CRASH-WORTHY

TRUSTWIORTHY
SYSTEMS
RESEARCH AND
DEVELOPMENT

Secure Linking in the
CheriBSD Operating System

Alexander Richardson, Robert N. M.Watson
University of Cambridge

PriSC 2019
|3 January 2019

EH UNIVERSITY OF
&¥ CAMBRIDGE

Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force

Research Laboratory (AFRL), under contract FA8750-10-C-0237. The views, opinions, and/or findings contained in this article/presentation are those of the
author(s)/presenter(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

CTSRD

Outline

* A little about the CHERI architecture
* What do we mean by secure linking in the CHERI context?

* CHERI pure-capability protection before secure linking
* Improvements made by secure linking

* What more could be done?

BB UNIVERSITY OF
&¥ CAMBRIDGE

Pointers today

64-bit
pointer

{

* Implemented as integer virtual addresses (VAs)

* (Usually) point into allocations, mappings
* Derived from other pointers via integer arithmetic
* Dereferenced via jump, load, store Allocation

* No integrity protection — can be injected/corrupted

* Arithmetic errors — out-of-bounds leaks/overwrites

Virtual
address
space

* Inappropriate use — executable data, format strings

» Attacks on data and code pointers are highly effective, often
achieving arbitrary code execution
3

B H UNIVERSITY OF
&¥ CAMBRIDGE

CTSRD

Protection model: 256-bit capabilities

#5{

—

objtype (24bits) permissions (31 bits) s
length (64 bits)

offset (64 bits)
base (64 bits) ' T—

256-bit capability
A

CHERI capabilities extend pointers with:
* Tags protect capabilities in registers and memory:

Allocation
* Dereferencing an untagged capability throws an exception ™77
* In-memory overwrite automatically clears capability tag
* Bounds limit range of address space accessible via pointer Virtua
address

space

* Permissions limit operations — e.g., load, store, fetch

* Sealing for encapsulation: immutable, non-dereferenceable, /. virsityor
&¥ CAMBRIDGE

CTSRD

Architecture:|28-bit compressed capabilities

| -bit
tag

<

1

I

1

I

1

I

1

permissions compressed bounds relative to address s

Virtual address (64 bits) '

128-bit
capability
A

S—

 Compress bounds relative to 64-bit virtual address

* Floating-point bounds mechanism constrains bounds alignment

Allocation

* Security properties maintained (e.g., provenance, monotonicity)

* Formats for sealed, non-sealed capabilities invest bits differently

* Strong C-language support (e.g., for out-of-bound pointers) Virtual

address
space

5 UNIVERSITY OF
4P CAMBRIDGE

CTSRD

CHERI enforces protection semantics for pointers

Data ; 4 Code

" =

M Heap Stack ; Control flow /

* Integrity and provenance validity ensure that valid pointers are derived from
other valid pointers via valid transformations; invalid pointers cannot be used

l i d -
ntegrity an Permissions

provenance validity

* Bounds prevent pointers from being manipulated to access the wrong object
* Permissions limit unintended use of pointers; e.g.,W”X for pointers
* Monotonicity prevents pointer privilege escalation — e.g., broadening bounds

» However, bounds and permissions must be initialized correctly by software — e.g,,

stack allocator, heap allocator, dynamic linker = UNIVERSITY OF
6 4P CAMBRIDGE

CTSRD

Example: protection for global variables

int x;
int main(int argc, charxx argv) { \
—int *ptr _ &X; \

I
. -

...!,.. UNIVERSITY OF
4P CAMBRIDGE

CTSRD

Example: protection for global variables

int x;

int main(int argc, charxx argv) {

*ptr = 1; // this 1is fine

m!m UNIVERSITY OF
4P CAMBRIDGE

CTSRD

Example: protection for global variables

int x;

int main(int argc, charxx argv) {

*ptr = 1; // this is fine

// address 1is the same as &y
int *ptr2 = &x + 1; ”,,/””’

*ptr2 = 23 // what happens here?

