 0 0 7 11 2
BSD tests 0 0 0 0 2 0 0 0 2 7 2

Table 2. CheriABI changes. PP: pointer provenance, IP: integer provenance, M: monotonicity, PS: pointer shape, I: pointer as
integer, VA: virtual address, BF: bit flags, H: hashing, A: alignment, CC: calling convention, U: unsupported

address (rather than the offset used in prior work). For this pa-
per, we compile CheriBSD in the old mode, but have switched
the default to use this mode – based on our experience. This
new mode would obviate many of our changes.
The calling convention (CC) for pure-capability code dif-

fers from the MIPS ABI: integer and pointer arguments use
different register files, and variadic arguments are always
spilled to the stack and passed via a capability. These re-
quire correct function prototypes to ensure that values are
passed as expected and that we handle variadic arguments
directly. The implementation of system calls, including open
and syscall, and a callback API in SunRPC, depends on the
overlap in calling conventions on existing architectures. For
system calls other than syscall, we handle the ‘optional’
argument as a variadic argument in the C library. In the Sun-
RPC case, programs declare their own callbacks; thus, fixing
each one is the only possible solution. We have found numer-
ous bugs due to the variadic calling convention, which poses
a compatibility challenge. We have added warnings when

calling functions without declared arguments,3 or converting
between variadic and non-variadic function pointers.

The unsupported (U) label covers an array of things CHERI
or CheriABI doesn’t support – including XOR on pointers
and the sbrk system call.

5.4 Memory protection benefit
To evaluate memory safety, we used the BOdiagsuite suite
of 291 programs from Kratkiewicz [24] and used by Hard-
bound [17]. These were intended for testing static analysis
tools, but are also useful for dynamic enforcement. The test
suite consists of an assortment of C bounds violations, a
small number of which use POSIX APIs such as getcwd with
an incorrect length.
Each program has one variant with no memory-safety

errors, and three variants that contain bugs (shown as the
column heads in Table 3). min has the smallest possible
memory safety violation (typically off by one byte);med has

3Unlike -Wstrict-prototypes this warning also allows calls to legacy
K&R declarations as long as the declaration with the argument types is
visible at the call site. We allow these calls since this style of C function
declarations is still very common throughout the FreeBSD source tree.

min med large

mips64 4 8 175
cheriabi 279 289 291
asan 276 286 286

Table 3. BOdiagsuite tests with detected errors (among 291
total tests)

an off-by-8-bytes error; and large has an off-by-4096-bytes
error. We compiled these variants with optimization disabled,
because a number of cases had the violation in code that the
optimizer removed (e.g., dead stores to variables not marked
volatile.) We verified that the variants without memory-
safety errors ran correctly as CheriABI and mips64 programs,
and then ran all the variants for CheriABI, mips64, and Ad-
dress Sanitizer [38]. The results are summarized in Table 3.
For CheriABI, 279 of the “min” tests aborted with a memory
safety violation, while 12 tests contained intra-object mem-
ory safety violations. The current CheriABI design does not
protect against this, and it cannot be protected without some
impact on compatibility [9].

By way of comparison, only 4 mips64 programs fail in the
“min” case, and Address Sanitizer fails to catch two cases.
Many cases fail in the “large” variants for mips64, but even
then 116 do not. Based on these results, CheriABI protec-
tion is significantly better than mips64, and slightly better
than Address Sanitizer – a scheme with very high overheads
(3× stack memory, 12.5% total memory, around 50% perfor-
mance).

In addition to finding test-suite issues, we have found and
fixed dozens of bugs including buffer bounds violations and
variadic argument misuse in FreeBSD programs, libraries,
and tests. These include: a buffer underrun read in tcsh
shell history expansion on an empty command line; an out-
of-bounds read by the kernel in the FreeBSD DHCP client
due to underallocation of the data argument to an ioctl call;
small buffer overflows in the ttyname and humanize_number
functions and in a test case for the strvis function; and
many cases in the FreeBSD test suite where open was called
with a missing permission argument. A recently discovered
information leak in kernel management interfaces was par-
tially mitigated by CheriABI. We have fixed these issues in
FreeBSD.