...!,.. UNIVERSITY OF
4P CAMBRIDGE

CTSRD

Example: protection for global variables

int x;

int main(int argc, charxx argv) { -------~""
int *ptr = &X; />‘<
*ptr = 1; // this is fine /
// address 1is the same as &y
int *ptr2 = &x + 1; /

*ptr2 = 23 // what happens here?

mum UNIVERSITY OF
4P CAMBRIDGE

CTSRD

Example: protection for global variables

int x;

int y;

int mai

*ptr

// address 1is the same as &y

int *

*xptr2 = 23 // what happens here?

n(int argc, charxx argv) {

= 1; // this 1is fine

ptr2 = &x + 1;

/

Using CHERI we can ensure that a write to
y via a pointer to x always fails.
If the initial bounds were set correctly

Most architectures permit storing
to y using a pointer derived from x

B E UNIVERSITY OF
¥ CAMBRIDGE

Overall goal: reducing available privilege

* By privilege we mean the memory accessible at a given time in the program’s execution

* For now we ignore file system and network access rights. This kind of sandboxing can be
managed differently (e.g. by using Capsicum)

* In a conventional architecture privilege is all memory mapped as accessible by the MMU
* Every integer is also a valid pointer and can therefore be used to access memory.
* ASLR makes arbitrary accesses more difficult but does not prevent them.

* With CHERI privilege is the set of all capabilities transitively reachable from the current
register contents.

* The MMU can further restrict accessible memory (but is not essential).

* The CheriBSD kernel ensures that memory management APIs can’t break capability
monotonicity.

5 UNIVERSITY OF
4P CAMBRIDGE

CHERI pure-capability linkage design goals

By reducing the amount of privilege available, we can achieve the following:
 Completely eliminate out-of-bounds memory accesses for global variables

* Memory outside of the current DSO should be inaccessible (except for exported symbols)
* Even stronger protection against control-flow hijacking

* CHERI hardware already prevents arbitrary jumps

* Linker support can reduce the number of accessible code capabilities
* Reduce the size of the TCB

* Compiler code-generation bugs can’t break the overall security model since we don’t rely
on compiler-inserted checks

* However, compiler and static linker are partially trusted to create an ELF file with a
valid symbol table and relocations to be processed by kernel ELF loader and dynamic linker

* Only the runtime linker and the kernel should are fully trusted but not libc.so, etc.

5 UNIVERSITY OF
4P CAMBRIDGE

CTSRD

CHERI pure-capability code without secure linkage

* Capabilities to global variables are derived by using the virtual addresses from the GOT as an
offset into program counter capability ($pcc) or default data capability ($ddc).

* MIPS globals pointer ($gp) used to find GOT by indexing into $ddc.
Stack ($csp): .text ($pcc/$cra) .got ($ddc + $gp) .data ($ddc)

58 UNIVERSITY OF
4P CAMBRIDGE

CTSRD

CHERI pure-capability code without secure linkage

* Capabilities to global variables are derived by using the virtual addresses from the GOT as an
offset into program counter capability ($pcc) or default data capability ($ddc).

* MIPS globals pointer ($gp) used to find GOT by indexing into $ddc.
Stack ($csp): text ($pcc/$era) .got ($ddc + $gp) .data ($ddc)

' mylnt

..l,.. UNIVERSITY OF
4P CAMBRIDGE

CTSRD

CHERI pure-capability code without secure linkage

* Capabilities to global variables are derived by using the virtual addresses from the GOT as an
offset into program counter capability ($pcc) or default data capability ($ddc).

* MIPS globals pointer ($gp) used to find GOT by indexing into $ddc.
Stack ($csp): text ($pcc/$era) .got ($ddc + $gp) .data ($ddc)

of &myint

mmm UNIVERSITY OF
4P CAMBRIDGE

CTSRD

Bounds on global variables without linker support

* Capabilities to global variables are derived by using the virtual addresses
from the GOT as an offset into $ppc or $ddc

* Bounds on global variables are implemented in the compiler by adding
CSetBounds instructions for global variables as is done for stack
allocations

* The executing code still has access to ambient capabilities that need
to be bounded correctly > compiler code generation bugs can result
in excessive privilege

* Furthermore, this only works if the size of a variable is known
* Can use various hacks to almost make it work for external symbols

* This model (mostly) works but has various limitations

5 UNIVERSITY OF
4P CAMBRIDGE

|7

CTSRD

Accessing global variables with linker support

Existing architectures can just generate any integer value and use that to access a variable.
* This is not possible with CHERI due to monotonicity and integrity.

* Alternatively they can add a constant to $pc/$gp/toc/etc. in the PIC case (which must be within
bounds for CHERI).

* For CHERI all global variable accesses and function calls must load an authorizing capability
from a GOT-like table (the captable) even for position-dependent code.

* The static linker emits relocations to initialize capabilities in the globals table that are
processed by the runtime linker on program startup.

* All capabilities must be initialized anyway because non-RAM storage cannot save tags. This
initialization is equivalent to relocating pointer values by the load address in PIE.

* PIE increasingly the default for ASLR so this adds no new overhead from CHERI
compared to commonly on by default vulnerability mitigation techniques.

» Every function needs a capability for the globals table ($cgp) on entry

) BB UNIVERSITY OF
4P CAMBRIDGE

PC-relative linkage model

* $cgp is generated by adding a static link-time constant to $pcc.
* This means $ddc can now be NULL.
* Advantages:
* $cgp can be generated within function so no need to pass as it as an (implicit) argument.

* This means function pointers can point directly to the function and do not need a trampoline
that generates $cgp

* Very similar to existing MIPS code generation (same number of instructions). Therefore a good
model for fair benchmarks between pure-capability and legacy MIPS code

* More efficient in contemporary architectures with pc-relative loads/AUIPC
* Disadvantages:

* $pcc must grant access to both the current function and the table of capabilities (i.e., .text and
.captable section) and requires at least LOAD_DATA and LOAD_CAP permissions on $pcc
* An attacker with arbitrary code execution could jump to any instruction within the current DSO

19 BB UNIVERSITY OF
&¥ CAMBRIDGE

CTSRD

PC-relative linkage model

* All privilege held in three registers: stack pointer ($csp), program counter ($pcc) and
return capability ($cra). The globals pointer ($cgp) is generated from $pcc.

* Since $ddc is now NULL only globals listed in the captable are accessible.

Stack ($csp): text ($pcc/$cra) .captable ($cgp) .data ($ddc = NULL)

libsecret.so

m!m UNIVERSITY OF
4P CAMBRIDGE

20

CTSRD

PC-relative linkage model

* All privilege held in three registers: stack pointer ($csp), program counter ($pcc) and
return capability ($cra). The globals pointer ($cgp) is generated from $pcc.

* Since $ddc is now NULL only globals listed in the captable are accessibl

Stack ($csp): .text ($pcc/$era) .captable ($cgp)

libsecret.so

g8 UNIVERSITY OF
4P CAMBRIDGE

21

CTSRD

PC-relative linkage model

* All privilege held in three registers: stack pointer ($csp) program counter ($pcc) and

return capability ($cra). The globals g om $pcc.
* Since $ddc is now NULL only globals o%: o%: e same [of
Stack ($csp): .text ($pcc/$era) SO B

libsecret.so

g UNIVERSITY OF
4P CAMBRIDGE

22

PLT linkage model

* $cgp must be set correctly on function entry and is a caller-save register

* This value can remain the same for calls within a library
* Advantages:

» Saves three instructions on function entry to generate $cgp

* $pcc is bounded to the current function

* An attacker with arbitrary code execution only has access to capabilities in the captable
* Disadvantages:

* $cgp must be set correctly by the caller or a PLT stub (which adds four instructions including two
memory loads)

* Function pointers cannot point to the function but a trampoline that sets up $cgp
* This is required to call from a context with a different $cgp (e.g., UNIX signal handlers).

* This makes it harder to ensure they are globally unique (required by C standard).

B H UNIVERSITY OF
&¥ CAMBRIDGE

23

CTSRD

PLT linkage model

» All privilege held in four bounded registers: $csp, $pcc, $cgp and $cra

* $pccis bounded to only the current function.