5.5 Abstract capability analysis
Because capabilities are explicitly manipulated, we can use
an instruction trace (from Qemu) to track capability deriva-
tion and use, in order to reconstruct the abstract capability of
a process. We have done so for an openssl s_server imple-
mentation during a client connection set-up and exchange of
a small file. openssl is a small representative application that
exercises the majority of the changes we introduced with

22 25 28 211 214 217 220 223

Size

0

20000

40000

60000

80000

100000

120000

N
um

b
er

of
ca

pa
bi

lit
ie

s

all

stack

malloc

exec

glob relocs syscall kern

Figure 5. Cumulative sum of the number of capabilities
against size of bounds, for different sources of capabilities
visible in userspace during a run of openssl s_server involv-
ing startup, authentication and a file exchange. (Note that
the kern and syscall lines are present, but virtually indistin-
guishable from the X-axis.)

CheriABI: it uses thread-local storage, is dynamically linked
with multiple libraries, performs considerable memory allo-
cation and pointer manipulation, and exercises system calls.
Further, openssl is interesting to a history of memory-safety
vulnerabilities including Heartbleed [4].

Figure 5 shows the granularity of capabilities from sev-
eral sources. Each curve in the graph shows the number
of capabilities created during the program execution that
have bounds size up to the corresponding value on the x
axis. Each line represents a different source of capabilities
and terminates at the point corresponding to the size of the
largest capability found. The baseline for a legacy program
would be a vertical line at the maximum user address, be-
cause all pointers are implicitly bounded by DDC. As we
bound more pointers, the line moves towards the left of the
plot, leaving almost no capabilities with large bounds. This
is the case in CheriABI openssl, where no capability grants
access to more than 16MiB of memory, and around 90% grant
access to less than 1KiB. Capabilities created from the stack
capability and malloc are well bounded, and permit access
to no more than 8MiB of address space: in contrast, pointers
in legacy programs could be arbitrarily modified to point to
any mapped memory addresses. There are a few capabilities
that originate in the kernel and are assigned to the process at
startup or returned by system calls. These capabilities point
to relatively large objects, such as mapped sections of the
executable and are the broadest capabilities in the program.
The rest of the broad capabilities are generated as temporary
values that are then bounded to a smaller size.

6 Future work
Sub-object and code bounds We do not tighten bounds
on references to members of structs, for compatibility with
popular patterns such as container_of. Most references to
struct members could be bounded safely, but the exceptions
require exploration and evaluation. Similarly, bounds of code
pointers are an area of ongoing research. Tightening the
bounds will require eliminating PC-relative addressing from
generated code.
Temporal safety CHERI provides the minimum infrastruc-
ture required to implement accurate garbage collection and
temporally-safe memory reuse: atomic pointer updates and
the precise identification of pointers. Because system calls
may pass user pointers into the kernel that are then held
for an extended duration, new interfaces will be required
to expose this information to the garbage collector or heap
allocator. Work on a CHERI-aware temporally-safe allocator
is ongoing.
Memory APIs The mmap API family has significant limita-
tions when implementing least-privilege policies. Combining
capabilities, WˆX, and JIT compilation will require new in-
terfaces. The mremap system call is commonly used by Linux
allocators, but is not explored in CheriBSD.
Debugging Existing debuggers encode a flat, integer ad-
dress space model. More complex models may be necessary
for debugging, particularly with modern JIT-based debug-
gers. Injecting capabilities into debug targets requires further
exploration.
Static analysis Our work on compiler warnings to locate
code requiring changes for CHERI C is a start, but more
complex analysis is likely required to detect provenance
bugs such as those common with realloc misuse.
Pure-capability kernels Our current, hybrid kernel allows
all user-space pointers to be capabilities with appropriate
bounds, but most kernel pointers remain unprotected. A
pure-capability kernel would increase protection and require
a different set of changes.
Formal model of abstract capabilities The abstract ca-
pability is currently a purely conceptual model, useful to
enable programmers to reason about complex systems. A
formalization of the conceptual model is desirable, and we
are working on portions of the problem.
Cache studies While our FPGA implementation resembles
low-end commercially available hardware, neither our cache
hierarchy nor our pipeline resembles a modern super-scalar
CPU. A traced-based cache analysis (e.g. using Gem5) would
be an appropriate way to address this shortcoming.
Capabilities beyond the CPU CHERI capabilities act on
virtual memory and protect access by CPU instructions, but
other system components such as DMAdevices and IOMMUs
also interact with memory. Work on attacking systems with
IOMMUs [27] shows the need for strongmemory protections
beyond the CPU.