Stack ($csp): text ($pcc/$cra) .captable ($cgp) .data ($ddc = NULL)

24 mlm UNIVERSITY OF

4P CAMBRIDGE

PLT linkage model

» All privilege held in four registers: $csp, $pc

All globals in the .captable
* $pcc bounded to only the current funct 5000 s el

Stack ($csp): .text ($pcc/$era)

.captable ($cgp) .data ($ddc = NULL)

e

stackframe #|

., return myint;

stackframe #2

8 UNIVERSITY OF
y CAMBRIDGE

25

PLT linkage model

e All privilege
Called function can still All globals in the .captable
 $pccbound oo N S section are accessible!
Stack ($csp): text ($pcc/$cra) .captable ($cgp) .data ($ddc = NULL)

stackframe #|

\
.
\
.
\
.
\
.
N
\
N
\
.
\
\
\
.
N
S
N
N, \/
3
|
o
return myint;
’ Y
-
/
/
,
p
/
,
/
/

stackframe #2

\
.
\
y
\
y
\
\
\
\
.
\
y
\
y
\
.
\
\
\\
:
return bar();
\
\
\
\
\
\
\
y
\

I UNIVERSITY OF
% 4P CAMBRIDGE

CTSRD

Per-function .captable

* Each function uses a different $cgp > Privilege granted by $cgp is now minimal.

* Variables used by other functions are inaccessible.

Stack ($csp): text ($pcc/$era) .captable ($cgp) .data ($ddc = NULL)

foo() .captable (I entry)

other_func() .captable

bar() .captable (I entry)

I UNIVERSITY OF
4P CAMBRIDGE

27

Per-function .captable

e How can we find the correct table!?

* Static linker emits all per-function/per-file tables and concatenates them in a
single .captable section

* Also emits a special special ELF section that contains a mapping from
function address to required .captable subset

* Run-time linker can use this section when creating PLT stubs for exported
function or external calls

* Note: the run-time linker must also insert a PLT stub for every local call since
every function needs a different $cgp value

* Per-function tables will result in duplicate capabilities in the .captable. Some
deduplication is possible for functions using the same set of globals.

5 UNIVERSITY OF
4P CAMBRIDGE

28

Beyond basic privilege reduction

* Every library transition stub uses a return stub instead of returning to the caller directly.
* This allows switching to a separate stack on function transitions (or bounding and clearing it).

* Could also clear non-argument registers or validate control flow.

4 A

void foo() {

/]

bar () ;

/]

58 UNIVERSITY OF
&¥ CAMBRIDGE

29

CTSRD

Beyond basic privilege reduction

* Every library transition stub uses a return stub instead of returning to the caller directly.

* This allows switching to a separate stack on function transitions (or bounding and clearing it).

* Could also clear non-argument registers or validate control flow.

4 h

void foo() {

/]

bar () ;

PLT stub for bar()

* Load $cgp + target $pcc

30 mlm UNIVERSITY OF

4P CAMBRIDGE

CTSRD

Beyond basic privilege reduction

* Every library transition stub uses a return stub instead of returning to the caller directly.

* This allows switching to a separate stack on function transitions (or bounding and clearing it).

* Could also clear non-argument registers or validate control flow.

a

void foo() {

/]
bar () ;

n

PLT stub for bar()

; void bar() {

31 mﬂm UNIVERSITY OF

4P CAMBRIDGE

CTSRD

Beyond basic privilege reduction

* Every library transition stub uses a return stub instead of returning to the caller directly.
* This allows switching to a separate stack on function transitions (or bounding and clearing it).

* Could also clear non-argument registers or validate control flow.

— e
&=

B UNIVERSITY OF
¥ CAMBRIDGE

CTSRD

Beyond basic privilege reduction

* Every library transition stub uses a return stub instead of returning to the caller directly.
* This allows switching to a separate stack on function transitions (or bounding and clearing it).

* Could also clear non-argument registers or validate control flow.

— e
&=

B UNIVERSITY OF
¥ CAMBRIDGE

Configurable Linkage Policy

e PLT and return stubs are dynamically allocated by the runtime linker
* This allows flexible policy decisions at link-time and at run-time
* Runtime linker supports mixing DSOs with different policies

* We can therefore use different models depending on performance and security goals on a per-library
granularity

* Linker and compiler flags can change available privilege scope:
* General ABI selection: —-cheri-cap-table-abi={legacy,pcrel,plt}

* Further narrowing of captable scope (this only makes sense with the PLT ABI): -w1,-captable-
scope={all, file,function}

* RTLD can read a configuration file with per-library/binary policy:

/usr/1lib/libsecure.so: new-stack,clear-regs
/usr/bin/more-speed-less-bounds: clear-regs
/bin/cat: trust-all

* Basic infrastructure for this exists but not yet fully implemented

y = H UNIVERSITY OF
&¥ CAMBRIDGE

0
14
)]
™
0

Performance (PC-relative ABI)

+50% - FzZ1 instructions

+40% -

BXA |12cache misses

B3 cycles

BGES

N NN
v 7227
i X
= a¥aN
| P27
RN

|
B X)
VA2 272
| N
- ATATATAATATATAAATAAY
V' 77727
MR AR

VS TITA
RSk S SN
Smren. 2. 000D 0.0,
A2 27
IES SN
XY
77

“ ane
VAN

| va
5SSS

> 9.9.9.

-y
-

NN

vr 777

AN MR
e, XX K
67772
ESS S S Y

= "A7ATAY

wawaws

+30% A
+20% A

Impact commonly less than 5% (compared to MIPS)
PostgreSQL initdb 6.8%

B8 UNIVERSITY OF
4P CAMBRIDGE

N
(o]

CTSRD

Summary

* We fully support dynamic linking with minimal privilege including dlopen() and lazy binding.
e Compiler code-generation bugs cannot be exploited to gain access to inaccessible data.

* Further security goals such stack and register clearing to prevent data leakage can be enabled with a per-library configurable
policy.

* ltis possible to mix the different modes even within a process to choose a suitable trade-off between security and
performance.

e All code is available on GitHub:

* https://github.com/CTSRD-CHERI/llvm
* https://github.com/CTSRD-CHERI/clang

* https://github.com/CTSRD-CHERI/IId

e https://github.com/CTSRD-CHERI/cheribsd
* To learn more about the CHERI architecture and prototypes:

* https://www.cheri-cpu.org/

B H UNIVERSITY OF
&¥ CAMBRIDGE

36

CTSRD

Questions!?

BB UNIVERSITY OF
¥ CAMBRIDGE

37

What about loading via the target $pcc or $cra!?

* In the current implementation this is still possible.
* However, this can be fixed by using the sealed capability mechanism.
* Pairs of sealed capabilities can be invoked using CCall,

* CCall unseals the paired capabilities (the data argument is
unsealed into $cgp) and jumps to the code.

* We also have an experimental implementation of call-only sealed
capabilities that could be used for call targets and return addresses.

5 UNIVERSITY OF
4P CAMBRIDGE

38

Why don’t we just use pairs of capabilities!?

* We could do: by using function descriptors
* However, POSIX APIs require sizeof(voidx) == sizeof(void(*)(void))

* Therefore we need indirection: function pointers are non-executable pointers to a
pair of capabilities

* This is more-or-less the same as jumping to a stub that loads the pair

* Can inline the pair in the captable, but this puts pressure on the limited immediate
range in the load capability instruction

* Requires kernel changes to handle non-executable capabilities in sigaction(), etc.

* Note: We have an experimental function descriptor implementation with slightly
different performance characteristics but the same security properties as the PLT
model

5 UNIVERSITY OF
4P CAMBRIDGE

39

Function pointers must be unique

* Required by C and C++ standard

* Cannot use the PLT stub as the function pointer since the stub is different in
every library that uses that function.

* Chosen solution: The function pointer always resolves to a stub in the library
that exports the function.

* Two different relocations for direct call and taking a function pointer:

* R_MIPS_CHERI_CAPABILITY CALL: does not need to be unique so can
point to the per-DSO PLT stubs.

 R_MIPS_CHERI_CAPABILITY: When used with STT_FUNC symbol
guarantees a unique address (otherwise a direct data reference).

* Lazy binding is not possible for function pointers but still fine for direct calls.

5 UNIVERSITY OF
4P CAMBRIDGE

40