7 Related work
CheriABI imposes an abstract capability on the popular
POSIX programming environment [2, 29, 30, 40]. This work
builds upon the CHERI C environment [9], but substantially
extends it across a full real-world OS design.
In the quest to address the array of memory-safety prob-

lems in C code [41], there is a long history of memory-
protection research adding bounds checking to C programs.
The CHERI [50], HardBound [17], and SoftBound [32] re-
search systems add fine-grained memory protection to C. In-
tel’s Memory Protection Extensions [22] provide an example
of a commercial hardware implementation of bounds check-
ing – albeit with limited value in many environments due to
its fail-open policy. The Address Sanitizer framework [38]
aims primarily at temporal safety, but provides some protec-
tion for dynamic memory allocations, although with signifi-
cant performance overhead. Annotation- and proof-driven
systems such as CCured [11, 33], Deputy [10], and Checked
C [42] attempt to prevent API misuse (which often results
in buffer overflows), prove buffer use correct, and insert
checks where such proofs prove intractable. Much of this
work was inspired by Cyclone’s [23] safer (but incompatible)
dialect of C. CHERI draws from ideas proposed in the M-
Machine [7], particularly object-granularity capabilities pro-
tected by in-memory tags (and earlier by PSOS [34]). Unlike
M-Machine, CHERI has a stated design goal of source-code
and binary compatibility, enabling a transition path from
a flat memory model to a pure-capability system. Applica-
tions of memory-safety technologies have typically focused
on either userspace or kernels, with the majority targeting
userspace applications. Notable exceptions are Mondrix [49]
(applying Mondriaan to Linux), Safe TinyOS [12] (applying
Deputy to TinyOS), and KernelAddressSanitizer[14].

Our use of CHERI capabilities as pointers treats all point-
ersmuch as WILD pointers in CCured, similar to the treatment
in HardBound. Like HardBound, our tags prevent arbitrary
overflows from altering pointers. Our approach of increasing
the pointer size in-place requires recompilation, but avoids
involving the overhead to additional pages beyond those
required for tags and the need for transactional memory
in HardBound. CheriABI uses CHERI to enforce memory
bounds along with stronger protections including integrity,
provenance validity, and monotonic access on all pointers
in userspace. Memory allocated by the kernel is bounded
when returned rather than relying on the runtime to place
bounds. In addition to bounding explicit pointers in C source
code, we bound implicit pointers including those used for
runtime linking. Additionally, CheriABI brings this memory
safety into the kernel, requiring the kernel to honor the same
protections when accessing userspace. This begins to bridge
the memory-safety gap between the kernel and userspace.

Some mitigations aim to limit attacker’s ability to jump to
arbitrary code locations to limit the impact of attacks such as

return-oriented programming[6]. They include Control-Flow
Integrity (CFI) [3], Code-Pointer Integrity (CPI) [25], and
Cryptographic Control-Flow Integrity (CCFI) [28] CheriABI
limits vectors for such attacks, but does not explicitly model
control-flow graphs as in CFI.

Otherwork on hardware stack protection includes Roessler
et al. [36], which utilizes configurable tagged-memory poli-
cies similar to Pump [18]. Both are capable of implementing
pointer-oriented protection, but have not been applied to
complete software stacks.

8 Conclusion
We have demonstrated a complete memory-safe UNIX sys-
tem that is practical for general use. We support critical
real-world technologies such as dynamic linking, and pro-
vide protection all the way into the kernel – even to dark
corners including ioctl.
We have introduced the abstract capability as a new ab-

straction for memory safety in operating systems. The main-
tenance and enforcement of appropriately minimal abstract
capabilities for pure-capability processes is implemented on
FreeBSD as CheriABI. Our implementation allows most ap-
plication software to be recompiled without change, and
obtains significant memory safety benefits while preserving
acceptable performance – even in a minimally optimized
prototype.

Our evaluation of compatibility of existing C code with the
pure-capability C-language model, FreeBSD and PostgreSQL
test suites, and micro- and macro-benchmarks demonstrates
that this approach is feasible. Our use of the BOdiagsuite
shows that constraints allow us to catch C-language bugs,
and our trace-based abstract capability reconstruction shows
that we substantially improve the granularity of pointer
bounds.

While preserving support for legacy software, our imple-
mentation of CheriABI shows the existence of a path forward
from our current run-time foundations set on the shifting
sands of integer pointers, to a future where strong referen-
tial integrity enforces the principles of least privilege and
intentionality even on lowest-level software.

9 Acknowledgments
We thank our colleagues Hesham Almatary, Jonathan Ander-
son, Ross Anderson, David Brazdil, Ruslan Bukin, Gregory
Chadwick, Nirav Dave, Lawrence Esswood, Bob Laddaga,
Lucian Paul-Trifu, Colin Rothwell, Linton Salmon, Howie
Shrobe, Domagoj Stolfa, Andy Turner, Munraj Vadera, Stu
Wagner, Hongyan Xia, Bjoern Zeeb, our shepherd Santosh
Nagarakatte, and our anonymous reviewers for their feed-
back and assistance. This work was supported by the Defense
Advanced Research Projects Agency (DARPA) and the Air
Force Research Laboratory (AFRL), under contracts FA8750-
10-C-0237 (“CTSRD”) and HR0011-18-C-0016 (“ECATS”). The

views, opinions, and/or findings contained in this report are
those of the authors and should not be interpreted as rep-
resenting the official views or policies of the Department
of Defense or the U.S. Government. We also acknowledge
the EPSRC REMS Programme Grant (EP/K008528/1), the
ERC ELVER Advanced Grant (789108), Arm Limited, HP
Enterprise, and Google, Inc. Approved for Public Release,
Distribution Unlimited.

10 Availability
We have released the CHERI hardware and software stacks,
specifications, and manuals, as open source on the CHERI
CPU web site [1].

We have published an extended version of this paper with
more coverage of implementation details and the various
trade-offs made in the process as a technical report [16].

References
[1] CHERI open-source web site. http://www.cheri-cpu.org/. Accessed:

2018-12-16.
[2] The Open Group base specifications issue 7. Technical report, 2016.
[3] M. Abadi, M. Budiu, Úlfar Erlingsson, and J. Ligatti. Control-flow

integrity: Principles, implementations, and applications. In Proceedings
of the 12th ACM conference on Computer and Communications Security.
ACM, 2005.

[4] A. Alkazimi and E. B. Fernandez. "heartbleed": A misuse pattern for
the openssl implementation of the ssl/tls protocol. In Proceedings of
the 23rd Conference on Pattern Languages of Programs, PLoP ’16, pages
6:1–6:8, USA, 2016. The Hillside Group.

[5] M. D. Bond, N. Nethercote, S. W. Kent, S. Z. Guyer, K. S. McKinley,
M. D. Bond, N. Nethercote, S. W. Kent, S. Z. Guyer, and K. S. McKinley.
Tracking bad apples. In Proceedings of the 22nd annual ACM SIGPLAN
conference on Object oriented programming systems and applications -
OOPSLA ’07, volume 42, page 405, New York, New York, USA, 2007.
ACM Press.

[6] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When good
instructions go bad: Generalizing return-oriented programming to
RISC. In P. Syverson and S. Jha, editors, Proceedings of CCS 2008, pages
27–38. ACM Press, Oct. 2008.

[7] N. P. Carter, S. W. Keckler, and W. J. Dally. Hardware support for fast
capability-based addressing. SIGPLAN Not., 29(11):319–327, Nov. 1994.

[8] D. Chisnall, B. Davis, K. Gudka, D. Brazdil, A. J. J. Woodruff, A. T.
Markettos, J. E. Maste, R. Norton, S. Son, M. Roe, S. W. Moore, P. G.
Neumann, B. Laurie, and R. N. M. Watson. CHERI JNI: Sinking the
Java security model into the C. In Proceedings of the Twenty Second
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’17, New York, NY, USA,
2017. ACM.

[9] D. Chisnall, C. Rothwell, B. Davis, R. N. M. Watson, J. Woodruff,
M. Vadera, S. W. Moore, P. G. Neumann, and M. Roe. Beyond the
PDP-11: Processor support for a memory-safe C abstract machine. In
Proceedings of the 20th Architectural Support for Programming Lan-
guages and Operating Systems. ACM, 2015.

[10] J. Condit, M. Harren, Z. Anderson, D. Gay, and G. C. Necula. De-
pendent types for low-level programming. In Proceedings of the 16th
European Symposium on Programming, ESOP’07, pages 520–535, Berlin,
Heidelberg, 2007. Springer-Verlag.

[11] J. Condit, M. Harren, S. McPeak, G. G. Necula, and W. Weimer. CCured
in the real world. In Proceedings of the ACM SIGPLAN 2003 conference
on programming language design and implementation, pages 232–244,

http://www.cheri-cpu.org/

New York, NY, USA, 2003. ACM.
[12] N. Cooprider, W. Archer, E. Eide, D. Gay, and J. Regehr. Efficient

memory safety for TinyOS. In Proceedings of the 5th International
Conference on Embedded Networked Sensor Systems, SenSys ’07, pages
205–218, New York, NY, USA, 2007. ACM.

[13] F. J. Corbató and V. A. Vyssotsky. Introduction and overview of the
Multics system. In AFIPS ’65 (Fall, part I): Proceedings of the November
30–December 1, 1965, fall joint computer conference, part I, pages 185–
196, New York, NY, USA, 1965. ACM.

[14] J. Corbet. Software-tag-based KASAN. https://lwn.net/Articles/
766768/, September 2018. Accessed: 2018-12-16.

[15] B. Davis. Everything you ever wanted to know about “hello, world”*
(*but were afraid to ask.). In Proceedings of AsiaBSDCon 2017, AsiaBS-
DCon 2017, 2017.

[16] B. Davis, R. N. M. Watson, A. Richardson, P. G. Neumann, S. W. Moore,
J. Baldwin, D. Chisnall, J. Clarke, N. W. Filardo, K. Gudka, A. Joannou,
B. Laurie, A. T. Markettos, J. E. Maste, A. Mazzinghi, E. T. Napierala,
R. M. Norton, M. Roe, P. Sewell, S. Son, and J. Woodruff. CheriABI:
Enforcing valid pointer provenance and minimizing pointer privilege
in the POSIX C run-time environment (extended version). Techni-
cal Report UCAM-CL-TR-932, University of Cambridge, Computer
Laboratory, Apr. 2019.

[17] J. Devietti, C. Blundell, M. M. K. Martin, and S. Zdancewic. Hardbound:
architectural support for spatial safety of the C programming language.
SIGARCH Comput. Archit. News, 36(1):103–114, Mar. 2008.

[18] U. Dhawan, C. Hritcu, R. Rubin, N. Vasilakis, S. Chiricescu, J. M. Smith,
T. F. Knight, B. C. Pierce, and A. DeHon. Architectural Support for
Software-Defined Metadata Processing. In 20th International Confer-
ence on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS). ACM, March 2015.

[19] J. Evans. A scalable concurrent malloc(3) implementation for FreeBSD.
In BSDCan, 2006.

[20] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida. ASLR on the
Line: Practical Cache Attacks on the MMU. In NDSS, Feb. 2017.

[21] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown. Mibench: A free, commercially representative embedded
benchmark suite. In Proceedings of the Workload Characterization,
2001. WWC-4. 2001 IEEE International Workshop, WWC ’01, pages
3–14, Washington, DC, USA, 2001. IEEE Computer Society.

[22] Intel Plc. Introduction to Intel® memory protection exten-
sions. http://software.intel.com/en-us/articles/introduction-to-intel-
memory-protection-extensions, July 2013.

[23] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and
Y. Wang. Cyclone: A safe dialect of C. In Proceedings of the USENIX
Annual Technical Conference, Berkeley, CA, USA, 2002. USENIX.

[24] K. Kratkiewicz. Evaluating Static Analysis Tools for Detecting Buffer
Overflows in C Code. Master’s thesis, 2005.

[25] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song.
Code-pointer integrity. In Proceedings of the 11th USENIX Conference on
Operating Systems Design and Implementation, OSDI’14, pages 147–163,
Berkeley, CA, USA, 2014. USENIX Association.

[26] A. Kwon, U. Dhawan, J. M. Smith, T. F. Knight, Jr., and A. DeHon. Low-
fat pointers: Compact encoding and efficient gate-level implementation
of fat pointers for spatial safety and capability-based security. In
20th Conference on Computer and Communications Security. ACM,
November 2013.

[27] A. T. Markettos, C. Rothwell, B. F. Gutstein, A. Pearce, P. G. Neu-
mann, S. W. Moore, and R. N. M. Watson. Thunderclap: Exploring
vulnerabilities in Operating System IOMMU protection via DMA from
untrustworthy peripherals. In Network and Distributed Systems Se-
curity (NDSS) Symposium 2019, San Diego, USA, Feb. 2019. Internet
Society.

[28] A. J. Mashtizadeh, A. Bittau, D. Mazieres, and D. Boneh. Cryptograph-
ically enforced control flow integrity. arXiv preprint arXiv:1408.1451,

2014.
[29] M. McKusick, K. Bostic, M. Karels, and J. Quarterman. The Design

and Implementation of the 4.4 BSD Operating System. Addison-Wesley,
Reading, Massachusetts, 1996.

[30] M. K. McKusick, G. V. Neville-Neil, and R. N. M. Watson. The Design
and Implementation of the FreeBSD Operating System. Pearson, 2014.

[31] K. Memarian, V. B. F. Gomes, B. Davis, S. Kell, A. Richardson, R. N. M.
Watson, and P. Sewell. Exploring C semantics and pointer provenance.
In POPL 2019: Proc. 46th ACM SIGPLAN Symposium on Principles of
Programming Languages, Jan. 2019. Proc. ACM Program. Lang. 3,
POPL, Article 67.

[32] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic. SoftBound:
highly compatible and complete spatial memory safety for C. In
Proceedings of the 2009 ACM SIGPLAN conference on Programming
language design and implementation. ACM, 2009.

[33] G. C. Necula, S. McPeak, andW.Weimer. CCured: Type-safe retrofitting
of legacy code. ACM SIGPLAN Notices, 37(1):128–139, 2002.

[34] P. G. Neumann, R. S. Boyer, R. J. Feiertag, K. N. Levitt, and L. Robinson.
A Provably Secure Operating System: The system, its applications, and
proofs. Technical report, Computer Science Laboratory, SRI Interna-
tional, May 1980. 2nd edition, Report CSL-116.

[35] D. M. Ritchie and K. Thompson. The UNIX time-sharing system.
Communications of the ACM, 17(7):365–375, 1974.

[36] N. Roessler and A. DeHon. Protecting the stack with metadata policies
and tagged hardware. In 2018 IEEE Symposium on Security and Privacy
(SP), volume 00, pages 1072–1089, 2018.

[37] J. Saltzer and M. Schroeder. The protection of information in computer
systems. Proceedings of the IEEE, 63(9):1278–1308, September 1975.

[38] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. Address-
Sanitizer: A fast address sanity checker. In Presented as part of the 2012
USENIX Annual Technical Conference (USENIX ATC 12), pages 309–318,
Boston, MA, 2012. USENIX.

[39] K. Serebryany, E. Stepanov, A. Shlyapnikov, V. Tsyrklevich, and
D. Vyukov. Memory tagging and how it improves c/c++ memory
safety. Technical report, February 2018.

[40] W. R. Stevens and S. A. Rago. Advanced Programming in the UNIX
Environment, 3rd Edition. Addison-Wesley Professional, May 2013.

[41] L. Szekeres, M. Payer, T. Wei, and D. Song. Eternal war in memory. In
IEEE Symposium on Security and Privacy, 2013.

[42] D. Tarditi. Extending C with bounds safety. Technical report, June
2016.

[43] the PaX Team. Address space layout randomization, 2006.
[44] The Santa Cruz Operation, Inc. System V application binary inter-

face, intel386™ architecture processor supplement (fourth edition).
Technical report, 1996.

[45] R.Watson, P. Neumann, J.Woodruff, J. Anderson, R. Anderson, N. Dave,
B. Laurie, S. Moore, S. Murdoch, P. Paeps, et al. CHERI: A Research
Platform Deconflating Hardware Virtualization and Protection. In
Workshop paper, Runtime Environments, Systems, Layering and Virtual-
ized Environments (RESoLVE 2012), 2012.

[46] R. N. Watson, R. M. Norton, J. Woodruff, S. W. Moore, P. G. Neu-
mann, J. Anderson, D. Chisnall, B. Davis, B. Laurie, M. Roe, N. H. Dave,
K. Gudka, A. Joannou, A. T. Markettos, E. Maste, S. J. Murdoch, C. Roth-
well, S. D. Son, and M. Vadera. Fast protection-domain crossing in
the cheri capability-system architecture. IEEE Micro, 36(5):38–49, Sept.
2016.

[47] R. N. M. Watson, P. G. Neumann, J. Woodruff, M. Roe, H. Almatary,
J. Anderson, J. Baldwin, D. Chisnall, B. Davis, N. W. Filardo, A. Joan-
nou, B. Laurie, S. W. Moore, S. J. Murdoch, K. Nienhuis, R. Norton,
A. Richardson, P. Sewell, S. Son, and H. Xia. Capability Hardware
Enhanced RISC Instructions: CHERI Instruction-Set Architecture (Ver-
sion 7). Technical Report UCAM-CL-TR-927, University of Cambridge,
Computer Laboratory, 15 JJ Thomson Avenue, Cambridge CB3 0FD,
United Kingdom, phone +44 1223 763500, 2018.

https://lwn.net/Articles/766768/
https://lwn.net/Articles/766768/
http://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
http://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions

[48] R. N. M.Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. Anderson,
D. Chisnall, N. Dave, B. s Davis, K. Gudka, B. Laurie, S. J. Murdoch,
R. Norton, M. Roe, S. Son, and M. Vadera. CHERI: A Hybrid Capability-
System Architecture for Scalable Software Compartmentalization. In
Proceedings of the 36th IEEE Symposium on Security and Privacy, May
2015.

[49] E. Witchel, J. Rhee, and K. Asanović. Mondrix: Memory isolation for
Linux using Mondriaan memory protection. In Proceedings of the 20th
ACM Symposium on Operating Systems Principles, October 2005.

[50] J. Woodruff, R. N. M. Watson, D. Chisnall, S. W. Moore, J. Anderson,
B. Davis, B. Laurie, P. G. Neumann, R. Norton, and M. Roe. The CHERI
capability model: Revisiting RISC in an age of risk. In Proceedings of
the 41st International Symposium on Computer Architecture, June 2014.

	Abstract
	1 Introduction
	2 CHERI Background
	3 Abstract capabilities
	4 Implementation
	5 Evaluation
	5.1 Test suites
	5.2 Performance
	5.3 Compatibility
	5.4 Memory protection benefit
	5.5 Abstract capability analysis

	6 Future work
	7 Related work
	8 Conclusion
	9 Acknowledgments
	10 Availability
	References

